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Abstract. Paralleling what has been done for minimal surface&3nwe develop a gluing
procedure to produce, for aity> 2 and any: > 3 complete immersed minimal hyper-
surfaces ofR”*1 which havek planar ends. These surfaces are of the topological type of a
sphere withk punctures and they all have finite total curvature

1. Introduction

Among the different tools designed to produce minimal surfac&jiihe Weier-

strass representation Theorem, which is probably the most popular, has been exten-
sively used [9, 10]. The main advantage of this method is that we have at hand an
explicit local parameterization of the surface we are interested in. The main draw-
back is that the global geometric properties of the surfaces (such as embededness)
are extremely hard to derive.

In a completely opposite direction, tools coming from nonlinear analysis have
been useful either to produce new minimal surfaces [3, 14], or to study the properties
of the moduli space of such surfaces [11,12]. For example, the existence results
which are based on perturbation arguments, have lead to examples [3,14] which
would have been hard to find with the former technic. The main advantage of this
type of constructions is that the geometry is usually well controlled.

Paralleling what is done for minimal surfaces, a gluing procedure has been
developed to produce both compact and non compact complete constant mean
curvature surfaces iR®. This was first achieved by N. Kapouleas [2] and was also
considered by R. Mazzeo and the second author in [5] and even more recently in
[6]. In this last paper became apparent that, in most of these constructions, the
use of appropriately designed weighted Holder spaces could simplify a lot the
technicalities of the proofs. Moreover, it showed how Green’s function played a
central rdle in the construction, in particular stressing the fact that the local geometry
of the surfaces at the point where the gluing is done is not relevant and that only
global properties of the surfaces are of interest.

In higher dimension, the Weierstrass representation Theorem is not available
anymore to produce minimal hypersurfaces and thus it is tempting to use the per-
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turbation arguments to produce some nontrivial examples of complete minimal
hypersurfaces. In this perspective we prove the

Theorem 1.1. Letn > 3. For all k > 2, thereexistsa smooth k (n + 1) dimensional
manifold of complete immersed minimal hypersurfaces of R”*+1 which havek pla-
nar ends. These surfaces are of the topological type of a sphere with £ punctures
and they all have finite total curvature.

The structure of the proof of the result follows closely the proof of [6]. Thus,
this paper is more intended to show first that the strategy developed in [6] for
compact constant mean curvature surfaces with boundary can be easily adapted to
our situation and also to derive all the relevant estimates and technical results which
are needed for the machinery to work.

Let us briefly describe the general strategy of the proof : The proof of The-
orem 1.1 is by induction. Fat = 2, we have at our disposal tlecatenoidC;

(which generalizes in higher dimension the well known catenoid), notice that in di-
mensiom + 1 > 4 then-catenoids have planar ends. Now, suppdsis ak ended
nondegenerate minimal hypersurface, we choose any poiatM and remove
from M a small disk centered at. Then, we “glue” on another half-catenoid
which has been rescaled by a factom he resulting hypersurface is then perturbed
and, as a result, we obtain a one parameter family of minimal hypersurfaces with
k + 1 planar ends.

Next, we prove that for small enough these surfaces are nondegenerate. In
particular, this shows that the hypersurfaces we have produced actually belong to
a smooth(k + 1) (n + 1)- dimensional family of such hypersurfaces.

Organization of the paper : Part 1 includes Sects. 3,4 and 5, while Part 2 includes
Sects. 6, 7 and 8. These two parts are completely independent and results of both
parts are summarized in Sect. 5.2 and Sect. 8.2 respectively. Next, the results of the
two parts are used in Part 3 which includes Sects. 9 and 10.

2. Notation

In this brief section we record some notation which will frequently used throughout
the rest of the paper. First,: R — [0, 1] will denote a smooth cutoff function
satisfying

=1 if r>1 and A=0 if r<DO.

Let us denote by;(6), j € N the eigenfunctions of the Laplacian 6fi~1 with
corresponding eigenvalug, that isAgi-1e; = —Xje;, with 1; < A; 1, which

are normalized by
/ e5do = 1.
Sn—l

Furthermore, we will always assume that these are counted with multiplicity,
namely

AM=0, Mm=...=r,=n-1,....
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We define some orthogonal projectionsandsy on L2(5"~1) as follows: if

¢=> ajej e LA(S"),

jeN
we set

m(¢) = Zaj e and m (o) = Z ajej € LZ(S”_J')_

Jj=<n j>n+1

Finally, we define the continuous linear operator

Dy : Zaj ej € His 1 — Zyj ajej € L2(s" 1,
jeN jeN

where by definition

SN
yj = (" 2) +a. 2.1)

1/2
In other words Dy corresponds to the operat(j”—gz)z - Asn—l) . It could

be useful to give another interpretation B§. To this aim, we define for alp €
H1(s"1), the functioru as the unique solution of

Au=0 in B
u=¢ on 9Bj.

2—,

If we setv = 2 u, we obtainDy¢ = 9,v3p,. Hence,Dy¢ is related to the
normal derivative on the boundary of the harmonic extensigfiofthe unit ball.
To keep the notations short, we set

n—2\2
AO = 853 + Asnfl - 2

which acts on functions defined & x $"~1.

3. Minimal hypersurfaces which are graphsover a cylinder

We define the unik-catenoidCy which is a minimal hypersurface of revolution
and give some isothermal type parameterizatio@pfWe also derive an almost
explicit formula for the mean curvature of any hypersurface closg to
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3.1. Minimal hypersurfaces of revolution

To begin with, let us concentrate on hypersurfaces of revolution (say around the
Xp+1 axis). Such an hypersurface can be parameterized by

(t1,12) x "1 3 (1,0) —> (p(1) 0, 1) e R,

where the functiop is assumed to be defined and positive in some intérvadb).
In which case, the first fundamental form is given by

I, = (1+ 62 di® + p?d6?,

where- denotes differentiation with respectt@nd whereai6? is the first funda-
mental form ofs”~1. Up to some multiplicative constant, the volume functional is
then given by

12
E, E/ V1+p2p" tdr.
&%

The associated Euler—Lagrange equation reads
pp—m—11+p% =0, 3.1)

and, whenevep is a positive solution of this equation, the corresponding hyper-
surface generated by is minimal. All solutions of (3.1) are given by () =

a po((t — 19)/a) whererg € R and wherex > 0 is some constant and whesg

is the solution of (3.1) with initial datag(0) = 1 andpp(0) = 0. In particularpg
satisfies

1+ p3 = pa" 2. (3.2)

Definition 3.1. The unit n-catenoids defined to be the hypersurface of revolution
which is generated by pp and is denoted by Cj.

The properties 0pg are summarized in the

Lemma 3.1. Thefunction pg iseven, strictly increasing for # > 0 and defined over
some maximal interval (—T*, T*), where

o0 dx
e _—
T _/1 GZ2 112 > 0.
Furthermore
1
lim (T* — ) pl %= ——,
T ( ) Po n—2

which impliesin particular that pg tendsto co when 7 tendsto 7* or to —T*.
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The fact thatpg tends to+-oo as the parametertends to=7* reflects the fact
that then-catenoid has two planar ends.

It will be very convenient to use a conformal parameterization of thesnnit
catenoidC;. To this aim, we define the functions— ¢ (s) ands — ¥ (s) by the
formulee

$=pooy
and
Y =¢*" with ¥(0) =0,

where this timé denotes differentiation with respectstdJsing (3.2), one sees that
¢ is the unique non-consta@t solution of

§2 4+ 2 = 9% with $(0) =1. (3.3)
It is not hard to check the

Lemma 3.2. Thefunction v isodd andisadiffeomorphismfromR into (—7*, T*).
The function ¢ is even and defined on all R. In addition, there existsa > 0 such
that

e P(s) =a(l+ O0E?25)) as s — +oo

(3.4)
EP(s) =a@d+O@E?@2%)) as s —»> —o00

From now on, we will always assume that the unitatenoidC is parameterized
by

Xo:(s,0) €R x S" 1 — (¢(s5)6, ¥(s)) € R"T. (3.5)

The rationale for this change of parameterization, is that, in these coordinates, the
mean curvature of any surface closetpcan be computed almost explicitely, or
at least takes a simple form, as we will see in the next paragraph.

Notice that the lower part of the-catenoid, which is the image ¢f-co, 0) x
s"=1 by X, can also be parameterized as a graph ovexthe = 0 hyperplane

by
R"\ By 3 x —> (x,up(x)) € R"1,

whereug is the unique (negative, decreasing) solution of
-1 2\Y/? ; :
=1 8,u0 + (1+(a,uo) ) —0 with lim ug=—T"
r—o0

It is an easy exercise to see that the functigrhas the following expansion as
r = |x| tends tooo

2—n
5+ o043,

% r
uo(x) =—-T" +
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3.2. The mean curvature operator for hypersurfaces closeto C1
Let us assume that the orientation®f is chosen so that the unit normal vector
field is given by

1
é(s)

All surfaces close enough 6; can be parameterized (at least locally) as normal
graphs oveC1, namely

No(s, 0) = (V'()6, —¢'(5). (3.6)

X = Xo+ w Np,
for some small functiom. We have the

Proposition 3.1. The hypersurface parameterized by X is minimal if and only if
the function w is a solution of the following nonlinear elliptic partial differential

equation
w w w
£ - ’_’v ¢ ,VZ <_>>
ow= 02 (s 5 (5) (5

e (2) (2)
¢ ¢ ¢

Lo = d, (¢>”—2 av) F " 2 Aga+nn— 1),

3.7)

where

isthe linearized mean curvature operator about C1, where

(g1, g2, q3) — Q2(s, 91, q2, g3),

is homogeneous of degree 2 and where

(Ql, q2, 43) — Q3(S7 q1, 42, 113),
collects all the higher order nonlinear terms, that is
03(5,0,0,00 =0, V,03(s,0,0,00=0 and V;, Q3(s,0,0,0) =0.

Furthermore, the coefficients Q2 onthe one hand, and the partial derivativesat any
order of O3, with respect totheg;’s, computed at any point of some neighborhood V
of (0, 0, 0) onthe other hand, are bounded functions of s and so are the derivatives
of any order of these functions, uniformly in V.

We wiill write for short

o5)-0(55() () woees

Though this is not apparent in the notatign,(-) depends on.
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Proof. For simplicity in the notations, we set

sothat we now have the parameterizatioa- Xo+w No. Granted these definitions,
the first fundamental form of the hypersurface parameterized bsads

[ = ¢? (ds® + d6%) +2¢>" i (1 — n) ds® + do?)
+2¢ ¢ i (s ds? + Y i ds dt) + ¢* 2" D2 (n(n — 2) ds? + d6?)
i
+ @2 w2 ds® + ? (WF ds® + 21 Zw, dsdt; + ) i ; do; doj),
i,j

where we have seb; = o,w andw; = 9p,w foralli =1, ..., n. Using the well
known formula

det(l + A) = 1+ Tr(A) + % (Tr(A)2 - Tr(AZ)) + O(A]®),

we establish

detl = ¢ (1 + 20/ Yibis + B2 + Vo2 + B2(1— (n2 —n + 1)¢2*2"))
+ ¢ O3() + 9% Qa(),

where Q3 is homogeneous of degree 3 and whérgcollects all the higher order

terms. Observe that the Taylor's coefficients@f are constant coefficients poly-

nomials in ¥¢ and¢’ /¢, hence these coefficients are bounded functionsasid

so are the derivatives of any order of these functions by virtue of (3.3).
Changing backv into w/¢, we obtain the volume functional

E(w) = f¢" <1+¢—2 IVw|® —n(n — 1) ¢~ w?

