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Abstract. Distances between amino acids were de-
rived from the polar requirement measure of amino acid
polarity and Benner and co-workers’ (1994) 74-100
PAM matrix. These distances were used to examine the
average effects of amino acid substitutions due to single-
base errors in the standard genetic code and equally de-
generate randomized variants of the standard code. Sec-
ond-position transitions conserved all distances on
average, an order of magnitude more than did second-
position transversions. In contrast, first-position transi-
tions and transversions were about equally conservative.
In comparison with randomized codes, second-position
transitions in the standard code significantly conserved
mean square differences in polar requirement and mean
Benner matrix-based distances, but mean absolute value
differences in polar requirement were not significantly
conserved. The discrepancy suggests that these com-
monly used distance measures may be insufficient for
strict hypothesis testing without more information. The
translational consequences of single-base errors were
then examined in different codon contexts, and similari-
ties between these contexts explored with a hierarchical
cluster analysis. In one cluster of codon contexts corre-
sponding to the RNY and GNR codons, second-position
transversions between C and G and transitions between
C and U were most conservative of both polar require-
ment and the matrix-based distance. In another cluster of
codon contexts, second-position transitions between A
and G were most conservative. Despite the claims of

previous authors to the contrary, it is shown theoretically
that the standard code may have been shaped by posi-
tion-invariant forces such as mutation and base content.
These forces may have left heterogeneous signatures in
the code because of differences in translational fidelity
by codon position.

A scenario for the origin of the code is presented
wherein selection for error minimization could have oc-
curred multiple times in disjoint parts of the code
through a phyletic process of competition between lin-
eages. This process permits error minimization without
the disruption of previously useful messages, and does
not predict that the code is optimally error-minimizing
with respect to modern error. Instead, the code may be a
record of genetic process and patterns of mutation before
the radiation of modern organisms and organelles.

Key words: Error minimization — G/C bias — Tran-
sition bias — Translational error — Amino acid substi-
tution matrices — Codon context — RNY hypothesis —
RNA world

Introduction

The Error-Minimization Hypothesis of Standard
Code Origin

All modern organisms bequeath to their offspring genes
encoding proteins and machinery to decode those genes.
Transmission errors of encoded protein information
(‘‘message errors’’) occur because of translational mis-
reading or misacylation, because the gene was altered by
mutagenic damage in either the parent or the offspring orCorrespondence to:D.H. Ardell; e-mail: ardell@charles.stanford.edu
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by replicative errors.1 A lineage with a code such that
these transmission errors result in chemically conserva-
tive amino acid substitutions may be more fit than a
lineage with a less conservative code.

The hypothesis that message errors influenced the as-
signment of amino acid meaning to codons is as old as
our knowledge of the standard code itself (Nirenberg et
al. 1963; Sonneborn 1965; Woese 1965; Goldberg and
Wittles 1966; Epstein 1966). The error-minimization hy-
potheses states that the standard code evolved an inverse
relationship between the severity and the frequency of
message errors (Swanson 1984; Haig and Hurst 1991)at
the time of fixation of codon meaning(strictly speaking,
it is not errors but rather their consequences that are
minimized). A formal statement of this argument is given
in Appendix A, with a proof of optimality of the inverse
relationship between error frequency and severity.

Representing the Fitness Effects of Substitution Using
Amino Acid Distances

A surrogate for directly measuring the fitness effects of
amino acid substitutions is the use of distances derived
either from sequence-alignment-based amino acid sub-
stitution matrices or from differences in amino acid
physicochemical properties shown to correlate with such
matrices. Generally, amino acid polarity and volume
have been identified as most related to patterns of amino
acid substitution (Grantham 1974; French and Robson
1983; Swanson 1984; Benner et al. 1994; Tomii and
Kanehisa 1996), although different matrices and methods
identify different specific measures of these properties as
most explanatory of the data. Interestingly, amino acid
volume measures (Grantham 1974) seem less related
than polarity measures to the pattern of amino acids in
the standard code (Haig and Hurst 1991; Di Giulio
1994).

Because amino acid substitution matrices are derived
from alignments of modern proteins, it is assumed in
both methods of deriving distances for testing hypoth-
eses about the code that the fitness-relevant chemistry of
proteins has not changed since the time the code—or its
parts—has fixed. Distances derived directly from substi-
tution matrices are sensitive to amino acid frequencies in
the sequence set from which they are generated (Altschul
1991), which are likely to have changed over the history
of life. However, such distances incorporate information
from the averaged effect of many different protein con-
texts weighted by frequency of occurrence.

As reviewed in the next section, both squared (Haig
and Hurst 1991; Goldman 1993) and absolute-value dif-
ferences (Alff-Steinberger 1969; Di Giulio 1989a; Szath-

mary and Zintzaras 1992; Di Giulio 1995a) in polar re-
quirement2 (|DPR|2 and |DPR|, respectively) have been
used to test hypotheses about the genetic code. Although
other measures of polarity have been shown to be more
explanatory of matrix substitution data than polar re-
quirement (Tomii and Kanehisa 1996; Koshi and Gold-
stein 1997), the differences are slight. As is shown in this
study, statistical results may depend critically on how the
distances are transformed before analysis.

What Kinds of Message Errors Are Thought to Have
Influenced Code Evolution?

On average, errors in the first position of the code con-
serve chemical polarity much more than in the second
position (Woese 1965; Alff-Steinberger 1969; Kimura
1980; Swanson 1984; Haig and Hurst 1991). This is true
with different measures of chemical polarity, including
polar requirement, and Kyte–Doolittle hydropathy (Haig
and Hurst 1991). Consequently, the second codon posi-
tion determines the chemistry of the encoded amino acid
(Wolfenden et al. 1979; Sjo¨ström and Wold 1985; Di
Giulio 1989b; Taylor and Coates 1989).

The translational error model for code evolution
(Woese 1965) explains this positional discrepancy in
conservation of chemical polarity in the code as a con-
sequence of the greater frequency of translational mis-
reading in the first codon position relative to the second
position as observed in vitro (Davies et al. 1964, 1966).
More recent in vivo studies of translational error support
this positional trend in general (Parker 1989). Assuming
that studies of extant translational error can tell us about
translational error at the time the code originated, the
correspondence between translational error frequencies
by codon position and their resulting average conserva-
tion of chemical polarity in the standard code is consis-
tent with translational error minimization, but not—it has
been claimed—mutation minimization (Alff-Steinberger
1969; Swanson 1984; Haig and Hurst 1991; Goldman
1993). These authors have argued that the frame invari-
ance of mutations should have resulted in equal conser-
vation of amino acid distance in each codon position.

