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Abstract. The origin and evolutionary relationship of joining and maximum parsimony analyses. These results
actin isoforms was investigated in chordates by isolatingsuggest that the chordate ancestor had at least two
and characterizing two new ascidian cytoplasmic andnuscle actin isoforms and that the vertebrate actin iso-
muscle actin genes. The exon-intron organization andorms evolved after the separation of the vertebrates and
sequences of these genes were compared with those ofochordates.

other invertebrate and vertebrate actin genes. The gene

HrCA1 encodes a cytoplasmic (nonmuscle)-type actinKey words: Actin — Ascidians — Vertebrates —
whereas theMocuMA2 gene encodes an adult muscle- Multigene family — Muscle actin — Cytoplasmic actin
type actin. Our analysis of these genes showed that introa- Chordates — Introns

positions are conserved among the deuterostome actin
genes. This suggests that actin gene families evolved
from a single actin gene in the ancestral deuterostom
Sequence comparisons and molecular phylogeneti
analyses also suggested a close relationship between the

ascidian and vertebrate actin isoforms. It was also foundlost animals exhibit multiple actin isoforms which are
that there are two distinct lineages of muscle actin iso€ncoded by a small gene family. For example, there are
forms in ascidians: the larval muscle and adult body-wallfour muscle isoformsc(-skeletal,a-cardiac,a-vascular,
isoforms. The four muscle isoforms in vertebrates showand y-enteric) and two nonmuscle isoformg-(and

a closer relationship to each other than to the ascidiafy-Cytoplasmic) in mammals (Vandekerckhove and We-
muscle isoforms. Similarly, the two cytoplasmic iso- ber 1979). The evolution of vertebrate actin genes has
forms in vertebrates show a closer relationship to eactpeen discussed previously based on the amino acid se-
other than to the ascidian and echinoderm cytoplasmi€uences and gene structure (Vandekerckhove and Weber
isoforms. In contrast, the two types of ascidian musclel984; Alonso 1987; Miwa et al. 1991; Kovilur et al.
actin diverge from each other. The close relationshipl993; Kusakabe 1995). To understand the origin and
between the ascidian larval muscle actin and the verteevolution of vertebrate actin genes, however, it is nec-

brate muscle isoforms was supported by both neighboressary to study actin genes in other chordates, including
the urochordates (ascidians, salps, and larvaceans) and

the cephalochordates (amphioxus).
_ ) In previous studies, we isolated ascidian larval-
*Present addressDivision of Biological Sciences, Graduate School | fi d det ined thei ic st
of Science, Hokkaido University, Sapporo 060, Japan; e—mailrnuSC € aclin genes an etermine €ir genomic S r_uc-
tgkusakabe@bio.hokudai.ac.jp ture (Kusakabe et al. 1992, 1995, 1996). In the ascidian
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ptroduction




290

are expressed in the larval muscle cells. Hi®A2/4 thesized on a Pharmacia LKB Gene Assembler Plus (Pharmacia Bio-
cluster contains at least five actin genes (Kusakabe et afyStems. Inc., Piscataway, NJ) or an Applied Biosystems DNA

1992) and theHrMA1 cluster contains a pair of actin synthesizer (Applied Biosystems Japan, Tokyo, Japan). The sequenc-
ing reactions were loaded on 6% or 8% polyacrylamide gels. The

genes whose expression is regulated by a single bidireGaocumazand HrCA1 sequences were deposited into DDBJ/EMBL/
tional promoter (Kusakabe et al. 1995). The comparisorcenBank databases under the accession numbers D85743 and D45164,
of amino acid sequences among ascidian muscle actirigspectively.

