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Abstract. Paralleling what has been done for minimal surfaces inR
3, we develop a gluing

procedure to produce, for anyk ≥ 2 and anyn ≥ 3 complete immersed minimal hyper-
surfaces ofRn+1 which havek planar ends. These surfaces are of the topological type of a
sphere withk punctures and they all have finite total curvature

1. Introduction

Among the different tools designed to produce minimal surfaces inR
3, the Weier-

strass representation Theorem, which is probably the most popular, has been exten-
sively used [9,10]. The main advantage of this method is that we have at hand an
explicit local parameterization of the surface we are interested in. The main draw-
back is that the global geometric properties of the surfaces (such as embededness)
are extremely hard to derive.

In a completely opposite direction, tools coming from nonlinear analysis have
been useful either to produce new minimal surfaces [3,14], or to study the properties
of the moduli space of such surfaces [11,12]. For example, the existence results
which are based on perturbation arguments, have lead to examples [3,14] which
would have been hard to find with the former technic. The main advantage of this
type of constructions is that the geometry is usually well controlled.

Paralleling what is done for minimal surfaces, a gluing procedure has been
developed to produce both compact and non compact complete constant mean
curvature surfaces inR3. This was first achieved by N. Kapouleas [2] and was also
considered by R. Mazzeo and the second author in [5] and even more recently in
[6]. In this last paper became apparent that, in most of these constructions, the
use of appropriately designed weighted Hölder spaces could simplify a lot the
technicalities of the proofs. Moreover, it showed how Green’s function played a
central rôle in the construction, in particular stressing the fact that the local geometry
of the surfaces at the point where the gluing is done is not relevant and that only
global properties of the surfaces are of interest.

In higher dimension, the Weierstrass representation Theorem is not available
anymore to produce minimal hypersurfaces and thus it is tempting to use the per-
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turbation arguments to produce some nontrivial examples of complete minimal
hypersurfaces. In this perspective we prove the

Theorem 1.1. Let n ≥ 3. For all k ≥ 2, there exists a smooth k (n+1) dimensional
manifold of complete immersed minimal hypersurfaces of R

n+1 which have k pla-
nar ends. These surfaces are of the topological type of a sphere with k punctures
and they all have finite total curvature.

The structure of the proof of the result follows closely the proof of [6]. Thus,
this paper is more intended to show first that the strategy developed in [6] for
compact constant mean curvature surfaces with boundary can be easily adapted to
our situation and also to derive all the relevant estimates and technical results which
are needed for the machinery to work.

Let us briefly describe the general strategy of the proof : The proof of The-
orem 1.1 is by induction. Fork = 2, we have at our disposal then-catenoidC1
(which generalizes in higher dimension the well known catenoid), notice that in di-
mensionn+1 ≥ 4 then-catenoids have planar ends. Now, supposeM is ak ended
nondegenerate minimal hypersurface, we choose any pointp ∈ M and remove
from M a small disk centered atp. Then, we “glue” on another halfn-catenoid
which has been rescaled by a factorε. The resulting hypersurface is then perturbed
and, as a result, we obtain a one parameter family of minimal hypersurfaces with
k + 1 planar ends.

Next, we prove that forε small enough these surfaces are nondegenerate. In
particular, this shows that the hypersurfaces we have produced actually belong to
a smooth(k + 1) (n+ 1)- dimensional family of such hypersurfaces.

Organization of the paper : Part 1 includes Sects. 3, 4 and 5, while Part 2 includes
Sects. 6, 7 and 8. These two parts are completely independent and results of both
parts are summarized in Sect. 5.2 and Sect. 8.2 respectively. Next, the results of the
two parts are used in Part 3 which includes Sects. 9 and 10.

2. Notation

In this brief section we record some notation which will frequently used throughout
the rest of the paper. First,λ : R −→ [0,1] will denote a smooth cutoff function
satisfying

λ ≡ 1 if t > 1 and λ ≡ 0 if t < 0.

Let us denote byej (θ), j ∈ N the eigenfunctions of the Laplacian onSn−1 with
corresponding eigenvalueλj , that is�Sn−1ej = −λj ej , with λj ≤ λj+1, which
are normalized by ∫

Sn−1
e2
j dθ = 1.

Furthermore, we will always assume that these are counted with multiplicity,
namely

λ0 = 0, λ1 = . . . = λn = n− 1, . . . .
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We define some orthogonal projectionsπI andπII onL2(Sn−1) as follows: if

φ =
∑
j∈N

aj ej ∈ L2(Sn−1),

we set

πI(φ) ≡
∑
j≤n

aj ej and πII (φ) ≡
∑

j≥n+1

aj ej ∈ L2(Sn−1).

Finally, we define the continuous linear operator

Dθ :
∑
j∈N

aj ej ∈ H 1(Sn−1) −→
∑
j∈N

γj aj ej ∈ L2(Sn−1),

where by definition

γj ≡
√(

n− 2

2

)2

+ λj . (2.1)

In other words,Dθ corresponds to the operator
((

n−2
2

)2 −�Sn−1

)1/2
. It could

be useful to give another interpretation ofDθ . To this aim, we define for allφ ∈
H 1(Sn−1), the functionu as the unique solution of

{
�u = 0 in B1

u = φ on ∂B1.

If we setv ≡ r
2−n

2 u, we obtainDθφ = ∂rv|∂B1. Hence,Dθφ is related to the
normal derivative on the boundary of the harmonic extension ofφ in the unit ball.

To keep the notations short, we set

�0 ≡ ∂ss +�Sn−1 −
(
n− 2

2

)2

which acts on functions defined onR × Sn−1.

3. Minimal hypersurfaces which are graphs over a cylinder

We define the unitn-catenoidC1 which is a minimal hypersurface of revolution
and give some isothermal type parameterization ofC1. We also derive an almost
explicit formula for the mean curvature of any hypersurface close toC1.
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3.1. Minimal hypersurfaces of revolution

To begin with, let us concentrate on hypersurfaces of revolution (say around the
xn+1 axis). Such an hypersurface can be parameterized by

(t1, t2)× Sn−1 � (t, θ) −→ (ρ(t) θ, t) ∈ R
n+1,

where the functionρ is assumed to be defined and positive in some interval(t1, t2).
In which case, the first fundamental form is given by

Iρ ≡ (1+ ρ̇2) dt2 + ρ2 dθ2,

where· denotes differentiation with respect tot and wheredθ2 is the first funda-
mental form ofSn−1. Up to some multiplicative constant, the volume functional is
then given by

Eρ ≡
∫ t2

t1

√
1+ ρ̇2 ρn−1 dt.

The associated Euler–Lagrange equation reads

ρ̈ ρ − (n− 1) (1+ ρ̇2) = 0, (3.1)

and, wheneverρ is a positive solution of this equation, the corresponding hyper-
surface generated byρ is minimal. All solutions of (3.1) are given byρ(t) ≡
α ρ0((t − t0)/α) wheret0 ∈ R and whereα > 0 is some constant and whereρ0
is the solution of (3.1) with initial dataρ0(0) = 1 andρ̇0(0) = 0. In particularρ0
satisfies

1+ ρ̇2
0 = ρ2n−2

0 . (3.2)

Definition 3.1. The unit n-catenoidis defined to be the hypersurface of revolution
which is generated by ρ0 and is denoted by C1.

The properties ofρ0 are summarized in the

Lemma 3.1. The function ρ0 is even, strictly increasing for t > 0 and defined over
some maximal interval (−T ∗, T ∗), where

T ∗ ≡
∫ ∞

1

dx

(x2n−2 − 1)1/2 > 0.

Furthermore

lim
t↑T ∗ (T ∗ − t) ρn−2

0 = 1

n− 2
,

which implies in particular that ρ0 tends to ∞ when t tends to T ∗ or to −T ∗.
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The fact thatρ0 tends to+∞ as the parametert tends to±T ∗ reflects the fact
that then-catenoid has two planar ends.

It will be very convenient to use a conformal parameterization of the unitn-
catenoidC1. To this aim, we define the functionss → φ(s) ands → ψ(s) by the
formulæ

φ = ρ0 ◦ ψ
and

ψ ′ = φ2−n with ψ(0) = 0,

where this time′ denotes differentiation with respect tos. Using (3.2), one sees that
φ is the unique non-constantC2 solution of

φ′2 + φ4−2n = φ2 with φ(0) = 1. (3.3)

It is not hard to check the

Lemma 3.2. The functionψ is odd and is a diffeomorphism from R into (−T ∗, T ∗).
The function φ is even and defined on all R. In addition, there exists a > 0 such
that

e−s φ(s) = a (1+ O(e(2−2n)s)) as s → +∞
es φ(s) = a (1+ O(e(2n−2)s)) as s → −∞

(3.4)

From now on, we will always assume that the unitn-catenoidC1 is parameterized
by

X0 : (s, θ) ∈ R × Sn−1 −→ (φ(s) θ, ψ(s)) ∈ R
n+1. (3.5)

The rationale for this change of parameterization, is that, in these coordinates, the
mean curvature of any surface close toC1 can be computed almost explicitely, or
at least takes a simple form, as we will see in the next paragraph.

Notice that the lower part of then-catenoid, which is the image of(−∞,0)×
Sn−1 by X0, can also be parameterized as a graph over thexn+1 = 0 hyperplane
by

R
n \ B1 � x −→ (x, u0(x)) ∈ R

n+1,

whereu0 is the unique (negative, decreasing) solution of

rn−1 ∂ru0 +
(
1+ (∂ru0)

2
)1/2 = 0 with lim

r→∞ u0 = −T ∗.

It is an easy exercise to see that the functionu0 has the following expansion as
r ≡ |x| tends to∞

u0(x) = − T ∗ + r2−n

n− 2
+ O(r4−3n).
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3.2. The mean curvature operator for hypersurfaces close to C1

Let us assume that the orientation ofC1 is chosen so that the unit normal vector
field is given by

N0(s, θ) = 1

φ(s)

(
ψ ′(s) θ,−φ′(s)

)
. (3.6)

All surfaces close enough toC1 can be parameterized (at least locally) as normal
graphs overC1, namely

X = X0 + wN0,

for some small functionw. We have the

Proposition 3.1. The hypersurface parameterized by X is minimal if and only if
the function w is a solution of the following nonlinear elliptic partial differential
equation

L0 w = Q2

(
s,

w

φ
,∇

(
w

φ

)
,∇2

(
w

φ

))

+ φn−1Q3

(
s,

w

φ
,∇

(
w

φ

)
,∇2

(
w

φ

))
,

(3.7)

where

L0 = ∂s

(
φn−2 ∂s

)
+ φn−2 �Sn−1 + n(n− 1) φ−n,

is the linearized mean curvature operator about C1, where

(q1, q2, q3) −→ Q2(s, q1, q2, q3),

is homogeneous of degree 2 and where

(q1, q2, q3) −→ Q3(s, q1, q2, q3),

collects all the higher order nonlinear terms, that is

Q3(s,0,0,0) = 0, ∇qiQ3(s,0,0,0) = 0 and ∇2
qi qj

Q3(s,0,0,0) = 0.

Furthermore, the coefficientsQ2 on the one hand, and the partial derivatives at any
order ofQ3, with respect to the qi’s, computed at any point of some neighborhood V
of (0,0,0) on the other hand, are bounded functions of s and so are the derivatives
of any order of these functions, uniformly in V .

We will write for short

Qi

(
w

φ

)
≡ Qi

(
s,

w

φ
,∇

(
w

φ

)
,∇2

(
w

φ

))
for i = 2,3.

Though this is not apparent in the notation,Qi(·) depends ons.
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Proof. For simplicity in the notations, we set

Ñ0 ≡ φ N0 and w̃ ≡ w

φ
,

so that we now have the parameterizationX = X0+w̃ Ñ0. Granted these definitions,
the first fundamental form of the hypersurface parameterized byX reads

I = φ2 (ds2 + dθ2)+ 2φ3−n w̃ ((1− n) ds2 + dθ2)

+ 2φ φ′ w̃ (w̃s ds
2 +

∑
i

w̃i ds dθi)+ φ4−2n w̃2 (n(n− 2) ds2 + dθ2)

+ φ2 w̃2 ds2 + φ2 (w̃2
s ds

2 + 2 w̃s

∑
i

w̃i ds dθi +
∑
i,j

w̃i w̃j dθi dθj ),

where we have set̃ws ≡ ∂sw̃ andw̃i ≡ ∂θi w̃ for all i = 1, . . . , n. Using the well
known formula

det(I + A) = 1+ Tr(A)+ 1

2

(
Tr(A)2 − Tr(A2)

)
+ O(|A|3),

we establish

detI = φ2n
(
1+ 2φ′φ−1w̃w̃s + w̃2

s + |∇θ w̃|2 + w̃2(1− (n2 − n+ 1)φ2−2n))
+ φ1+nQ̃3(w̃)+ φ2nQ̃4(w̃),

whereQ̃3 is homogeneous of degree 3 and whereQ̃4 collects all the higher order
terms. Observe that the Taylor’s coefficients ofQ̃i are constant coefficients poly-
nomials in 1/φ andφ′/φ, hence these coefficients are bounded functions ofs and
so are the derivatives of any order of these functions by virtue of (3.3).

Changing back̃w into w/φ, we obtain the volume functional

E(w) =
∫

φn

(
1+ φ−2 |∇w|2 − n(n− 1) φ−2n w2

+ φ1−n Q̃3

(
w

φ

)
+ Q̃4

(
w

φ

))1/2

.