SR ORI
3 o 4 o .

The critical points of which satisfy the nonlinear elliptic equation

35(¢" 205w) + ¢" 2 Agiaw +n(n — D~ w—Q2<¢)+¢>" 1Q3<¢)

where Q> is homogeneous of degree 2 and whérgcollects all the higher order
terms. Hence, the hypersurface parameterized yminimal if and only ifw is a
solution of (3.7). The properties @> and QO3 follow at once from the analyticity
of x - (1 + x)¥2 and the properties o)z and Q4. This ends the proof of the
Proposition. O
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We close this section by noticing that, the conjugate operator
2—n 2—n
L=¢2 Lop 2,

takes the simple form

¢2—2n. (38)

n—2\° n(3n —2)
+
2 4

And, using this notation together with (3.7), we see that the hypersurface parame-
terized by

E = 8” + Asn—l - (

Xuw=Xo+we 2 No,

is minimal if and only ifw is a solution of

Lw =07 02(p72 w) +9? 03 (¢72w). (39)

4. Mapping properties of the linearized mean curvature oper ator

We define the indicial roots of, the linearized mean curvature operator about the
n-catenoid, and give the expression of all th@: 2 1) Jacobi fields which arise
from geometric transformation @f1. Next, we prove that, when restricted to any
eigenspace;, the operatof satisfies the maximum principle providg¢d> n + 1.
Finally, some right inverse fof is constructed on any half-catenoid. Similar
results are also proved for the operatqy.

4.1. Indicial roots and Jacobi fields

We start with the study of\g, since this is the easiest. If we project the operator
Ao over the eigenspaces spanned:pywe obtain the sequence of operators

n—2\2
ass_)\j_<T> , jGN

The indicial roots ofAg at both4-co or —oo are given byt+y;, wherey; has been
defined in (2.1). Itis easy to see that these indicial roots all appear as the asymptotic
behavior attoo of the solutions of the homogeneous problagw = 0, since
etVis ¢ solvesAg(er7i% ;) = 0.

Paralleling what we have done far, we may now project the operatGrover
the eigenspaces spanneddyy This time, we obtain the sequence of operators

¢2—2I17 j c Fﬂ

n—2\? n(3n —2)
szass_)\/_ 2 + 4

The indicial roots of( at both4-oco or —co are again given byty;. All these
indicial roots also appear as the asymptotic behaviaraatof the solutions of the
homogeneous problefw = 0.
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It is possible to determine explicitely some Jacobi fields, i.e. solutions of the
homogeneous problefiw = 0, in terms of the function® and+. These Jacobi
fields correspond to explicit one-parameter geometric transformatidh ,afay
& — C(&) with C(0) = C1. For all& small enough( (&) can be written (at least
locally) as a normal graph ovéh and differentiation with respect tpgives rise
to one Jacobi field.

Using the above procedure, if one considers, as a one parameter family of
transformation of”1, the translation along the, ;1 axis one finds the Jacobi field

WOt = "7 ¢, (4.1)

which corresponds to the indicial rog = ’%2 at+oo and—yp = 2‘7" at —oo.
While dilation of C1 gives the Jacobi field

WO =4"7 (py — v ), (4.2)

which also corresponds to the indicial roet = % at+oo and—yp = 2‘7” at

—o0. Notice that, in order to obtain the Jacobi fields correspondingypat +oco
(or to yg at—o0), it is enough to take a linear combinationbf-+ andw?—. For
example,7* W%+ 4+ w0~ corresponds to the indicial roetyy at both4+oco and
7* WO+ — w0 corresponds to the indicial rogg at both+oc.

Next, translatingCs in a direction orthogonal to the axis yields the linearly
independent Jacobi fields

Wi =¢"7 Y, for j=1.....n, (4.3)

which correspond to the indicial roety; = —7% at+oc andy; = 5 at—oo. Finally
rotating C; in a direction orthogonal to the axis leads to the linearly independent
Jacobi fields

n—4

Wit =" (p¢/ + v ) ey for j=1.. .. (4-4)

which correspond to the indicial ropt = 5 at+oo and—y; = —5 at—oo. The
derivation of these formulae is quite standard and left to the reader. Details of the
derivation are given for example in [5] in the framework of Delaunay surfaces, see
also [6].

Notice that the indicial roots ofg are given byZ*T” + y; at+o0, while they
are given by’>% £ y; at —cc.

4.2. Bounded solutionsof Lw = 0and Aqgw =0

Ouir first result is simply the

Proposition 4.1. Assumethat w isabounded solutionof Agw = 0in (sq, so)x Sn—1
(with boundary data w = 0 on {s;} x §"~1if any of the s; isfinite). Then w = 0.
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Proof. The potential inAg being negative, the result is straightforward when both
s; are finite. In the general case, we decompose- } ;.\ wj ¢;, we see that

v = wje; is a linear combination o7 ¢; and therefore cannot be bounded
unlessw =0. O

Now we want to prove the following simple looking result

Proposition 4.2. Assumethat w isabounded solution of Lw = 0in (s1, 52) X gn-1
(with boundary data w = Oon {s;} x §”~Lif any of the s; isfinite). Further assume
that, for each fixed s € (s1, s2), w(s, -) isorthogonal to e, . . . , e, inthe L2-sense
on $"~1. Thenw = 0.

Before we proceed with the proof of this result let us notice, even though the
result looks as simple as the previous one, this timedtgsori not obvious at all
to conclude that

n—2\? nBn—2) ,_
sza_”—xj—< 5 )+ R

satisfies the maximum principle for all > n + 1. Forn = 3, or forn > 4 and
j large enough, the potential ih; is negative and the result is straightforward.
Unfortunately, fom > 4 and; small, the potential irL ; is positive fors close to
0, thus nothing can be concluded using a direct argument.

Notice that the assumption that, for each fixed (s1, s2), w(s, -) is orthogonal
toer, ..., e, inthe L?-sense ors”~1 cannot be weakened. For example, foe
1, ..., n,the functionw/-— e; is a Jacobi field which is bounded on Rllx sn1,
Furthermore, it is easy to see that there exist& R such thatl* w0 (sg) +
w0~ (50) = 0. Thereforer'* WO+ 4 w0~ is a Jacobi field which is bounded (and
has 0 boundary data) [8g, +00) x "1,

Proof. Even though we are interested in the operdipthe proof is easier when
using the operatofg. There is no loss of generality in doing so since, whenaver

. . ~ 2-n ~
is a solution ofCw = 0, thenw = ¢ 2 w solvesLow = 0.

To begin with, we assume that bothare finite. Considering the eigenfunction
decomposition ofy =}, 1 w;e;, we see thab = w;e; is a solution of
Lov =0in (s1, s2) x $"~1, with v = 0 on{s1, so} x $"~1. We multiply Lov = 0
by v and integrate by parts the result over, s») x "~ to obtain

/v’2¢>"_2+kj / v2¢n—2 =n(n—1) /v2¢—n’ (45)

where allintegrals are understood oyer, s2) x $”~1 and where, as usuatienotes
differentiation with respect to the variable

We proceed with some auxiliary computation. First, using (3.1) and (3.2), we
obtain

d (po -4 | 2
22 -2 i
di (po> (n ) Po + 0
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and, sincels = pg*Z dt, this becomes

y
- (@ o w) =(n—-2¢" 2 +o".
s \ po

We now multiply this equality by? and integrate the result ovésr, sp) x S~ 1

to obtain
(n—2)/v2¢"_2+fv2¢_” :/vzi (@ow>.
ds \ po

Next, we integrate the right-hand side by parts and apply Cauchy—Schwarz inequal-
ity. This yields

(n_z)fv2¢n—2+fv2¢—n
1/2 . 2
<2 (/ V' ¢”2) (/ v? (ﬁ ) si> ‘152")
£0
Finally, we use (3.3) to conclude that
(n_z)/v2¢n72+/v2¢fn
1/2 1/2
<2 (/ U/Z ¢n2> (/ v2 ¢)172 _ / v2 ¢n> )

In order to simplify the exposition, we define
A =/v2¢”*2, B =/v2¢*” and C =/v/2¢"*2.
The previous inequality, together with (4.5), can be translated into

C+rjA=nmn—-1B and (n_Z)A‘i‘BSZCl/Z(A—B)l/Z.

1/2

In addition, sincep > 1 for all s # 0, we see tha#t > B. If v is not identically 0,
thenD = A/B > 1 has to satisfy

(n—2)D+12 <4 (n(n—1) —; D) (D —1).
Sincel; > 2n for all j > n + 1, this would also imply that
(n—=2)D+1?<4(nmn—1) —2nD)(D-1).

However, it is an easy exercise to see that this inequality never holds. Since we have
reached a contradiction, this proves that 0 and the result is therefore complete
in the case where boftf are finite.

Inthe case wherg ors; is notfinite, the proof is identical to what we have done,
though we now have to justify all the integrations. But, the inspection of the indicial
roots of bothCo andL for j > n+1 allows to conclude that,ib = ., ., w; ¢,

is a bounded solution dfw = 0, therw = ¢>2;2" w; e; is also bounded and decays
sufficiently fast at-oo in order to justify all the previous integrationso
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This result can also be understood as
Coroallary 4.1. The n-catenoid C1 is non degenerate.

The precise definition of nondegeneracy will be given in Sect. 9.1.

Proof. Assume thas < —7 and thatw is a solution ofCw = 0 which is bounded
by ¢°. We decomposev |nt0 w = > ;enywje;j. The fact thatw; = 0 for all
J = n + 1 follows directly from Proposition 4.2. Thu{j <, wjej has to be a
linear combination of all the Jacobi fields given in (4. 1), ,(4.4) and it is easy
to see that these can’t be boundedfyunlessw = 0. O

4.3. Thelinearized mean curvature operator on a half n-catenoid

As in [5], the analysis of the mapping propertiestobr Ag is easy to do in some
weighted Holder spaces we are now going to define.

Definition 4.1. For all § € R and for all S € R, thespaceC(’S""‘([S, +00) x §"1)
is defined to be the space of functions w € CK*([S, +00) x $*~1) for which the
following normisfinite

_ )
lwllk,o,s = suple™* W o ([s,5+1] x Sn=1)-
s>8

Here| ;. (5.5+1x 571y denotesthe usual Holder normin [s, s + 1] x sn=1,

To begin with, we investigate the mapping properties wfhen defined between
the above weighted spaces since this is the hardest case. These mapping properties
crucially depend on the choice &fWe prove the

Proposition 4.3. Assume that § € ( — % —%) and a € (0, 1) are fixed. There

exists some constant ¢ > 0 and, for all S € R, there exists an operator
Gs : CO([S, +00) x 8" — C22([S, +00) x "1,

suchthat, for all f € C(?*“([S+oo) x §"~1), thefunction w = Gg(f) istheunique
solution of

Lw=f in [S,400) x §71
w € Sparfeg, ... ,e,} on {S} x §*1,

which belongs to the space C§’°‘([S, +00) x §"1). Furthermore, lwlzas <
¢ || fllo.e.s- Finally, if, for eachfixeds € [S, +00), thefunction £ (s, -) isorthogonal
toeo, ..., e, inthe L%-senseon §"~ 1, then soisw = Gs(f).

Before, we proceed with the proof of this Proposition, let us emphasize that,
in the last estimate, the constanis independent of. This is one of the reasons
which forces the choice of the paramegein the interval(—ﬂ, —75). Another
reason is that we want to use this result to perturbran;atenmd, since we want
this perturbation to be at least bounded, this implies that we need té tﬁl&g—z.
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Notice that, if§ = +y;, it is easy to see thaf, defined between the above
spaces, does not even have closed range and the result is certainly not true. Now,
if we assume that € (-4, %) U (552, "52), the existence ofs remains true
for all but a finite number of§. However, in this later case, we do not obtain a
uniform bound for the norm ofjs. Finally, if we take—y;;1 < § < —y;, then
the result still holds but more freedom is needed on the boundary data, namely
w € Spare, ... , ¢;}. Therefore, the interval—"£2, —7) can be understood as

the first interval for which a uniform bound on the norm of the inverse is available.