revealed that they possess at least two distinct types of

muscle actins, one expressed in larval muscle and the Phylogenetic Analysis of Actin Sequenc&he amino acid se-
other in adult body-wall (Kusakabe 1995). However, quences of MocuMA2 and HrCA1 actins were aligned with those of six
only cDNA clones have been characterized for the asmgmmalian actin isoforms, seven ascidian actins, the starfish cytoplas-

cidian bodv-wall muscle and cvtoplasmic actins andm|c and muscle actin isoforms, aAdabidopsis thalianactin with the
Yy ylop ’ aid of the sequence editor SeqPup (D. Gilbert, Indiana University).

little is known about the genomic organization of the gengank/EMBL/DDBJ accession numbers for the actin sequences are:
corresponding genes. M20543, humar-skeletal muscle (Taylor et al. 1988); J00073, human
The origin and evolution of the chordates have beemr-cardiac muscle (Hamada et al. 1982); X13839, humaaortic
the subject of considerable discussion and specuIatioﬂ“ri‘c)ost:]g(‘)‘:ﬁﬂ]eugéznza‘i’z :ggszgum”;jg;lg%%S)’?; Jfgg‘fﬁ‘g}g"‘
for more than a century (Haeckel 1868; Garstang 1928,/ i’ Nakajima-lijima et al. 1985); M19283, humgeytoplas-
Berrill 1955; Jefferies 1986; Wada and Satoh 1994; Hol-mic (Erba et al. 1988); X6104%tyela plicataadult muscle SpMAL
land and Garcia-Fernalez 1996). The ascidian larva ex- (Kovilur et al. 1993); L21915Molgula citrina adult muscle McMA1
hibits the hallmarks of a chordate, including a motile tail (Swalla et al. 1994); D10887Halocynthia roretzilarval muscle
containing a notochord, dorsal nerve cord, and Striated]'"MA‘l (Kusakabe et al. 1992); D29014. roretzi larval muscle
| lls. In contrast. the adult ascidian is a SeSSiIHrMAl (Kusakabe et al. 1995); D78190olgula oculatalarval
musc_e ce o ! %uscle MocuMA1 (Kusakabe et al. 1996); X6108dyela clavdarval
organism with little resemblance to other chordates, eXmyscle ScTh1 (Beach and Jeffery 1992): X61081 plicataSpCA8
cept for the presence of pharyngeal gill slits (Satoh(kovilur et al. 1993); M26500pisaster ochraceusnuscle (Kowbel
1994). Since ascidians have distinct muscle tissues iand Smith 1989); M26501P. ochraceuscytoplasmic (Kowbel and
both larval and adult phases, the evolutionary relation-Smith 1989); M20016Arabidopsis thalianaAAc1 (Nairn et al. 1988).

shios between ascidian larval and adult actin isoform Phylogenetic trees were constructed with the aligned sequences by the
P aximum parsimony and neighbor-joining (Saitou and Nei 1987) al-

and vertebrate muscle actins are of particular interesorithms in the PROTPARS program of PHYLIP (version 3.572; Fel-

with respect to the chordate ancestor. senstein 1989) and the ClustalW program (Thompson et al. 1994),
In this paper, we describe the exon—intron organiza+espectively. For the neighbor-joining analysis, evolutionary distances

flon and nuclatide sequences of the musce actin ger™ ST eng KIS bTea T o e o

MocuMA2and cytopl.a§m|c actin gererCAL. The se- each phylogen.etic analysis (FeIsensteiFr)1 1585). P

guence of these ascidian genes suggestsMioauMA2

encodes an adult muscle actin aAdCAL a cytoplasmic

actin. To infer the evolution of chordate actin genes, Wepasults

compared the organization and sequences of these actin

genes to those of other organisms and performed a phy-

logenetic analysis. The results suggest a monophyletiStructure of Ascidian Adult Muscle and Cytoplasmic

origin of the chordate muscle actin genes and suggesictin Genes

that vertebrate actin evolved after the separation of the

vertebrate from the urochordate lineage. We have isolated ascidian muscle and cytoplasmic actin

