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If S is a regular semigroup with set of idempotents E(S) then an inverse subsemigroup
of S is called an wnverse transversal of S if S° contains a unique inverse x° of
cach element 2 of S. The class of regular semigroups with inverse transversals
was introduced by Blyth and McFadden [1] in 1982. This large class contains, for
example, elementary rectangular bands of inverse semigroups [10], naturally ordered
regular semigroups with a biggest idempotent [7], regular 4-spiral semigroups [2], and
split orthodox semigroups [6]. Several authors have investigated regular semigroups
with inverse transversals; see, for example, [1], [4], [11], [12]. A general structure
theorem for regular semigroups with inverse transversals was obtained by Saito [13].
In a regular semigroup with an inverse transversal S¢ , the subsets

I = {e€E(S):e=ece’},
AN = {feE(S):f=[f}

are of considerable importance. In this paper we show that both I and A are subsemi-
groups of S. This means that, in the terminology of [13], every inverse transversal
of S is an S-inverse transversal, so that this latter concept becomes superfluous.
Consequently, the construction in [13] can be replaced by the simpler form given in
[12]. We also obtain necessary and sufficient conditions for an inverse subsemigroup
T of S to be an inverse transversal, in particular when S is E-solid(quasi-orthodoz)
or locally inverse.

We recall that for idempotents e, f of a regular semigroup S the sandwich

set S(e, f) [8] is defined by
Sle.f)={9 € E(S):g9e=g= fg.eqf =ef}.

It is well-known that S(e, f) = fV(ef)e. Moreover, if ' € V(a) and ¥ € V(b),
then, writing S(a,b) for S(a'a,bl’), we have

(Vg € S(a,b)) Vga € Vab).

In particular, if eLgRf with e, f,g € E(S) then fge = ¢ and ef € V(g).
In a regular semigroup S, we list the following basic facts which will be used
in the sequel:

1. if ad’ = a or d'a =a for ' € V(a) then a,a’ € E(S) and ala’ or aRd';
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2. if e, f € E(S) with eLf or eRf then e and f are mutually inverse.

Let S be a regular semigroup with an inverse transversal S°. It was shown in [1]
that

= {aa® :a € S},
A = {aoa:a\ES}-

We give the following lemma which will be needed in Theorem 2.
Lemma 1.  Let S be a reqular semigroups with an inverse transversal S°. Then
(i) I={ee€ E(S):eLle’};
(i) A={f€E(S): FRF};

(iii) if v € I, or x € A, then z° € E(5). u

At first, for I and A we begin with the following foundamental theorem.

Theorem 2.  Both I and A are subsemigroups of S.

Proof.  Suppose that e, f € I and consider the sandwich element g = f(ef)°e.
Using the fact, established in [5], that

(zy)° = (2 wy)°a® = y° (xyy°)°

for any =,y € S, and the observation that if e € I then e°e = ¢° so that e¢° € E(S)
and eLe®, we have

g = f(e’ef)’e’e = f(e%ef)e” = f(ef)°.

Therefore, eg = ef(ef)® € I. We then have (eg)® € E(S) and gLegL(eg)° so that
(eg)® € V(g) N S°. Consequently, ¢° = (eg)°Lg and ¢° € E(S). Also

9" =1 flef) el fo =11 flef) e’ f°f =g°f.

from which we obtain that ¢ = g¢° = g¢°f = gf. By the proof above, we have
eg € I. Therefore ef = egf € I. Hence [ is a subsemigroup; and similarly so is A.
|

[t follows immediately from Theorem 2 that all inverse transversals of a regular
semigroup are necessarily S-inverse transversals in the terminology of [13]. From [13]
we therefore deduce for all z,y € S that we have in general the identity

o .0

([l?OOy)O — (J,:yOO)O — y xr°.