Proof. Uniqueness ofjs follows from a simple modification of the proof of Corol-
lary 4.1. We therefore concentrate our attention on the existerige @fe consider
the eigenfunction decomposition ¢f

f=ij6j,

jeN

and adoptthe notatiofi = fi+ fii, wherefi = m(f) andfy = w1 (f) correspond
to the decomposition of into the projection onto the firat+ 1 eigenmodes and the
higher order eigenmodes. We look for a solutiomhich will also be decomposed
as

w = E wj e.,',

jeN
and again we seb = w| + w; wherew, = m;(w) andwy = 7y (w).

Step 1. To begin with we are going to prove that, givénthere existso) solution
of Lwy = fi in (S, +00) x "L with w; = 0 on{S} x $"Land

sup e P wil<e  sup  Je™ ful,
[S.400)x 51 [S,400) x §n—1

for some constant which does not dependfan nor onS. Our problem being
linear, we may always assume that

sup e ful =1,
[S,400)x §n—1

Forall j > n + 1, it follows from Proposition 4.2 that, when restricted to the
space of functionsy such thatw(s, -) is orthogonal tay, . . . , e, in the L2-sense
on §”~1, the operatoL is injective over(S, ') x $"~1. As a consequence, for all
S’ > S + 1 we are able to solvEvy = fi, in (8, S) x §"~1, with v; = 0 on
(S, 8"} x sn—1.

We claim that, there exists some constant 0 independenta$’ > S+ 1 and
of fj such that

sup e ol <e.
(5,5)x 51
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We argue by contradiction and assume that the result is not true. In this case, there
would exist sequence > S; + 1, a sequence of functionf ; satisfying

,5~
sup e fiil =1,
(Si.S)yxsn—1

and a sequenag, ; of solutions ofLvy ; = fii i, In (S;, S{) x §"~1 with vy, =0
on{S;, 8/} x §"~1 such that
L -8
A = sup e
(Si,S)yxsn=1

Sy | — Fo0.

Let us denote bys;, 0;) € (S;, S)) x $"~1 a point where the above supremum is
achieved. We now distinguish a few cases according to the behavior of the sequence
s; (which, up to a subsequence can always be assumed to converg®int-oo]).
Up to some subsequence, we may also assume that the seq§énces(resp.
s; — S;) converges t&™ e (0, +o0] (resp. toS, € [—oo, 0)).

Notice that the sequencg— S; remains bounded away from 0. Indeed, since
v, and(dss + A gn-1) vy ; are both bounded by a constant (independefitiirhes
€S A in[S;, S; + 1] x "L and sincey; = 0 on{S;} x $"~1, we can conclude
that the gradient ofy; ; is also uniformly bounded by a constant timé§ A, in
[S;, Si +1/2] x $"~1. As a consequence the above supremum cannot be achieved
at a point which is too close t6;. Similarly the sequencs; — s; also remains
bounded away from 0.

We define the sequence of rescaled functions

—485;

A;

vl (s, 0) = vy i (s + 5, 0).

Case 1. Assume that the sequengeconverges ta, € R. After the extraction
of some subsequence, if this is necessary, we may assume that the saguence
converges to some nontrivial solution of

Ly =0,

in (S, $*) x $"~1, with boundary conditiony; = 0, if either S, or 5* is finite.
Furthermore

sup ey =1 (4.6)
(S*,S*)XS"_]'

We now decomposeg, into
v = Z vjéej.
j>n+1

If S, is not finite, the inspection of the indicial roots shows that, necessayilg,
bounded in(S,, S*) together with the fact thf;\%"—g2 < 8. But, applying Proposi-
tion 4.2, this implies that; = O for all j > n + 1, contradicting (4.6).
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Case 2. Assume that the sequengeconverges te-oo and thusS* = +oo. After
the extraction of some subsequence, if this is necessary, we may assume that the
sequence) ; converges to some nontrivial solution of

Aguy =0,
in (Sy, +00) x §”~1, with boundary condition; = 0, if S, is finite. Furthermore

sup e ¥yl =1, 4.7)

(Sy,00)x §n—1

but both casess. finite or not, are easy to rule out using the eigenfunction decom-

position ofv;
v = Z vj €j.

j>n+1

Indeedp; has to be a linear combination&f”/* and, since we have assumed that
8 e (—%, —75) itis easy to see that; = 0, contradicting (4.7).
Case 3. Assume that the sequengeconverges te-oo and thusS, = —oo. This
case being similar to Case 2, we shall omit it.

Now that the proof of the claim is finished, we may pass to the Ifihit> +o00
and obtain asolution dwy = f;,in (S, +00) x "~ withw; = 0on{S}x $"~1,
which satisfies

sup e S wy| <,
(S,+OO)><S"_1
for some constant > 0 independent of.
Step 2. We now turn our attention to the cage= 0, ..., n. This time, just by

solving the associated ordinary differential equations, we are able to find for all
S > § 4+ 1 afunctionv; defined in(—oo, '] which is a solution of

Lijvi=f;j in (S,5)
LjUj:O in (—00, ),

with Vj = 05vj = 0 ats’.
The problem being linear, we may assume that

sup  le % fil=1.
[S,+OO)XS"’1

We claim that there exists some constant 0, independent of andS’, such that

Vj=0,...,n, sup |e_‘ssvj|§c.
(=00,58")

We argue by contradiction and assume that the result is not true. There would exist
sequences; > S; + 1, a sequence of function; satisfying

sup  le™¥ fiil =1,
(S, 8/ x st
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and, finally, a sequence of solutiong of

Lu;=fii in (S;,8)x st
Lv;=0 in (—o0,8;) xS 1
with vy ; = d,v1; = 0 on{S/} x §"~! such that
§

A = sup le™
(—00,8))x §n=1

Spi| — 4o0.

Notice thatCv;; = 0in (—o0, S;) x $"=1 Thus, in this range, the functian; is a
linear combination of the functiong/-*, for j = 0, ... , n. Since we have chosen
8 < —75, the above supremum is finite and achieved.
Letus denote bys;, 6;) € (—o0, S) x s"—1 apointwhere the above supremum
is achieved and distinguish a few case according to the behavior of the sequence
s; (which, up to a subsequence can always be assumed to converge). Up to some
subsequence, we may also assume that the sequgnres; converges tas* e
(0, +00). (Again, notice thal§] — s; stays bounded away from 0).
We define the sequence of rescaled functions

—SS,'

- e
v,i(s,0) = vyi(s +si, 0).

1

Case 1. Assume that the sequengeconverges ta, € R. After the extraction
of some subsequence, if this is necessary, we may assume that the saguence
converges to some nontrivial solution of

Lv =0, (4.8)

in (—oo, $*) x §"~1, with boundary conditiom; = d;v; = 0 atS* if S* is finite.
Furthermore
sup e ¥y =1

(—00,8*)x Sn—1
NecessarilyS* = +o00. Otherwise, we readily obtain = 0, which contradicts
the previous equality. Now, the functienis a linear combination of the functions
wi* for j =0,...,n, and since we have chosére (—”—erz, —73), itis easy to
see that none of the linear combinations ofinie™ decays fast enough, unless it is
identically zero. This is clearly in contradiction with the equality following (4.8).

Case2. Assume thatthe sequeng&onverges te-co. After the extraction of some
subsequence, if this is necessary, we may assume that the segueoceverges
to some nontrivial solution of

Agv =0,
in R. Furthermore

sup le ¥ v =1. (4.9)
Rx -1
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But v is a linear combination 0*"i*¢;, for j = 0,...,n, and, since €
—”—JZFZ, —3), we see that has to be identically zero, which contradicts (4.9).

Case 3. Assume that the sequengeconverges te-oco. This case being similar to
Case 2, we shall omit it.

Since we have ruled out every possible situation which would contradict our
claim, the proof of the claim is complete. We may pass to the lithit- +o00 and
obtain a solution of

Lw = fi,
in (S, +o00) x §"~1 such that
sup e ¥ wi| <c,
[S,+o0)x §n—1

for some constant > 0 independent of.
To complete the proof of the Proposition, it suffices to apply Schauder’s esti-
mates in order to get the relevant estimates for all the derivatives.

A similar result holds forAg. The proof being a straightforward modification
of the previous proof, we omit it.

Proposition 4.4. Assume that § € (—%, —5) and a € (0,1) are fixed. Then,
there exists some constant ¢ > 0 and, for all S € R, there exists an operator

Gs 1 CY([S, +00) x §"71) — CZ([S, +00) x §"71),

suchthat for all f e C(?’“([S, +00) x §"~1), thefunctionw = G(f) istheunique
solution of

Aow = f in [S, +o00) x §"71
w € Spatfeg, ... ,e,} on {S} x §"°1,

which belongs to C2* (S, +00) x §"~1). Furthermore, wll2.q.5 < ¢ || fll0.0,5-

We will need a supplement to the previous Proposition. Indeed the next result
is not Corollary of the previous Proposition since, this time, the weight parameter
does not belong to— "2, —4).

Proposition 4.5. There exists ¢ > 0 such that, for all S € R and all g €

mi (€2 (8"~1)), there exists a unique wo € Cz’f+2([s, +00) x §"~1) solution
-z

of

Aowo=0 in (S, +o00) x §"1
wo = gl on {S} x sn—1,

Furthermore, we have

nt2 ¢
llwollzq, —nsz = ce 2~ lgnll2a
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Proof. Again we decomposg = ijnH gjej and define for alV > n + 1
the functionw] = Z;:n+l gj e’ ¢;, which clearly solvesAqwg = 0, in
[S, +00) x §"~ 1.

First of all, let us consider all the eigenfrequencies for whigh= % They
correspond to the indices=n+1, ..., ”(”—2“) We set,Jp = "("—2*1) Obviously,
we have

J n+2g_,
lw(s, )| < ce'z S |Igi 12,0,

for some constant independent$f
Next, it is easy to see that, for all > Jp, we have

J J 1429
l(wd — w) (s, ) <crez S gill2q,

for some constant; which isindependent f (but may depend o#). It remains to
prove that; does not depend ah. The proof of this fact is again by contradiction
and is very close to the proof of Proposition 4.3, so we omit it.

Once this estimate is proved the estimates for the derivatives follow from
Schauder’s estimates as usuat

2 k]
all g € my (C>*(s"~1)), we may definar = Ps(gn) € 682‘“ (IS, +00) x §"71)
be the unique solution of

Thanks to Proposition 4.3 and Proposition 4.2 # ( — 2 —%), then for

Lw=0 in (S, +o00)x s"1
w = g on {S}x s L

Furthermore, we have

I1Ps(gm)l2.a.s < ce S lgnll2.a, (4.10)

for some constant > 0 which is independent &f. Further information concerning
the operatofPy is provided by the following Proposition in which we compare the
Neumann data dPg (g ) with Dy g;.

Proposition 4.6. Assume that § € ( — % —5) and a € (0, 1) are fixed. There
existsc > 0 such that, for all S € R and for all gy € my (C2% (5"~ 1))

n+2
[10s Ps(gu)(S, ) + Dogillre < Ce( $+0)s [lgn!l2,e-

Proof. To begin with, we define, thanks to Proposition 4.5, the funatipwhich is
the unique solution oAgwo = 0in (S, +00) x S*~ L with wg = g on{S} x §" 1,
which belongs t&>?,, (IS, +00) x $"~1). In addition, we know that

A

2tn g
w2 <ce 27 |gnll2.a,

lwolly., -
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for somec > 0 independent of. Notice that

Dggn = —05 wo(S, -).
We now set
nBn—2) ,_
f = Lwo = ————¢* " wo.