The critical points of which satisfy the nonlinear elliptic equation

∂s(φ
n−2∂sw)+ φn−2�Sn−1w + n(n− 1)φ−nw = Q2

(
w

φ

)
+ φn−1Q3

(
w

φ

)
,

whereQ2 is homogeneous of degree 2 and whereQ3 collects all the higher order
terms. Hence, the hypersurface parameterized byX is minimal if and only ifw is a
solution of (3.7). The properties ofQ2 andQ3 follow at once from the analyticity
of x → (1 + x)1/2 and the properties of̃Q3 andQ̃4. This ends the proof of the
Proposition. ��
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We close this section by noticing that, the conjugate operator

L = φ
2−n

2 L0 φ
2−n

2 ,

takes the simple form

L = ∂ss +�Sn−1 −
(
n− 2

2

)2

+ n(3n− 2)

4
φ2−2n. (3.8)

And, using this notation together with (3.7), we see that the hypersurface parame-
terized by

Xw = X0 + wφ
2−n

2 N0,

is minimal if and only ifw is a solution of

Lw = φ
2−n

2 Q2

(
φ− n

2 w
)
+ φ

n
2 Q3

(
φ− n

2 w
)
. (3.9)

4. Mapping properties of the linearized mean curvature operator

We define the indicial roots ofL, the linearized mean curvature operator about the
n-catenoid, and give the expression of all the 2(n + 1) Jacobi fields which arise
from geometric transformation ofC1. Next, we prove that, when restricted to any
eigenspaceej , the operatorL satisfies the maximum principle providedj ≥ n+1.
Finally, some right inverse forL is constructed on any halfn-catenoid. Similar
results are also proved for the operator�0.

4.1. Indicial roots and Jacobi fields

We start with the study of�0, since this is the easiest. If we project the operator
�0 over the eigenspaces spanned byej , we obtain the sequence of operators

∂ss − λj −
(
n− 2

2

)2

, j ∈ N.

The indicial roots of�0 at both+∞ or−∞ are given by±γj , whereγj has been
defined in (2.1). It is easy to see that these indicial roots all appear as the asymptotic
behavior at±∞ of the solutions of the homogeneous problem�0w = 0, since
e±γj s ej solves�0(e

±γj s ej ) = 0.
Paralleling what we have done for�0, we may now project the operatorL over

the eigenspaces spanned byej . This time, we obtain the sequence of operators

Lj = ∂ss − λj −
(
n− 2

2

)2

+ n(3n− 2)

4
φ2−2n, j ∈ N.

The indicial roots ofL at both+∞ or −∞ are again given by±γj . All these
indicial roots also appear as the asymptotic behavior at±∞ of the solutions of the
homogeneous problemLw = 0.
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It is possible to determine explicitely some Jacobi fields, i.e. solutions of the
homogeneous problemLw = 0, in terms of the functionsφ andψ . These Jacobi
fields correspond to explicit one-parameter geometric transformation ofC1, say
ξ → C(ξ) with C(0) = C1. For all ξ small enough,C(ξ) can be written (at least
locally) as a normal graph overC1 and differentiation with respect toξ gives rise
to one Jacobi field.

Using the above procedure, if one considers, as a one parameter family of
transformation ofC1, the translation along thexn+1 axis one finds the Jacobi field

20,+ ≡ φ
n−4

2 φ′, (4.1)

which corresponds to the indicial rootγ0 = n−2
2 at+∞ and−γ0 = 2−n

2 at−∞.
While dilation ofC1 gives the Jacobi field

20,− ≡ φ
n−4

2
(
φ ψ ′ − ψ φ′) , (4.2)

which also corresponds to the indicial rootγ0 = n−2
2 at+∞ and−γ0 = 2−n

2 at
−∞. Notice that, in order to obtain the Jacobi fields corresponding to−γ0 at+∞
(or toγ0 at−∞), it is enough to take a linear combination of20,+ and20,−. For
example,T ∗ 20,+ + 20,− corresponds to the indicial root−γ0 at both±∞ and
T ∗ 20,+ −20,− corresponds to the indicial rootγ0 at both±∞.

Next, translatingC1 in a direction orthogonal to the axis yields the linearly
independent Jacobi fields

2j,− ≡ φ
n−4

2 ψ ′ ej , for j = 1, . . . , n, (4.3)

which correspond to the indicial root−γj = −n
2 at+∞andγj = n

2 at−∞. Finally
rotatingC1 in a direction orthogonal to the axis leads to the linearly independent
Jacobi fields

2j,+ ≡ φ
n−4

2
(
φ φ′ + ψ ψ ′) ej , for j = 1, . . . , n, (4.4)

which correspond to the indicial rootγj = n
2 at+∞ and−γj = −n

2 at−∞. The
derivation of these formulæ is quite standard and left to the reader. Details of the
derivation are given for example in [5] in the framework of Delaunay surfaces, see
also [6].

Notice that the indicial roots ofL0 are given by2−n
2 ± γj at+∞, while they

are given byn−2
2 ± γj at−∞.

4.2. Bounded solutions of Lw = 0 and �0w = 0

Our first result is simply the

Proposition 4.1. Assume thatw is a bounded solution of�0w = 0 in (s1, s2)×Sn−1

(with boundary data w = 0 on {si} × Sn−1 if any of the si is finite). Then w ≡ 0.
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Proof. The potential in�0 being negative, the result is straightforward when both
si are finite. In the general case, we decomposew = ∑

j∈N
wj ej , we see that

v ≡ wj ej is a linear combination ofe±γj s ej and therefore cannot be bounded
unlessw ≡ 0. ��

Now we want to prove the following simple looking result

Proposition 4.2. Assume thatw is a bounded solution of Lw = 0 in (s1, s2)×Sn−1

(with boundary data w = 0 on {si}×Sn−1 if any of the si is finite). Further assume
that, for each fixed s ∈ (s1, s2), w(s, ·) is orthogonal to e1, . . . , en in the L2-sense
on Sn−1. Then w ≡ 0.

Before we proceed with the proof of this result let us notice, even though the
result looks as simple as the previous one, this time it isa priori not obvious at all
to conclude that

Lj = ∂ss − λj −
(
n− 2

2

)2

+ n(3n− 2)

4
φ2−2n,

satisfies the maximum principle for allj ≥ n + 1. Forn = 3, or for n ≥ 4 and
j large enough, the potential inLj is negative and the result is straightforward.
Unfortunately, forn ≥ 4 andj small, the potential inLj is positive fors close to
0, thus nothing can be concluded using a direct argument.

Notice that the assumption that, for each fixeds ∈ (s1, s2),w(s, ·) is orthogonal
to e1, . . . , en in theL2-sense onSn−1 cannot be weakened. For example, forj =
1, . . . , n, the function2j,− ej is a Jacobi field which is bounded on allR× Sn−1.
Furthermore, it is easy to see that there existss0 ∈ R such thatT ∗ 20,+(s0) +
20,−(s0) = 0. ThereforeT ∗ 20,+ +20,− is a Jacobi field which is bounded (and
has 0 boundary data) in[s0,+∞)× Sn−1.

Proof. Even though we are interested in the operatorL, the proof is easier when
using the operatorL0. There is no loss of generality in doing so since, wheneverw

is a solution ofLw = 0, thenw̃ ≡ φ
2−n

2 w solvesL0w̃ = 0.

To begin with, we assume that bothsi are finite. Considering the eigenfunction
decomposition ofw̃ = ∑

j≥n+1 w̃j ej , we see thatv ≡ w̃j ej is a solution of

L0v = 0 in (s1, s2)× Sn−1, with v = 0 on{s1, s2} × Sn−1. We multiplyL0v = 0
by v and integrate by parts the result over(s1, s2)× Sn−1 to obtain∫

v′2 φn−2 + λj

∫
v2 φn−2 = n(n− 1)

∫
v2 φ−n, (4.5)

where all integrals are understood over(s1, s2)×Sn−1 and where, as usual,′ denotes
differentiation with respect to the variables.

We proceed with some auxiliary computation. First, using (3.1) and (3.2), we
obtain

d

dt

(
ρ̇0

ρ0

)
= (n− 2) ρ2n−4

0 + ρ−2
0 ,
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and, sinceds = ρn−2
0 dt , this becomes

d

ds

(
ρ̇0

ρ0
◦ ψ

)
= (n− 2) φn−2 + φ−n.

We now multiply this equality byv2 and integrate the result over(s1, s2) × Sn−1

to obtain

(n− 2)
∫

v2 φn−2 +
∫

v2 φ−n =
∫

v2 d

ds

(
ρ̇0

ρ0
◦ ψ

)
.

Next, we integrate the right-hand side by parts and apply Cauchy–Schwarz inequal-
ity. This yields

(n− 2)
∫

v2 φn−2 +
∫

v2 φ−n

≤ 2

(∫
v′2 φn−2

)1/2
(∫

v2
(
ρ̇0

ρ0
◦ si

)2

φ2−n

)1/2

.

Finally, we use (3.3) to conclude that

(n− 2)
∫

v2 φn−2 +
∫

v2 φ−n

≤ 2

(∫
v′2 φn−2

)1/2 (∫
v2 φn−2 −

∫
v2 φ−n

)1/2

.

In order to simplify the exposition, we define

A =
∫

v2φn−2, B =
∫

v2 φ−n and C =
∫

v′2 φn−2.

The previous inequality, together with (4.5), can be translated into

C + λj A = n(n− 1) B and (n− 2) A+ B ≤ 2C1/2 (A− B)1/2.

In addition, sinceφ > 1 for all s �= 0, we see thatA ≥ B. If v is not identically 0,
thenD ≡ A/B ≥ 1 has to satisfy

((n− 2)D + 1)2 ≤ 4
(
n(n− 1)− λj D

)
(D − 1) .

Sinceλj ≥ 2n for all j ≥ n+ 1, this would also imply that

((n− 2)D + 1)2 ≤ 4 (n(n− 1)− 2nD) (D − 1) .

However, it is an easy exercise to see that this inequality never holds. Since we have
reached a contradiction, this proves thatv ≡ 0 and the result is therefore complete
in the case where bothsi are finite.

In the case wheres1 ors2 is not finite, the proof is identical to what we have done,
though we now have to justify all the integrations. But, the inspection of the indicial
roots of bothL0 andL for j ≥ n+1 allows to conclude that, ifw =∑

j≥n+1wj ej

is a bounded solution ofLw = 0, thenv ≡ φ
2−n

2 wj ej is also bounded and decays
sufficiently fast at±∞ in order to justify all the previous integrations.��
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This result can also be understood as

Corollary 4.1. The n-catenoid C1 is non degenerate.

The precise definition of nondegeneracy will be given in Sect. 9.1.

Proof. Assume thatδ < −n
2 and thatw is a solution ofLw = 0 which is bounded

by φδ. We decomposew into w = ∑
j∈N

wj ej . The fact thatwj ≡ 0 for all
j ≥ n + 1 follows directly from Proposition 4.2. Thus,

∑
j≤n wj ej has to be a

linear combination of all the Jacobi fields given in (4.1),. . . , (4.4) and it is easy
to see that these can’t be bounded byφδ unlessw ≡ 0. ��

4.3. The linearized mean curvature operator on a half n-catenoid

As in [5], the analysis of the mapping properties ofL or �0 is easy to do in some
weighted Hölder spaces we are now going to define.

Definition 4.1. For all δ ∈ R and for all S ∈ R, the space Ck,α
δ ([S,+∞)× Sn−1)

is defined to be the space of functions w ∈ Ck,α([S,+∞) × Sn−1) for which the
following norm is finite

‖w‖k,α,δ ≡ sup
s≥S

|e−δs w|k,α ([s,s+1]×Sn−1).

Here | |k,α ([s,s+1]×Sn−1) denotes the usual Hölder norm in [s, s + 1] × Sn−1.

To begin with, we investigate the mapping properties ofLwhen defined between
the above weighted spaces since this is the hardest case. These mapping properties
crucially depend on the choice ofδ. We prove the

Proposition 4.3. Assume that δ ∈ ( − n+2
2 ,−n

2

)
and α ∈ (0,1) are fixed. There

exists some constant c > 0 and, for all S ∈ R, there exists an operator

GS : C0,α
δ ([S,+∞)× Sn−1) −→ C2,α

δ ([S,+∞)× Sn−1),

such that, for all f ∈ C0,α
δ ([S+∞)×Sn−1), the function w = GS(f ) is the unique

solution of {
Lw = f in [S,+∞)× Sn−1

w ∈ Span{e0, . . . , en} on {S} × Sn−1,

which belongs to the space C2,α
δ ([S,+∞) × Sn−1). Furthermore, ‖w‖2,α,δ ≤

c ‖f ‖0,α,δ . Finally, if, for each fixed s ∈ [S,+∞), the function f (s, ·) is orthogonal
to e0, . . . , en in the L2-sense on Sn−1, then so is w = GS(f ).

Before, we proceed with the proof of this Proposition, let us emphasize that,
in the last estimate, the constantc is independent ofS. This is one of the reasons
which forces the choice of the parameterδ in the interval(−n+2

2 ,−n
2). Another

reason is that we want to use this result to perturb anyn- catenoid, since we want
this perturbation to be at least bounded, this implies that we need to takeδ ≤ n−2

2 .
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Notice that, ifδ = ±γj , it is easy to see thatL, defined between the above
spaces, does not even have closed range and the result is certainly not true. Now,
if we assume thatδ ∈ (−n

2,
2−n

2 ) ∪ (2−n
2 , n−2

2 ), the existence ofGS remains true
for all but a finite number ofS. However, in this later case, we do not obtain a
uniform bound for the norm ofGS . Finally, if we take−γj+1 < δ < −γj , then
the result still holds but more freedom is needed on the boundary data, namely
w ∈ Span{e0, . . . , ej }. Therefore, the interval(−n+2

2 ,−n
2) can be understood as

the first interval for which a uniform bound on the norm of the inverse is available.