For a subset X of a regular semigroup S we define V/(X) = U{V(z) : 2 € X }.
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Theorem 3.  Let S be a reqular semigroup and let T be an inverse subsemuigroup
of S such that V(T) = S. Let

P={eeS:3e €V(e)NT such that e’ = e},

Q={ceS:3 eV(e)NT such that ¢'e = e}.
Then the following statements are equivalent:
(1) T is an inverse transversal of S ;
(2) P and Q are subsemigroups of S ;
3) VIP)NT CE(T) and V(Q)NT C E(T);
(4) | V(e)NT |=1 foree P orec Q.
Proof.  Note that
P={ad :d €V(a)NT}
and
Q={da:d €eV({a)nT}.

In fact, P C {ad : d' € V(a) NT} is trivial. For a € S let ¢’ € V(a)NT
and a” € V(d')NT. Then «"a’ € V(ad')NT and ad = (ad')(a”d"). So {ad :d €
V(ie)NnT} C P.

(1)= (2): It follows immediately from Theorem 2.

(2)= (3): Suppose that (2) holds. Then P is a left regular band. To see this,
let e, f € P. Then there exist ¢/, f/ € T such that e¢ = ¢, e = ¢, ff = f and
f'f=f". Since ¢, f € E(T) it is clear that ¢/, f' € P. Since P is a subsemigroup
we have ¢ f € P and so, since the idempotents of T commute,

df=dfef=ffef=efef =effe=cfe.
Consequently,
efe=ce'fe=cé fle=cc fe' =ee'f=cf
and therefore the band P is left regular. Now let e € P and let €” € V(e)NT. Since
P is left regular and ee” € P we have

ee” = ee’ece” —ee’e—e,

so that ¢ = ¢"e € E(T). Thus V(P)NT C E(T). Similarly, @ is a right regular
band and V(Q)NT C E(T).
(3) = (4): Given e€ P let €, €” € V(e) NT with ee’ = e. By (3) we have
e.e” € E(T) and so
677 — eaaeew — 67766/67? — 611€€77€/ — 6116)/ — 6”6’16 — 8/6”6’ — 6/66”6’ — 6/6 — f’l.
Hence | Vi(e) N T |=1 for every e € P. Similarly, we have | V(f)NT |=1 for every
feaq.
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(4)= (1): Suppose first that e, f € P with eRf. Then there exist ¢ €
Vie)NT and f" € V(f) NT such that e¢/ = ¢ and ff' = f. Since ef = f and
fe = e it follows readily that ¢'f € V(f'e) N V(e). Now let (f'e) € V(fle)nT.
Then we have

df=effledf=€ffle(fle)fedf=¢(fle)f eT.

By (4) it follows that ¢ f = ¢ and therefore f = ef = e. Similarly, we can show
that if e,f € Q with eLf then e = f. Suppose now that a € S and let o,
a” € V(a)NT. Since ad', aa” € P and ad'Raa” we have ad’ = aa” , and similarly,
d'a=a"a. Consequently, a' = d'ad’ = a”aa” = «”. Thus T is an inverse transversal

of S. ]

For any a € S, the £L—(resp. R—)class containing a will be written by L,
(resp. R,). Now let Ry = U{R, : v € X} and Ly = U{L, : z € X} for any subset
X of S. For a regular semigroup S, the subsemigroup generated by the idempotents
of S is called the core of S and is denoted by C'.

Theorem 4. A regular sermigroup S has an inverse transversal S° if and only if
there exists an inverse transversal C° of C' such that RooNLeo forms a subsemigroup

of S.

Proof.  Suppose that S has an inverse transversal S°. Let C° = C N S°. Then
C° is an inverse subsemigroup of C'. For any x € ', we have v = ey ...e, € C with
€l,...,e, € E. By the well-known fact that:

if E is the set of idempotents in a regular semigroup S then

V(E") = E"T" (VneN)

we then have 2° € E"! and so 2° € C' N S°. Therefore 2° € V(x) N C°. Since
V(z)NC°® C V(x)NS°, we obtain that | V(x)NC® |= 1 for each x € C'. Consequently,
C° is an inverse transversal of C'.

