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RESEARCH ARTICLE
Modeling Literal Morphisms by Shuffle

Z. Esik and I. Simon
Communicated by J.-E. Pin

Abstract

We show that literal morphisms on languages may be modeled by the shuffle
operation and 2-testable languages. It follows that there exists no nontrivial non-
commutative x-variety of regular languages closed under shuffle.

The shuffle L;®L, C (AU B)* of two languages Ly C A" and L, C B* is
defined by!

Li®Ly, = {wvy...u,v, cu=wuy...u, € L1, v=101...0, € Ly}.

Suppose that V is a x-variety. (For all notions not defined here we refer to
[4].) We define:

o LV: the x-variety generated by the images of the languages in V under literal
morphisms.

e SV: the x-variety generated by the languages Li®Lo, for Ly, Ly € A*V.

o SyV: the x-variety generated by the languages L@B*, for L € A"V and
BCA.

Let Ay denote the set {a,b} and define
Ly = (ab)".

Then L is a 2-testable language and the syntactic monoid of Ly is isomorphic to the
monoid BAj defined on page 109 in [4].
In this note we give a proof of the following result:

Theorem 1.  If V is a *-variety with Ly € AJY then SV = SY = LV is the
x~variety of all reqular languages.

Corollary 2. The only non-commutative x-variety closed under shuffle is the * -
variety of all reqular languages.

Proof. If V is a non-commutative x-variety with S} C V', then V contains the
2-testable languages. See [5]. u

Corollary 2 answers a problem raised by J.-E. Pin [4].

I Different symbols are used by different authors to denote the shuffle product. Our notation is
consistent with [2].
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Remark 3.  Using a different method, J. Almeida and J.-E. Pin [1] recently gave
another proof of Corollary 2.

Theorem 1 follows immediately from the following facts. Theorem 4 may be
derived by combining Theorems 1.13 and 1.18 in [4], Chapter 5.

Theorem 4.  [4] If V is a *x-variety with Ly € A;V, then LY s the *-variety of
all reqular languages. [ ]

Lemma 5.  IfV is a x-variety with Ly € A5V . then LY C SyV . [ ]

In the proof of Lemma 5, we make use of two simple facts. The first fact
follows from the proof of Proposition 3.4 of Chapter I, in [3].

Lemma 6. [6] Fach x-variety V is closed under disjoint shuffle. In more detail,
if Ly € A*Y and Ly € B*Y with AN B =0, then Li®Ly € (AU B)"V. [ ]

Lemma 7.  Suppose that Ly € A5V . Then for any finite set A and letter ¢ € A,
(Ac)* dsin (AU {c})*V.

Proof.  Let h denote the homomorphism A U {c¢} — {a,b} mapping ¢ to b and

cach letter of A to a. Then (Ac)* = h™'((ab)*), so that (Ac)* € (AU {c})*V. n

Proof of Lemma 5. Suppose that L € A"V and that ¢ is a literal morphism

A* — B*. We need to show that the language (L) belongs to B*SgV. Without

loss of generality we may assume that A and B are disjoint and ¢ is surjective.
Let ¢ be a letter not contained in AU B. Define C'= AU {c},

Ly = L®c
L2 = L] N (f/lC)*
Lg - L2®r’1*.

Then L, € C*V, by Lemma 6, or since any *-variety is closed under inverse morphic
images, and L, € C*V, by Lemma 7. Moreover, Ly € C*SyV, by definition.

To end the proof, for each b € B, let u;, be a word containing exactly one
occurrence of each letter in »~!(b), and no other letter. Consider the homomorphism
h : B* — C* defined by h(b) = uyc, b € B. Then ¢(L) = h '(Ls3), proving
©(L) € B*SyV. [ ]

Remark 8. A direct proof of Corollary 2 can be shortened even further by sim-
plifying the proof of Lemma 5 for the special case of a morphism ¢ : (AU {a,b})" —

(AU {a})* which is the identity on A and maps both a and b to a.

Remark 9. It is known that shuffle may in turn be modeled by literal morphisms,
see pages 19-21 [3].
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Problem 10. Let J denote the x-variety of piecewise testable languages. Is

SoJ =LJ?
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