Proof. Uniqueness ofGS follows from a simple modification of the proof of Corol-
lary 4.1. We therefore concentrate our attention on the existence ofGS . We consider
the eigenfunction decomposition off

f =
∑
j∈N

fj ej ,

and adopt the notationf = fI+fII , wherefI = πI(f ) andfII = πII (f ) correspond
to the decomposition off into the projection onto the firstn+1 eigenmodes and the
higher order eigenmodes. We look for a solutionw which will also be decomposed
as

w =
∑
j∈N

wj ej ,

and again we setw = wI + wII wherewI = πI(w) andwII = πII (w).

Step 1. To begin with we are going to prove that, givenfII there existswII solution
of LwII = fII in (S,+∞)× Sn−1 with wII = 0 on{S} × Sn−1 and

sup
[S,+∞)×Sn−1

|e−δs wII | ≤ c sup
[S,+∞)×Sn−1

|e−δs fII |,

for some constant which does not depend onfII , nor onS. Our problem being
linear, we may always assume that

sup
[S,+∞)×Sn−1

|e−δs fII | = 1.

For all j ≥ n + 1, it follows from Proposition 4.2 that, when restricted to the
space of functionsw such thatw(s, ·) is orthogonal toe0, . . . , en in theL2-sense
onSn−1, the operatorL is injective over(S, S′)× Sn−1. As a consequence, for all
S′ > S + 1 we are able to solveLvII = fII , in (S′, S) × Sn−1, with vII = 0 on
{S, S′} × Sn−1.

We claim that, there exists some constantc > 0 independent ofS′ > S+1 and
of fII such that

sup
(S′,S)×Sn−1

|e−δs vII | ≤ c.
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We argue by contradiction and assume that the result is not true. In this case, there
would exist sequencesS′

i > Si + 1, a sequence of functionsfII ,i satisfying

sup
(Si ,S

′
i )×Sn−1

|e−δsfII ,i | = 1,

and a sequencevII ,i of solutions ofLvII ,i = fII ,i , in (Si, S
′
i )× Sn−1, with vII ,i = 0

on {Si, S′
i} × Sn−1 such that

Ai ≡ sup
(Si ,S

′
i )×Sn−1

|e−δs vII ,i | −→ +∞.

Let us denote by(si, θi) ∈ (Si, S
′
i )× Sn−1, a point where the above supremum is

achieved. We now distinguish a few cases according to the behavior of the sequence
si (which, up to a subsequence can always be assumed to converge in[−∞,+∞]).
Up to some subsequence, we may also assume that the sequencesS′

i − si (resp.
si − Si) converges toS∗ ∈ (0,+∞] (resp. toS∗ ∈ [−∞,0)).

Notice that the sequencesi − Si remains bounded away from 0. Indeed, since
vII ,i and(∂ss+�Sn−1) vII ,i are both bounded by a constant (independent ofi) times
eδSi Ai in [Si, Si + 1] × Sn−1 and sincevII ,i = 0 on{Si} × Sn−1, we can conclude
that the gradient ofvII ,i is also uniformly bounded by a constant timeseδSi Ai in
[Si, Si + 1/2] × Sn−1. As a consequence the above supremum cannot be achieved
at a point which is too close toSi . Similarly the sequenceS′

i − si also remains
bounded away from 0.

We define the sequence of rescaled functions

ṽII ,i (s, θ) ≡ e−δsi

Ai

vII ,i (s + si, θ).

Case 1. Assume that the sequencesi converges tos∗ ∈ R. After the extraction
of some subsequence, if this is necessary, we may assume that the sequenceṽII ,i
converges to some nontrivial solution of

LvII = 0,

in (S∗, S∗) × Sn−1, with boundary conditionvII = 0, if eitherS∗ or S∗ is finite.
Furthermore

sup
(S∗,S∗)×Sn−1

|e−δs vII | = 1. (4.6)

We now decomposevII into

vII =
∑

j≥n+1

vj ej .

If S∗ is not finite, the inspection of the indicial roots shows that, necessarily,vj is
bounded in(S∗, S∗) together with the fact that−n+2

2 < δ. But, applying Proposi-
tion 4.2, this implies thatvj = 0 for all j ≥ n+ 1, contradicting (4.6).
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Case 2. Assume that the sequencesi converges to−∞ and thusS∗ = +∞. After
the extraction of some subsequence, if this is necessary, we may assume that the
sequencẽvII ,i converges to some nontrivial solution of

�0 vII = 0,

in (S∗,+∞)× Sn−1, with boundary conditionvII = 0, if S∗ is finite. Furthermore

sup
(S∗,∞)×Sn−1

|e−δs vII | = 1, (4.7)

but both cases,S∗ finite or not, are easy to rule out using the eigenfunction decom-
position ofvII

vII =
∑

j≥n+1

vj ej .

Indeed,vj has to be a linear combination ofe±γj s and, since we have assumed that
δ ∈ (−n+2

2 ,−n
2) it is easy to see thatvj ≡ 0, contradicting (4.7).

Case 3. Assume that the sequencesi converges to+∞ and thusS∗ = −∞. This
case being similar to Case 2, we shall omit it.

Now that the proof of the claim is finished, we may pass to the limitS′ → +∞
and obtain a solution ofLwII = fII , in (S,+∞)×Sn−1, withwII = 0 on{S}×Sn−1,
which satisfies

sup
(S,+∞)×Sn−1

|e−δs wII | ≤ c,

for some constantc > 0 independent ofS.

Step 2. We now turn our attention to the casej = 0, . . . , n. This time, just by
solving the associated ordinary differential equations, we are able to find for all
S′ > S + 1 a functionvj defined in(−∞, S′] which is a solution of{

Ljvj = fj in (S, S′)
Ljvj = 0 in (−∞, S),

with vj = ∂svj = 0 atS′.
The problem being linear, we may assume that

sup
[S,+∞)×Sn−1

|e−δs fI | = 1.

We claim that there exists some constantc > 0, independent ofS andS′, such that

∀j = 0, . . . , n, sup
(−∞,S′)

|e−δs vj | ≤ c.

We argue by contradiction and assume that the result is not true. There would exist
sequencesS′

i > Si + 1, a sequence of functionsfI,i satisfying

sup
(Si ,S

′
i )×Sn−1

|e−δs fI,i | = 1,
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and, finally, a sequence of solutionsvI,i of{
LvI,i = fI,i in (Si, S

′
i )× Sn−1

LvI,i = 0 in (−∞, Si)× Sn−1,

with vI,i = ∂svI,i = 0 on{S′
i} × Sn−1 such that

Ai ≡ sup
(−∞,S′i )×Sn−1

|e−δs vI,i | −→ +∞.

Notice thatLvI,i = 0 in (−∞, Si)×Sn−1. Thus, in this range, the functionvI,i is a
linear combination of the functions2j,±, for j = 0, . . . , n. Since we have chosen
δ < −n

2, the above supremum is finite and achieved.
Let us denote by(si, θi) ∈ (−∞, S′

i )×Sn−1, a point where the above supremum
is achieved and distinguish a few case according to the behavior of the sequence
si (which, up to a subsequence can always be assumed to converge). Up to some
subsequence, we may also assume that the sequenceS′

i − si converges toS∗ ∈
(0,+∞). (Again, notice thatS′

i − si stays bounded away from 0).
We define the sequence of rescaled functions

ṽI,i (s, θ) ≡ e−δsi

Ai

vI,i (s + si, θ).

Case 1. Assume that the sequencesi converges tos∗ ∈ R. After the extraction
of some subsequence, if this is necessary, we may assume that the sequenceṽI,i
converges to some nontrivial solution of

LvI = 0, (4.8)

in (−∞, S∗)× Sn−1, with boundary conditionvI = ∂svI = 0 atS∗ if S∗ is finite.
Furthermore

sup
(−∞,S∗)×Sn−1

|e−δs vI | = 1.

Necessarily,S∗ = +∞. Otherwise, we readily obtainvI = 0, which contradicts
the previous equality. Now, the functionvI is a linear combination of the functions
2j,±, for j = 0, . . . , n, and since we have chosenδ ∈ (−n+2

2 ,−n
2), it is easy to

see that none of the linear combinations of the2j,± decays fast enough, unless it is
identically zero. This is clearly in contradiction with the equality following (4.8).

Case 2. Assume that the sequencesi converges to−∞.After the extraction of some
subsequence, if this is necessary, we may assume that the sequenceṽI,i converges
to some nontrivial solution of

�0 vI = 0,

in R. Furthermore

sup
R×Sn−1

|e−δs vI | = 1. (4.9)
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But vI is a linear combination ofe±γj s ej , for j = 0, . . . , n, and, sinceδ ∈
(−n+2

2 ,−n
2), we see thatvI has to be identically zero, which contradicts (4.9).

Case 3. Assume that the sequencesi converges to+∞. This case being similar to
Case 2, we shall omit it.

Since we have ruled out every possible situation which would contradict our
claim, the proof of the claim is complete. We may pass to the limitS′ → +∞ and
obtain a solution of

LwI = fI,

in (S,+∞)× Sn−1 such that

sup
[S,+∞)×Sn−1

|e−δs wI | ≤ c,

for some constantc > 0 independent ofS.
To complete the proof of the Proposition, it suffices to apply Schauder’s esti-

mates in order to get the relevant estimates for all the derivatives.��
A similar result holds for�0. The proof being a straightforward modification

of the previous proof, we omit it.

Proposition 4.4. Assume that δ ∈ (−n+2
2 ,−n

2) and α ∈ (0,1) are fixed. Then,
there exists some constant c > 0 and, for all S ∈ R, there exists an operator

GS : C0,α
δ

([S,+∞)× Sn−1) −→ C2,α
δ

([S,+∞)× Sn−1),
such that for all f ∈ C0,α

δ

([S,+∞)×Sn−1
)
, the function w = GS(f ) is the unique

solution of {
�0w = f in [S,+∞)× Sn−1

w ∈ Span{e0, . . . , en} on {S} × Sn−1,

which belongs to C2,α
δ

([S,+∞)× Sn−1
)
. Furthermore, ‖w‖2,α,δ ≤ c ‖f ‖0,α,δ .

We will need a supplement to the previous Proposition. Indeed the next result
is not Corollary of the previous Proposition since, this time, the weight parameter
does not belong to(−n+2

2 ,−n
2).

Proposition 4.5. There exists c > 0 such that, for all S ∈ R and all gII ∈
πII
(C2,α(Sn−1)

)
, there exists a unique w0 ∈ C2,α

− n+2
2

([S,+∞) × Sn−1
)

solution

of {
�0w0 = 0 in (S,+∞)× Sn−1

w0 = gII on {S} × Sn−1.

Furthermore, we have

||w0||2,α,− n+2
2

≤ c e
n+2

2 S ||gII ||2,α,
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Proof. Again we decomposegII = ∑
j≥n+1 gj ej and define for allJ ≥ n + 1

the functionwJ
0 ≡ ∑J

j=n+1 gj e
γj (S−s) ej , which clearly solves�0w0 = 0, in

[S,+∞)× Sn−1.
First of all, let us consider all the eigenfrequencies for whichγj = n+2

2 . They

correspond to the indicesj = n+ 1, . . . , n(n+1)
2 . We set,J0 ≡ n(n+1)

2 . Obviously,
we have

|wJ0
0 (s, θ)| ≤ c e

n+2
2 (S−s) ||gII ||2,α,

for some constant independent ofS.
Next, it is easy to see that, for allJ ≥ J0, we have

|(wJ
0 − w

J0
0 )(s, θ)| ≤ cJ e

n+2
2 (S−s) ||gII ||2,α,

for some constantcJ which is independent ofS (but may depend onJ ). It remains to
prove thatcJ does not depend onJ . The proof of this fact is again by contradiction
and is very close to the proof of Proposition 4.3, so we omit it.

Once this estimate is proved the estimates for the derivatives follow from
Schauder’s estimates as usual.��

Thanks to Proposition 4.3 and Proposition 4.2, ifδ ∈ ( − n+2
2 ,−n

2

)
, then for

all gII ∈ πII
(C2,α(Sn−1)

)
, we may definew ≡ PS(gII ) ∈ C2,α

δ

([S,+∞)× Sn−1
)

be the unique solution of{
Lw = 0 in (S,+∞)× Sn−1

w = gII on {S} × Sn−1.

Furthermore, we have

||PS(gII )||2,α,δ ≤ c e−δS ||gII ||2,α, (4.10)

for some constantc > 0 which is independent ofS. Further information concerning
the operatorPS is provided by the following Proposition in which we compare the
Neumann data ofPS(gII ) with Dθ gII .

Proposition 4.6. Assume that δ ∈ ( − n+2
2 ,−n

2

)
and α ∈ (0,1) are fixed. There

exists c > 0 such that, for all S ∈ R and for all gII ∈ πII
(C2,α(Sn−1)

)
||∂s PS(gII )(S, ·)+DθgII ||1,α ≤ c e

(
n+2

2 +δ
)
S ||gII ||2,α.

Proof. To begin with, we define, thanks to Proposition 4.5, the functionw0 which is
the unique solution of�0w0 = 0 in (S,+∞)×Sn−1 with w0 = gII on{S}×Sn−1,
which belongs toC2,α

− n+2
2

([S,+∞)× Sn−1
)
. In addition, we know that

‖w0‖2,α,− n+2
2

≤ c e
2+n

2 S ||gII ||2,α,
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for somec > 0 independent ofS. Notice that

DθgII = −∂s w0(S, ·).
We now set

f ≡ Lw0 = n(3n− 2)

4
φ2−2n w0.