Let a € S°. Then aa®, a°a € C°, which gives that @ € Reo N Leo.
Conversely, if a € Rco N Leo then there exist o,y € C° such that *Raly. Thus
rx°Raly’y. Denote xx° and y°y by e and f respectively. Then e, f € E(C°).
Let a® € V(a) N S°. Then fa°e € V(a) N S°, which yields that a° = fa°e.

00 O

Furthermore, aa® = a°°a® and a®a = a°°a®. It is a routine matter to show that
a = aa’a®®a®a = a®® € S°. Therefore S° = Rco N Leo, as required.

Now suppose that there exists an inverse transversal C° of C such that
Reo 0 Lo is a subsemigroup.

If a € Reo N Leo then there exist x,y € C° such that 2 Raly, which vields
that x2°Raly’y. Thus there exists b € V(a) such that ab = x2° and ba = y°y.
This gives that b € Reo N Lo and so Reo N Leo is a regular semigroup.

Let e € E(Rco N Lea). Then gReLf for some f,g € E(C°). Therefore
g=eg=efg=egf =gf =gfe=fge=fe=F
Thus e = f =g € E(C°) and so Rco N Leo is an inverse subsemigroup.
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Let a € S and @ € V(a). Then ad,d'a € C'. Without difficulty, we obtain
that
(d'a)°(d'a)LaR(ad")(ad")°.

Thus there exists @ € V(a) such that ax = (ad')(ad')® and ra = (d’'a)°(d’a), which
means that @ € Rco N Leo. This element @ is denoted by a®. Thus for each a € S
there exists a® € V(a) N Ree N Leeo. So S =V (Ree N Leo). Let

I = {ad®:a € S}
A = {a’a:a€S};
Ie = {aa®:a € C};
Ac = {aa:ae C}.

For aa®, bb° € I, denote aa® and b0° by x and y respectively. Then 2° = a°°a®,
y° = b°°b° and aa® = aa®, yy° = bb°. It follows from (2) of Theorem 4 that xy € I
and so aa®bb® € I. This shows that I is a subsemigroup. So is A. Again by (1) of
Theorem 4, we obtain that Roo N Lo is an inverse transversal of S. [ |

A regular semigroup S is said to be E-solid ( see [3], [14]) if the subsemigroup
< E(S) > generated by the idempotents of S is completely regular (i.e. is the

union of its maximal subgroups). For our purpose now we require the following
characterisation of such semigroups.

Lemma 5.  (see [3]) A regular semigroup S is E-solid if and only if
L egs) oR Jes)=R les) oL |k - m

In what follows we shall require the following simple observation: if S is regular
and e. f are idempotents of S such that eLfRg and eqg = ge then e = f = ¢g. In
fact, we have

f="fegf =fgef = ge
and so
e=ef =ege = ge
and
9=1rg=geg=ge,
whence e = f = g¢.

Theorem 6. Let S be E-solid and let T be an wnverse subsemaigroup of S. If
V(T) =S then T is an inverse transversal of S.

Proof. As in Theorem 3, Let

P = ec€S:3¢ €V(e)NT, such that ed’ = e,
Q = eeS:3 €V(e)NT, such that €'e = e.

Let e € P and let ¢, ¢” € V(e) NT. Then we may assume that e¢’ = e. Now since
e"eLeRee” there exists f € E(S) such that e”eR fLee” . But e”eRe” Lee” and so
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e"Hf. Now let ¢ € V(e”")NT. Then ¢”¢” Le"Re” " and therefore e’ LfRe” e
since " H f. Since ¢"¢” | "¢ € E(T) we deduce from the above observation that
f=e"" =¢e"" € E(T). Now since ¢/LeLe”eRf with ¢, f € E(T) we deduce
similarly that ¢ = ¢”e = f, so that eLe’ = fRe”. It follows that ¢” = ¢"¢ = ¢ and
therefore | Vi(e)NT |=1 for every e € P. Similarly, | V(e)NT |=1 for every e € Q,
and it follows by Theorem 3 that 7' is an inverse transversal of S. ]

A regular semigroup S is said to be locally inverse if for every e € E(S) the
subsemigroup eSe is inverse. It is well-known that S is locally inverse if and only if
| S(e, f) |= 1 for all e, f € E(S); equivalently, if and only if w'(e) = {f € E(S) :
fe = f} is a left normal band and w”(e) = {f € E(S) : ef = f} is a right normal
band for every e € E(S) [9].