The main thesis of this paper is that error minimiza-
tion with respect to frame-invariant error processes such
as mutation isnot inconsistent with positional discrep-
ancies in conservation. Message mutations must first be
translated to affect code fitness. Therefore, positional
differences in translational fidelity might have caused a
positional asymmetry in the effect of message mutations
on code evolution. For example, if primordial genomes
were G/C-rich (evidence reviewed below), the greater

1 Error is defined here with reference to Watson–Crick fidelity and is,
thus, restricted to the first or second codon position in translation.

2 A chromatographic measure of hydrophilicity, namely, the logarithm
of the slope of the line resulting from a plot of log [(1 −RF)/RF] against
log mole fraction water in a series of pyridine solvents of increasing
polarity.
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translational fidelity of the second codon position would
lead to a greater mutational signature of this bias in the
pattern of amino acid assignments in the second codon
position than in the first position. To explore this hy-
pothesis, the average effects of transitions and transver-
sions were examined in the first and second codon po-
sitions, and the effects of all possible errors in different
codon contexts were examined and compared to one an-
other.

The History of Ancient Genomes and the Genetic Code

There has been independent evidence that primordial ge-
nomes were G/C-rich. Eigen and Schuster argue for pri-
mordial G/C-richness as a consequence of selection for
replicative fidelity. Before well-adapted replicases, the
G ? C pair is thought to have replicated with greater fi-
delity because of its greater relative thermodynamic
stability (Eigen and Schuster 1979). Recently, an in
vitro-evolved telomerase-like ribozyme was shown to
polymerize nucleotides 10–40 times more efficiently and
with a higher fidelity when directed by G and C template
residues than with A and U residues (Ekland and Bartel
1996).3 Furthermore, phylogenetically reconstructed
tRNA ancestors have a higher G/C content than is the
average in extant tRNA molecules (Eigen and Winkler-
Oswatitsch 1981; Fitch and Upper 1987; Di Giulio
1995b). In addition, the GNC-encoded amino acids (gly-
cine, alanine, aspartate, and valine) are the most abun-
dant amino acids produced in the Miller–Urey reactions
and found in the Murchison Meteorite (Miller 1987) and
are also at the roots of the amino acid biosynthetic path-
ways (Wong 1975; Taylor and Coates 1989). A recent
phylogenetic analysis of acceptor domains of tRNA mol-
ecules suggests that all tRNA molecules are descended
from GNC codon-recognizing adapters (Rodin et al.
1996).

What kinds of errors may have affected the code
through error minimization? Did the code evolve its
amino acid meaning all at once, or in successive stages?
How can error minimization be reconciled with the no-
tion, due to Crick (1968), that genetic codes cannot
change without drastic losses in fitness due to the dis-
ruption of message meaning? Evidence is presented here
to suggest that the code evolved in at least two distinct
stages of error minimization, each in response to differ-
ent distributions of error. Furthermore, a phyletic scheme
is suggested for how this could have occurred without
disrupting message meaning.

Methods

Amino Acid Distances: Criteria and Methods

Values of Woese’s polar requirement4 and Benner’s 74-100 PAM
amino acid substitution matrix were taken from the AAINDEX data-
base (Nakai et al. 1988; Tomii and Kanehisa 1996).

Both |DPR|2 and |DPR| were used here in comparing average dis-
tance conservation of transitions and transversions in the first and sec-
ond codon positions. In this study, the third position was neglected
because its high degree of degeneracy makes it incomparable to the
other two positions.

A third distance,DB, was generated from Benner and co-workers’
(1994) 74-100 PAM amino acid substitution matrixM. This is a log-
odds matrix, the entries of which must be exponentiated for arithmetic
averaging. The distanceDB(i,j) between amino acidi and amino acidj
is calculated from the matrix entryMi, j using the formula

DB~i,j ! = H10−~Mi,j /10! if i Þ j
0 if i = j (1)

which for i Þ j is identical to the transformation used by Benner et al.
(1994) to define distances in their study. With reference to the sequence
set that generated the matrixM, DB(i, j) will vary directly with the
product of the frequencies of amino acidsi andj in the sequence set and
inversely with their frequency of pairwise alignment (Altschul 1991).

The Benner 74-100 PAM matrix was used because it is based on a
set of sequences of large estimated PAM distances within a specific
range. In comparison with matrices derived from less-diverged se-
quences, it is demonstrably less affected by the genetic code, and more
correlated with physicochemical properties of amino acids (Benner et
al. 1994; Tomii and Kanehisa 1996). Furthermore, the matrix entries
are significant to two digits instead of one, increasing the accuracy of
calculated distances when transformed by Eq. (1).

Comparisons of Transitions and Transversions in the
Standard Code and in Randomized Variants

Average values of conservation of the two polar requirement-based
distances and the matrix-based distanceDB were calculated for transi-
tions and transversions in the first and second codon positions of the
standard code. The equal weighting of each codon in the calculation of
these averages is consistent with the assumption of a mutation model
with a uniform stationary distribution, such as the Kimura two-
parameter model used in Appendix B (assuming no other evolutionary
forces).

To estimate the probability that the results would have occurred by
chance alone, distributions of averages and their standard errors for
each error category and position were empirically calculated using
randomized codes in the method of Haig and Hurst (1991). In this
method, distributions are generated by sampling from the 20! possible
permutations of amino acids within the standard code, leaving constant
the size and location of codon sets that encode for the same amino acid
and the location and number of stop codons. The proportion of ran-
domized codes with an average distance less than or equal to that of the
standard code for a given chemical criterion, codon position, and base
type defines aP value, an estimate of difference from the null model

3 This could reflect the evolutionary history of the ribozyme, as it was
evolved from a ligase that used a tethered G-rich template. However,
that the descendent ribozyme also has higher fidelity with a C template
suggests that the bias in fidelity is extrinsic to its evolutionary history.

4 There are two published sets of values with this name (Woese 1966,
1973), differing in values for Cys, Trp, and Tyr (at most by nearly 15%
for Cys). The more recent set of values is used here, but the results do
not differ appreciably from those with the older values.
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used. Clearly the choice of null model used will influence the estimate
of statistical significance (Goldman 1993). In this null model, biases
arise from nonrandomness in the location of sites of large and small
degeneracies (Haig and Hurst 1991).

In the initial comparisons between transitions and transversions,
five tests were run with each distance measure, with 106 randomized
codes examined in each test. All statistics were rounded to the level of
significance determined from these five repeated measurements. Iden-
tical calculations were also performed with randomized codes con-
strained to be as conservative as the standard code in first-position
transitions and transversions, except that only a single run was per-
formed for each estimate. All calculations described above were per-
formed in ANSI C.