genes to infer the evolutionary relationship of chordate

actin genes. ThiMocuMA2andHrCA1 genes were iso-

lated fromM. oculataand H. roretzi genomic libraries,

respectively. The nucleotide and deduced amino acid se-

Isolation and Characterization of Ascidian Actin Genés. \FIXII qu”CES of thMO_CUMAZfandHrCAl genes are _Shown In

clone containing the ascidian adult muscle-actin getieuMA2was ~ Fig. 1. The coding region oMocuMAZ2 contains four

isolated by screening Molgula oculatagenomic library (Kusakabe et  introns (Fig. 1A), whereas the coding regionHifCAlis

al. 1996) with the ascidian muscle-actin probe HrcMA4 (Kusakabe etinterrupted by six introns (Fig. 1B). Comparison of the

al. 1991). AXFIXII clone containing the ascidian cytoplasmic actin genomic sequence of tHerCA1 gene with theHrCA1

geneHrCA1l was isolated by screeningHalocynthia roretzigenomic .
library (Kusakabe et al. 1995) with the ascidian cytoplasmic-actin ,CDNA clone (Arak' etal. 1996) suggests that there are no

cDNA cloneHrCAL (Araki et al. 1996). Thé?P-labeled DNA probes  introns in the 5 and 3-noncoding rggions OT the gene.
were synthesized using the random primer labeling kit (United StateBecause a cDNA clone dflocuMA2is unavailable, we
Biochemical, Cleveland, OH) ancx{**P]dCTP. Isolated genomic  did not determine whether introns are present in the un-
clones were digested with restriction enzymes and the digested fragfrans|ated regions of the gene. Amino acid identities at

ments containing actin genes were subcloned into pBluescriptll SK(+). ;. . L. .
The subcloned genomic fragments were sequenced by the dideozzagnosnc positions indicate that théocuMA2 and

chain termination procedure (Sanger et al. 1977) using Sequenase vddfCAl genes encode muscle and cytoplasmic actins, re-
sion 2.0 (USB) andd-*°S]dATP. Oligonucleotide primers were syn- spectively (Table 1). The predicted amino acid sequence

Materials and Methods
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Table 1. Comparison of the diagnostic amino acid positions in actins of various orgghisms

Amino Human Starfish
acid Human Ascidian Ascidian  B-cyto- Ascidian Starfish cyto- Drosophila Drosophila C. elegans
positio? «-skeletal HrMA4  MocuMA2 plasmic HrCA1  muscle plasmic muscle cytoplasmic muscle Arabidopsis
5 Thr Thr GIn lle Val Val Val Ala Val Val lle

6 Thr Thr Thr Ala Ala Ala Ala Ser Ala Ala Gin
10 Cys Cys Cys Val Val Val Val Val Val Val Cys
16 Leu Leu Leu Met Met Met Met Met Met Met Met
17 Val Val Val Cys Cys Cys Cys Cys Cys Cys Val
76 lle lle lle Val Val Val Val lle Val Val Val
103 Thr Thr Val Val Val Val Val Val Val Val lle
129 Val Val Val Thr Thr Ser Thr Ser Thr Thr Ala
153 Leu Leu Leu Met Phe Phe Phe Leu Leu Leu Leu
162 Asn Asn Asn Thr Thr Thr Thr Thr Thr Thr Thr
176 Met Ala Met Leu Leu Leu Leu Leu Leu Leu Leu
201 Val Val Val Thr Thr Thr Thr Thr Thr Thr Thr
225 Asn GIn GIn GIn Thr GIn GIn GIn GIn GIn GIn
260 Thr Thr Thr Ala Ala Thr Ala Ala Ala Ala Val
267 lle lle lle Leu Leu lle Leu Leu Leu Leu lle
272 Ala Ala Ser Cys Ala Ala Ala Cys Cys Ala Ala
279 Tyr Tyr Tyr Phe Tyr Tyr Tyr Tyr Tyr Tyr Tyr
287 lle lle lle Val Val lle Val Val Val lle Val
297 Asn Asn Asn Thr Thr Thr Thr Asn Thr Thr lle
365 Ala Ala Ser Ser Ser Ser Ser Ser Ser Ser Ser