The previous estimate yields

nt2g¢
I fllows <ceZ”llgull2a-

To conclude, it suffices to take = wg — Gs(f) and apply Proposition 4.3.00

5. Minimal hyper surfaces which are closeto a half r-catenoid

In this section we prove the existence of an infinite dimensional family of minimal
hypersurfaces, which are normal graphs over a truncateatenoid. This infinite
dimensional family is parameterized by the boundary data. Furthermore, we define
and investigate the properties of the Cauchy data mapping associated to this family
of minimal hypersurfaces.

5.1. Minimal hypersurfaces close to a half n-catenoid

Now and hereafter, we set for alle (0, 1]

loge <0 and r, = sﬁ P (se). (5.2)

= M- D)Gi-2
At this point, these choices may seem quite arbitrary but they will be commented
and justified in Sect. 9.3. For the time being, let us notice thattasds to O

n_2
re ~¢e¥32 oralso e~r, °.

We use the parameterization (3.5) for the unitatenoid. Its outer unit normaly
is then given by (3.6). Let us define a smooth, nonincreasing fungtiol® —
[—1, 1] by

(1325 — s — 1)) =325 — 50 — 1 2O
&e(s) ( (s — se )) (s — s¢ ) )
d)/
Thus, = 1fors <s.+1ands, = _E fors > s, +2. Now, consider the vector
field

Ne(s.0) = (1= 8266, 6()).
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this is a perturbation of the unit normaly, and in fact, using the estimate of
Lemma 3.2, we have forall > 0

|Vk (Ng-No—1) | < cp 6(2’1_2)58’

in [se, se + 2] x S""1, ase tends to 0.
We now look for all minimal hypersurfaces close to the unitatenoid, rescaled

1 . . . .
by a factore »-1, which admit the parameterization
N 2-n
Xpy=er1Xg+we 2 N,

for (s, 0) € [se, +00) x "1 and for some small functiom. The reason why we

have scaled the unit- catenoid bysﬁ will also be explained in Sect. 9.3.
It follows from (3.9) that such an hypersurface is minimal if and onlwif
satisfies a nonlinear equation of the form

Lw = Qs(w),

where
A 1 2n o n 1
Qg(U)) = Lew+8”*1¢ 2 Q2,8 (¢ 2¢ n-1 w)
+er1gh g, (¢7Ee W)

Here Q2. and Q3. enjoy properties which are similar to those enjoyed@y
and 103 in Proposition 3.1. Observe in addition that the bounds on the coefficients
of ng or on the partlal derivatives @38 are independent of. We even have
Qs = Qz,s and Q3 = Qg,g in [ss + 2, 400) x $*1. In particular, there exists
¢ > 0 such that, for alt € (0, 1) we have
A 2

| Q2.0 (w) |O,oz([s,s+l]><S”*1) = i3 (g s 11x 571 (5.2)
for all functionw € C29([s, s +1] x $*~1). Similarly, there existg > 0 andec > 0
such that

|Q38(w)|0a([v s+1x g1y = C|w|2a([s s+1]x 51 (5.3)

provided|wly 4 ([,5+1x 57-1) =< €O

The linear operatoL. represents the difference between the linearized mean
curvature operator for hypersurfaces parameterized using the vecton§ieldd
those parameterized using the vector fi?dd This operatorL. has coefficients
which are supported ify,, s, + 2] x $"~1 and which are bounded by a constant
timese®1=2s¢ jn CO%([g,, s, + 2] x §"~1). The details of the derivation of this
formula can be found, for example, in [6].

Now, givenh), € my (Cz’“(S”—l)), we want to solve the boundary value prob-
lem

N H n—1
: Lw = Qg(w) in (s, +00) xS 5.4)

mw = g on {sg} x §" 71,
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where we have set
n—2
g =¢ 2 (s¢) hy.
A solution will produce a minimal hypersurface whose boundary is parameterized
by
n—1 1 1 2-n
08— (71960, 671 Y(s) +w(se, 00 7). (55)

and whose end is asymptotic tonacatenoid. Notice that the boundary of this
hypersurface is a graph over a sphere of ragiuis thex,, .1 = 0 hyperplane. This
is the reason why we have modifidg into N,.

Naturally, for smallg the existence of a solution of (5.5) follows at once from
the inverse function theorem, using Proposition 4.3. However, since we want to
have more information about the range of validity of the inverse function theorem,
we prefer to use a standard fixed point argument to establish the existence of
First, we fix§ € (=25, —1), @ € (0, 1) and we define

w =P, (g11)- (5.6)
We know from (4.10) that
l@ll2.0.5 < ce™* lIgill2.a-

Then, if we writew = w + v, we must find a function € Caz’“([sg, +o00) x "1
such that

Lv=0,(0+v) in (se 400) x §"1
v =0 on {s.} x sn—1,

To obtain a solution of this equation, itis enough to find a fixed point of the mapping
Ne(v) = gsg (Qe(lb + U)) .

Notice that, although this is not explicit in the notation, this operator depends on
h|| .

Proposition 5.1. Fix 8 € (— 52, %) anda € (0,1). For al x > O there
exist constants ¢, > 0 and ¢g > 0 such that for all ¢ € (0, gg] and for all
hy € m) (Cz’a(Sn_l)) satisfying

a2, < k72, (5.7)

the mapping N, is a contraction mapping in the ball

3n—2 .
B={v:lvllzas < o ez 2},

and hence has a unique fixed point in this ball.

Again the choicé|h |2« <k rg2 will be commented and justified in Sect. 9.3.
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Proof. In order to prove the result, we have to show that there exists a congtant
such that

e (3=2_5)s
N0 |20 < ge( 525)s. .2

&€

and also that

1
[NVe (02) = Ne (VD) [2,0,5 < Ellvz —v1ll2,0,8,
for all v1 v2 € B.

In order to derive the first estimate we first obtain, from the propertigls. of
and Q. that

3n—2
- 3=2_ )
ILelloas < 7205 1y 2a

<ck 6(3’152_6)38 rgz,

1 2-n = n 1
Lo 2on - L. 4—4n—26); 2
lenT¢Z Q2s(p 26 1 W) |oas < ce™ ¥ % Iy |5,

< CK2 e(2n72728)sg r£2’

where all constants do not depend«onor one. Finally, it follows from (5.3) that

1 n = _n 1 (M_(;)SS 3
et 2 O3c(@ 26 "L )lloas <ce' 2 A1l

110
56/(36( 710-9)se r2,

for some constant which does not dependcaror one provided

_ 1 _n
le""1¢~2 wl240 =< co.

Observe that this condition is fulfilled provideds chosen small enough.
Taking advantage from the fact that the norn@gf is bounded independently
of ¢ we conclude that

3n—2_8)sg )

[Nz (O)]12,6,5 < Ce( : r

&

(k + (2o(3-1-0)s |3 e(4n74)sg)

<ck 6(3"27278)% r2
for all ¢ small enough, say < (0, ¢g]. It remains to define, = 2¢ « in order for
the stated estimate fav; (0) to hold.
The second estimate is obtained by reducindgf necessary and is left to the
reader. O

Remark 5.1. Observe that, reducing, if this is necessary, we can assume that the
mappingh; — v, wherev is the fixed poi ofV; is continuous.
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5.2. Thefirst Cauchy data mapping

We summarized what we have obtained so far. Let us fix (—%, —%) and

a € (0,1). Then, for alle sufficiently small and for alk; € 7y (C%* (5"~ 1))
satisfying (5.7), we have been able to find a minimal hypersurface parameterized

by
Xy =6 Xo+we 2 No in [se, +00) x §"2,
with ¢%2" myw = hy on {s;} x 5"~ and withw CZ%([se, +00) x S"71).,

In particular, the end of this hypersurface is asymptotic to a reseatzdenoid.
Furthermore, by definition a¥,, we know that, for alls, 6) € [se, se +1) x $*71,

1 1 2—n
X, = (em¢9,emw+w¢T).

Now, we can translate this hypersurface alongthe; axis by the amount

—sﬁw(sg). The resulting hypersurface will be denot€d(h). If we perform
the change of variable

1
r=em1(s).

we see that near its boundary, this hypersurface is a graph ovet, the= 0
hyperplane

x € By, \ By, 2 —> (x,Ug p (x)) € Ce ().

Definition 5.1. Thefirst Cauchy data mapping Se (i) € C%% (8"~ 1) x ¢l (s7~1)
is defined by

Se(hi) (@) = (Us,h” (re 0),re 8rUg,h" (re 0)),

where we recall that, by definition, r, = sn*fl P (se).

Since
d /
ar _ ¢ (s) ds.
ro 9
we obtain an expression 6f (k) in terms of¢, ¥ andw the solution of (5.4)

¢ (se)

Y (671 v/ (s0) + 3 (62" w) e ~))> :

2—n
Se(hll) = (¢2(58) w(se, )
We also define
-2
So (hy) = (hn, —er2 nT hy + D9h||> .

The comparison between these two mappings plays a key réle in our construction.
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Proposition 5.2. ThemappingsS, and Sp arecontinuous. Furthermore, thereexists
aconstant ¢ > Oand for all « > 0, thereexistsgg > 0 such that, for all ¢ € (0, gg]
and for all ||y |l2.¢ < « 2, we have

1(Se = So) ()l c2axera < cr?.

It is very important that, in this Proposition, the constarttoes not depend
one € (0, eg] and also does not depend on the constamhich, later on, will be
chosen large.

Proof. The statement about continuity is straightforward and is left to the reader.
The estimate follows from the fact that = w + v, wherew has been defined in
(5.6) and where is given by Proposition 5.1.

First, notice that

T Ty (s,) = 1T 92" (5p) = £ 12,
and, from Lemma 3.2, we know that

@ (s¢)
@' (s¢)

+1| < ce@=se,

Thus

¢ (se)
@' (se)

2

< Ceﬁ(nfl)sg <cr?,

1
en11'(sg) + ¢ r827”

for some constant which obviously does not depend ehNow

—n 2— ! °
592 )50 ) = =" ‘f;((j))

I + ¢ 7" (se) 85 (se. ),

and using Proposition 4.6, we obtain

nt2
< ¢y e( 5= +8)se r€2.

1«

H ¢ (se)

90 (50) (50, ) + =2 hy — Dyhy
/(o) >

Finally, using Proposition 5.1, we also have

2—n 2—n
=i =i 2n—2)s. .2
92 vlize + 1052 V)lna < cc e® 2% 72,

The result follows at once from these estimates choosingufficiently small
dependingomr. O
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6. Minimal hypersurfaces which are graphsover an hyperplane

We are now concerned with both the mean curvature and the linearized mean cur-
vature operator for hypersurfaces which are graphs over,the= 0 hyperplane.
We also give a list of assumptions which will be needed to ensure that all the results
in Sect. 6-8 do hold uniformly.

We will proceed by what we call the “analytic” and “geometric” modifications
of an hypersurface. The first of these modifications is intended to transform a regular
hypersurface into a singular hypersurface, which looks like the graph of Green’s
function near its pole, and thus will be close to the lower end ef-aatenoid. The
second modification is intended to remedy to the fact that, when we have solved
(5.4) and when we will solve (8.1), we do not prescriberthe 1 first eigenmodes
of the eigenfunction decomposition of the boundary data and, in doing so, we have
“lost” some degrees of freedom.