Detailed Analysis of the Effects of Error in Different
Codon Contexts

Values of DB and signed values ofDPR were calculated for every
amino acid substitution that would result from a single-base error in the
first or second position of the standard code. Each of the (4

2) undirected
errors between two bases was organized by the position in which it
occurred and by the context of the error. Thecodon contextof an error
classifies the error at a given codon position by the identity of the bases
unchanged by the error. For example, the set of all second-position
errors in the context of a first-position A and a third-position pyrimi-
dine is denoted ‘‘A*Y.’’

Signed values ofDPRwere generated to assess similarities among
different codon contexts in both the directions and the magnitudes of
distances. This was not possible with the symmetricalDB distance. For
the correlation analysis described below, signed values were used. Oth-
erwise, only the ranks of magnitudes were compared in different con-
texts to infer rates of errors between the different pairs of bases in those
contexts, assuming an error-minimization process.

Values ofDPR andDB for errors involving the codons AUA (iso-
leucine) and AUG (methionine) were averaged (in the case ofDPR,
they were of the same sign), and errors to and from stop codons were
excluded from all calculations. All calculations above were performed
in ANSI C.

To summarize similarities among the patterns of the data in differ-
ent contexts, Pearson product–moment correlations were calculated
between the different contexts for the second position alone and for the
first and second positions combined. The two contexts containing er-
rors exclusively to and from stop codons (*AR and U*R) were ex-
cluded from these correlation calculations. A hierarchical cluster analy-
sis was performed on the correlations in S-Plus (Version 3.4. MathSoft,

Inc., 1997), using the ‘‘connected’’ (also called ‘‘single-linkage’’)
method, which defines the correlation between two clusters as the
highest correlation among two members each from a different cluster.

Results

Transitions Are More Conservative Than
Transversions in the Second Codon Position

Table 1 shows that with both the |DPR|2 and theDB

distances, less than 5% of randomized codes were more
conservative than the standard code in second-position
transitions, while second-position transversions were not
significantly conservative in this measure. In the first
position, transitions and transversions were both highly
and significantly conservative for all distances examined.
Transitions were not significantly different from random
in the second codon position with the |DPR| distance, by
a 0.05 criterion. The quantities calculated with the |DPR|2

distance were consistent in magnitude with those of Haig
and Hurst (1991), who pooled transitions and transver-
sions together. As with their results, differences inD and
their standard errors for a given distance among catego-
ries may be explained by the uneven pattern of degen-
eracy within each class of error and the different numbers
of each type of error entering the averaging. Both tran-
sitions and transversions in the first position were aver-
aged with two values of zero because of the degeneracy
pattern of the standard code. Approximately twice as
many nonzero transversions as transitions entered the
calculation of averages, excluding errors to and from
stop codons (29 transitions versus 58 transversions in the
first position and 30 transitions versus 58 transversions
in the second position).

To test whether error minimization in the first position
could cause the transition-biased pattern in the second
position, the calculations were repeated with randomized
codes constrained to be as conservative as the standard

Table 1. Means of the distances |DPR|2, |DPR|, andDB in the standard codeDSGC, their averagesD in 106 randomized codes, and the proportion
P of such codes at least as conservative as the standard code by position and type of error

Distance Statistic

Position I Position II

Transitions Transversions Transitions Transversions

D 4 |DPR|2 DSGC 3.21 4.94 5.54 13.00
D ± SE 11.3 ± 3.8 11.7 ± 3.2 12.1 ± 3.9 12.1 ± 2.8
P 5.6 × 10−3b 6.2 × 10−3b 3.2 × 10−2a 6.5 × 10−1

D 4 |DPR| DSGC 1.32 1.43 1.94 3.10
D ± SE 2.57 ± 0.51 2.66 ± 0.43 2.76 ± 0.53 2.76 ± 0.38
P 6.1 × 10−3b 1.1 × 10−3b 5.9 × 10−2 8.2 × 10−1

D = DB DSGC 0.80 0.91 1.13 1.34
D ± SE 1.31 ± 0.17 1.36 ± 0.13 1.41 ± 0.17 1.41 ± 0.12
P 2 × 10−4c 1 × 10−4c 4.2 × 10−2a 2.8 × 10−1

a P < 0.05.
b P < 0.01.
c P < 0.001.
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code in first-position transitions and transversions. Large
numbers of randomized codes were needed to develop a
sample size sufficient for crude estimates, and different
distances required the examination of different numbers
of codes to get approximately the same sample size.
Table 2 shows the results of this analysis. ForD 4
|DPR|2, the second-position statistics were quite similar
to those in Table 1 but only borderline significant. |DPR|
was more strongly affected, indicating a possible inter-
action in the two dimensions of organization in the code.
Only 172 matrices of 7 × 107 examined satisfied the
condition with theDB distance, in keeping with the ex-
tremeP values of first-position transitions and transver-
sions obtained with this distance (Table 1).

Patterns ofDPR and DB Within Different Contexts of
Error and Their Correlations in the Standard Code

Tables 3 and 4 present the first and second positions of
signed differences in polar requirementDPR and un-
signed Benner matrix distances,DB, respectively. Col-
umns show values for errors labeled at the top in the
contexts listed at the left. The sole purpose in showing
signed values ofDPR was to display the unique consis-
tency of second-position errors, such that most values
could be made positive in the second position by fixing
the direction of errors in a specific way. As may be seen
from the columns of oppositely signed values in the up-
per half of Table 3, this was impossible in the first codon
position.

Several trends were apparent.

1. The second-position pyrimidine context was dispro-
portionately responsible for the conservative nature of
first-position errors with respect to both distances ex-
amined. These contexts correspond to errors within
the hydrophobic and small polar residues.

2. With both distances in each of the A*Y, G*Y, and
G*R contexts, G↔ C errors were most conservative
and A ↔ U errors were least or second-least conser-
vative. C↔ U errors were also conservative in these
contexts.

3. In the A*R, C*Y, and C*R contexts, A↔ G errors

were most conservative, and withDPR in these con-
texts, both transition-type errors were more conserva-
tive than any transversion-type error.

4. With theDPR distance, the A*Y context of second-
position errors was more similar to the G*Y and G*R
contexts than to the A*R context, which in turn was
more similar to the C*R and C*Y contexts. Closer
inspection of the data showed that the difference be-
tween A*Y and A*R was due largely to arginine in
the AGR codons.