2 Amino acid residues of actins from various organisms are compared26500; starfish cytoplasmic actin M265@rosophila melanogaster

at positions that differentiate the mammaliarstriated muscle actin  muscle actin (79B) M18829Drosophila melanogastecytoplasmic
from the mammalianB-cytoplasmic actin. Amino acids idential to actin (5C) KO0667Caenorhabditis elegamauscle actin X16796Ara-
those of the ratv-skeletal muscle actin are shaded bidopsis thalianaactin M20016

EMBL/GenBank/DDBJ accession number of each actin is as follows:” The position numbers of the amino acid residues in the mammalian
humana-skeletal muscle actin M20543; ascidian larval muscle actin a-actin based on Vandekerckhove and Weber (1984)

D10887; humanB-cytoplasmic actin M10277; starfish muscle actin

of MocuMAZ2is similar to theM. citrina adult muscle  Three other introns (113/114, 246/247, 308)HICAL

actin geneMcMAL (Swalla et al. 1994), suggesting that are located at unique positions with respect to other deu-

MocuMA2is anM. oculataadult muscle actin gene. terostome and most protostome actins. An intron at po-
sition 308 is also present in tlRrosophila melanogaster

Comparison of Exon—Intron Organization of Various muscle actin genes 798 and 88F (Fyrberg et al. 1981).

Actin Genes

. L Comparison of Amino Acid Sequences of
The exon—intron organization of thRlocuMA2 and  \/4rious Actins

HrCA1 genes was compared with that of other ascidian
and selected nonascidian actin genes (Fig. 2). Six introifable 1 shows a comparison of the amino acid residues
positions (41/42, 121/122, 150, 204, 268, 328/329) aref various actins at positions that distinguish the mam-
present in both muscle and nonmuscle actin genes imalian a-striated muscle actin from thg-cytoplasmic
deuterostomes, suggesting that deuterostome actin geaetin (Vandekerckhove and Weber 1978, 1979). The
families evolved from an ancestral actin gene. Each inHrMA4 and mammaliaru-skeletal muscle actins share
tron position of the ascidian muscle actin genes is shared8 of 20 diagnostic amino acid positions (Kusakabe et al.
with the vertebrate and echinoderm muscle actin gened,992). Similarly, MocuMA2 actin shares 15 of 20 diag-
although the number and length of introns vary amongnostic amino acids with the vertebrate muscle actin. The
these genes. The ascidian adult muscle actin genieentity of diagnostic positions suggests that the ascidian
MocuMA2has an intron at position 41/42. This intron muscle actins are more closely related to vertebrate
position is common to vertebrate and echinoderm actilmuscle actin than to vertebrate cytoplasmic actins (Tom-
genes but absent in ascidian larval muscle actin geneslinson et al. 1987; Kusakabe et al. 1992; Kovilur et al.
Three intron positions (41/42, 150, 204)idfCAlare  1993). Similarly, HrCAl and the mammalian cytoplas-
the same as those of the vertebrate and echinoderm actinic actins share 15 of diagnostic amino acids, suggesting
genes. It is interesting th&trCAL contains an intron at a close relationship between ascidian and vertebrate cy-
position 150, because an intron at this position has notoplasmic actins.
been reported in vertebrate and echinoderm cytoplasmic The length and sequence of the amino-terminal re-
actin genes (Erba et al. 1988; Kowbel and Smith 1989)gions are highly variable among actin isoforms and dif-
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1 41/42 84/85 121/122 150 204 268 328/329
mammaliam &-gf;;g.lcar A4 N~ 7 7 A4 72 A4
41/42 150 204 268 328/329
mammalian @-Skeletal Z Z 7 ~7 <
a-cardiac
. 41/42 121/122 268 328/329
mammaliam p-cytoplasmic SZ Z Z SZ
y-cytoplasmic
150 204 268
M HrMAI AV A4 A4
idi 150 268
ascician HrMA2/4 Z N2
larval msucle
L MocuMAI
idi 41/42 150 204 268
ascidian MocuMA2 Z Z 7 7
adult muscle
41/42 113/114 150 204 246/247 308
ascidian HrCAl Z Z Z 7 Z AV
cytoplasmic
41/42 121/122 150 204 268
starfish muscle Z AV V4 A4 Z
41/42 121/122 204
starfish cytoplasmic A2 o S
13
Drosophila melanogaster 7
muscle (57A)
Drosophila melanogaster ,3\078
muscle (79B, 88F)
63 323
Caenorhbditis elegans N7 AV
(genes 1, 2, 3)
Caenorhbditis elegans @9 26%7264 %
(gene 4)
18/19 150 354
Arabidopsis thaliana A4 Z A4