6.1. The mean curvature operator for graphs

Assume we are given some functiendefined in some open regular dom&irof
R”, which is at least of clas§?. We may then define an hypersurfakg as the
graph ofu

Q5x — (x,ux) e RV

With respectto this parameterization, the first fundamental form of this hypersurface
is given by

Lo = Y (8ij + Ox,u dy,u) dx; dox;.
i

Since we have
detl, = 1+ |Vu/?,
the volume functional can be defined by

E.= /(1+ Va2 dx,

and the associated Euler—Lagrange equation is then given by

. Vu
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6.2. Thelinearized mean curvature operator

All hypersurfaces sufficientlg-close toXo can also be parameterized as vertical
graphs over the hyperplang, 1 = 0. Namely

x — (x, u(x) + wx)) € R, (6.2)

for some (sufficiently regular) functiom. It follows from (6.1) that the linearized
mean curvature operator abang is given explicitly by

Vw Vu - -Vw
= di — Vu). 6.3
w=av ((1+ Va2 T (L [Val)32 ”) (63)

In order to state properly the next propertiesAgf, we need to introduce the
following weighted spaces

Definition 6.1. For all regular open subsets @ c R” with 0 € €, for all k € N,
o € (O andv € R, thespaceC" «(Q\ {0}) isdefined to be the space of functions
w e Clac (€2 \ {0}) for which the following normis finite

||w||k ay = |w|ka Q\By, + sup r— [w]k,a,[Zr,r],
0<2r<rg

where, by definition

=~

~ [VEw(x1) — VEw(xp)|
[(Wlk.o.[2r.r] EZ sup |V/iw|+ K sup

o
r<lx|<2r Pl <20% 7% X1 — x2|

and where rg > 0 isfixed in such a way that B,, C .
We will also need the

Definition 6.2. For all ¥ < ro, the spaceC’;’“(_ﬁ\ By) is defined to be the space of
restrictions to @ \ B; of functions w e Ck*(Q \ {0}), endowed with the induced
norm.

Let o be an hypersurface given as a graph
Q5x — (x,u)) € o C R,

In the subsequent sections, we will need some technical assumptions, which will
ensure that all the results will hold uniformly éin « and2 and will only depend

on the constantgy, ng andn, which are defined below. The importance of these
assumptions will become clear within the subsequent sections.

H.1) Byyj2 C Q2 C Boy.

(H.2) u(0) = 0andVu(0) = 0. Stated differently, 0 belongs ¥y and the tangent
space at 0 is always the hyperplag 1 = 0. Notice that there is no loss
of generality in assuming so since these assumptions can always be fulfilled
modulo some suitable rigid motion.

(H 3) ”u”CZ,a(gro) =10 and”””c?"a(f_o) = no-.
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(H.4) The operator\, defined from[C%*(Q)]p into C%* () is an isomorphism
where by definition

[C2*@))p={weC?>* (@) :w=0 on 3Q}.

Moreover|| A, Y| coa c2a) < no Whereng.

(H.5) Assume thatv € (—n,1 — n) is fixed. For allr < rg, there exists an
operator”,, , defined fron’CSf‘z(ﬁ\ B,) into [C2% (22 \ B,)]p.,, Such that
Ay, o Ty, = Id. Here by definition

[C2*(Q\ B)Ip, = {weC>*@\B,): w=0 on J%,
and m(w)=0 on 9B}

Moreover||Fu,,||( ) < n,, wheren, does not depend on< ro.

0, 2,a
CV72’CV

Remark 6.1. Though this will never be explicit in the statements of the results, all
the bounds we will obtain in Sect. 6-8 will not depend:opnr 2 satisfying the
assumptions above but will only depend:@nng andn,,.

We can now state the

Lemma 6.1. Assume (H.1), (H.2) and (H.3) hold. The linearized mean curvature
operator A, can be expanded as

Ay =div(V + A)), (6.4)

and where A/, is a first order partial differential operator without any zero or-
der terms and all of whose coefficients are bounded functions in C%"" @\ {0hn

C3*(Bro2 \ 1O)).
Proof. This follows directly from (6.3). O
It will also be convenient to notice that

Lemma 6.2. Assume (H.1), (H.2) and (H.3) hold. Then, the expression of the mean
curvature H, ., of the hypersurface parameterized by (6.2) is given by

Hy1w = H, + Ayw — div (r Q;(Vw) + QZ(VUJ)) > (6.5)

where g — Q),(g) is homogeneous of degree 2 and ¢ — Q/,(g) collects all the
higher order nonlinear terms. That is

0,0 =0 V,0,(0)=0 and V7, 0,(0) =0.

Moreover, the coefficients of Q/, on the one hand and all partial derivatives at any
order of Q!/, with respect to g computed at any point of someneighborhood V of 0 on

the other hand, are functionswhich areboundedin Cé‘“ (Q\{0hH OCS'“ (Bro/2\ {0},
uniformly in V.

Proof. This follows directly from (6.1). O

Note that, here and elsewherestands for(x) = |x|.
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6.3. Analytic modification of a hypersurface using Green’s function
The fact that (H.4) is fulfilled implies that we are able to solve
Ao =—(n—=2)|8" s, in Q, (6.6)

with 1 = 0 ond<2, where|$" 1| is the volume of the unit sphere.
Using (6.4), the following Lemma is a simple exercise, which is left to the
reader.

Lemma 6.3. Assumethat (H.1)—(H.4) hold and that y; isthe solution of (6.6). Then,
there exists ¢ > 0 such that, for all k£ < 3,

Vk Y0 — rz_" < Cr4_"_k’ if n > 5’
|
VE(vo—r7?)| <cr*logl/r, if n=4,
|
V¥ (yo—rt—ao) | < cri*logl/r, if n=3,

in By, \ {0}, for some constant ap € R.

For alle > 0, we can defin&, to be the hypersurface parameterized by

€
n—2

Q\{0}>3x — <x, u(x) + yo(x)) eR™ if n>4

and by
Q\{0}>x — (x,u(x) + LZ (yo(x) —ao)> eR* if n=3
n—

We finally compare the mean curvature of the hypersurfacaith the mean
curvature of the initial hypersurfacey.

Proposition 6.1. Assume that (H.1)—(H.4) hold. The derivatives of H,, the mean
curvature of 3., can be estimated by

3
\VK(H, — Hp)| < ¢ (r_k(szrz_z" + &3 r2—3")) C forall emz <

where Hy is the mean curvature of £g and where k = 0, 1 and where ¢ > 0 does
not depend on ¢ € (0, &o].

Proof. The result follows at once from (6.5), with = ¢ 9. O
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6.4. Geometric modifications of the hypersurface X,

We recall that we have defined
1 3
e =en-1(sg) ~ e3-2,

We now perform some geometric transformations of the surkacby applying
some rigid motion and also by modifying the parameter

First, in the definition o, we change the scaling parameténto ¢ + ¢, for
some parameter € (—¢, ¢). Then, for allR € R", R # 0, we apply the rigid
motion corresponding to a rotation of an¢l¥ in the plane spanned by the vectors
(0, 1) and(R/|R|, 0). ForR # 0, this transformation can be described analytically

by
R 5 (x, xy11)

Sin|R|
IR

— (x,0) +cos|R| (x!, xy41) — (a1 R, —R-x1) e R,
_— R .
where by definitionc! = xR_z R andx' = x — x/I. Finally, we perform a trans-

lation of vector(T, d) € R" x R.
We denote byd = (T, R, d, e) € R" x R" x R x R the set of parameters and
by X, 4 the resulting hypersurface. By definition, the normis given by

LAl = erl™ |T|gn + re |RIRe + || + 2" |e].

We now compare the geometrically and analytically “modified” hypersurface
%,..4 with the initial hypersurfac&o.

Proposition 6.2. Assume that (H.1)—(H.4) hold. Let « > 0 be given. There exists
¢ > 0and g9 > 0 such that, for all ¢ € (0, go], if

2
IAll <k rg,

then, the hypersurface X, _4 can belocally parameterized as a vertical graph over
theinitial hypersurface g

Broj2\ Brj2 3 x —> (x, u(x) + we A(x)) € Ty 4, (6.7)

where the function w, 4 satisfies [Viw, 4(x)| < ¢ (r=* (rer +er2™)), for all
k<3.

Again, the restriction A|| < « 2 will be commented in Sect. 9.3.

Proof. We restrict our attention to the proof of the estimatesufpry, leaving the
estimates of the derivatives of these functions to the reader. In the growil
denote some constant which depends bat which does not depend emprovided
¢ is chosen small enough.
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We define new coordinatéswhich are the orthogonal projection of a point of
the modified hypersurface over thg;; = 0 hyperplane. Namely

B L I ) R r2—n
X—T —x——COS|R|x"+sSIN|R| — [u(x) + (¢ + ¢)
|R| n—2

<cc|sinR|er*™. (6.8)
(In dimensiom = 3, 4, the terme 4~ on the right hand side has to be replaced by
er*" log1/r, but this is irrelevant for the subsequent computations). It follows

easily from our choices that there exists > 0 such that, for alk € (0, &g}, if
re/4 <r <rop, then

r/2 <r <2r, (6.9)

where we have sét= |x|. In particular this yields
X — x| < ¢ <r5/3+r8f2) ,

providedr, /2 < 7 < rp/2. These expansions, together with (6.9), imply (with little
work) that

Sin|R|
X| S Cpter

IR
1COS|R| u(x) — u(®)| < ¢ <r§/3f r 73)
r2—n

—2

2
ld| < cierg.

2—n

COS|R| (¢ + ¢) <cer* " yoeeef

n

Therefore, the modified surface can be parameterized by (6.7 ywithsatisfying
the desired estimatesno

We will also need the

Proposition 6.3. Assume that (H.1)—(H.4) hold. There exists ¢ > 0 and, for all
x > Obegiven, thereexistseg > 0(dependingon«) suchthat, for all ¢ € (0, o] and
for al r € [rs/2, 2r¢], the parameterization of X, 4 has the following expansion

r2—n r2—n
x—)(x,e +<e +d+R-x+£r_"T~x>+1D€‘A(x)>,

n—2 n—2
(6.10)

where, for all k < 3, the function w,_ 4 satisfies |V¥iw, 4(x)| < crZ7*.

Note that, and this will be very important, in the estimatedQr4 the constant
¢ > 0 does not depend onprovidede is chosen small enough.



Existence result for minimal hypersurfaces 495

Proof. Keeping the notations of the previous proof, forfalt [r. /4, 4r.], we can
write

P73,

x =X +T| <cerg

In particular, we obtain
P T _ (n—2)F ' T )E) < e ré10_3")/3.

Now, we use these expansions to get

_ R .
SII’]|R|W~X—R-X SCKrgg/gv
|coS|R|u(x)| < cr? + ¢ r¥3,
} T %
COS|R| (e + &) rP™ — (e +e) P2 " —(n—2)¢ n SCKV§/3,

ert " < c,(rglo/s.

Notice that, and this is important, in the second estimate the first constergs
not depend or. The relevant estimates far, 4 then follow at once choosing
sufficiently small depending on. O

7. Mapping properties of the linearized mean curvature operator
about X, 4

In this section, we derive foE, 4 the counterpart of Proposition 4.3. To begin
with, we define 4 to be the projection onto the hyperplang 1 = 0 of the image

of Xo by the geometric transformations described in the previous section. More
precisely, this set does not dependsora nor ond and is just the projection of the
image ofZg = u(2) by the affine mapping

R" 5 x —> x~ +cos|R|x! + T e R".