There were also notable differences between the re-
sults with DPR and those withDB. In addition to the
second-position pyrimidine contexts of first-position er-
ror, the *AY and *AR contexts were also very conser-
vative of theDB distance (Table 4, upper half). A↔ G
errors in the second position were conservative in every
context using theDB distance, but in polar requirement
were only especially conservative in the A*R, C*Y, and
C*R contexts. With both distances, the U*Y and U*R
contexts of second-position errors appeared similar to
each other and different from the other second-position

Table 2. Statistics of randomized codes conditioned to be at least as conservative as the standard code in first-position transitions and transversions
(N gives the number of codes examined and sampled)

Distance Statistic

Position I Position II

Transitions Transversions Transitions Transversions

D 4 |DPR|2 D ± SE 3.0 ± 0.6 4.3 ± 0.8 12.6 ± 4.2 11.6 ± 2.1
(N 4 853 of 106) P 1.0 1.0 5 × 10−2 7 × 10−1

D 4 |DPR| D ± SE 1.2 ± 0.13 1.3 ± 0.12 2.8 ± 0.6 2.6 ± 0.3
(N 4 882 of 5 × 106) P 1.0 1.0 1 × 10−1 9 × 10−1

D = DB D ± SE 0.77 ± 0.03 0.87 ± 0.03 1.62 ± 0.22 1.46 ± 0.11
(N 4 172 of 7 × 107) P 1.0 1.0 1 × 10−2 7 × 10−2

Table 3. Signed differences in polar requirementDPR in the first and
second positions of the standard code, by context and error type

G → C C → U G → U A → G A → C A → U

Position I
*GY −1.20 3.60 2.40 −0.40 −1.60 2.00
*GR −1.20 3.80 2.60 1.20 0.00 3.80
*AY 4.60 2.70 7.30 −3.00 1.60 4.30
*AR 3.90 Stop Stop −2.40 1.50 Stop
*CY 0.40 −0.90 −0.50 −0.40 0.00 −0.90
*CR 0.40 −0.90 −0.50 −0.40 0.00 −0.90
*UY 0.70 −0.10 0.60 −0.70 0.00 −0.10
*UR 0.70 0.00 0.70 −0.50 0.20 0.20

Position II
G*Y 0.90 1.40 2.30 5.10 6.00 7.40
G*R 0.90 1.40 2.30 4.60 5.50 6.90
A*Y 0.90 1.70 2.60 2.50 3.40 5.10
A*R 2.50 1.50 4.00 1.00 3.50 5.00
C*Y 2.50 1.70 4.20 −0.70 1.80 3.50
C*R 2.50 1.70 4.20 −0.50 2.00 3.70
U*Y −2.00 2.50 0.50 0.20 −1.80 0.70
U*R 2.20 2.60 0.40 Stop Stop Stop
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error contexts, where the two contexts could be com-
pared numerically.

A hierarchical cluster analysis of the second-position
errors grouped by context is shown in Figs. 1a and b. The
A*Y and A*R contexts clustered separately in the den-
drograms, such that A*Y was closer to G*Y/G*R, and
A*R was closer to C*Y/C*R. When first and second-
position errors were pooled, the relative clustering rela-
tionships among the second-position errors were robust
for correlations based onDPR but not DB (Figs. 2a
and b).

Discussion

Variation in the Results Based on Distances Examined

In comparing transitions and transversions with the two
measures of difference in polar requirement,P values
varied extremely depending on the transformation used
(Tables 1 and 2). There was no a priori basis on which to
decide which of the squared or absolute value differences
in polar requirement was more appropriate for estimating
the average effect of amino acid substitutions on fitness.
Some way is needed to ascertain the importance of polar
requirement to the functioning of ancient proteins (Crick
1968). Until this is possible, these statistics are not suf-
ficient for strict hypothesis testing.

Most trends emphasized in this report were consistent
when analyzed with other polarity measures and, also,
with distances derived from other substitution matrices
(data not shown).

Some discrepancies between the results in Table 3 and
those in Table 4 were due to the influence of amino acid
volume on the Benner matrix-based distance. For ex-

ample, the differences between the two tables in errors
involving U in the G*N/A*Y contexts are attributable to
amino acid differences in volume, when measured by
Grantham’s amino acid volume index (data not shown).
Either amino acid volume was not as important to the
functioning of proteins at the time of code origin, or it
was andDB is better for estimates of ancient error, or the
hypothesis is fundamentally flawed. In the following,
greater emphasis is given to results obtained with both
distances, and special mention is given to results inferred
from the polar requirement measure alone.

A Second-Position-Pyrimidine Context May Promote
First-Position Translational Error

Table 3 shows that the second-position pyrimidine con-
texts (*CY, *CR, *UY, and *UR) were primarily respon-
sible for the conservative nature of first-position errors
with respect to polar requirement. The pattern is also
seen with the matrix-based distance in Table 4, but not as
distinctly (the *AY and *AR contexts are also conserva-
tive).

One possible explanation for these data is that, given
error minimization, a pyrimidine context relatively pro-

Table 4. Values of the Benner 74-100 PAM matrix-based distance
DB for the first and second positions of the standard code, by context
and error type

C ↔ G U ↔ C U ↔ G A ↔ G A ↔ C U ↔ A

Position I
*GY 1.26 1.66 1.58 0.91 1.05 0.98
*GR 1.26 1.45 2.57 1.26 0.00 1.45
*AY 0.91 0.56 1.91 0.60 0.76 1.38
*AR 0.68 Stop Stop 0.76 0.68 Stop
*CY 0.91 0.89 0.78 0.85 0.98 0.72
*CR 0.91 0.89 0.78 0.85 0.98 0.72
*UY 0.65 0.62 0.98 0.48 0.52 0.81
*UR 0.65 0.00 0.65 0.57 0.52 0.52

Position II
G*Y 0.87 0.98 2.04 0.95 1.07 1.95
G*R 0.87 0.98 2.04 1.12 1.02 1.62
A*Y 0.72 1.07 1.51 0.81 0.91 1.91
A*R 1.07 1.08 1.67 0.51 0.98 1.56
C*Y 1.26 1.66 1.74 0.79 1.26 1.55
C*R 1.26 1.66 1.74 0.69 1.05 1.48
U*Y 0.98 1.82 1.17 1.10 1.55 0.30
U*R 2.19 1.66 1.23 Stop Stop Stop

Fig. 1. Hierarchical cluster analyses of correlations among seven
contexts of second-position errors (rows in Tables 3 and 4, bottom
halves).a Correlations between different contexts of second position
errors using signed differences in polar requirementDPR measure.b
Correlations derived from the substitution matrix-based distanceDB

among contexts of errors in position two. In both a and b, the U*R
context containing errors to and from stop codons was excluded. The
correlations between clusters are single-linkage (given by the maxi-
mum correlation between two members, one from each cluster). By
giving an upper bound on correlation between clusters, single-linkage
gives a sense of the strength of separation of the A*Y and A*R con-
texts; this separation is stronger with theDPR measure but is main-
tained in both.