Theorem 7.  Let S be a locally inverse semigroup and let e € E(S). Then V(eSe)
15 a reqular subsemigroup with eSe as an inverse transversal.

Proof. If a,b € V(eSe) then there exist o', O/ € eSe with ¢ € V(a) and
b e V(b). If g € S(d'a,bl) then b'gd = eb'ga’e € V(ab) N eSe. Thus V(eSe)
is a subsemigroup of S'; clearly it is regular. Now let

P = {feV(eSe):3f € V(f)NneSe,such that ff' = f};

Q = {feV(eSe):3f € V(f)NneSe,such that f'f = f}.
If fe P then ff' = f with f' € V(f)NeSe, which gives efef’ = efe and f'efe =
f'. Consequently, efe € E(eSe) and therefore f' = efe. Hence f = ff' = fefe
and therefore fe = f whence f € w'(e). Conversely, if f € w!(e) then fe = f
and consequently efe € E(eSe). It is easy to check that efe € V(f) NeSe. Since
fefe = fe = f it follows that f € P. Hence P = w!(e) and so that P is a left normal
band. Dually, @) is a right normal band. The result now follows from Theorem 3. =

If S is a regular semigroup then a subset I of S is said to be a quasi-ideal of
S if ISI C I. Tt follows by [4, Proposition 1.3] that if S has an inverse transversal
that is a quasi-ideal then S is locally inverse. If S is a locally inverse semigroup
with an inverse transversal S° then S° is a quasi-ideal of S.We shall now determine
necessary and sufficient conditions under which an inverse subsemigroup that is a
quasi-ideal is an inverse transversal. That this is not so in general is illustrated as
follows.

Example. et S = p°(G;1,A; P) be a completely 0-simple semigroup in which
G=A{e}, I ={1,2,3}, A ={1,2} and P is the sandwich matrix

( 11 0 )

1 0 1

Then T ={(2,e,1),(2,e,2),(3,e,1),(3,e,2),0} is an inverse subsemigroup of S and
V(T) = S. However, T is not an inverse transversal of S since

(2,e,1),(2,¢,2) e V((1,e,1))NT.
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For a subset K of a regular semigroup S let
RegK ={x e K :V(x)NK}.
Then for a locally inverse semigroup we have the following

Theorem 8.  Let S be a locally inverse semigroup and let T' be an inverse subsems-
group of S that is also a quasi-ideal. Then T is an inverse transversal of V(T) if and
only if E(ST) and E(TS) are subsemigroups. In this case, V(T) = RegST - RegT'S .

Proof.  Suppose that T is an inverse transversal of V(7). Let

It = {aa®|aeV(T),a® € V(ia)NT},
Ar = {a®a|laeV(T),a® € V(a)NT}.

It follows from Theorem 2 that Iy and Ay are subsemigroups of V(7). Clearly,
Ir C E(ST) and Ay C E(TS). Conversely, if ax € E(ST) for a € S and x € T
then z°zaxr € V(ax) NT and ar = arxz®vax, where 2° denotes the inverse of x in
T. It follows that ax € Ip and so E(ST) C I;. Therefore Iy = E(ST). Similarly,
Ay = E(TS). As required.

Suppose now that E(ST) and E(TS) are subsemigroups. Clearly, V(T') is a
regular subsemigroup. Let

P = {eeV(T):3 e V(E)NT such that e¢' = e};
Q = {eeV(T):3 e V(E)NT such that €'e = e}.

Then P = E(ST) and @) = E(TS). It follows from Theorem 3 that T is an inverse
transversal of V(7).