With a slight abuse of notation, we still denote By 4 the hypersurface parame-
terized by

QA\ By, 3x —> (x,u(x) + weA(x)),

where the functiorw, 4 is the one defined in Proposition 6.2. Thi, 4 is the
singular surface constructed in the previous section, which has been truncated.
The linearized mean curvature operator at®Bpy now reads

Aea =Dy +diVAL 4, (7.1)

in 24\ By, whereA[ , is afirst order partial differential operator, all of whose
coefficients have, fdr = 0, 1, 2, theirk-th partial derivatives bounded by a constant
(which depends or) timesr—* (e 1" + r. r + &2 r2=2"), provided|| Al < « r2.
This last statement just follows from differentiating (6.5) with respeat tdw, 4,

together with the expansion far, 4 which is given in Proposition 6.2.



496 S. Fakhi, F. Pacard

Our main result, in this section, is the

Proposition 7.1. Assume that (H.1)—(H.5) hold. Fixv € (—n,1 —n), « € (0, 1).
Then, for all x > 0, thereexistseg > Oand all ¢ € (0, go], there exists an operator

Toa: CO%(@Q4\ B,) — C2%(QA\ By),

such that, for all f € C>%(Q4 \ B,,), thefunction w = I';_4(f) isa solution of
the problem

Agpw=f in Q4\ B,
mi(w)=0 on 0B,
w=0 on 9Q24.
Inaddition ||T's,_4(f)l2,a,v < ¢l fllo,a,v—2, fOr some constant ¢ > 0 independent

of k, of , of & and independent of A such that || A|| < « r?

P

Notice that, in contrast with Proposition 4.3, we do not have uniquendss obut
we can choose this operator in such a way that its norm stays bounded independently
of e.

Proof. Given the construction a2 4 one can build® 4 : @ — Q4 aC? diffeo-
morphism such tha 4 (x) = x in B,,/4. Moreover,|® 4 — | ¢z« < cr, for some
constant > 0 depending or but independent of.

Using this diffeomorphism, we defirfeg,A by the formula

Ao s (wo®y) = (Aeaw) 0Oy,

which is a well defined operator froﬁf’“ (Q\ B,,) into CSf‘z(ﬁ\ B,,). Moreover,
using (7.1) as well as the properties®f;, we have

(A = Ae Vw002 < ¢ rZ 2 [wll2..0-
It is now easy to see that, provideds chosen small enough, and granted (H.5),
the result follows from a simple perturbation argumert

Fix « > 0 and assume thatd| < «r2 Forallhy = > hje; € my
(c?e(s"~1)), we define ink 4 \ B, the function jzntl
20 — 8 2t
w05k<u) )3 <_> "hyes
ro . re
j=n+1

which satisfies\wg = 0in B,y /2 \ B,,. Arguing as in the proof of Proposition 4.5,
it is easy to see that

”wO”Z,a,—n < C”g ”h”Z,a»
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for some constartt > 0 which does not depend aen Furthermore, thanks to the
previous result, we see that the functiwrdefined byw = —T';, 4 (A, _4wo) + wo
solves

Agaw =0 in 4\ B,
m(w) = hy(-/re) on 9B,
w=0 on 9Q4.

This allows to define an operator
M, 4 hy € (cz’“(s'ﬁ—l)) — weC2%Q4\ By,
and, for allv € (—n, 1 —n), we have

||(H£,A(h||)||2,a,v < ¢k r;v [ ||2,a- (72)

We can now state the counterpart of Proposition 4.6.
Proposition 7.2. Assumethat (H.1)-(H.5) hold. Fixv € (—n, 1—n)and« € (0, 1).

Then, for all x > Othereexist ¢, > 0and gg > 0 such that, for all ¢ € (0, gg], we
have

n—2
Te 8rl_[zz,.A(hll)(”59) + Thll + Dghy

2/3
= ¢k (rf+v +r5/ )||hll||2,a-
1«

Proof. The proof is identical to the proof of Proposition 4.6, therefore we omit it.
|

Notice that, for the time being, everything we have done holdsifghyper-
surface satisfying (H.1)—(H.5), whether this hypersurface is minimal or not. This
shows that the local geometry of the hypersurface is completely hidden by the
analytic modification we have done.

8. Minimal hypersurfacescloseto X, 4

In this section, we proceed exactly as in Sect. 5 and prove the existence of an infinite
dimensional family of minimal hypersurfaces which are graphs over the modified
hypersurfaceX, 4, provided the initial hypersurfacey is assumed to be minimal.
Again, this family will be parameterized by its boundary data. We will defined and
study the Cauchy data mapping associated to these hypersurfaces.
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8.1. Minimal hypersurfaces closeto X, 4

We keep the notations of the last section and assume from now on that (H.1)—(H.5)
hold. We will also assume thatg is a minimal hypersurface. The mean curvature
of a surface which is parameterized by

QAN Br, 3 x — (x, u(x) + weA(X) + w(x)),
for some real valued functiom, is given by
H=H, g+ A qw —divQ, 4(w),

whereH, 4 is the mean curvature of the hypersurfate 4 and whereQ, 4(w)
collects allthe nonlinear terms. Near the origin, it follows from (6.5) witteplaced
by w, 4 + w that we have

Qe aw) = (r +er'™) Q, 4(Vw) + Q0 4(Vw),

whereg — QQ,A(‘I) is homogeneous of degree 2 ape> QQA(q) satisfies
Q! 4(00=0 V,0/ ,0=0 and V3 0/ ,(0) =

Moreover, for allc, there existgg > 0 such that, foralt € (0, so], the coefficients
of Q! A0n the one hand and all partial denvatwes@j 4 With respect tay,
computed at any point of some small fixed neighborhdad 0, on the other hand
are functions whose norm (i‘g (QA\ B,,) are bounded, uniformly i, by some
constant independent of A and ofe € (0, &o].

Givenh) € my (Cz’“(S”—l)), we want to solve the boundary value problem

Agpqw=—H, A +divQ, a(w) in Qy\ B,
(U + wy +w) = hn(-/re) on 9B, (8.1)
w=0 on 9Q4.

This will produce a minimal hypersurface which is a graph oRef \ B,, and
which has boundary values @B,, given by

0 € S" — (10, u(re0) + we4(re) + w(reh)) € R'L,

In particular, this “inner” boundary is a graph over the sphere of raglits the
xp+1 = 0 hyperplane.

Letus fixv € (—n, 1 —n). For allhy € my (C%*(S™1)) with ||y |24 < & 72,
we define

W= 1_I@,.A(hll — u_)s,A(re')) - Fs,.A(Ha,A)'

Recall from (6.7) and (6.10), thaj (v + w, _4) = w1 W, _4 ON I B,,. We know
from (7.2), that

1TTe aChy — o0 (We, ) 2,a,0 < crg ¥ lAn — i (We, A)|12,a (8.2)
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and also from Proposition 6.3 that

|72 (e, |20 < €72, (8.3)

for some constant which is independent af, providede is chosen small enough.
Moreover, the estimate d@f, 4 the mean curvature of the modified surface has
been obtained in Proposition 6.1 and this, together with Proposition 7.1, yields

ITe A(He ) 2,00 < 2",

for some constant > 0 which does not depend annor onA, providede is taken
small enough.

Remark 8.1. In dimensiorm: = 3, one needs to imposee (—8/3, —2) for the last
estimate to hold.

Settingw = 4+ v, it remains to find € C2%(Z,. 4) such that
Ag v =divQ, a(w +v) In Qa\ B,

a(v) =0 on 9B,
v=20 on 0Q24.

As before, it is enough to find a fixed point of the mapping
Me, A(0) =T A(Qe, AW + v)).
Though this is not explicit in the notation, this operator dependison

Proposition 8.1. Assumethat v € (—n,1 —n) (or v € —8/3, —2) whenn = 3)
and that o € (0, 1) arefixed. For all « > 0, thereexist ¢, > 0and gg > 0 such
that, for all & € (0, o], if hy € 7 (C2% (8"~ 1)) is fixed with
|2 < & rZ, (8.4)
then M, 4 isa contraction mapping on the ball
B={v: |ll2ey < et}
and thus has a unique fixed point in this ball.

The restriction |2« < & rg2 is the one which we have already encountered
in Proposition 5.1 and will be commented and justified in Sect. 9.3.

2 ¢ 0/3—
||Mg, A (())” v < K . / l),

for some constant, > 0 and

1
||M£,A(02) - Ms,A(vl)HZ,a,v =< EHUZ - v1||2,ﬂl,l}7

providedv; andv; belong toB.
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The first inequality follows from (8.2) and (8.3) together with the properties of
Q;,A and Q;”A. We get
Idiv((r + &7 Q) (@) lloav—2 < & rd?>"

and also that

Idiv(Q 4 (@) lo.w.v—2 < Eere .

providede is chosen small enough, saye (0, gg], where the constarit, > 0
depends ow. The existence aof, follows from Proposition 7.1.

The second inequality is obtained by reduciggf necessary and is left to the
reader. O

8.2. Second Cauchy data mapping

Let us summarize what we have proved in the last sections. Wedik—n, 1 —n)
(orv € (—8/3,—2) if n = 3) anda € (0, 1). For all¢ small enough, for all4
satisfying||.A|l < « r2 and for allhy € m (C>%(S"~1)) satisfying (8.4), we have
been able to find a minimal hypersurface closEfo4, which can be parameterized
by

Qu\ By, 3 x —> (x, u(x) + we 4() + wx)),

wherew,, is the function defined in Proposition 6.2 and whergs the solution of
(8.1). This hypersurface has two boundaries one of which is (up to a rigid motion)
the boundary ot and will be called the “outer” boundary. The other boundary is
a graph oved B,, and will be referred to as the “inner” boundary.

This hypersurface is now translated along thg i axis by the amount
—¢& rf—”/(n —2). The resulting surface is denot&d (A, k) and is parameterized

by

m\ By, 3x — (x, Vg A p, (X)) € Ze(A, hyy).

Definition 8.1. The second Cauchy data mapping is defined by
Te (A, 1) (O0) = (Ve Any (re0), 16 0r Ve Ay (re0)).
For notational convenience we set
F=R'"xR"xR xR x (Cz’“(S"_l)) ,
which is endowed with the norm
ICA, wllz = Al + lwll2,a-

The domain of7; is just a subset af.
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Thanks to the result of Proposition 6.3, we have the expressign(df, i) in
terms ofw,_4 and the solutionw of (8.1)

TeCA ) = (0 4+ e+ w)(rer), —er2 ™"
e B (0 4 + e+ W) () ),
where we have set

2"+ d+ R-x+er"T-x.

0 e
wE’A(x) = —

We also define
To(A, hn)
0 2-n 0 n—2
= | wo 4(re) +hu, —eri™" 1o drwy 4 (ree) — Th” — Dohyi ).

The counterpart of Proposition 5.2 is given by the

Proposition 8.2. Themappings 7. and 7g arecontinuous. Furthermore, thereexists
¢ > 0and, for all « > 0, thereexists g > 0 such that, for all ¢ € (0, ¢g], we have
the estimate

1(Te = To) (A, h)lc2axcra < crZ.

Again, it is important in the last Proposition that the constast 0 does not
depend orx.

Proof. The proof is identical to the one of Proposition 5.2 and is therefore omitted.
|

9. Thegluing procedure

Starting from an orientable minimal hypersurfa¢evith £ ends, we build a minimal
hypersurface witlt + 1 ends. We start by removing from a small disk and thus
obtain a non compact piedd,, and a compact piec¥,, which are both minimal
hypersurfaces.