6



moted first-position translational error at the time the
code originated. This is consistent, assuming that modern
rates of translational error may be extrapolated backward
in time, with evidence that second-position pyrimidine
contexts promote translational error in a cell-free extract
taken fromEscherichia coliunder the action of strepto-
mycin (Negre et al. 1988).5 More evidence regarding
context effects on first-position errors would be desirable
to assess this claim. Unfortunately, in vitro studies of
tRNA/tRNA binding affinities (Grosjean et al. 1978) do
not examine first-position non-Watson–Crick pairs in
different second-position contexts. In vivo translational
error studies have relied mostly on labeled cysteine or
charge heterogeneity in proteins to detect error and, thus,
have been restricted to second-position purine contexts
(Parker 1989).

Also consistent with a relatively stabilizing effect of
second-position purine contexts on first-position transla-
tional error is the placement of stop codons in this con-
text. Nonsense errors have been claimed to be more det-
rimental on average than any missense error in terms of
fitness effects (Sonneborn 1965). Finally, if first-position
translational error is infrequent in second-position purine
contexts, then these contexts should reflect the charac-
teristics of mutation more than other contexts of first-
position error (Appendix B). Figure 2a shows that with
the DPR distance, the *AY context was more than 0.95
correlated with the C*N contexts. However, the *GY and
*GR contexts did not cluster near these contexts, and the
*UY and *UR contexts were also more than 0.90 corre-
lated with this cluster.

Transition-Biased Conservation in the Second Codon
Position Could Be Explained by Translational
Error Minimization

Why are the first and second codon positions different
with respect to transitions and transversions? Transla-
tional error could have been more transition biased in the
second codon position when the code originated. This
explanation could be accommodated by preferential sta-
bility of either the G? U or the C? A non-Watson–Crick
pair in the second codon position. A second-position
G ? U pair was presumably responsible for the observed
in vitro translation of UGU as tyrosine under a high
Mg2+ concentration (Nishimura et al. 1968). A second-
position G? U pair may also explain observed misread-
ing among nonsense suppressors (Strigini and Brickman
1973). Although the thermodynamics of base-pairing are
not the sole determinant of RNA secondary structure,
and of codon/anticodon interactions in particular (Gros-
jean et al. 1978), some assessment of the thermodynam-
ics of RNA base-pairing under the nearest-neighbor
model may be relevant (Turner 1996). The C? A pair is
thermodynamically less stable in RNA than is the widely
observed G? U pair (Wu et al. 1995). One in vitro sys-
tem using tRNA/tRNA annealing found that the G? U
pair was an order of magnitude more stable in the wobble
position than in the middle position, where it has only
marginal stability (Grosjean et al. 1978). Because this
study used a tRNA/tRNA binding affinity assay, one
tRNA’s wobble position was another’s first position.
Thermodynamic measurements confirm that the G? U
pair has a lower stability in the middle of an RNA helix
(Turner et al. 1988) than at its end. The formation of
middle-position G? U pairs may be promoted by an ad-
jacent U nucleotide context (Friedman, in Davies 1966;
Strigini and Brickman 1973).

On the basis of this evidence, translational error mini-
mization cannot be excluded as at least contributing to
the pattern of transition-biased distance conservation in
the second codon position. A prediction from the data in

5 This same study did not find a significant difference in translational
error between the two codon positions (Negre et al. 1988), but the
balance of evidence suggests that the first position is more error-prone
than the second codon position (Parker 1989).

Fig. 2. Hierarchical cluster analyses of correlations among the pooled
contexts of errors in the first and second positions (rows in Tables 3 and
4). a Correlations are calculated between different contexts of first- and
second-position errors using signed differences in polar requirement
DPR as a ‘‘distance’’ measure.b Correlations derived from the sub-
stitution matrix-based distanceDB among contexts of errors in posi-
tions one and two. In both a and b, two contexts containing errors
exclusively to and from stop codons were excluded (*AR and U*R).
Correlations between clusters are ‘‘single-linkage’’ as in Fig. 1. The
relative clustering of second-position errors (inboldface) is preserved
(with reference to Fig. 1) using the polar requirement-derived distance,
despite the addition of data from the first position, but is disrupted
using the matrix-derived distance. The more segregating ‘‘group-
linkage’’ method restored these clusters with the matrix-based distance
(data not shown).
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Tables 3 and 4 is that, since errors between A and G were
generally more conservative than those between C and
U, and so long as C? A pairs are much less important, if
translational error is responsible for the pattern, then a
template G initiates the G? U pair more often than a
template U.

Mutation Minimization Is Consistent with Positional
Discrepancies in Distance Conservation

Alternatively, minimization of the combined effects of
mutation and translational error could explain the dis-
crepancy in distance conservation of transitions in the
first and second codon positions. It was observed early
on that transitions conserve chemical polarity more than
do transversions in the standard code (Goldberg and
Wittes 1966), although the positional dependency of this
in the code was not explored. This was interpreted to
reflect an influence of mutation on the code. Mutations
resulting from both replication errors and DNA damage
are more often transitions than transversions, which led
to the introduction of the two-parameter model for ge-
netic sequence evolution (Kimura 1980). Given that the
code may have originated in an RNA world, it is inter-
esting to note that modern RNA replicases from polio
virus demonstrate a transition bias in enzymatic RNA
replication (Kuge et al. 1989).

Appendix B shows heuristically how positional dif-
ferences in translational fidelity may lead to an influence
of message mutations on error minimization in code evo-
lution that depends on codon position. Under this model,
if at least parts of the code have retained their original
amino acid assignments [contrary to Crick’s (1968) sug-
gestion that the primitive code may have been com-
pletely wiped out], then the translational fidelity of the
second codon position may have shaped the code in a
way that could yield information about ancient genomes
and their mutation processes.

The Organization of a Subset of the Code Is Consistent
with Primordial Genomic G/C-Richness

Tables 3 and 4 show that among second-position errors
in the G*N and A*Y contexts (or, equivalently, R*Y and
G*R contexts), C↔ G errors resulted in the most con-
servative amino acid substitutions. This was true when
calculated with theDB distance (Table 4) despite the
large protein frequency of glycine, alanine, serine, and
threonine (King and Jukes 1969), which tends to enlarge
these distances. Furthermore, A↔ U errors were least
conservative of theDPR distance (Table 3) and second
least conservative ofDB (Table 4) compared to any other
error in these same contexts. The present interpretation
of these data is that C↔ G transversions (from mutation)
may have been very frequent, and A↔ U transversions

very infrequent, in coding regions at the time the amino
acid assignments of the RNY and GNR codons became
fixed. This is consistent with independent evidence for
G/C-content bias in ancient genomes introduced above,
provided that some explanation can be made for why the
code exhibits this pattern in only certain second-position
contexts and not others.