Now let @ € V(T). Then a = aa®a®a®a for a® € V(a) N T. It follows
from aa®a®® € RegST and a«°a € RegTS that a € RegST - RegT'S. Conversely,
let ab € RegST - RegTS with a € RegST and b € RegT'S. Then there exist
a €V(a)NST and ¥ e V(b)NTS. Let g € S(a,b). Then 0'ga' € V(ab) NT and so
ab € V(T). Consequently, V(T) = RegST - RegT'S. ]

The following result relates to [4, Proposition 1.4].

Theorem 9.  Let S be a rectangular band of inverse semigroups S; \(i € I, X € A)
and suppose that (o, 3) € I x A. Then S, 3 is an inverse transversal of SS, 3S.

Proof. If a € V(S,3) then there exists ' € V(a)NS, 3. Thus a = ad’'a € SS, 35
and so V(S) C SS,3S. Conversely, if a € SS, 43S then a = bryc for b.c € S and
x,y € So,p. Suppose that b € S;y and ¢ € S;,. Then we have br € S; 5 and
yc € Sy, Let (bx) € V(bx) NS5 and (ye) € V(ye) N S,,, and g € S(bx, yc).
Then (yc)' g(bx) € V(a)NS, 3 80 SSu 35 C V(Sa3) and therefore SIS, 55 = V (S, 3).

With the symbols of P and @ in Theorem 3 it is easy to see that P =
E(SS, ) and Q = E(S,3S). Suppose now that e € F(SS, 3) and let e € E(S; 3)
and * € V(e) N S,3. Then ex € E(S;3). By the hypothesis, e = exr and so
v = ze € E(S,3), which means that Vi(e) N S,3 C E(S,p3) for every e € P.
Similarly, V(e) N S, 3 C E(S,3) for every e € Q. It follows from (3) of Theorem 3
that S, 3 is an inverse transversal of S5, 35. [ |
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Corollary. If S s a rectangular band of inverse semigroups S;\ then S has
inwverse transversals if and only if there exists S, 5 such that S = 5S, 35S ]

If S is a locally inverse semigroup and if E(S) = (L, R;; M; x; ¢ix, ini I, A)
then. as established in [9], S is a rectangular band of semigroups S, ,. and 1;,51; ,
is a maximal inverse subsemigroup of .5; .

In this situation, we have the following

Theorem 10.  If S is a locally inverse semigroup whose form as given above then
S has inverse transversals if and only if there exists (a, ) € I x A such that the
following conditions are satisfied:

(i) S =251,4S:
(ii) both Sl and 1,3S are reqular.

Proof.  Suppose that S has inverse transversals. Let S° be an inverse transversal
of S. Then there exists («,3) € I x A such that S° C S, 5. It follows that S, s
is regular and so that S, 3 = 1,351,353 = S°. Since a = aa’a for every a € S, we
obtain that

S =885°5 = 51,351,535 C Sl,3S.

Thus S = S1,3S. On account of 1,5351,5 C 1,35, Sla 3, we can see that 1,35
and S1, g are regular.

Conversely, suppose that now S satisfies conditions (i) and (ii). Then we have
v = al,zb for every x € S. Let u € V(alys) N Sl,s and v € V(1,30) N 1,5S.
It is easy to see that 1,sul,3 € V(alnp) and 1,5vl,5 € V(1,4b). Let g €

S(ala g, 1ab). Then
Logula gl svleg € V(al, gb) = V().

Thus x € V(1,,351,3) and so S = V(1,351,3).Let

P=ceS:ed =¢ for somee €V(e)N (1a5510s);

Q=ceS:ce=ec for somee €V(e)N(ly3Slas).

It is easy to see that P C E(S1,3) and Q C E(1,45). If e € P then e = el, 3
and € =1, el, 3. Let e, f € P. On account of the fact that 1,351, 5 is a inverse
semigroup, we obtain that

Bfla,ﬁelaﬁfla,ﬁ € ‘/7(6’]‘) N 10,”351@’5

and
‘/(10,,86]-(1‘,/3.]610,,8) € ‘/r(ef) N 10,,85141,/3-

Thus P is a subsemigroup. Similarly, so is (). It follows from Theorem 3 that
1,351, 3 is an inverse transversal of S [
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