Fig. 2. Comparison of positions of introns in actin genes of various from the following sources: mammaliafrvascular actin, Ueyama et
organisms. Théorizontal barsrepresent actin proteins with the amino al. (1984); mammaliay-enteric actin, Miwa et al. (1991); mammalian
terminus at the left and the carboxy terminus at the right. The positionsx-skeletal actin, Zakut et al. (1982); mammalia@rcardiac actin, Ha-

of introns in the genes are indicated bgen triangleselative to the
amino acid sequence of the proteMumbers above the trianglés-

mada et al. (1982); mammaligrcytoplasmic actin, Nakajima-lijima
et al. (1985); mammaliag-cytoplasmic actin, Erba et al. (1988); acid-
dicate the position numbers of the amino acid residues at which introngan larval muscle actins, Kusakabe et al. (1992, 1995, 1996); starfish

interrupt the coding sequence. The numbering system of amino aci@ctins, Kowbel and Smith (1989Drosophila melanogasteactins,
positions is based on Vandekerckhove and Weber (1984). Mammaliafryrberg et al. (1981)Caenorhabditis eleganactins, Krause et al.

actin genes have an additional intron in tHeuitranslated region (not

shown; Miwa et al. 1991). Data on these gene structures were taken

(1989); Arabidopsis thalianaactin, Nairn et al. (1988).
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HrMA4 MSDG-EEDTTAIVCDNGSGLVKSGFAGDDAPRAVFPSIVGRPRHQGVMVGMGQKDSYVGDEAQSKRGILTLKYPIEHGIITNWDDMEKIWHHTFY 91
HrMAl

ScTbl

MocuMAl
MocuMA2
McMAl .
SpMA1 .E.DQD.EQ.

starfish-m .C.---..VA.
starfish-c .C.---..VA.
HrCal .C.==-..VA.
SpCA8 .----DDEVA.
p-cytoplasmic .----DD.IA.
y-cytoplasmic .----..EIA.
a-skeletal .C.--.DE...
a-cardiac .C.--D.E...
a-vascular .CE--...S..
y-enteric

A.thaliana

HrMA4

HrMAl

ScTbl
MocuMAl
MocuMA2
McMA1l

SpMA1
starfish-m
starfish-c
HrCal

SpCA8
p-cytoplasmic
y-cytoplasmic
a-skeletal
a-cardiac
a-vascular
y-enteric
A.thaliana

HrMAa4

HrMAl

ScTbl
MocuMAl
MocuMA2

McMAl

SpPMA1
starfish-m
starfish-c
Hrcal

SpCA8
p-cytoplasmic
y-cytoplasmic
a-skeletal
a-cardiac
a-vascular
y-enteric
A.thaliana

375

HrMA4

HrMAl

ScTbl

MocuMAl
MocuMA2

McMAl

SpMA1
starfish-m
starfish-c
HrCal

SpCA8
B-cytoplasmic
y-cytoplasmic
a-skeletal
a-cardiac
a-vascular
y-enteric
A.thaliana