Suppose selection for replication fidelity favored a
high G/C content in the era that amino acids were as-
signed to the GNN and ANY codons. G↔ C errors in a
coding region would have occurred at a high frequency
for two distinct reasons. First, a high G/C content would
have caused such errors to be intrinsically more frequent
than A ↔ U transversions [cf. the source distribution
term,p(?) in Appendix A]. But if only a high G/C content
were responsible, and not selection or mutation pressure
for G/C richness, then error minimization according to a
Kimura two-parameter model would predict transitions
to be more conservative than transversions (Appendix B,
assuming that translational fidelity is high), as they are
for DPR in the C*N and A*R contexts of Table 3. Al-
ternatively, directional pressure for G/C richness would
have caused errors that maintained or increased the G/C
content to have been more frequently translated than er-
rors that increased or maintained the A/U content. It is
interesting that A-involved errors in the second position
are among the least conservative in the G*N and A*Y
contexts in Tables 3 and 4, despite adenine’s being
thought to have been one of the most abundant prebiotic
nucleotides (Eigen and Schuster 1979).

Evidence for Minimization of the Translational
Consequences of Genetic Damage in a G/C-Rich
RNA World

Before the advent of an ozone layer and genomic repair,
far-UV radiation must have produced constant and ex-
tensive genetic damage in the early history of life. It is
thought that UV mutagenesis in RNA is similar to that in
DNA because such damage does not involve the sugar–
phosphate backbone. For example, a DNA photolyase
can catalyze photolysis of U–U dimers in RNA. It has a
lower affinity for the RNA substrate, but once bound, the
enzyme has the same quantum yield of reaction as it does
in DNA (Kim and Sancar 1991). In DNA, the deamina-
tion of cytosine to uracil is extremely enhanced by its
UV-induced photodimerization with an adjacent pyrim-
idine (Friedberg et al. 1995). Of special interest in this
context is the claim for primordial G/C richness, given
that cytosine is especially susceptible to UV-induced
damage in DNA. Therefore, the C↔ U transition may
have been especially frequent at the time of the origin of
the code, both because of a higher source frequency of C
and a greater transition frequency of the C↔ U transi-
tion.
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Consistent with the above reasoning is the fact that the
C ↔ U transition is relatively conservative in the G*N
and A*Y contexts in comparison with its substitutional
effect in the C*N and A*R contexts, and also with the A
↔ G transition in these contexts.

The Consequences of Second-Position Error in
Different First-Position Contexts Are Consistent with a
Multiple-Stage Origin of the Genetic Code

Hierarchical cluster analysis (Figs. 1a and b) showed that
the A*Y and A*R contexts were more like other contexts
than each other. With the |DPR| measure, the A*Y and
A*R contexts correlated at about 0.70 (they were the
closest-correlated pair between the two clusters), despite
that distances from errors involving AUA and AUG were
averaged, tending to make the A*Y and A*R contexts
more alike. In contrast, the C*Y and C*R and the G*R
and G*Y pairs of contexts were in perfect correlation to
two significant digits. This discrepancy might have been
expected because three of the four sets of codons with
first-position A are split and have different amino acid
meaning, compared to two sets of eight in the CNN and
GNN codons combined. However, the difference be-
tween A*Y and A*R is surprising given the generally
conservative nature of third-position errors (Haig and
Hurst 1991). Furthermore, the high correlation of the
A*Y codon context with the G*N contexts was unex-
pected.

The amino acid assignments of the GNN and ANY
codons may have evolved under distinct conditions of
error from those of the ANR and CNN codons. That is,
the GNN and ANY codons evolved in an era of direc-
tional pressure for high G/C content in coding regions,
after which the CNN and ANR codons evolved in a less
composition-biased era, wherein A↔ G transitions were
more frequent. In addition, under the evolutionary model
discussed below, it is possible that variation in the coding
of the GNN and ANY codons was exhausted at the time
when error minimization for the disjoint set of ANN and
CNR codons occurred. In this case, the meaning of the
GNN and ANY codons could not have changed very
easily during the subsequent fixation of meaning to the
ANR and CNN codons. Error minimization could have
occurred more than once in disjoint parts of the code.
This hypothesis is referred to as a ‘‘sequential model for
evolution of the code by error minimization.’’

The high proportion of twofold degenerate family
boxes in the first-position A codons may have resulted
from their distinct times of fixation of meaning. Further-
more, the discrepancy between the A*Y and the A*R
contexts is explained largely by arginine in the AGR
codons. If the fixation of arginine to the AGR codons

was to minimize the consequences of an increasingly
frequent A↔ G transition, this could explain the excess
degeneracy of arginine relative to its abundance in mod-
ern proteins (Goldberg and Wittes 1966; King and Jukes
1969) as well as its anomalous assignment to the AGR
codons relative to its metabolic (Taylor and Coates 1989)
and physicochemical (Tolstrup et al. 1994) relationships
to other amino acids in the code.

The fact that the ANY and GNR codons are a superset
of the RNY codons argued to have been primordial in the
code (see, e.g., Eigen and Schuster 1979) is noted here in
passing, although for reasons of space, the full debate
and evidence for and against different versions of the
RNY hypothesis cannot be reviewed. I note only that the
currently RNY- and GNR-encoded amino acids are
among the most abundant amino acids produced in the
so-called Miller–Urey reactions and found in the Mur-
chison Meteorite (reviewed by Miller 1987).

Hypotheses that the code expanded in meaning are not
necessarily inconsistent with the view that all codons
encoded amino acids throughout the existence of the
code and that parts of the code became successively re-
fined and distinct in amino acid meaning (Woese 1965;
Fitch 1966; Crick 1968; Fitch and Upper 1987). These
authors emphasize, as does Sonneborn (1965), the del-
eterious nature of a high frequency of noncoding codons,
suggesting that very quickly, almost all codons came into
use. While most codons may have quickly come into use,
they need not all have been translated with the same
consistency at each stage of evolution in the code. This
model of code evolution could be called ‘‘consistency
expansion’’ to emphasize that translational (acylation)
ambiguity in different parts of the code may have been
reduced at different times. In particular, translational am-
biguity in the RNY and GNR codons may have been
reduced first, accompanied by one round of error mini-
mization, followed by an expansion of consistency with
concomitant error minimization in the CNN and ANR
codons in an era of genomic composition more like that
of modern organisms.