The previous estimate yields

‖f ‖0,α,δ ≤ c e
n+2

2 S ||gII ||2,α.
To conclude, it suffices to takew = w0 − GS(f ) and apply Proposition 4.3.��

5. Minimal hypersurfaces which are close to a half n-catenoid

In this section we prove the existence of an infinite dimensional family of minimal
hypersurfaces, which are normal graphs over a truncatedn-catenoid. This infinite
dimensional family is parameterized by the boundary data. Furthermore, we define
and investigate the properties of the Cauchy data mapping associated to this family
of minimal hypersurfaces.

5.1. Minimal hypersurfaces close to a half n-catenoid

Now and hereafter, we set for allε ∈ (0,1]

sε ≡ 1

(n− 1)(3n− 2)
logε < 0 and rε ≡ ε

1
n−1 φ(sε). (5.1)

At this point, these choices may seem quite arbitrary but they will be commented
and justified in Sect. 9.3. For the time being, let us notice that, asε tends to 0

rε ∼ ε
3

3n−2 or also ε ∼ r
n− 2

3
ε .

We use the parameterization (3.5) for the unitn-catenoid. Its outer unit normalN0
is then given by (3.6). Let us define a smooth, nonincreasing functionξε : R −→
[−1,1] by

ξε(s) =
(
1− λ2(s − sε − 1)

)− λ2(s − sε − 1)
φ′(s)
φ(s)

.

Thus,ξε = 1 for s ≤ sε+1 andξε = −φ′

φ
for s ≥ sε+2. Now, consider the vector

field

Nε(s, θ) =
(√

1− ξ2
ε (s) θ, ξε(s)

)
,
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this is a perturbation of the unit normalN0, and in fact, using the estimate of
Lemma 3.2, we have for allk ≥ 0∣∣∇k (Nε ·N0 − 1)

∣∣ ≤ ck e
(2n−2)sε ,

in [sε, sε + 2] × Sn−1, asε tends to 0.
We now look for all minimal hypersurfaces close to the unitn- catenoid, rescaled

by a factorε
1

n−1 , which admit the parameterization

Xw ≡ ε
1

n−1 X0 + wφ
2−n

2 Nε,

for (s, θ) ∈ [sε,+∞)× Sn−1 and for some small functionw. The reason why we

have scaled the unitn- catenoid byε
1

n−1 will also be explained in Sect. 9.3.
It follows from (3.9) that such an hypersurface is minimal if and only ifw

satisfies a nonlinear equation of the form

Lw = Q̄ε(w),

where

Q̄ε(w) = Lεw + ε
1

n−1 φ
2−n

2 Q̄2,ε

(
φ− n

2 ε−
1

n−1 w
)

+ ε
1

n−1 φ
n
2 Q̄3,ε

(
φ− n

2 ε−
1

n−1 w
)
.

HereQ̄2,ε andQ̄3,ε enjoy properties which are similar to those enjoyed byQ2
andQ3 in Proposition 3.1. Observe in addition that the bounds on the coefficients
of Q̄2,ε or on the partial derivatives of̄Q3,ε are independent ofε. We even have
Q2 = Q̄2,ε andQ3 = Q̄3,ε in [sε + 2,+∞) × Sn−1. In particular, there exists
c > 0 such that, for allε ∈ (0,1) we have∣∣Q̄2,ε(w)

∣∣
0,α([s,s+1]×Sn−1)

≤ c |w|22,α([s,s+1]×Sn−1)
. (5.2)

for all functionw ∈ C2,α([s, s+1]×Sn−1). Similarly, there existc0 > 0 andc > 0
such that ∣∣Q̄3,ε(w)

∣∣
0,α([s,s+1]×Sn−1)

≤ c |w|32,α([s,s+1]×Sn−1)
. (5.3)

provided|w|2,α ([s,s+1]×Sn−1) ≤ c0.
The linear operatorLε represents the difference between the linearized mean

curvature operator for hypersurfaces parameterized using the vector fieldN0 and
those parameterized using the vector fieldNε. This operatorLε has coefficients
which are supported in[sε, sε + 2] × Sn−1 and which are bounded by a constant
timese(2n−2)sε in C0,α([sε, sε + 2] × Sn−1). The details of the derivation of this
formula can be found, for example, in [6].

Now, givenhII ∈ πII
(C2,α(Sn−1)

)
, we want to solve the boundary value prob-

lem {
Lw = Q̄ε(w) in (sε,+∞)× Sn−1

πIIw = gII on {sε} × Sn−1,
(5.4)
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where we have set

gII ≡ φ
n−2

2 (sε) hII .

A solution will produce a minimal hypersurface whose boundary is parameterized
by

θ ∈ Sn−1 −→
(
ε

1
n−1 φ(sε) θ, ε

1
n−1 ψ(sε)+ w(sε, θ) φ

2−n
2 (sε)

)
, (5.5)

and whose end is asymptotic to an-catenoid. Notice that the boundary of this
hypersurface is a graph over a sphere of radiusrε in thexn+1 = 0 hyperplane. This
is the reason why we have modifiedN0 into Nε.

Naturally, for smallgII the existence of a solution of (5.5) follows at once from
the inverse function theorem, using Proposition 4.3. However, since we want to
have more information about the range of validity of the inverse function theorem,
we prefer to use a standard fixed point argument to establish the existence ofw.
First, we fixδ ∈ (−2+n

2 ,−n
2), α ∈ (0,1) and we define

w̃ ≡ Psε (gII ). (5.6)

We know from (4.10) that

‖w̃‖2,α,δ ≤ c e−δsε ‖gII‖2,α.

Then, if we writew = w̃ + v, we must find a functionv ∈ C2,α
δ ([sε,+∞)× Sn−1

such that {
Lv = Q̄ε(w̃ + v) in (sε,+∞)× Sn−1

πIIv = 0 on {sε} × Sn−1.

To obtain a solution of this equation, it is enough to find a fixed point of the mapping

Nε(v) ≡ Gsε

(
Q̄ε(w̃ + v)

)
.

Notice that, although this is not explicit in the notation, this operator depends on
hII .

Proposition 5.1. Fix δ ∈ ( − n+2
2 ,−n

2

)
and α ∈ (0,1). For all κ > 0 there

exist constants cκ > 0 and ε0 > 0 such that for all ε ∈ (0, ε0] and for all
hII ∈ πII

(C2,α(Sn−1)
)

satisfying

||hII ||2,α ≤ κ r2
ε , (5.7)

the mapping Nε is a contraction mapping in the ball

B ≡
{
v : ||v||2,α,δ ≤ cκ e

( 3n−2
2 −δ)sε r2

ε

}
,

and hence has a unique fixed point in this ball.

Again the choice||hII ||2,α ≤ κ r2
ε will be commented and justified in Sect. 9.3.
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Proof. In order to prove the result, we have to show that there exists a constantcκ
such that

||Nε(0)||2,α,δ ≤ cκ

2
e

(
3n−2

2 −δ
)
sε r2

ε

and also that

||Nε(v2)− Nε(v1)||2,α,δ ≤ 1

2
||v2 − v1||2,α,δ,

for all v1 v2 ∈ B.
In order to derive the first estimate we first obtain, from the properties ofLε

andQ̄2,ε that

‖Lεw̃‖0,α,δ ≤ c e

(
3n−2

2 −δ
)
sε ‖hII‖2,α

≤ c κ e

(
3n−2

2 −δ
)
sε r2

ε ,

‖ε 1
n−1 φ

2−n
2 Q̄2,ε(φ

− n
2 ε−

1
n−1 w̃)‖0,α,δ ≤ c e(4−4n−2δ)sε ‖hII‖2

2,α

≤ c κ2 e(2n−2−2δ)sε r2
ε ,

where all constants do not depend onκ nor onε. Finally, it follows from (5.3) that

‖ε 1
n−1 φ

n
2 Q̄3,ε(φ

− n
2 ε−

1
n−1 w̃)‖0,α,δ ≤ c e

(
14−13n

2 −δ
)
sε ‖hII‖3

2,α

≤ c κ3 e

(
11n−10

2 −δ
)
sε r2

ε ,

for some constant which does not depend onκ nor onε provided

‖ε− 1
n−1 φ− n

2 w̃‖2,α,0 ≤ c0.

Observe that this condition is fulfilled providedε is chosen small enough.
Taking advantage from the fact that the norm ofGSε is bounded independently

of ε we conclude that

||Nε(0)||2,α,δ ≤ c e

(
3n−2

2 −δ
)
sε
r2
ε

(
κ + κ2 e

(
n
2−1−δ

)
sε + κ3 e(4n−4)sε

)
≤ c̃ κ e

(
3n−2

2 −δ
)
sε r2

ε

for all ε small enough, sayε ∈ (0, ε0]. It remains to definecκ = 2 c̃ κ in order for
the stated estimate forNε(0) to hold.

The second estimate is obtained by reducingε0 if necessary and is left to the
reader. ��
Remark 5.1. Observe that, reducingε0 if this is necessary, we can assume that the
mappinghII → v, wherev is the fixed poi ofNε is continuous.
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5.2. The first Cauchy data mapping

We summarized what we have obtained so far. Let us fixδ ∈ (−n+2
2 ,−n

2) and
α ∈ (0,1). Then, for allε sufficiently small and for allhII ∈ πII (C2,α(Sn−1))

satisfying (5.7), we have been able to find a minimal hypersurface parameterized
by

Xw ≡ ε
1

n−1 X0 + wφ
2−n

2 Nε in [sε,+∞)× Sn−1,

with φ
2−n

2 πIIw = hII on {sε} × Sn−1 and withw ∈ C2,α
δ ([sε,+∞) × Sn−1).

In particular, the end of this hypersurface is asymptotic to a rescaledn-catenoid.
Furthermore, by definition ofNε, we know that, for all(s, θ) ∈ [sε, sε+1)×Sn−1,

Xw ≡
(
ε

1
n−1 φ θ, ε

1
n−1 ψ + wφ

2−n
2

)
.

Now, we can translate this hypersurface along thexn+1 axis by the amount

−ε
1

n−1ψ(sε). The resulting hypersurface will be denotedCε(hII ). If we perform
the change of variable

r = ε
1

n−1 φ(s),

we see that near its boundary, this hypersurface is a graph over thexn+1 = 0
hyperplane

x ∈ Brε \ Brε/2 −→ (x, Uε,hII (x)) ∈ Cε(hII ).

Definition 5.1. The first Cauchy data mapping Sε(hII ) ∈ C2,α(Sn−1)×C1,α(Sn−1)

is defined by

Sε(hII )(θ) ≡ (Uε,hII (rε θ), rε ∂rUε,hII (rε θ)),

where we recall that, by definition, rε ≡ ε
1

n−1 φ(sε).

Since

dr

r
= φ′(s)

φ(s)
ds,

we obtain an expression ofSε(hII ) in terms ofφ, ψ andw the solution of (5.4)

Sε(hII ) =
(
φ

2−n
2 (sε) w(sε, ·), φ(sε)

φ′(sε)
(
ε

1
n−1 ψ ′(sε)+ ∂s

(
φ

2−n
2 w

)
(sε, ·)

))
.

We also define

S0 (hII ) ≡
(
hII ,−ε r2−n

ε − n− 2

2
hII +DθhII

)
.

The comparison between these two mappings plays a key rôle in our construction.
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Proposition 5.2. The mappingsSε andS0 are continuous. Furthermore, there exists
a constant c > 0 and for all κ > 0, there exists ε0 > 0 such that, for all ε ∈ (0, ε0]
and for all ‖hII‖2,α ≤ κ r2

ε , we have

||(Sε − S0)(hII )||C2,α×C1,α ≤ c r2
ε .

It is very important that, in this Proposition, the constantc does not depend
on ε ∈ (0, ε0] and also does not depend on the constantκ which, later on, will be
chosen large.

Proof. The statement about continuity is straightforward and is left to the reader.
The estimate follows from the fact thatw = w̃ + v, wherew̃ has been defined in
(5.6) and wherev is given by Proposition 5.1.

First, notice that

ε
1

n−1 ψ ′(sε) = ε
1

n−1 φ2−n(sε) = ε r2−n
ε ,

and, from Lemma 3.2, we know that

∣∣∣∣ φ(sε)φ′(sε)
+ 1

∣∣∣∣ ≤ c e(2n−2)sε .

Thus

∣∣∣∣ φ(sε)φ′(sε)
ε

1
n−1 ψ ′(sε)+ ε r2−n

ε

∣∣∣∣ ≤ c e6(n−1)sε ≤ c r2
ε ,

for some constantc which obviously does not depend onκ! Now

∂s(φ
2−n

2 w̃)(sε, ·) = 2− n

2

φ′(sε)
φ(sε)

hII + φ
2−n

2 (sε) δsw̃(sε, ·),

and using Proposition 4.6, we obtain

∥∥∥∥ φ(sε)φ′(sε)
∂s(φ

2−n
2 (sε) w̃(sε, ·))+ n− 2

2
hII −DθhII

∥∥∥∥
1,α

≤ cκ e
( n+2

2 +δ)sε r2
ε .

Finally, using Proposition 5.1, we also have

‖φ 2−n
2 v‖2,α + ‖∂s(φ 2−n

2 v)‖1,α ≤ cκ e
(2n−2)sε r2

ε .

The result follows at once from these estimates choosingε0 sufficiently small
depending onκ. ��
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6. Minimal hypersurfaces which are graphs over an hyperplane

We are now concerned with both the mean curvature and the linearized mean cur-
vature operator for hypersurfaces which are graphs over thexn+1 = 0 hyperplane.
We also give a list of assumptions which will be needed to ensure that all the results
in Sect. 6–8 do hold uniformly.