Fig. 3. Alignment of the amino acid sequences of various deutero-to those of HrMA4 and théettersrepresent variable positions in other
stome actins and a plant actin. Amino acid sequences of nine ascidiaactins.Dashesdndicate gaps introduced in the sequence to optimize the
actins (HrMA4, HrMA1, ScTbl, MocuMAl, MocuMA2, McMA1, alignment. The first eight positions (-4 to 4) are not used for the
SpMAL, HrCAl, and SpCA8), two echinoderm actins (starfishPi, phylogenetic analyses shown in Fig. 4. The amino-terminal amino ac-
saster ochraceusnuscle actin; starfish-cPisaster ochraceugyto- ids of McMAL1 have not been determined (Swalla et al. 1994). The
plasmic actin), six human actins, and Arabidopsis thalianactin are numberingof the amino acid residues is according to Vandekerckhove
compared. Amino acids are indicated withe-letter codesThe entire and Weber (1984). Sources, references, and accession numbers for the
sequence of HrMA4 is shown. Thietsrepresent amino acids identical actin sequences are described in Materials and Methods.
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Plant

starfish muscle starfish muscle
Echinoderm 58 Echinoderm
starfish cytoplasmic 3 starfish cytoplasmic
60
HrCA1 HrCA1
Ascidian nonmuscle Ascidian nonmuscle
SpCA8 81 SpCA8
human B-cytoplasmic 97 human B-cytoplasmic
—| Vertebrate nonmuscle
human y-cytoplasmic Vertebrate nonmuscle human y-cytoplasmic
] SpMAL1 SpMA1
97 95
Ascidian MocuMA2 Ascidian
_I-MW“MA2 body-wall muscle { body-wall muscle
L MeMa1 McMAL1
100 MocuMA1 99 MocuMAL1
86 8
— HIMA1 HiMA1
Ascidian larval msucle 57 Ascidian larval msucle
5 HrMA4 69 HiMA4
78 = ScTbl
¢
60 ScTbl
— human c-skeletal human o-skeletal
84 .
o[ human a-cardiac human o-cardiac
Vertebrate muscle L 38 . Vertebrate muscle
53 human y-enteric 88 human y-enteric
0.01 ?I_— human «-vascular human a-vascular

Fig. 4. Molecular phylogenetic analysis of deuterostome actins. Theinferred in an analysis using the entire actin coding sequence (see text).
carboxy-terminal 371 amino acids were subjected to phylogeneticB Phylogenetic tree inferred by the maximum parsimony metNoah-
analysis. A plant actinArabidopsis thalianaAAcl) was included as  bersshown in both trees are percentages of 1,000 bootstrap replicates
the outgroup.A Phylogenetic tree inferred by the neighbor-joining in which the same internal branch was recovered. Sources, references,
method. Branch lengths are proportional to evolutionary distancesand accession numbers for the actin sequences are described in Mate-
Scale barindicates an evolutionary distance of 0.01 amino acid sub-rials and Methods.

stitution per position in the sequence. A tree with similar topology was

ferent species (Fig. 3). While vertebrate muscle actin@Mino-terminal sequence from the analysis, we also con-

and most invertebrate actins have a Met-Cys sequencairucted a molecular phylogenetic tree based on the en-
followed by a cluster of acidic amino acids (Glu and/or ir¢ @mino acid sequences (Fig. 3) using the NJ method.