I have not found an explanation for the pattern of
amino acid assignments of the UNN codons within the
current model.

The sequential model for code evolution by error
minimization has implications for the use of null models
in estimating the likelihood that certain code features
arose by chance alone. This is because the possible varia-
tion in codes is substantially constrained if one permits
only subsets of codons and amino acids to be permuted
at a given time. Related to this is a possible answer to
Juncgk’s (1978) objection to error-minimization hypoth-
eses, that the space of possible codes is too large to have
been effectively searched by ancient populations. Fi-
nally, if there is no variation left in parts of the genetic
code that have already ‘‘frozen,’’ then those parts of the
code cannot be reminimized with respect to a changed
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error distribution. Therefore, it should not be expected
that the code minimizes modern message errors in a glo-
bally optimal way.

Error Minimization as an Evolutionary Process in
Code Origin

As we have seen, there are two ways to explain some, but
not all, of the results with an error-minimization hypoth-
esis of code evolution: one invokes translational error
alone; the other invokes mutation and translational error
combined. While genetic damage and translational error
more directly affect individuals, the necessary conditions
for minimization of the effect of replication errors are not
yet well defined. The stationary mutational distribution
around a fit wild-type is called a molecular quasispecies
(Eigen and Schuster 1979). Selection at the level of qua-
sispecies has been demonstrated in various theoretical
and numerical studies (see, e.g., Huynen et al. 1994 and
references therein). The relevant argument here would be
that through error minimization, the encoded catalytic
potential of the entire quasispecies isfocused—more
similar to that of the wild-type. It has been shown that
quasispecies with error-minimizing codes are competi-
tively superior (Figureau 1989).

The observation of near-universality of genetic codes
supports the principle that they must evolve very slowly.
The slow rate of evolutionary change in the code, first
discussed by Crick (1968) as a component of the frozen
accident hypothesis, should be reconciled with error-
minimization hypotheses for its origin. In general, to
change a code without disruption of the meaning of pre-
existing messages requires either than the change be con-
servative with respect to meaning (Crick 1968) or that
the symbols, the sense of which will be altered by the
change, are infrequent in messages. A conservative
change in a code is measured by the relative neutrality of
its concomitant substitutional effect with respect to over-
all message meaning. A disruption in message meaning
may also be offset by the advantage of an expanded
symbol set (Wong 1980). In genomes, low codon fre-
quencies may arise through a skewed base content
(Szathmary 1991; Osawa et al. 1992; Maynard-Smith
and Szathmary 1995). Generally, once reliance upon cer-
tain symbols increases, alterations of their sense will be
deleterious.

Contrary to what Crick (1968) and Woese (1973)
have written, the above considerations do not preclude
the action of natural selection on amino acid assign-
ments, even in frequently used codons the precise mean-
ing of which are essential to fitness. The near-frozenness
of code assignments impedesphenetic changeof assign-
ments, that is, the reassignment of essential codons
within a lineage.But suppose the standard code evolved
through successive stages of expansion (Eigen and

Schuster 1979), ambiguity reduction (Woese 1965; Fitch
1966; Crick 1968), metabolic coevolution (Wong 1975;
Taylor and Coates 1989), amino acid intrusion (Crick
1968; Jukes 1973; Wong 1980), or some combination,
such as consistency expansion. If certain codons are un-
derused or neutrally ambiguous, their meanings are free
to be reassigned or refined, and potentially differently in
different lineages. As these codons become more fre-
quently used and the precision of their meaning more
essential in variant lineages, the lineages might no longer
share genes that use these codons without sharing also
the means to decode them properly—a barrier to gene
flow [but see Crick (1968) for a discussion of an alter-
native possibility of fusion of individuals with different
codes]. Initially neutral variation in codes may have con-
tributed to the differential success of these lineages, en-
abling a phyletic process of error minimization in the
code.

A successive process of radiation and bottleneck
events may have occurred in code origin, during which
newly defined parts of the code froze in epistasis with
useful messages, but differently in competing lineages. A
so-called ‘‘sequential’’ model of code evolution with er-
ror minimization does not predict that the code reached a
global optimum with respect to modern message errors,
because each successive stage may have been character-
ized by different distributions of error. Only one bottle-
neck is necessary to explain the near-universality of the
code in modern organisms and organelles.

Conclusions

Detailed evidence is now available for the error-minimi-
zation theory of standard code evolution. Contrary to
prior interpretations of error minimization, the standard
code may have been shaped by position-invariant forces
such as mutation and base content. These forces may
have left heterogeneous signatures in the code because of
differences in translational fidelity by codon position.

A scenario for the origin of the code is presented
wherein selection for error minimization could have oc-
curred multiple times in disjoint parts of the code
through a phyletic process of competition between lin-
eages. This process permits error minimization without
the disruption of previously useful messages, and does
not predict that the code is optimally error-minimizing
with respect to modern error. Finally, through a scheme
of heterogeneous ambiguity reduction (‘‘consistency ex-
pansion’’), an expansion of code meaning need not imply
a concomitant reduction in stop codon number.

Corollary observations in this paper are testable, such
as the promotion of first-position translational error by a
second-position pyrimidine context. Statistical hypoth-
esis testing of code features should account for differ-
ences that may arise by the amino acid distance and the
type of null model used.
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By virtue of its evolutionary inertia as well as its
likelihood of having been an object of natural selection,
the standard code may be a record of evolution before the
radiation of modern organisms and organelles.
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Appendix A

A Formalization of the Error-Minimization Principle
for Standard Genetic Code Evolution

The error-minimization principle for genetic code evolution is an op-
timality argument. The quantity to be optimized, which might be called
‘‘load’’ (Maynard-Smith and Szathmary 1995), incorporates several
factors:

1. a setA of amino acids, with a real-valued ‘‘distance’’d: A × A →
ℜ+ between them [the distance need not be transitive nor symmet-
ric, but d(x, y) ù 0 with equality if x 4 y];

2. a setY of codonsof lengthn;
3. a family ofcodes,C 4 { c { C | c:Y → A}, deterministic functions

taking codonsy { Y to amino acidsa { A; and
4. a transmission distribution P(S, T), S,T{ Y, giving the joint prob-

ability of a source or input codon Sand atarget or output codon T
after transmission through somechannel.

The weighted average load is a functionalL:C → ℜ+ and may be
defined as

L ~c! = (
yin,youteY

p~yin!p~yout | yin!d@c~yin!,c~yout!# (2)

Optimization of (2) is specified by

min$L~c!,c{C%
C (3)

In (2), the transmission distribution is decomposed into asource dis-
tribution of input,p(?), and atransition distributionconditional on that
input, p(? | ?). The source distribution corresponds to the translational
frequency of each codon and the transition distribution gives the error
spectrum associated with each codon through mutation and translation.
The load depends on codon frequencies and, therefore, indirectly con-
siders the effects of base content.