We will proceed by what we call the “analytic” and “geometric” modifications
of an hypersurface. The first of these modifications is intended to transform a regular
hypersurface into a singular hypersurface, which looks like the graph of Green’s
function near its pole, and thus will be close to the lower end of ann-catenoid. The
second modification is intended to remedy to the fact that, when we have solved
(5.4) and when we will solve (8.1), we do not prescribe then+ 1 first eigenmodes
of the eigenfunction decomposition of the boundary data and, in doing so, we have
“lost” some degrees of freedom.

6.1. The mean curvature operator for graphs

Assume we are given some functionu, defined in some open regular domain< of
R
n, which is at least of classC2. We may then define an hypersurface=0 as the

graph ofu

< � x −→ (x, u(x)) ∈ R
n+1.

With respect to this parameterization, the first fundamental form of this hypersurface
is given by

Iu =
∑
i,j

(δij + ∂xi u ∂xj u) dxi dxj .

Since we have

detIu = 1+ |∇u|2,

the volume functional can be defined by

Eu ≡
∫

(1+ |∇u|2)1/2 dx,

and the associated Euler–Lagrange equation is then given by

Hu ≡ div

( ∇u

(1+ |∇u|2)1/2

)
= 0. (6.1)
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6.2. The linearized mean curvature operator

All hypersurfaces sufficientlyC1-close to=0 can also be parameterized as vertical
graphs over the hyperplanexn+1 = 0. Namely

x −→ (x, u(x)+ w(x)) ∈ R
n+1, (6.2)

for some (sufficiently regular) functionw. It follows from (6.1) that the linearized
mean curvature operator about=0 is given explicitly by

>uw ≡ div

( ∇w

(1+ |∇u|2)1/2 − ∇u · ∇w

(1+ |∇u|2)3/2∇u

)
. (6.3)

In order to state properly the next properties of>u, we need to introduce the
following weighted spaces

Definition 6.1. For all regular open subsets < ⊂ R
n with 0 ∈ <, for all k ∈ N,

α ∈ (0,1) and ν ∈ R, the space Ck,α
ν (<\{0}) is defined to be the space of functions

w ∈ Ck,α
loc (< \ {0}) for which the following norm is finite

‖w‖k,α,ν ≡ |w|k,α,<\Br0
+ sup

0<2r≤r0

r−ν [w]k,α,[2r,r],

where, by definition

[w]k,α,[2r,r] ≡
k∑

j=0

rj sup
r≤|x|≤2r

|∇jw| + rk+α sup
r≤|xi |≤2r,xi �=xj

|∇kw(x1)− ∇kw(x2)|
|x1 − x2|α

and where r0 > 0 is fixed in such a way that Br0 ⊂ <.

We will also need the

Definition 6.2. For all r̄ < r0, the space Ck,α
ν (< \Br̄) is defined to be the space of

restrictions to < \ Br̄ of functions w ∈ Ck,α
ν (< \ {0}), endowed with the induced

norm.

Let =0 be an hypersurface given as a graph

< � x −→ (x, u(x)) ∈ =0 ⊂ R
n+1.

In the subsequent sections, we will need some technical assumptions, which will
ensure that all the results will hold uniformly inα, u and< and will only depend
on the constantsr0, η0 andην which are defined below. The importance of these
assumptions will become clear within the subsequent sections.

(H.1) Br0/2 ⊂ < ⊂ B2r0.
(H.2) u(0) = 0 and∇u(0) = 0. Stated differently, 0 belongs to=0 and the tangent

space at 0 is always the hyperplanexn+1 = 0. Notice that there is no loss
of generality in assuming so since these assumptions can always be fulfilled
modulo some suitable rigid motion.

(H.3) ‖u‖C2,α(B2r0)
≤ η0 and‖u‖C3,α(Br0)

≤ η0.
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(H.4) The operator>u defined from[C2,α(<)]D into C0,α(<) is an isomorphism
where by definition

[C2,α(<)]D ≡ {
w ∈ C2,α(<) : w = 0 on ∂<

}
.

Moreover‖>−1
u ‖(C0,α,C2,α) ≤ η0 whereη0.

(H.5) Assume thatν ∈ (−n,1 − n) is fixed. For allr < r0, there exists an
operatorBu,r defined fromC0,α

ν−2(< \ Br) into [C2,α
ν (< \ Br)]D,n, such that

>u ◦ Bu,r = Id. Here by definition

[C2,α
ν (< \ Br)]D,n ≡ {

w ∈ C2,α
ν (< \ Br) : w = 0 on ∂<,

and πII (w) = 0 on ∂Br

}
.

Moreover‖Bu,r‖(C0,α
ν−2,C2,α

ν

) ≤ ην , whereην does not depend onr < r0.

Remark 6.1. Though this will never be explicit in the statements of the results, all
the bounds we will obtain in Sect. 6–8 will not depend onu or < satisfying the
assumptions above but will only depend onr0, η0 andην .

We can now state the

Lemma 6.1. Assume (H.1), (H.2) and (H.3) hold. The linearized mean curvature
operator >u can be expanded as

>u = div (∇ +>′
u), (6.4)

and where >′
u is a first order partial differential operator without any zero or-

der terms and all of whose coefficients are bounded functions in C1,α
2 (< \ {0}) ∩

C2,α
2 (Br0/2 \ {0}).

Proof. This follows directly from (6.3). ��
It will also be convenient to notice that

Lemma 6.2. Assume (H.1), (H.2) and (H.3) hold. Then, the expression of the mean
curvature Hu+w of the hypersurface parameterized by (6.2) is given by

Hu+w = Hu +>uw − div
(
r Q′

u(∇w)+Q′′
u(∇w)

)
, (6.5)

where q → Q′
u(q) is homogeneous of degree 2 and q → Q′′

u(q) collects all the
higher order nonlinear terms. That is

Q′′
u(0) = 0 ∇qQ

′′
u(0) = 0 and ∇2

q qQ
′′
u(0) = 0.

Moreover, the coefficients of Q′
u on the one hand and all partial derivatives at any

order ofQ′′
u, with respect to q computed at any point of some neighborhood V of 0on

the other hand, are functions which are bounded in C1,α
0 (<\{0})∩C2,α

0 (Br0/2\{0}),
uniformly in V .

Proof. This follows directly from (6.1). ��
Note that, here and elsewhere,r stands forr(x) ≡ |x|.
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6.3. Analytic modification of a hypersurface using Green’s function

The fact that (H.4) is fulfilled implies that we are able to solve

>uγ0 = −(n− 2) |Sn−1| δ0, in <, (6.6)

with γ0 = 0 on∂<, where|Sn−1| is the volume of the unit sphere.
Using (6.4), the following Lemma is a simple exercise, which is left to the

reader.

Lemma 6.3. Assume that (H.1)–(H.4) hold and that γ0 is the solution of (6.6). Then,
there exists c > 0 such that, for all k ≤ 3,

∣∣∇k
(
γ0 − r2−n

) ∣∣ ≤ c r4−n−k, if n ≥ 5,∣∣∇k
(
γ0 − r−2

) ∣∣ ≤ c r−k log 1/r, if n = 4,∣∣∇k
(
γ0 − r−1 − a0

) ∣∣ ≤ c r1−k log 1/r, if n = 3,

in Br0 \ {0}, for some constant a0 ∈ R .

For all ε > 0, we can define=ε to be the hypersurface parameterized by

< \ {0} � x −→
(
x, u(x)+ ε

n− 2
γ0(x)

)
∈ R

n+1 if n ≥ 4

and by

< \ {0} � x −→
(
x, u(x)+ ε

n− 2
(γ0(x)− a0)

)
∈ R

4 if n = 3.

We finally compare the mean curvature of the hypersurface=ε with the mean
curvature of the initial hypersurface=0.

Proposition 6.1. Assume that (H.1)–(H.4) hold. The derivatives of Hε, the mean
curvature of =ε, can be estimated by

|∇k(Hε −H0)| ≤ c
(
r−k

(
ε2 r2−2n + ε3 r2−3n)) , for all ε

3
3n−2 ≤ r,

where H0 is the mean curvature of =0 and where k = 0,1 and where c > 0 does
not depend on ε ∈ (0, ε0].

Proof. The result follows at once from (6.5), withw = ε γ0. ��
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6.4. Geometric modifications of the hypersurface =ε

We recall that we have defined

rε ≡ ε
1

n−1 φ(sε) ∼ ε
3

3n−2 .

We now perform some geometric transformations of the surface=ε by applying
some rigid motion and also by modifying the parameterε.

First, in the definition of=ε, we change the scaling parameterε into ε + e, for
some parametere ∈ (−ε, ε). Then, for allR ∈ R

n, R �= 0, we apply the rigid
motion corresponding to a rotation of angle|R| in the plane spanned by the vectors
(0,1) and(R/|R|,0). ForR �= 0, this transformation can be described analytically
by

R
n+1 � (x, xn+1)

→ (x⊥,0)+ cos|R| (x‖, xn+1)− sin|R|
|R| (xn+1R,−R · x‖) ∈ R

n+1,

where by definitionx‖ ≡ x · R
|R|2 R andx⊥ ≡ x − x‖. Finally, we perform a trans-

lation of vector(T , d) ∈ R
n × R.

We denote byA = (T , R, d, e) ∈ R
n ×R

n ×R×R the set of parameters and
by =ε,A the resulting hypersurface. By definition, the norm ofA is given by

‖A‖ ≡ ε r1−n
ε |T |Rn + rε |R|Rn + |d| + r2−n

ε |e|.
We now compare the geometrically and analytically “modified” hypersurface

=ε,A with the initial hypersurface=0.

Proposition 6.2. Assume that (H.1)–(H.4) hold. Let κ > 0 be given. There exists
cκ > 0 and ε0 > 0 such that, for all ε ∈ (0, ε0], if

‖A‖ ≤ κ r2
ε ,

then, the hypersurface =ε,A can be locally parameterized as a vertical graph over
the initial hypersurface =0

Br0/2 \ Brε/2 � x −→ (
x, u(x)+ wε,A(x)

) ∈ =ε,A, (6.7)

where the function wε,A satisfies |∇kwε,A(x)| ≤ cκ
(
r−k

(
rε r + ε r2−n

))
, for all

k ≤ 3.

Again, the restriction‖A‖ ≤ κ r2
ε will be commented in Sect. 9.3.

Proof. We restrict our attention to the proof of the estimates forwε,A, leaving the
estimates of the derivatives of these functions to the reader. In the proofcκ will
denote some constant which depends onκ but which does not depend onε provided
ε is chosen small enough.



494 S. Fakhi, F. Pacard

We define new coordinates̃x which are the orthogonal projection of a point of
the modified hypersurface over thexn+1 = 0 hyperplane. Namely

∣∣∣∣x̃ − T − x⊥ − cos|R| x‖ + sin|R| R

|R|
(
u(x)+ (ε + e)

r2−n

n− 2

)∣∣∣∣
≤ cκ | sinR| ε r4−n. (6.8)

(In dimensionn = 3,4, the termε r4−n on the right hand side has to be replaced by
ε r4−n log 1/r, but this is irrelevant for the subsequent computations). It follows
easily from our choices that there existsε0 > 0 such that, for allε ∈ (0, ε0], if
rε/4 ≤ r ≤ r0, then

r/2 < r̃ < 2r, (6.9)

where we have set̃r = |x̃|. In particular this yields

|x̃ − x| ≤ cκ

(
r5/3
ε + rε r̃

2
)
,

providedrε/2 ≤ r̃ ≤ r0/2. These expansions, together with (6.9), imply (with little
work) that ∣∣∣∣sin|R|

|R| R · x
∣∣∣∣ ≤ cκ rε r̃

| cos|R| u(x)− u(x̃)| ≤ cκ

(
r5/3
ε r̃ + rε r̃

3
)

∣∣∣∣cos|R| (ε + e)
r2−n

n− 2

∣∣∣∣ ≤ c ε r4−n + cκ ε r̃
2−n

|d| ≤ cκr
2
ε .

Therefore, the modified surface can be parameterized by (6.7), withwε,A satisfying
the desired estimates.��

We will also need the

Proposition 6.3. Assume that (H.1)–(H.4) hold. There exists c > 0 and, for all
κ > 0be given, there exists ε0 > 0(depending onκ) such that, for all ε ∈ (0, ε0]and
for all r ∈ [rε/2,2rε], the parameterization of =ε,A has the following expansion

x −→
(
x, e

r2−n

n− 2
+
(
e
r2−n

n− 2
+ d + R · x + ε r−n T · x

)
+ w̄ε,A(x)

)
,

(6.10)

where, for all k ≤ 3, the function w̄ε,A satisfies |∇kw̄ε,A(x)| ≤ c r2−k
ε .

Note that, and this will be very important, in the estimate forw̄ε,A the constant
c > 0 does not depend onκ providedε is chosen small enough.
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Proof. Keeping the notations of the previous proof, for allr̃ ∈ [rε/4,4rε], we can
write

|x − x̃ + T | ≤ cκ r
7/3
ε .

In particular, we obtain∣∣∣r2−n − r̃2−n − (n− 2) r̃−n T · x̃
∣∣∣ ≤ cκ r

(10−3n)/3
ε .

Now, we use these expansions to get∣∣∣∣sin|R| R

|R| · x − R · x̃
∣∣∣∣ ≤ cκ r

8/3
ε ,

| cos|R| u(x)| ≤ c r2
ε + cκ r

8/3
ε ,∣∣∣∣cos|R| (ε + e) r2−n − (ε + e) r̃2−n − (n− 2) ε

T · x̃
r̃n

∣∣∣∣ ≤ cκ r
8/3
ε ,

ε r4−n ≤ cκr
10/3
ε .