Then, we define a family of minimal hypersurfacks,(z) which are close
to M,, and which are parameterized by their boundary valug/e also define a
family of minimal hypersurface#,, (k) which are close t&/,, and which are also
paraterized by their boundary valie

Next, we apply the program of Sects. 6, 7 and 8Wig(h). This produces a
family of minimal hypersurfaced,, . (h, A, k).

Collecting the families of minimal hypersurfacés, (1), Ny, . (h, A, hy) to-
gether withC, (1), the family of minimal hypersurfaces defined in Sect. 5, we
now look fork, hy and.A such that the Cauchy data at the boundarie® i),
of Ny ¢ (h, A, hyi) and of C, (b)) match.

This will end the construction of a minimal hypersurface with 1 ends.
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9.1. Preliminaries

Assume thatM is an orientable minimal hypersurface with planar ends
E1, ..., Er. Up to some rigid motion each enfl; can be parameterized as a
normal graph over a properly rescaled haltatenoid

[S;, +00) x s1s (s,0) — a; Xo(s, 0) + w; (s, 9)¢2%n(s) No(s, 0) € Ej,

wherea; € (0, +o0) and wherew; € Ctsz’a([Sj,‘f‘OO) x §"~1) for any § €
—ZJFT”, —5). As we have shown in section Sect. 4, for each end, there @re-2

1) linearly independent Jacobi fields which correspond to tiye 2 1) differ-

ent geometric transformations and which are associated with the indicial roots
+y0, ..., £y,. We shall denote them by

\plfi for j=0,...,n and i=1,... k.

Notice that, for each end, we do not consider the linearized mean curajuge
but rather its conjugate, as defined in (3.8). This conjugation can easily be made
globally since the functiong which are defined on the ends can be extended to
a global smooth functiopp > 0 on M and thenCy, = ¢>2_T" Lm0 ¢%.

We decomposé/ into slightly overlapping pieces which are a compact piece
M¢ and the endsr;. Furthermore, we ask that, for each= 1, ... , k, the set

M° N E; is diffeomorphic to[0, 1] x §”~1. With this decomposition, we give the

Definition 9.1. The function space El’jv“(M ) is defined to be the space of all func-
tions w € C*% (M) for which the following normis finite

k
Wlkas = Y Iwig lkas + Iwye ke me.
i=1

where || |Ix.q.s iSthe norm defined in Definition 4.1. Notice that we have identified
w on E; with a function on [S;, +00) x $"~1viathe graph representation of E;.
Definition 9.2. The deficiency space is defined by

K =@i—1..4Spair(- — S) ¥/~ 1 j=0,....n)

Following (almost word for word) the proof of the “Linear Decomposition
Lemma”in [4] or in [8], we can prove the

Theorem 9.1. Fix§ € (—2%, —%). Assume that the operator £, from 852""(M)
into 8?’“(M) isinjective. Then £, from EE';‘(M) into 59’5" (M) is surjective with
kernel dimension k (n + 1).

Furthermore, if o denotesthetraceof thekernel over IC, thatisKpisak (n+1)
dimensional subspace of X such that

Ker Ly C Ko ® EX%(M),
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andif K1 isak (n + 1) dimensional subspace of X such that
K=Ky® Ky,
then
Ly EX°M) ® Ky —> EX* (M),
is an isomor phism.
We can now give the precise definition of nondegeneracy.

Definition 9.3. Wewill say that a minimal hypersurface M is nondegenerate, if the
linearized mean curvature operator

Ly : EX%(M) —> E2(M),
isinjectivefor all § € (—o0, —7%).

For example, we have seen in Corollary 4.1 thgtthe unitn-catenoid, is nonde-
generate.

From now on, we will assume thaf is nondegenerate. We choose any point
p € M. Without loss of generality, we can assume that 0 and that the tangent
space ofM at O is the hyperplane,;1 = 0, since this can always be achieved
by a suitable rigid motion. Providegy > 0 is chosen small enouglV can be
parameterized near 0 as a graph

Bary > x —> (x, ug(x)).

For allr < 4rg, we will denote byN, the graph ofug over B, and we define
M, = M\ N,.

Definition 9.4. For all § € R, all k € Nand all r < rg, the space 55“@) is

defined to be the space of restrictions to M, of functions w € Eé"“(M ), endowed
with the induced norm.

We modify the normal vector field oW so that it becomes equal 6, 1) in
N2, and equal to the normal vector field Ma,,. Of courserg is assumed to be
chosen small enough so that the modified vector field is transversal Moige
linearized mean curvature operator with respect to this vector field will be denoted
by £3,. Notice that,L}, = Ly in My, and also thal* = A, in Noy,.
Reducingr if this is necessary, we can assume that :
(P.1) Forany fixed e —"UFT", —5), the operatoL}, defined frorrfaz’“(M) oK1
into 5?’“(M) is an isomorphism.
(P.2) For any fixed € (—2%, —3%), the operatoL}, defined fron{EBZ""(M_,O) @
K1lp into 5(?’“ is an isomorphism. Here we have set

(€5 (M) © Kilp = {w € &7 (M) @K1 : w =0 0n dMy).
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(P.3) Theoperatol}, = A, from[C%¥(B,,)]pintoC%*(B,,)is anisomorphism.

(P.4) Forsome fixed € (—n, 1—n) and for allr < rg/2, there exists an operator
Ty, defined fromC®% (B, \ B,) into [C2% (B, \ B,)lp., Such thath,,, o
Iyor = Id. Furthermore, the norm df,, . is bounded independently of
r < ro/2.

The fact that Properties (P.1)—(P.3) do hold providgid chosen small enough
is standard and follows from simple perturbation arguments. The last property also
follows from a perturbation argument using the fact that

1Ay = A)wllowv—2 < g [Wwll2.0-
as can easily seen using Lemma 6.1, together with the Lemma

Lemma9.1. Assumethat v € (—n, 1 — n) isfixed and that 0 < r < rg/2. Then,
there exists some operator

Gror : CO%((Byy \ By)) — C2%((Byy \ B,))

such that, for all f Cff‘z((_,o\ B,)), thefunction w = G, ,(f) isa solution of
the problem

Aw=f in Bgy\ B,
mw=0 on 9B,
w=0 on 9B,.

In addition, we have ||G, - (f)|2,e.v < cllfllo,a,v—2, fOr some constant ¢ > 0
independent of r.

Proof. We setr = logr so thatA now reads
A=e2 (B4 0 —2)8 + Ag1).

Next, conjugate this operator by

e#t A ez%nt = Ao,
which is now defined fron€2“([S, 5] x $"~1) into C2*([S, §1 x §*~1), with
s=v+ % The proof of the result is now similar to the proof of Proposition 4.4

or Proposition 4.3, the fact that we prescribe 0 boundary data=atS does not
introduce any new difficulty. O

Property (P.3) being fulfilled, we may apply the inverse function theorem to
produce a minimal hypersurfao‘é,’g which is close toN,, and whose boundary
data are given byo-+% ona B, for any sufficiently small function e 2% (3 Byo),
sayllhllcze < n1.

Similarly, property (P.2) being fulfilled, we may apply the inverse function
theorem to produce a minimal hypersurfai, (k) which is close toM,, and
whose boundary data are given by + & on dB,,, for any sufficiently small
functionk € C2%(3B,,), say||hllcza < n1.
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While, the application of the inverse function theorem to prod¥ggh) is
standard, the application of the inverse function Theorem to prodfjgé:) is
technically more involved due to the presence of the deficiency subspace, we refer
to [4,8] and also [11] for the details.

Now we translate along the, 1 axis and rotate the hypersurfal¥g, (i) so that
the resulting hypersurfad@,o(h) contains 0, and that the tangent spacé/gf(h)
at 0 is thex, 1 = 0 hyperplane.

We setXg = N,o(h) and the projection oEg over thex,,;.1 = 0 hyperplane is
denoted?, sothag is a graph ovef2 corresponding to some functianReducing
ro andnz, if this is necessary, we see, thanks to (P.1)-(P.4), that (H.1)-(H.5) can be
fulfilled independently of: such tha §z]|s2« < n1. Now, for fixedx > 0 and all
¢ > 0 small enough, we can apply the program of Sect. 6, 7 and®t® andu.

This produces a sequence of family of hypersurfaces

EO —_— 28 —_— ES,.A — Es,A,h” B

indexed by A|| < « rZ and|hy ||l2.« < k 2. Notice that, though it is not explicit

in the notation, all these hypersurfaces depend throughu and<.

9.2. Matching the Cauchy data

We now have at our dispos#,,(h) and the hypersurfacg, (k) which has
two boundaries, one of which is equal (up to a rigid motionto the boundary of
Nyo(h). We perform this rigid motiofR onX, 4 (k) and denote by, . (i, A, ki)
the corresponding hypersurface. Thus we now ltaMeg, () which is equal to the
outer boundary oN,, . (h, A, hy).

We can also perform the same rigid motiBron C. (k). The resulting hyper-
surface will still be denoted b, (k). Notice that even though we have performed
this rigid motion, the boundary @f, (4)) and the inner boundary of,, . (i, A, k1)
are both graphs over the image-of”~1 x {0} by the rigid motioriR, whose eigen-
function decomposition match except for the coefficients corresponding to the first
n + 1 eigenfunctions;.

Our aim will be now to find, #); and.A in such a way that

My = Mo (h) U Nyy ¢ (h, A, hy) U Ce (),

is aC* hypersurface.
By construction, bot, (k) andN,, . (h, A, h)) are graphs over thg, ;1 = 0
hyperplane near their common boundary, say

X € Bory \ Brg —> (x, uo(x) + wp(x))
for M,,(h) and
X € Bry \ Bryj2 —> (x, ug(x) + Wp, A pyy,e (X))
for Na, . (h, A, h)). We may define the mapping
Ue(h, A, i) = 100y (i (ro8) — B Ay (r0)) € CT (3 Bry),
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for all (h, A, hy) € C>*(dB,,) x F such that|i|2, < n1, | Al < «r? and
I ll2.0 < k72

We also define for alk € C>%(3B,,)
Uo(h) = rod, (wf(ro8) — Brop) ) € C1*(@Byy),

wherew? is the (unique) solution of},w? = 0 in M,, such thatw? = & on

9 B;, which belongs tQSSZ""(M_,O) @ K1 and WherezZ),S’ is the (unique) solution

of Auew? = 0in By, such thati? = h on dB,, which belongs taC2%(B,,).

In other wordsl{y is the difference of the two Dirichlet to Neumann mappings
corresponding to the operatdi;, defined inM,, and N,,. It is well known that
these later are linear first order elliptic differential operator with principal symbol
a(x, &) = —|&| + O(@rg) andb(x, &) = |&| + O(rp) respectively.

Notice that, since we have assumed (P.1) to hold, we knowA4hats an
isomorphism frome""(M) @ K1 into S(?’”‘(M). In particular, this implies that
Up, defined fromC?%® (3 B,,) into C1*(dB,,), is also an isomorphism. Indeed,
is a linear first order elliptic pseudo-differential operator with principal symbol
c(x, &) = —21&| + O(rg). Therefore, in order to check thidg is an isomorphism,
it is enough to prove that it is injective. Now if we assume thgth) = 0 then
the functionw defined byw = w? in M,, andw = @? in N, is a global solution
of £}, w = 0in M, and furthermorew belongs toESZ""(M) @® K1. Thusw =0
(thanks to (P.1)) and, as a consequencs, 0.