Asp), the vertebrate cytoplasmic actins lack a Cys resiJ N€ topology of the tree obtained was the same except

due next to the first Met. The entire amino acid sequencdhat the mammalian cardiac actin was grouped with the
of ascidian muscle actins is similar to that of the verte-Mammalian skeletal muscle actin. S
brate muscle isoforms as mentioned above (Table 1), The NJ and MP analyses gave essentially identical

whereas the amino-terminal sequence of the ascidiaFFSults with respect to the major clusters identified (Fig.
muscle isoforms is unique and lacks a Cys residue nexf)- The MP method generated one minimal tree that was

to the first Met (Fig. 3). HrCA1 has an amino-terminal identical to the consensus tree obtained by bootstrap re-

sequence with a Met-Cys sequence and thus resembl§8MPling (Fig. 4B). The grouping of all ascidian muscle

the starfish actins. In contrast, the amino-terminal sectins with the vertebrate muscle actins was strongly

quence of SPCAS8 lacks a Cys residue and is similar tgupported in 99% or more of the bootstrap replicates.
the vertebrate cytoplasmic actins (Fig. 3). The echinoderm muscle actin grouped with all deutero-

stome cytoplasmic actins and was separate from other
deuterostome muscle actins (supported by more than
80% of bootstraps). This is consistent with the view ob-
tained by comparing diagnostic amino acids (Table 1).
To examine the evolutionary relationships of deutero-The chordate muscle actin clade consisted of three
stome actin isoforms, we performed a molecular phylo-branches, each supported by relatively high bootstrap
genetic analysis of actin amino acid sequences. Phylovalues (84% or more). One of the branches contained the
genetic trees were constructed using the neighbor-joiningertebratea-skeletal, a-cardiac, a-vascular, andy-en-

(NJ) (Saitou and Nei 1987) (Fig. 4A) and maximum teric muscle actin isoforms. The other two branches con-
parsimony (MP) methods (Fig. 4B). Therabidopsis tained the ascidian larval and ascidian body-wall actins.
thalianaactin (AAcl; Nairn et al. 1988) was used as the The presence of two distinct lineages of ascidian muscle
outgroup in both analyses. Since the lengths of theactins is consistent with our previous study showing that
amino-terminal region of actins are highly variable, wethe larval and adult muscle actins are distinguished by
excluded the sequence from the first Met to the end of thaliagnostic amino acids (Kusakabe 1995). Among the
cluster of acidic amino acids (from —4 to 4; Fig. 3) from three clades of the chordate muscle actins, a closer rela-
the analyses. To evaluate the effect of excluding thigionship of vertebrate muscle and ascidian larval muscle

Molecular Phylogenetic Analysis of
Deuterostome Actins
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actins was supported in 60% (NJ) or 68% (MP) of the The intron at position 308 in thelrCA1 cytoplasmic
bootstrap replicates, suggesting an earlier divergence afctin gene is unique among deuterostome actin genes but
acidian adult body-wall isoforms. is also present irosophila melanogastenuscle actin

The vertebrate3- and y-cytoplasmic actins grouped genes 79B and 88F (Fyrberg et al. 1981). Common in-
together in 97% or more of the bootstrap replicates. Theron positions in the actin genes of distantly related spe-
formation of a clade including the ascidian cytoplasmiccies are known for plant and vertebrate muscle actin
actin HrCA1 and the echinoderm cytoplasmic actin withgenes (position 150) and for plant actin genes and a
the ascidian cytoplasmic actin SpCA8 as the outgrouCaenorhabditis elegaractin gene (position 18/19). The
was supported by 93% (NJ) or 83% (MP) of bootstrappresence of these conserved intron positions supports the
replicates. The pOSitiOﬂ of the echinoderm muscle aCtirhypothesis that the ancient eukaryote actin gene had a
was different in the NJ and MP trees, but bootstrap valiarge number of introns (Doolittle 1978). Although it is
ues supporting the different topologies were relativelyyncertain at present whether conserved intron positions
small in both analyses (54% in NJ and 58% in MP).  in the actin genes of distantly related organisms had the

same origin, further analysis of exon—intron organization

Discussion among these genes would provide important information

. about the origin of introns in actin genes.
In the present study, we have compared the exon—intron Comparison of the diagnostic amino acids and phy-

orga mzatmi_n and theTc:]educedt_amlno acid sequences d%genetic analysis revealed that both ascidian larval and
varlous actin genes. These actin sequences were USed iy, ;1 myscle actins are more similar to the vertebrate

molecular phylogenetic analyses to gain new InSIghtsmuscle actin than to the vertebrate cytoplasmic actin. In

Into the_evolutlon .O.f the actin gene family in Ch.Ordates'contrast, nonchordate muscle actins, including an echi-
The intron positions of ascidian muscle actin genes .