Notice that, and this is important, in the second estimate the first constantc does
not depend onκ. The relevant estimates for̄wε,A then follow at once choosingε0
sufficiently small depending onκ. ��

7. Mapping properties of the linearized mean curvature operator
about �ε,A

In this section, we derive for=ε,A the counterpart of Proposition 4.3. To begin
with, we define<A to be the projection onto the hyperplanexn+1 = 0 of the image
of =0 by the geometric transformations described in the previous section. More
precisely, this set does not depend onε, e nor ond and is just the projection of the
image of=0 = u(<) by the affine mapping

R
n � x −→ x⊥ + cos|R| x‖ + T ∈ R

n.

With a slight abuse of notation, we still denote by=ε,A the hypersurface parame-
terized by

<A \ Brε � x −→ (x, u(x)+ wε,A(x)),

where the functionwε,A is the one defined in Proposition 6.2. Thus,=ε,A is the
singular surface constructed in the previous section, which has been truncated.

The linearized mean curvature operator about=ε,A now reads

>ε,A = >u + div>′
ε,A, (7.1)

in <A \ Brε , where>′
ε,A is a first order partial differential operator, all of whose

coefficients have, fork = 0,1,2, theirk-th partial derivatives bounded by a constant
(which depends onκ) timesr−k (ε r2−n + rε r + ε2 r2−2n), provided‖A‖ ≤ κ r2

ε .
This last statement just follows from differentiating (6.5) with respect tow atwε,A,
together with the expansion forwε,A which is given in Proposition 6.2.
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Our main result, in this section, is the

Proposition 7.1. Assume that (H.1)–(H.5) hold. Fix ν ∈ (−n,1− n), α ∈ (0,1).
Then, for all κ > 0, there exists ε0 > 0 and all ε ∈ (0, ε0], there exists an operator

Bε,A : C0,α
ν−2(<A \ Brε ) −→ C2,α

ν (<A \ Brε ),

such that, for all f ∈ C0,α
ν−2(<A \ Brε ), the function w = Bε,A(f ) is a solution of

the problem 

>ε,Aw = f in <A \ Brε

πII (w) = 0 on ∂Brε

w = 0 on ∂<A.

In addition ||Bε,A(f )||2,α,ν ≤ c ||f ||0,α,ν−2, for some constant c > 0 independent
of κ , of α, of ε and independent of A such that ||A|| ≤ κ r2

ε .

Notice that, in contrast with Proposition 4.3, we do not have uniqueness ofBε,A but
we can choose this operator in such a way that its norm stays bounded independently
of ε.

Proof. Given the construction of<A one can buildDA : < → <A aC2,α diffeo-
morphism such thatDA(x) = x in Br0/4. Moreover,‖DA − I‖C2,α ≤ c rε for some
constantc > 0 depending onκ but independent ofε.

Using this diffeomorphism, we definẽ>ε,A by the formula

>̃ε,A (w ◦DA) ≡ (>ε,Aw) ◦DA,

which is a well defined operator fromC2,α
ν (< \Brε ) into C0,α

ν−2(< \Brε ). Moreover,
using (7.1) as well as the properties ofDA, we have

||(>u − >̃ε,A)w||0,α,ν−2 ≤ cκ r
2/3
ε ||w||2,α,ν .

It is now easy to see that, providedε is chosen small enough, and granted (H.5),
the result follows from a simple perturbation argument.��

Fix κ > 0 and assume that‖A‖ ≤ κ r2
ε . For all hII =

∑
j≥n+1

hj ej ∈ πII(C2,α(Sn−1)
)
, we define in<A \ Brε the function

w0 ≡ λ

(
2r0 − 8r

r0

) ∑
j≥n+1

(
r

rε

) 2−n
2 −γj

hj ej ,

which satisfies�w0 = 0 inBr0/2 \Brε . Arguing as in the proof of Proposition 4.5,
it is easy to see that

‖w0‖2,α,−n ≤ c rnε ‖h‖2,α,
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for some constantc > 0 which does not depend onε. Furthermore, thanks to the
previous result, we see that the functionw defined byw ≡ −Bε,A(>ε,Aw0)+w0
solves



>ε,Aw = 0 in <A \ Brε

πII (w) = hII (·/rε) on ∂Brε

w = 0 on ∂<A.

This allows to define an operator

Eε,A : hII ∈ πII

(
C2,α(Sn−1)

)
−→ w ∈ C2,α

ν (<A \ Brε ),

and, for allν ∈ (−n,1− n), we have

||(Eε,A(hII )||2,α,ν ≤ cκ r
−ν
ε ||hII ||2,α. (7.2)

We can now state the counterpart of Proposition 4.6.

Proposition 7.2. Assume that (H.1)-(H.5) hold. Fix ν ∈ (−n,1−n) andα ∈ (0,1).
Then, for all κ > 0 there exist cκ > 0 and ε0 > 0 such that, for all ε ∈ (0, ε0], we
have

∥∥∥∥rε ∂rEε,A(hII )(rεθ)+ n− 2

2
hII +DθhII

∥∥∥∥
1,α

≤ cκ (r
n+ν
ε + r2/3

ε ) ||hII ||2,α.

Proof. The proof is identical to the proof of Proposition 4.6, therefore we omit it.
��

Notice that, for the time being, everything we have done holds forany hyper-
surface satisfying (H.1)–(H.5), whether this hypersurface is minimal or not. This
shows that the local geometry of the hypersurface is completely hidden by the
analytic modification we have done.

8. Minimal hypersurfaces close to �ε,A

In this section, we proceed exactly as in Sect. 5 and prove the existence of an infinite
dimensional family of minimal hypersurfaces which are graphs over the modified
hypersurfaces=ε,A, provided the initial hypersurface=0 is assumed to be minimal.
Again, this family will be parameterized by its boundary data. We will defined and
study the Cauchy data mapping associated to these hypersurfaces.
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8.1. Minimal hypersurfaces close to =ε,A

We keep the notations of the last section and assume from now on that (H.1)–(H.5)
hold. We will also assume that=0 is a minimal hypersurface. The mean curvature
of a surface which is parameterized by

<A \ Brε � x −→ (x, u(x)+ wε,A(x)+ w(x)),

for some real valued functionw, is given by

H = Hε,A +>ε,Aw − div Qε,A(w),

whereHε,A is the mean curvature of the hypersurface=ε,A and whereQε,A(w)

collects all the nonlinear terms. Near the origin, it follows from (6.5) withw replaced
by wε,A + w that we have

Qε,A(w) ≡ (r + ε r1−n)Q′
ε,A(∇w)+Q′′

ε,A(∇w),

whereq → Q′
ε,A(q) is homogeneous of degree 2 andq → Q′′

ε,A(q) satisfies

Q′′
ε,A(0) = 0 ∇qQ

′′
ε,A(0) = 0 and ∇2

qqQ
′′
ε,A(0) = 0.

Moreover, for allκ, there existsε0 > 0 such that, for allε ∈ (0, ε0], the coefficients
of Q′

ε,A on the one hand and all partial derivatives ofQ′′
ε,A, with respect toq,

computed at any point of some small fixed neighborhoodV of 0, on the other hand
are functions whose norm inC1,α

0 (<A \Brε ) are bounded, uniformly inV, by some
constant independentκ, of A and ofε ∈ (0, ε0].

GivenhII ∈ πII
(C2,α(Sn−1)

)
, we want to solve the boundary value problem


>ε,Aw = −Hε,A + div Qε,A(w) in <A \ Brε

πII (u+ wm + w) = hII (·/rε) on ∂Brε

w = 0 on ∂<A.

(8.1)

This will produce a minimal hypersurface which is a graph over<A \ Brε and
which has boundary values on∂Brε given by

θ ∈ Sn−1 −→ (rεθ, u(rεθ)+ wε,A(rεθ)+ w(rεθ)) ∈ R
n+1.

In particular, this “inner” boundary is a graph over the sphere of radiusrε in the
xn+1 = 0 hyperplane.

Let us fixν ∈ (−n,1− n). For allhII ∈ πII (C2,α(Sn−1)) with ‖hII‖2,α ≤ κ r2
ε ,

we define

w̃ = Eε,A(hII − πII w̄ε,A(rε·))− Bε,A(Hε,A).

Recall from (6.7) and (6.10), thatπII (u + wε,A) = πII w̄ε,A on ∂Brε . We know
from (7.2), that

||Eε,A(hII − πII (w̄ε,A))||2,α,ν ≤ c r−ν
ε ||hII − πII (w̄ε,A)||2,α, (8.2)
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and also from Proposition 6.3 that

||πII (w̄ε,A)||2,α ≤ c r2
ε , (8.3)

for some constantc which is independent ofκ, providedε is chosen small enough.
Moreover, the estimate ofHε,A the mean curvature of the modified surface has

been obtained in Proposition 6.1 and this, together with Proposition 7.1, yields

‖Bε,A(Hε,A)‖2,α,ν ≤ c r2−ν
ε ,

for some constantc > 0 which does not depend onκ, nor onA, providedε is taken
small enough.

Remark 8.1. In dimensionn = 3, one needs to imposeν ∈ (−8/3,−2) for the last
estimate to hold.

Settingw = w̃ + v, it remains to findv ∈ C2,α
ν (=ε,A) such that


>ε,Av = divQε,A(w̃ + v) in <A \ Brε

πII (v) = 0 on ∂Brε

v = 0 on ∂<A.

As before, it is enough to find a fixed point of the mapping

Mε,A(v) = Bε,A(Qε,A(w̃ + v)).

Though this is not explicit in the notation, this operator depends onhII .

Proposition 8.1. Assume that ν ∈ (−n,1 − n) (or ν ∈ −8/3,−2) when n = 3)
and that α ∈ (0,1) are fixed. For all κ > 0, there exist cκ > 0 and ε0 > 0 such
that, for all ε ∈ (0, ε0], if hII ∈ πII (C2,α(Sn−1)) is fixed with

||hII ||2,α ≤ κ r2
ε , (8.4)

then Mε,A is a contraction mapping on the ball

B ≡ {
v : ||v||2,α,ν ≤ cκ r

10/3−ν
ε

}
,

and thus has a unique fixed point in this ball.

The restriction||hII ||2,α ≤ κ r2
ε is the one which we have already encountered

in Proposition 5.1 and will be commented and justified in Sect. 9.3.

Proof. We have to prove that

||Mε,A(0)||2,α,ν ≤ cκ

2
r10/3−ν
ε ,

for some constantcκ > 0 and

||Mε,A(v2)− Mε,A(v1)||2,α,ν ≤ 1

2
||v2 − v1||2,α,ν,

providedv1 andv2 belong toB.



500 S. Fakhi, F. Pacard

The first inequality follows from (8.2) and (8.3) together with the properties of
Q′

ε,A andQ′′
ε,A. We get

‖div((r + ε r1−n)Q′
ε,A(w̃))‖0,α,ν−2 ≤ c̃κ r

10/3−ν
ε

and also that

‖div(Q′′
ε,A(w̃))‖0,α,ν−2 ≤ c̃κ r

4−ν
ε ,

providedε is chosen small enough, sayε ∈ (0, ε0], where the constant̃cκ > 0
depends onκ. The existence ofcκ follows from Proposition 7.1.

The second inequality is obtained by reducingε0 if necessary and is left to the
reader. ��

8.2. Second Cauchy data mapping

Let us summarize what we have proved in the last sections. We fixν ∈ (−n,1−n)

(or ν ∈ (−8/3,−2) if n = 3) andα ∈ (0,1). For all ε small enough, for allA
satisfying‖A‖ ≤ κ r2

ε and for allhII ∈ πII (C2,α(Sn−1)) satisfying (8.4), we have
been able to find a minimal hypersurface close to=ε,A, which can be parameterized
by

<A \ Brε � x −→ (x, u(x)+ wε,A(x)+ w(x)),

wherewm is the function defined in Proposition 6.2 and wherew is the solution of
(8.1). This hypersurface has two boundaries one of which is (up to a rigid motion)
the boundary of=0 and will be called the “outer” boundary. The other boundary is
a graph over∂Brε and will be referred to as the “inner” boundary.

This hypersurface is now translated along thexn+1 axis by the amount
− ε r2−n

ε /(n−2). The resulting surface is denoted=ε(A, hII ) and is parameterized
by

<A \ Brε � x −→ (x, Vε,A,hII (x)) ∈ =ε(A, hII ).

Definition 8.1. The second Cauchy data mapping is defined by

Tε(A, hII )(θ) ≡ (Vε,A,hII (rεθ), rε ∂rVε,A,hII (rεθ)).

For notational convenience we set

F ≡ R
n × R

n × R × R × πII

(
C2,α(Sn−1)

)
,

which is endowed with the norm

‖(A, w)‖F ≡ ||A|| + ||w||2,α.
The domain ofTε is just a subset ofF .
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Thanks to the result of Proposition 6.3, we have the expression ofTε(A, hII ) in
terms ofwε,A and the solutionw of (8.1)

Tε(A, hII ) =
(
(w0

ε,A + w̄ε,A + w)(rε·),−ε r2−n
ε

+ rε ∂r (w
0
ε,A + w̄ε,A + w)(rε·)

)
,

where we have set

w0
ε,A(x) ≡ e

n− 2
r2−n + d + R · x + ε r−n T · x.

We also define

T0(A, hII )

≡
(
w0
ε,A(rε·)+ hII ,−ε r2−n

ε + rε ∂rw
0
ε,A(rε·)− n− 2

2
hII −DθhII

)
.

The counterpart of Proposition 5.2 is given by the

Proposition 8.2. The mappings Tε and T0 are continuous. Furthermore, there exists
c > 0 and, for all κ > 0, there exists ε0 > 0 such that, for all ε ∈ (0, ε0], we have
the estimate

||(Tε − T0)(A, hII )||C2,α×C1,α ≤ c r2
ε .