Note that in (2), the load does not depend on the absolute placement
of amino acids in the code table, since for deterministic codes,d[c(yin),
c(yout)] 4 0 whenyin 4 yout. For nondeterministic codes, for example,
if there is misacylation, the weighted average load could depend on the
absolute position of amino acids in the code table.

Suppose that |A| amino acids are encoded by |Y| codons at a level of
degeneracy fixed for each amino acid.6 In this case, Eq. (2) is mini-
mized by pairing, through changes inc, the largest joint probabilities of
yin, andyout with the smallest distancesd[c(yin],c(yout)]. A proof of this
statement follows.

For two real-valuedk-vectorsa andb and the set ofk × k permu-
tation matricesP, one can show that the inner product (a ? Pb), P { P
is minimized overP whena and Pb satisfy the condition

~;i,j :1 ø i,j ø k!, ai ù aj ⇒ ~Pb!j ù ~Pb!i (4)

where theith entry of vectorx is xi.
7 Condition (4) is called ‘‘pseudo-

orthogonalization.’’ The proof is by induction.

Casek = 2. Define two real-valued vectorsa 4 〈a1,a2〉 andb 4

〈b1,b2〉 with a2 > a1 andb2 > b1. Let I be the 2 × 2identity matrix and
Rbe the permutation matrix (0 1

1 0). Thena ? Ib − a ? Rb 4 (a1 − a2)(b1

− b2) > 0. Since these are the only permutations of a 2-vector, pseudo-
orthogonalization (P 4 R) minimizes (a ? Pb) in this case.

Casek = n. Assume that (4) is true for casek 4 (n − 1). Leta and
Rb be n-vectors pseudo-orthogonalized by a permutation matrixR. R
will be shown to minimize each of several inner products of (n −
1)-vectors whose sum is equal to (a ? Rb). R therefore minimizes
(a ? Pb) over all P.

Let Ji be the (n − 1) ×n projection matrix equal to then × n identity
matrix with theith row deleted, 1ø i ø n. Since

n~a ? Rb! = (
i=1

n

@~Jia ? JiRb! + ai~Rb!i# (5)

an inner product ofn-vectors may be reduced to a sum of inner prod-
ucts of (n − 1)-vectors:

a ? Rb =
1

n − 1 (
i=1

n

~Jia ? JiRb! (6)

Because the projection matricesJi preserve the order of entries ina

andRb,

~;r,s:1 ø r,s ø ~n − 1!, ;i:1 ø i ø n!,
~Jia!r ù ~Jia!s ⇒ ~JiRb!s ù ~JiRb!r (7)

6 Allowing the degeneracy to vary permits trivial solutions; the present
theory cannot address the evolution of amino acid degeneracy or the
size of |A|.
7 It is claimed but not shown that a permutation matrixP satisfying (4)
is unique up to equality of entries inb.
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That is, each term on the right-hand side of (6) is pseudo-ortho-
gonalized by the pseudo-orthogonalization ofa andRb. By n applica-
tions of the inductive hypothesis, (a ? Pb) is minimized byP = R.

This has been claimed by numerous authors in the past (Woese
1965; Sitaramam 1989; Haig and Hurst 1991) but never formally dem-
onstrated in this context.

Appendix B

Mutation Affects Code Evolution Through the Filter of
Translational Error

In this Appendix, I derive a simple representation of atransition dis-
tribution (the conditional probability of a source codon in a coding
region being translated as another codon; see Appendix A) that incor-
porates both mutation and translational error. This heuristic argument
has three simplifications. First, the transition distribution is derived per
codon position and, therefore, neglects context effects. Second, the
frequencies of translational error are symmetric with respect to the
different bases. These simplifications are irrelevant to the argument so
long as the net effect of all influences on translation is such that, on
average, one position is translated with higher Watson–Crick fidelity
than another. The third simplification is more restrictive. Mutation is
represented as occurring within an individual. This treatment may de-
scribe genetic damage better than misreplication.

Suppose that ancient mutation were transition-biased. The Kimura
two-parameter mutation model (Kimura 1980) is expressed in terms of
the matrixM 4 \Mij\ of probabilities of transmission of the source base
i as basej:

M ~a,b! = 1
1 − a − 2b a b b

a 1 − a − 2b b b

b b 1 − a − 2b a

b b a 1 − a − 2b
2

(8)

wherea andb are the transition and transversion probabilities, respec-
tively (a > b).

Now suppose for the sake of argument that translational error in any
codon position is symmetric, i.e., provided mistranslation occurs, the
source base is equally likely to be translated as any of the three other
bases. Symmetry is not strictly necessary for the argument to proceed,
but it simplifies the exposition by requiring only one parameter to
describe translational error. A matrix representation for symmetrical
translation in terms of the translational fidelity per positionp is

T~p! = 1
p ~1 − p!/3 ~1 − p!/3 ~1 − p!/3

~1 − p!/3 p ~1 − p!/3 ~1 − p!/3

~1 − p!/3 ~1 − p!/3 p ~1 − p!/3

~1 − p!/3 ~1 − p!/3 ~1 − p!/3 p
2 (9)

whereTi,j(?) is the probability of the source basei being translated as
basej.

Now consider the transmission of a source base through one round
of mutation followed by one round of translation at a given codon
position. Both processes are error-prone and considered to occur inde-
pendently. The matrix representing the transmission of a base through
such a process in a given codon position is the product of matricesM
andT:

MT ~a,b,p! =

1
gp + ~1 − g!q ap + ~1 − a!q bp + ~1 − b!q bp + ~1 − b!q

ap + ~1 − a!q gp + ~1 − g!q bp + ~1 − b!q bp + ~1 − b!q

bp + ~1 − b!q bp + ~1 − b!q gp + ~1 − g!q ap + ~1 − a!q

bp + ~1 − b!q bp + ~1 − b!q ap + ~1 − a!q gp + ~1 − g!q
2
(10)

whereg 4 1 − a − 2b, andq 4 [(1 − p)/3].
From Eq. (10) we may see how translational fidelity exposes mu-

tational error. At maximum translational noise, asp → 0.25, all de-
pendency ona and b is lost, and all entries of matrices (9) and (10)
reduce to1⁄4. The exact result will depend on the form of the transla-
tional error matrix in (9). However, asp → 1, matrix (10) reduces to
matrix (8), the matrix for mutation. This is less sensitive to the exact
form in (9).
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