: . noderm muscle actin, are more closely related to the

were shown to be identical to those of vertebrate muscle . .
vertebrate cytoplasmic actins than to the vertebrate

actin genes. This is con§|stent with our m_olecullar phy_muscle actin (Vandekerckhove and Weber 1984). In ad-
logenetic analyses showing a closer relationship of as-

cidian muscle actin genes to the vertebrate muscle actiﬁmon’ the starfish anddrosophila muscle and non-

genes. However, the number of introns in the ascidiarmusc'et. 'SOfofml‘:’] are mor(le S';”"S‘Ir ti e?r(;]h othte'r t?lilnl to
larval muscle actin genes is smaller than that in othefl® actins of other animals (Table 1). Thus, it is likely

deuterostome actin genes. An extreme case isvibke that Imusc!e isoforms emerglgeql several times mt;lepen-
gula oculatamuscle actin genélocuMAL,which con-  dently during metazoan evolution, as suggested for ar-
tains no introns (Kusakabe et al. 1996). The primitivet"oPod actins (Mounier et al. 1992). Gene conversion

situation in deuterostomes, however, seems to be muscft2S Maintained homogeneity between the sea urchin
actin genes with introns (see below). The ascidian larvalusclé and nonmuscle isoforms (Crain et al. 1987). In

muscle actin genes may have lost their introns to expeMany invertebrates, however, muscle actins show more
dite the processing and cytoplasmic accumulation offMiNO acids characterl-suc of the vertebrate mgscle actin
transcripts during the relatively short interval of muscle than do nonmuscle actins. For example, a starfish muscle
cell differentiation during larval development (Kusakabe &ctin has amino acids characteristic of vertebrate muscle

et al. 1996). actin at five positions (260, 267, 272, 279, and 287),

Six intron positions (41/42, 121/122, 150, 204, 268, while starfish cytoplasmic actin has two (positions 272
328/329) are conserved between muscle actin genes a@d 279). Similarly, four muscle-type amino acids are
nonmuscle actin genes in deuterostomes. The ancestrfesent inDrosophila muscle actin (positions 76, 153,
deuterostome may have had a single prototypic acti?79, and 297), whildrosophila cytoplasmic actin has
gene that contained seven or more introns. Since th&vo muscle-type amino acids (positions 153 and 279).
number of introns varies from zero to seven in the extanirhis feature may be a consequence of convergent evo-
deuterostome actin genes, different introns seem to havgtion related to muscle contractile properties. It is un-
been lost during the evolution of each lineage. The con<€ertain, however, whether the chordate muscle-like fea-
servation of intron positions in both the deuterostometures of echinoderm muscle actin are representative of a
cytoplasmic and muscle actin genes suggests that thiansition from a nonmuscle-type to a muscle-type actin.
ancestral vertebrate-type muscle actin gene appearebhe chordate muscle-type actins probably diverged from
during chordate evolution, and that its characteristica nonmuscle-like actin before the divergence of urochor-
amino acid sequence was established in a relatively shodates and vertebrates.
time. Since the intron at position 328/329 is only present Kovilur et al. (1993) proposed that the divergence of
in the vertebrate actin genes, however, this intron mighskeletal and cardiac isoforms of vertebrate muscle actin
have been acquired during vertebrate evolution and haveccurred before the emergence of urochordates. How-
been shared between muscle and cytoplasmic actin geneser, a detailed comparison of amino acid sequences of
via gene conversion. ascidian actins suggested that the divergence of two sar-
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comeric actin in vertebrates occurred after urochordateReferences

separated from the vertebrate lineage (Kusakabe 1995).
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