Again, it is important in the last Proposition that the constantc > 0 does not
depend onκ.

Proof. The proof is identical to the one of Proposition 5.2 and is therefore omitted.
��

9. The gluing procedure

Starting from an orientable minimal hypersurfaceM with k ends, we build a minimal
hypersurface withk + 1 ends. We start by removing fromM a small disk and thus
obtain a non compact pieceMr0 and a compact pieceNr0 which are both minimal
hypersurfaces.

Then, we define a family of minimal hypersurfacesMr0(h) which are close
to Mr0 and which are parameterized by their boundary valueh. We also define a
family of minimal hypersurfacesNr0(h) which are close toNr0 and which are also
paraterized by their boundary valueh.

Next, we apply the program of Sects. 6, 7 and 8 toNr0(h). This produces a
family of minimal hypersurfacesNr0,ε(h,A, hII ).

Collecting the families of minimal hypersurfacesMr0(h), Nr0,ε(h,A, hII ) to-
gether withCε(hII ), the family of minimal hypersurfaces defined in Sect. 5, we
now look forh, hII andA such that the Cauchy data at the boundaries ofMr0(h),
of Nr0,ε(h,A, hII ) and ofCε(hII ) match.

This will end the construction of a minimal hypersurface withk + 1 ends.
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9.1. Preliminaries

Assume thatM is an orientable minimal hypersurface withk planar ends
E1, . . . , Ek. Up to some rigid motion each endEi can be parameterized as a
normal graph over a properly rescaled halfn- catenoid

[Si,+∞)× Sn−1 � (s, θ) −→ ai X0(s, θ)+ wi(s, θ) φ
2−n

2 (s)N0(s, θ) ∈ Ei,

where ai ∈ (0,+∞) and wherewi ∈ C2,α
δ ([Sj ,+∞) × Sn−1) for any δ ∈

(−2+n
2 ,−n

2). As we have shown in section Sect. 4, for each end, there are 2(n +
1) linearly independent Jacobi fields which correspond to the 2(n + 1) differ-
ent geometric transformations and which are associated with the indicial roots
±γ0, . . . ,±γn. We shall denote them by

2
j,±
i for j = 0, . . . , n and i = 1, . . . , k.

Notice that, for each end, we do not consider the linearized mean curvatureLM,0
but rather its conjugate, as defined in (3.8). This conjugation can easily be made
globally since the functionsφ which are defined on the endsEi can be extended to

a global smooth functionφ > 0 onM and thenLM ≡ φ
2−n

2 LM,0 φ
2−n

2 .
We decomposeM into slightly overlapping pieces which are a compact piece

Mc and the endsEi . Furthermore, we ask that, for eachi = 1, . . . , k, the set
Mc ∩ Ei is diffeomorphic to[0,1] × Sn−1. With this decomposition, we give the

Definition 9.1. The function space Ek,α
µ (M) is defined to be the space of all func-

tions w ∈ Ck,α(M) for which the following norm is finite

|w|k,α,δ ≡
k∑

i=1

‖w|Ei ‖k,α,δ + ‖w|Mc ‖k,α,Mc .

where ‖ ‖k,α,δ is the norm defined in Definition 4.1. Notice that we have identified
w on Ei with a function on [Si,+∞)× Sn−1 via the graph representation of Ei .

Definition 9.2. The deficiency space is defined by

K ≡ ⊕i=1,... ,kSpan{ λ(· − Si)2
j,±
i : j = 0, . . . , n}

Following (almost word for word) the proof of the “Linear Decomposition
Lemma” in [4] or in [8], we can prove the

Theorem 9.1. Fix δ ∈ (−2+n
2 ,−n

2). Assume that the operator LM from E2,α
δ (M)

into E0,α
δ (M) is injective. Then LM from E2,α

−δ (M) into E0,α
−δ (M) is surjective with

kernel dimension k (n+ 1).
Furthermore, if K0 denotes the trace of the kernel over K, that is K0 is a k (n+1)

dimensional subspace of K such that

Ker LM ⊂ K0 ⊕ E2,α
δ (M),
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and if K1 is a k (n+ 1) dimensional subspace of K such that

K = K0 ⊕ K1,

then

LM : E2,α
δ M)⊕ K1 −→ E0,α

δ (M),

is an isomorphism.

We can now give the precise definition of nondegeneracy.

Definition 9.3. We will say that a minimal hypersurface M is nondegenerate, if the
linearized mean curvature operator

LM : E2,α
δ (M) −→ E0,α

δ (M),

is injective for all δ ∈ (−∞,−n
2).

For example, we have seen in Corollary 4.1 thatC1, the unitn-catenoid, is nonde-
generate.

From now on, we will assume thatM is nondegenerate. We choose any point
p ∈ M. Without loss of generality, we can assume thatp = 0 and that the tangent
space ofM at 0 is the hyperplanexn+1 = 0, since this can always be achieved
by a suitable rigid motion. Providedr0 > 0 is chosen small enough,M can be
parameterized near 0 as a graph

B4r0 � x −→ (x, u0(x)).

For all r ≤ 4r0, we will denote byNr the graph ofu0 overBr and we define
Mr ≡ M \Nr .

Definition 9.4. For all δ ∈ R, all k ∈ N and all r < r0, the space Ek,α
δ (Mr) is

defined to be the space of restrictions to Mr of functions w ∈ Ek,α
δ (M), endowed

with the induced norm.

We modify the normal vector field onM so that it becomes equal to(0,1) in
N2r0 and equal to the normal vector field inM4r0. Of courser0 is assumed to be
chosen small enough so that the modified vector field is transversal alongM. The
linearized mean curvature operator with respect to this vector field will be denoted
by L∗

M . Notice that,L∗
M = LM in M4r0 and also thatL∗ = >u0 in N2r0.

Reducingr0 if this is necessary, we can assume that :

(P.1) For any fixedδ ∈ (−2+n
2 ,−n

2), the operatorL∗
M defined fromE2,α

δ (M)⊕K1

into E0,α
δ (M) is an isomorphism.

(P.2) For any fixedδ ∈ (−2+n
2 ,−n

2), the operatorL∗
M defined from[E2,α

δ (Mr0)⊕
K1]D into E0,α

δ is an isomorphism. Here we have set

[E2,α
δ (Mr0)⊕ K1]D ≡ {w ∈ E2,α

δ (Mr0)⊕ K1 : w = 0 on ∂Mr0}.
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(P.3) The operatorL∗
M = >u0 from[C2,α(Br0)]D intoC0,α(Br0) is an isomorphism.

(P.4) For some fixedν ∈ (−n,1−n) and for allr < r0/2, there exists an operator
Bu0,r defined fromC0,α

ν−2(Br0 \ Br) into [C2,α
ν (Br0 \ Br)]D,n such that>u0 ◦

Bu0,r = Id. Furthermore, the norm ofBu0,r is bounded independently of
r < r0/2.

The fact that Properties (P.1)–(P.3) do hold providedr0 is chosen small enough
is standard and follows from simple perturbation arguments. The last property also
follows from a perturbation argument using the fact that

‖(>u −�)w‖0,α,ν−2 ≤ c r2
0 ‖w‖2,α,ν,

as can easily seen using Lemma 6.1, together with the Lemma

Lemma 9.1. Assume that ν ∈ (−n,1− n) is fixed and that 0 < r < r0/2. Then,
there exists some operator

Gr0,r : C0,α
ν−2((Br0 \ Br)) −→ C2,α

ν ((Br0 \ Br))

such that, for all f ∈ C0,α
ν−2((Br0 \Br)), the function w = Gr0,r (f ) is a solution of

the problem 

�w = f in Br0 \ Br

πIIw = 0 on ∂Br

w = 0 on ∂Br0.

In addition, we have ||Gr0,r (f )||2,α,ν ≤ c ||f ||0,α,ν−2, for some constant c > 0
independent of r .

Proof. We sett = logr so that� now reads

� = e−2t (∂tt + (n− 2) ∂t +�Sn−1).

Next, conjugate this operator by

e
n+2

2 t � e
2−n

2 t = �0,

which is now defined fromC2,α
δ ([S, S̃] × Sn−1) into C0,α

δ ([S, S̃] × Sn−1), with
δ = ν + n−2

2 . The proof of the result is now similar to the proof of Proposition 4.4
or Proposition 4.3, the fact that we prescribe 0 boundary data ats = S̃ does not
introduce any new difficulty. ��

Property (P.3) being fulfilled, we may apply the inverse function theorem to
produce a minimal hypersurfaceNh

r0
which is close toNr0 and whose boundary

data are given byu0+h on∂Br0, for any sufficiently small functionh ∈ C2,α(∂Br0),
say‖h‖C2,α ≤ η1.

Similarly, property (P.2) being fulfilled, we may apply the inverse function
theorem to produce a minimal hypersurfaceMr0(h) which is close toMr0 and
whose boundary data are given byu0 + h on ∂Br0, for any sufficiently small
functionh ∈ C2,α(∂Br0), say‖h‖C2,α ≤ η1.
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While, the application of the inverse function theorem to produceNr0(h) is
standard, the application of the inverse function Theorem to produceMr0(h) is
technically more involved due to the presence of the deficiency subspace, we refer
to [4,8] and also [11] for the details.

Now we translate along thexn+1 axis and rotate the hypersurfaceNr0(h) so that
the resulting hypersurfacẽNr0(h) contains 0, and that the tangent space ofÑr0(h)

at 0 is thexn+1 = 0 hyperplane.
We set=0 ≡ Ñr0(h) and the projection of=0 over thexn+1 = 0 hyperplane is

denoted<, so that=0 is a graph over< corresponding to some functionu. Reducing
r0 andη1, if this is necessary, we see, thanks to (P.1)-(P.4), that (H.1)-(H.5) can be
fulfilled independently ofh such tha t‖h‖C2,α ≤ η1. Now, for fixedκ > 0 and all
ε > 0 small enough, we can apply the program of Sect. 6, 7 and 8 to=0, < andu.
This produces a sequence of family of hypersurfaces

=0 −→ =ε −→ =ε,A −→ =ε,A,hII ,

indexed by‖A‖ ≤ κ r2
ε and‖hII‖2,α ≤ κ r2

ε . Notice that, though it is not explicit
in the notation, all these hypersurfaces depend onh throughu and<.

9.2. Matching the Cauchy data

We now have at our disposalMr0(h) and the hypersurface=ε,A(hII ) which has
two boundaries, one of which is equal (up to a rigid motionR) to the boundary of
Nr0(h).We perform this rigid motionR on=ε,A(hII )and denote byNr0,ε(h,A, hII )

the corresponding hypersurface. Thus we now have∂Mr0(h) which is equal to the
outer boundary ofNr0,ε(h,A, hII ).

We can also perform the same rigid motionR onCε(hII ). The resulting hyper-
surface will still be denoted byCε(hII ). Notice that even though we have performed
this rigid motion, the boundary ofCε(hII )and the inner boundary ofNr0,ε(h,A, hII )

are both graphs over the image ofrε S
n−1×{0} by the rigid motionR, whose eigen-

function decomposition match except for the coefficients corresponding to the first
n+ 1 eigenfunctionsej .

Our aim will be now to findh, hII andA in such a way that

Mε ≡ Mr0(h) ∪Nr0,ε(h,A, hII ) ∪ Cε(hII ),

is aC1,α hypersurface.
By construction, bothMr0(h) andNr0,ε(h,A, hII ) are graphs over thexn+1 = 0

hyperplane near their common boundary, say

x ∈ B2r0 \ Br0 −→ (x, u0(x)+ wh(x))

for Mr0(h) and

x ∈ Br0 \ Br0/2 −→ (x, u0(x)+ w̃h,A,hII ,ε(x))

for N3r0,ε(h,A, hII ). We may define the mapping

Uε(h,A, hII ) ≡ r0 ∂r
(
wh(r0θ)− w̃h,A,hII ,ε(r0θ)

) ∈ C1,α(∂Br0),
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for all (h,A, hII ) ∈ C2,α(∂Br0) × F such that‖h‖2,α ≤ η1, ‖A‖ ≤ κ r2
ε and

‖hII‖2,α ≤ κ r2
ε .

We also define for allh ∈ C2,α(∂Br0)

U0(h) ≡ r0 ∂r

(
w0
h(r0θ)− w̃0

h(r0θ)
)
∈ C1,α(∂Br0),

wherew0
h is the (unique) solution ofL∗

Mw0
h = 0 in Mr0 such thatw0

h = h on

∂Br0 which belongs toE2,α
δ (Mr0) ⊕ K1 and wherew̃0

h is the (unique) solution
of >u0w̃

0
h = 0 in Br0 such thatw̃0

h = h on ∂Br0 which belongs toC2,α(Br0).
In other words,U0 is the difference of the two Dirichlet to Neumann mappings
corresponding to the operatorL∗

M defined inMr0 andNr0. It is well known that
these later are linear first order elliptic differential operator with principal symbol
a(x, ξ) = −|ξ | + O(r0) andb(x, ξ) = |ξ | + O(r0) respectively.

Notice that, since we have assumed (P.1) to hold, we know thatL∗
M is an

isomorphism fromE2,α
δ (M) ⊕ K1 into E0,α

δ (M). In particular, this implies that
U0, defined fromC2,α(∂Br0) into C1,α(∂Br0), is also an isomorphism. Indeed,U0
is a linear first order elliptic pseudo-differential operator with principal symbol
c(x, ξ) = −2 |ξ | +O(r0). Therefore, in order to check thatU0 is an isomorphism,
it is enough to prove that it is injective. Now if we assume thatU0(h) = 0 then
the functionw defined byw ≡ w0

h in Mr0 andw ≡ w̃0
h in Nr0 is a global solution

of L∗
Mw = 0 in M, and furthermore,w belongs toE2,α

δ (M) ⊕ K1. Thusw ≡ 0
(thanks to (P.1)) and, as a consequence,h ≡ 0.