Finally, following the construction in Sects. 6, 7 and 8, we find that

e (h, A, By) — Uo(h) llera < ¢ (Ihl|Z20 + i), 9.1)

for some constant > 0 which does not depend an providede is chosen small
enough. The estimate on the right hand side can be justified easily if one follows
carefully the different steps in the constructionlaf(i, A, k). Indeed, in the

first step of the construction, we solve some nonlinear elliptic equatiav,jn

and inN,, (with boundary daté). This produced some Cauchy data which can

be expanded as the sum of a linear term, which corresporidg ko plus higher

order terms, which can be bounded by a constant tif“&é‘z.a- In the second step,

we perform the analytic modification @¥,,(h) by introducing the parameter,

this produces a change in the Cauchy data which can be bounded by a constant
timese ~ rf %3, Finally, we perform the geometric transformation (which does
not change the Cauchy data) and then we change the Dirichlet data on the inner
boundary but this only changes the ou ter Cauchy data map by a function bounded
by a constant time@rgz‘”, for e small enough. Recall thate (—n, 1—n) is fixed,

hence this last term can be bounded by a constant ﬂﬁféég provideds is small
enough.
We define the operator

Ce : C2%(0B,y) x R?"2 5y (€% (5" 1))
— Cl,a(aBro) % CZ,O((Snfl) X Cl,O((Snfl)’
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by
Ce(h, A, hy) = Us(h, A, hy), Te(h, A, hy) — Sg(hn)).

Notice that, in the notation, we have made explicit the dependence of7hoth
andsS, on h. Also observe that the norm o, A, hy) in C>% (3 B,,) x R¥'*2 x
1 (C%%(S"1)) is given by

Ihllcze + AN+ 17 llc2e-
We also define
Co(h, A, hu) = Uo(h), To(A, ki) — So(hi)).
This last linear operator can also be written as
Colh, A, i) = Uo(h), w(re?), re dw (re-) — 2Dghiy),

where we recall that, far = r 6

w94(x) = P4 d+rR-0+ert"T 6.
n—2
Let us observe that botf, and Cp have range in a proper subspace of
CLY(3Byy) x C%*(S"™Y) x ¢t (s"~1), namely in

Clva(aBro) X (Spal{ej :j=0,..., n}) % Cl’a(S”_l),

Also observe thatCo is an isomorphism fromC?%(3B,,) x R¥*2x
mi(C?%(s"71)) into its range C1*(3B,,) x (Spare; : j=0,...,n})x
¢t (s"~1). Moreover the norm of its inverse is bounded independently ef
0, 1).

We denote byB¢ the ball of radius«r? in C2%(3B,) x R2+2x
1 (€% (8"~ 1)). It follows from our previous analysis that, for fixed> 0, the
mappingC; is well defined in32 provided the parameteris small enough.

Now, we prove the

Proposition 9.1. There exist k > 0 and gg > 0 such that, for all ¢ € (0, o], the
mapping C, hasa zeroin BY.

This zero ofC, produces &% hypersurfaceé/, which is the union of minimal
hypersurfaces and which bas 1 ends of catenoidal type. Itis then a simple exercise
to see, thanks to regularity theory, thet is in fact aC> minimal hypersurface
with k£ + 1 ends of planar type.

Proof. Collecting the results of Proposition 5.2 and Proposition 8.2 together with
(9.1), we see that there exists > 0 such that, for alk > 0, there existsg
(depending o) such that the image &2 by Cal (Ce — Co), isincluded inBg, .
Here we have also used the fact tatis an isomorphism whose inverse is bounded
independently of.

To conclude, we want to use Schauder’s fixed point Theorem which will ensure
the existence of at least one fixed poimCQ‘;1 (Ce — Cp) and hence, at least one
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zero ofC, in BY, providedk > ko. However, sinceé:g1 (C¢ — Cp) is not compact

it is not possible to apply directly Schauder’'s Theorem. This is the reason why we
introduce a family of smoothing operatdd$, for allg > 1, which satisfy for fixed
O<d <a<l1

||qu||c2,ot(5n—1) =<co ||f||C2v0‘(S”—1)~ (9.2)

and

If - qu”CZ,a/(Siz—l) =<co qa e ||f||62,m(sn—l)~ (93)

for some constantp > 0 which does not depend an > 1. The existence of
such smoothing operators is available in [1]. To keep the notation short, we use
the same notation for the smoothing operator defined%?fh(aB,o) x R2+2 x
1 (C%2(8"~1)) and acting on both function spaces.
Now we fix« > coko. For allg > 1, we may apply Schauder’s fixed point
Theorem td? Cal (C¢ — Cp) to obtain the existence ok, A, h 4) fixed point
of D? Cal (Ce — Co) in BZ, providede is chosen small enough, says (0, egl.
Since(hy, Ay, hi4) has norm bounded uniformly i, we may extract a se-
quencey; — +oo suchthathy,, Ay, hir.q;) CONVErges it (3 B,,) x R2'+2 x
71 (C%¥ (§"~1)) for some fixedr’ < «. Thanks to the continuity of,, Co and
Cot (with respect to the?® andC* topology) and also to (9.3), the limit of
this sequence is a fixed point of the mappﬂ?@l (C. — Cp) and hence, produces
a zero ofC,, for all ¢ € (0, gg]. This completes our proof.O

The induction process will then be complete once we will have proverMhat
is nondegenerate for allsmall enough.
9.3. Determination of the gluing region

As promised, we now comment the different choices,of.. From what we have
seen in Lemma 6.3, the modified hypersurfaies parameterized, near 0, by

&  2-n 4—n )
o . 9.4
—7 + O(er™™) (9.4)
(In dimensiomm = 3, 4, an extra log is needed in the last term of this expression
but this is irrelevant for the determination of the gluing region).
Now considelC, the image of the-catenoid”1 by the homothety of magnitude

1

en-1, After a suitable translation, the lower end of this catenoid can be parameterized

by

x —> (x, u(x) +

€  2-n 3. 4-3n
x — (x, pamr L4 + (’)(8 r )) (9.5)
Comparing (9.4) with (9.5) and using the fact thét) = O(r2), we see that
the distance between the two hypersurfaces (measured along,thaxis) can be

estimated by

@ (rz +ert 4 g8 r4_3") .
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(Again, logr term are needed for the second terms when3, 4). It is easy to see
that this quantity is minimal for ~ £3/(31-2),

We are now in a position to justify the definitions (5.1). Indeed the parameters
s andr, are chosen so that

1 3
}"8 = gm ¢(s8) ~ gm_

Finally, we see that the distance between the two hypersurfaces measured along the
Xxp+1 axis is bounded by a constant timésThis is the reason why in Sect. 5.1 and

in Sect. 8.1 we were just interested only in perturbing the boundary data by some
functionk;; whose norm is bounded by a constarﬁmes;f, see (8.4). Looking
closely at (6.10), we see that, providgd || is bounded by a constatattimeSrEZ,
the geometric transformations associateddtonly induce a perturbation on the
boundary ofx, 4 which, up to some error which is bounded by a fixed constant
timeSrf, is linear in A. This shows that it should be enough to choeskarge

enough to obtain some solution to our problem.

10. Nondegeneracy of the solutions constructed

In this last section, we prove that the hypersurfaces we have obtained in Sect. 9
are nondegenerate, for allsmall enough. In particular, this will imply that the
hypersurfacé/, belongs to a smoottt + 1) (n+ 1) dimensional family of minimal
hypersurfaces with + 1 ends.

Starting with a hypersurfac®f which is nondegenerate, we wish to show that
the family of hypersurface®, constructed in the previous section are also nonde-
generate, providedis small enough. The proof is by contradiction.

Assume that, for a sequenegetending to 0, the operat(ﬁMgi is not injective

oné’éz’“(ME,.), for somes € —#, —75). If this is so, there exists, for eachsome

nontrivial functionw; € Ef’“(Mgi) such thatL‘Mgi w; = 0.
By construction, we may decompose

Mg, = Myy(hi) U Npg e (hi, Ai, i) U Ce, (i),

Moreover, we may decompos#,,(h;) into the union of a compact piecH;
andk planar endst; 1, ... , E; x. We may also ask that, astends to+oo the
different pieces of the decomposition &f,,(%;) converge to the corresponding
decomposition foi/,,, (the convergence being understood on compact regions of
M,,) . We define on eachf,, some weight functiog; > 0, as follows:

e g ~lonM;,

e g ~ e oneachend; s, ..., Eig,
o gi ~ 170N Nyg e, (hey, Ai, i),

o gi ~r %) in Cp, (o),

wheref ~ g meansthat12 < f/g < 2.
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Finally, we define in¥ a weight functiony, > 0 such thatj,, = ¢ on each
endE; 1, ..., E; x. Moreover, we can ask that, asends to+oo, the sequence of
functionsg; converges t@., uniformly on compact subsets #f \ {0}.

Next, we normalize the sequenee so that

Supqi_1 w; = 1.

&

The indicial roots otMg ateach end are given lyy;. Hence any bounded solution

of Ly, w = 0 which belongs to the spaeé (M¢,) decays lile™ “4%s ateach end.
This |mpI|es that the above supremum is achieved (say at some poat\,,).
We now distinguish a few cases according to the behavior of the seqpence

Case 1. Assume that, up to a subsequence, the sequgncenverges to some
point po, € M \ {0}. Extracting some subsequences, if this is necessary, we find
that the sequenag; converges uniformly on any compactdf\ {0} to a nontrivial
solution of

EMwoo =0.

Moreover,w, is bounded by a constant timegs,. In particular, this implies that
the singularity at 0 is removable. But, this is impossible thanks to the fact that we
have assumeff nondegenerate.

Case 2. Assume that, up to a subsequence, the sequgnctends to+oo and,

for example, thap; € E; for some fixedj = 1, ... , k. Then,p; corresponds to
some parameters;, 6;), with s; — +o00. We consider the sequence of rescaled
functions

Wi (s,0) = e w;(s + 51, 0),

and up to a subsequence we may assume that this new sequence converges, uni-
formly on compact, to a nontrivial solution of

AO wOO = 07

inall R x §"~1. Moreoverw. is bounded by?®. But this case is easy to rule out
sinces e (—242, —1).
Case 3. Assume that, up to a subsequence, the sequentemds to 0 or belongs
to C, (hy1 ;). In this last case it seems that we would have to distinguish two sub-
cases according to whethgr remains in the annular regiaW,, ¢, (h;, A;., by ;)
or belongs to the truncated-catenoidCy, (i ;). However, it is easy to see that
Nyo.e; (hi, Ai, hyi ;) is anormal graph over the end of thecatenoidC, which has
been truncated. Hence, in either subcases, the ppedrresponds to some param-
eters(s;, 0;) for then-catenoidC,,. In addition,s; is less thany, if p; belongs to
the annular regiow,, ., (h;, A;, hy ;) ands; is greater thas,, if p; belongs to the
truncated:-catenoidCe, (k) ;).

Now, the main observation is that, the weight functigns designed in such
a way that, ifC, (h) ;) is considered to be a normal graph over the truncated end
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of then-catenoidC;, theng; ~ 2 ¢’ % here. Hence the two subcases can be
treated as one and we can consider the sequence of rescaled functions

w;i(s,0) = rgl_ 8 (e; —si) w;i (s + si, 6).

Up to a subsequence, we may assume that this new se quence converges either to
a nontrivial solution of

Aowes =0 on Rx "1
if |s;| tends tooo, or to a nontrivial solution of
Lweo=0 on Rx S

if s; converges te, € R. Moreoverws, is bounded by a constant time’. Again,
this is not possible thanks to the choiceSof
We have ruled out every possible case, which is the desired contradiction. The
proof of the nondegeneracy is therefore complete.
Since we know that/, are nondegenerate for alsmall enough, we can apply
the inverse mapping theorem like in [8,4] or [11], to prove th&tbelongs to a
(k + 1) (n + 1)-dimensional manifold of hypersurfaces with+ 1 planar ends.
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