Finally, following the construction in Sects. 6, 7 and 8, we find that

‖Uε(h,A, hII )− U0(h)‖C1,α ≤ c (‖h‖2
C2,α + rn−2/3

ε ), (9.1)

for some constantc > 0 which does not depend onκ, providedε is chosen small
enough. The estimate on the right hand side can be justified easily if one follows
carefully the different steps in the construction ofUε(h,A, hII ). Indeed, in the
first step of the construction, we solve some nonlinear elliptic equation inMr0

and inNr0 (with boundary datah). This produced some Cauchy data which can
be expanded as the sum of a linear term, which corresponds toU0(h) plus higher
order terms, which can be bounded by a constant times‖h‖2

C2,α . In the second step,
we perform the analytic modification ofNr0(h) by introducing the parameterε,
this produces a change in the Cauchy data which can be bounded by a constant
timesε ∼ r

n−2/3
ε . Finally, we perform the geometric transformation (which does

not change the Cauchy data) and then we change the Dirichlet data on the inner
boundary but this only changes the ou ter Cauchy data map by a function bounded
by a constant timesκ r2−ν

ε , for ε small enough. Recall thatν ∈ (−n,1−n) is fixed,

hence this last term can be bounded by a constant timesr
n−2/3
ε providedε is small

enough.
We define the operator

Cε : C2,α(∂Br0)× R
2n+2 × πII (C2,α(Sn−1))

−→ C1,α(∂Br0)× C2,α(Sn−1)× C1,α(Sn−1),
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by

Cε(h,A, hII ) ≡ (Uε(h,A, hII ), Tε(h,A, hII )− Sε(hII )).

Notice that, in the notation, we have made explicit the dependence of bothTε
andSε on h. Also observe that the norm of(h,A, hII ) in C2,α(∂Br0) × R

2n+2 ×
πII (C2,α(Sn−1)) is given by

‖h‖C2,α + ‖A‖ + ‖hII‖C2,α .

We also define

C0(h,A, hII ) ≡ (U0(h), T0(A, hII )− S0(hII )).

This last linear operator can also be written as

C0(h,A, hII ) = (U0(h), w
0
A(rε·), rε ∂rw0

A(rε·)− 2DθhII ),

where we recall that, forx = r θ

w0
A(x) = e

n− 2
r2−n + d + r R · θ + ε r1−n T · θ.

Let us observe that bothCε and C0 have range in a proper subspace of
C1,α(∂Br0)× C2,α(Sn−1)× C1,α(Sn−1), namely in

C1,α(∂Br0)×
(
Span{ej : j = 0, . . . , n})× C1,α(Sn−1).

Also observe that C0 is an isomorphism fromC2,α(∂Br0) × R
2n+2×

πII (C2,α(Sn−1)) into its range C1,α(∂Br0) × (
Span{ej : j = 0, . . . , n})×

C1,α(Sn−1). Moreover the norm of its inverse is bounded independently ofε ∈
(0,1).

We denote byBα
κ the ball of radius κ r2

ε in C2,α(∂Br0) × R
2n+2×

πII (C2,α(Sn−1)). It follows from our previous analysis that, for fixedκ > 0, the
mappingCε is well defined inBα

κ provided the parameterε is small enough.
Now, we prove the

Proposition 9.1. There exist κ > 0 and ε0 > 0 such that, for all ε ∈ (0, ε0], the
mapping Cε has a zero in Bα

κ .

This zero ofCε produces aC1,α hypersurfaceMε which is the union of minimal
hypersurfaces and which hask+1 ends of catenoidal type. It is then a simple exercise
to see, thanks to regularity theory, thatMε is in fact aC∞ minimal hypersurface
with k + 1 ends of planar type.

Proof. Collecting the results of Proposition 5.2 and Proposition 8.2 together with
(9.1), we see that there existsκ0 > 0 such that, for allκ > 0, there existsε0
(depending onκ) such that the image ofBα

κ by C−1
0 (Cε − C0), is included inBα

κ0
.

Here we have also used the fact thatC0 is an isomorphism whose inverse is bounded
independently ofε.

To conclude, we want to use Schauder’s fixed point Theorem which will ensure
the existence of at least one fixed point ofC−1

0 (Cε − C0) and hence, at least one
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zero ofCε in Bα
κ , providedκ > κ0. However, sinceC−1

0 (Cε − C0) is not compact
it is not possible to apply directly Schauder’s Theorem. This is the reason why we
introduce a family of smoothing operatorsDq , for all q > 1, which satisfy for fixed
0 < α′ < α < 1

‖Dqf ‖C2,α(Sn−1) ≤ c0 ‖f ‖C2,α(Sn−1). (9.2)

and

‖f − Dqf ‖C2,α′ (Sn−1)
≤ c0 q

α′−α ‖f ‖C2,α(Sn−1). (9.3)

for some constantc0 > 0 which does not depend onq > 1. The existence of
such smoothing operators is available in [1]. To keep the notation short, we use
the same notation for the smoothing operator defined onC2,α(∂Br0) × R

2n+2 ×
πII (C2,α(Sn−1)) and acting on both function spaces.

Now we fix κ > c0 κ0. For all q > 1, we may apply Schauder’s fixed point
Theorem toDq C−1

0 (Cε−C0) to obtain the existence of(hq,Aq, hII ,q) fixed point
of Dq C−1

0 (Cε − C0) in Bα
κ , providedε is chosen small enough, sayε ∈ (0, ε0].

Since(hq,Aq, hII ,q) has norm bounded uniformly inq, we may extract a se-
quenceqj → +∞ such that(hqj ,Aqj , hII ,qj ) converges inC2,α′(∂Br0)×R

2n+2×
πII (C2,α′(Sn−1)) for some fixedα′ < α. Thanks to the continuity ofCε, C0 and
C−1

0 (with respect to theC2,α′ andC1,α′ topology) and also to (9.3), the limit of
this sequence is a fixed point of the mappingC−1

0 (Cε − C0) and hence, produces
a zero ofCε, for all ε ∈ (0, ε0]. This completes our proof.��

The induction process will then be complete once we will have proven thatMε

is nondegenerate for allε small enough.

9.3. Determination of the gluing region

As promised, we now comment the different choices ofsε, rε. From what we have
seen in Lemma 6.3, the modified hypersurface=ε is parameterized, near 0, by

x −→
(
x, u(x)+ ε

n− 2
r2−n + O(ε r4−n

))
. (9.4)

(In dimensionn = 3,4, an extra logr is needed in the last term of this expression
but this is irrelevant for the determination of the gluing region).

Now considerCε the image of then-catenoidC1 by the homothety of magnitude

ε
1

n−1 .After a suitable translation, the lower end of this catenoid can be parameterized
by

x −→
(
x,

ε

n− 2
r2−n + O(ε3 r4−3n)). (9.5)

Comparing (9.4) with (9.5) and using the fact thatu(x) = O(r2), we see that
the distance between the two hypersurfaces (measured along thexn+1 axis) can be
estimated by

O
(
r2 + ε r4−n + ε3 r4−3n

)
.
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(Again, logr term are needed for the second terms whenn = 3,4). It is easy to see
that this quantity is minimal forr ∼ ε3/(3n−2).

We are now in a position to justify the definitions (5.1). Indeed the parameters
sε andrε are chosen so that

rε = ε
1

n−1 φ(sε) ∼ ε
3

3n−2 .

Finally, we see that the distance between the two hypersurfaces measured along the
xn+1 axis is bounded by a constant timesr2

ε . This is the reason why in Sect. 5.1 and
in Sect. 8.1 we were just interested only in perturbing the boundary data by some
functionhII whose norm is bounded by a constantκ timesr2

ε , see (8.4). Looking
closely at (6.10), we see that, provided‖A‖ is bounded by a constantκ timesr2

ε ,
the geometric transformations associated toA only induce a perturbation on the
boundary of=ε,A which, up to some error which is bounded by a fixed constant
times r2

ε , is linear inA. This shows that it should be enough to chooseκ large
enough to obtain some solution to our problem.

10. Nondegeneracy of the solutions constructed

In this last section, we prove that the hypersurfaces we have obtained in Sect. 9
are nondegenerate, for allε small enough. In particular, this will imply that the
hypersurfaceMε belongs to a smooth(k+1) (n+1) dimensional family of minimal
hypersurfaces withk + 1 ends.

Starting with a hypersurfaceM which is nondegenerate, we wish to show that
the family of hypersurfacesMε constructed in the previous section are also nonde-
generate, providedε is small enough. The proof is by contradiction.

Assume that, for a sequenceεi tending to 0, the operatorLMεi
is not injective

onE2,α
δ (Mεi ), for someδ ∈ (−n+2

2 ,−n
2). If this is so, there exists, for eachi, some

nontrivial functionwi ∈ E2,α
δ (Mεi ) such thatLMεi

wi = 0.
By construction, we may decompose

Mεi ≡ Mr0(hi) ∪Nr0,εi (hi,Ai , hII ,i ) ∪ Cεi (hII ,i ),

Moreover, we may decomposeMr0(hi) into the union of a compact pieceMc
i

and k planar endsEi,1, . . . , Ei,k. We may also ask that, asi tends to+∞ the
different pieces of the decomposition ofMr0(hi) converge to the corresponding
decomposition forMr0 (the convergence being understood on compact regions of
Mr0) . We define on eachMεi some weight functionqi > 0, as follows:

• qi ∼ 1 onMc
i ,

• qi ∼ eδs on each endEi,1, . . . , Ei,k,
• qi ∼ r−δ in Nr0,εi (hεi ,Ai , hII ,i ),
• qi ∼ r−δ

εi
eδ(s−sεi ) in Cεi (hII ,i ),

wheref ∼ g means that 1/2 ≤ f/g ≤ 2.
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Finally, we define inM a weight functionq∞ > 0 such thatq∞ = eδs on each
endEi,1, . . . , Ei,k. Moreover, we can ask that, asi tends to+∞, the sequence of
functionsqi converges toq∞ uniformly on compact subsets ofM \ {0}.

Next, we normalize the sequencewi so that

sup
Mεi

q−1
i wi = 1.

The indicial roots ofLMεi
at each end are given by±γj . Hence any bounded solution

of LMεi
w = 0 which belongs to the spaceE2,α

δ (Mεi ) decays like− n+2
2 s at each end.

This implies that the above supremum is achieved (say at some pointpi ∈ Mεi ).
We now distinguish a few cases according to the behavior of the sequencepi .

Case 1. Assume that, up to a subsequence, the sequencepi converges to some
pointp∞ ∈ M \ {0}. Extracting some subsequences, if this is necessary, we find
that the sequencewi converges uniformly on any compact ofM \{0} to a nontrivial
solution of

LMw∞ = 0.

Moreover,w∞ is bounded by a constant timesq∞. In particular, this implies that
the singularity at 0 is removable. But, this is impossible thanks to the fact that we
have assumedM nondegenerate.

Case 2. Assume that, up to a subsequence, the sequence|pi | tends to+∞ and,
for example, thatpi ∈ Ej for some fixedj = 1, . . . , k. Then,pi corresponds to
some parameters(si, θi), with si → +∞. We consider the sequence of rescaled
functions

w̃i(s, θ) ≡ e−δsi wi(s + si, θ),

and up to a subsequence we may assume that this new sequence converges, uni-
formly on compact, to a nontrivial solution of

�0 w∞ = 0,

in all R× Sn−1. Moreover,w∞ is bounded byeδs . But this case is easy to rule out
sinceδ ∈ (−n+2

2 ,−n
2).

Case 3. Assume that, up to a subsequence, the sequencepi tends to 0 or belongs
to Cεi (hII ,i ). In this last case it seems that we would have to distinguish two sub-
cases according to whetherpi remains in the annular regionNr0,εi (hi,Ai , hII ,i )

or belongs to the truncatedn-catenoidCεi (hII ,i ). However, it is easy to see that
Nr0,εi (hi,Ai , hII ,i ) is a normal graph over the end of then- catenoidCε which has
been truncated. Hence, in either subcases, the pointpi corresponds to some param-
eters(si, θi) for then-catenoidCεi . In addition,si is less thansεi if pi belongs to
the annular regionNr0,εi (hi,Ai , hII ,i ) andsi is greater thansεi if pi belongs to the
truncatedn-catenoidCεi (hII ,i ).

Now, the main observation is that, the weight functionqi is designed in such
a way that, ifCεi (hII ,i ) is considered to be a normal graph over the truncated end
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of then-catenoidCε, thenqi ∼ rδεi e
δ(s−sεi ) here. Hence the two subcases can be

treated as one and we can consider the sequence of rescaled functions

w̃i(s, θ) ≡ rδεi e
δ(sεi−si ) wi(s + si, θ).

Up to a subsequence, we may assume that this new se quence converges either to
a nontrivial solution of

�0 w∞ = 0 on R × Sn−1,

if |si | tends to∞, or to a nontrivial solution of

Lw∞ = 0 on R × Sn−1,

if si converges tos∗ ∈ R. Moreover,w∞ is bounded by a constant timeseδs . Again,
this is not possible thanks to the choice ofδ.

We have ruled out every possible case, which is the desired contradiction. The
proof of the nondegeneracy is therefore complete.

Since we know thatMε are nondegenerate for allε small enough, we can apply
the inverse mapping theorem like in [8,4] or [11], to prove thatMε belongs to a
(k + 1) (n+ 1)-dimensional manifold of hypersurfaces withk + 1 planar ends.
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