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1 Dipartimento di Matematica, Università di Trento, 38050 Povo, Italy
(e-mail: andreatt@science.unitn.it)

2 Instytut Matematyki UW, Banacha 2, 02-097 Warszawa, Poland
(e-mail: jarekw@mimuw.edu.pl)

Oblatum 3-I-2001 & 26-VI-2001
Published online: 13 August 2001 –  Springer-Verlag 2001

Introduction

Let X be a complex projective manifold of dimension n and let E be a vec-
tor bundle of rank r, or equivalently a locally free OX-sheaf of rank r. The
bundle E is called ample if the relative hyperplane line bundle OP(E)(1)
over its projectivisation P(E) = ProjX(Sym(E)) is ample. We will assume
that E is a subsheaf of the tangent sheaf TX, that is there exists an injective
morphism E ↪→ TX. In this paper we will prove the following:

Theorem. If E is an ample locally free subsheaf of TX then X ∼= Pn and
E ∼= O(1)⊕r or E ∼= TPn.

The characterization of Pn as the only manifold whose tangent bundle
is ample was conjectured by R. Hartshorne. The Hartshorne conjecture was
proved by S. Mori in a celebrated paper [Mo], which contained an amazing
proof of the existence of rational curves on Fano manifolds. Building up on
Mori’s work a version of the present theorem was successively proved for
r = 1 and r = n, n − 1, n − 2 by J. Wahl [Wa] and, respectively, by
F. Campana and T. Peternell [C-P]. Moreover Campana and Peternell posed
a question with the above characterization of Pn which generalizes previous
results.

The proof of the main theorem will apply rational curves on X. Our
notation is consistent with the book of J. Kollár ([Ko]). In particular
Hom(P1, X) denotes the scheme parameterizing morphisms from P1 to
X and Hom(P1, X; 0 → x) the scheme parameterizing morphisms sending
0 ∈ P1 to x ∈ X. By F : Hom(P1, X)× P1 → X we denote the evaluation
morphism F( f, p) = f(p). For any family of morphisms V ⊂ Hom(P1, X)
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by FV we denote the restriction of F to V and by Locus(V ) the closure of
the image of FV . We say that V is unsplit if the image of V in Chow(X),
via the natural morphism [ f ] 
→ [ f(P1)], is proper.

If G is a vector bundle over P1 with G+ we denote its positive part, that
is the sub-bundle [im(H0(G(−1))⊗ O → G(−1)] ⊗ O(1).

Prologue

Let X and E be as in the introduction: we therefore assume that E is ample
and moreover of rank r > 1, as the case r = 1 is set by Wahl’s result.

By a theorem of Y. Miyaoka (see [Mi] or [K-al], (9.0.2)) X is uniruled.
So we can choose a closed irreducible component V ⊂ Hom(P1, X) which
covers X (that is Locus(V) = X) and which is a generically unsplit family
(see [Ko], IV. 2.4). Moreover for a general f ∈ V we have f ∗TX =
O(2) ⊕ O(1)⊕d ⊕ O⊕(n−d−1) where d = deg( f ∗(−KX)) − 2, see ([Ko],
IV 2.8, 2.9 and 2.10).

Lemma (0.1). For any f ∈ V the pull-back f ∗E is isomorphic either
to O(1)⊕r or to O(2) ⊕ O(1)⊕(r−1). In particular the family of curves
parametrized by V is unsplit.

Proof. For a general f ∈ V the pull-back f ∗E is an ample subbundle of
f ∗TX = O(2) ⊕ O(1)⊕(d) ⊕ O⊕(n−d−1) and thus it is as in the lemma.
Since E is ample this is true also for all f ∈ V . Since deg( f ∗E) = r or
deg( f ∗E) = r + 1 and r > 1, and for any ample bundle E over a rational
curve we have deg(E) ≥ rank(E), it follows that no curve from V can be
split into a sum of two or more rational curves, hence V is unsplit.

The family V defines a relation of rational connectedness with re-
spect to V , which we shall call rcV relation for short, in the following
way: x1, x2 ∈ X are in the rcV relation if there exists a chain of ra-
tional curves parametrized by morphisms from V which joins x1 and x2.
The rcV relation is an equivalence relation and its equivalence classes can
be parametrized generically by an algebraic set. More precisely, we have
the following result due to Campana [Ca] and, independently, to Kollár-
Miyaoka-Mori [KMM2].

Theorem (0.2). (see [Ko], IV.4.16). There exist an open subset X0 ⊂ X
and a proper surjective morphism with connected fibers ϕ0 : X0 → Z0 onto
a normal variety, such that the fibers of ϕ0 are equivalence classes of the
rcV relation.

We shall call the morphism ϕ0 an rcV fibration. If Z0 is just a point
then we will call X a rationally connected manifold with the respect to the
family V , in short an rcV manifold. In what follows we shall analyze X
using the notions of rcV relation and rcV fibration. The key is the following
observation.
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Lemma (0.3). Let X, E and V be as above and moreover assume that
ϕ0 : X0 → Z0 is an rcV fibration. Then E is tangent to a general fiber of ϕ0.
That is, if Xg is a general fiber ofϕ0 , then the injection E|Xg → TX |Xg factors
through TXg, that is we have injection E|Xg ↪→ TXg.

Proof. Choose a general Xg (in particular smooth) and let moreover x ∈ Xg

and f ∈ Vx = V ∩ Hom(P1, X; 0 → x) be general as well. Then
Locus(Vx) ⊂ Xg and thus, by [Ko] II.3.4, ( f ∗TX)+p ⊂ ( f ∗TXg)p for every
p ∈ P1 \ {0}. This implies that E|Xg → TX |Xg factors to E|Xg → TXg
generically and since the map TXg → TX |Xg has cokernel which is torsion
free (it is the normal sheaf which is locally free) this yields E|Xg ↪→ TXg,
a sheaf injection.

The argument for the proof of the main theorem will go as follows.
First we assume that X is a rcV manifold and for f ∈ V the pullback
f ∗E is either O(1)⊕r or O(2) ⊕ O(1)⊕(r−1) and we prove that X ∼= Pn

and E ∼= O(1)⊕r or E ∼= TPn, respectively. This is taken care of in the
two subsequent sections: these two cases are reduced to Wahl’s and Mori’s
theorems, respectively. In the last section we assume that the rcV fibration
is non-trivial: then we prove that it can be extended in codimension 1 so
that we can produce a projective bundle X B → B over a smooth curve B
with an ample vector bundle EB ↪→ TX B/B. This is impossible, as observed
by Campana and Peternell.

Trivial projective bundles over rcV manifolds

In this section we assume that X is a smooth projective manifold which is
rationally connected with respect to an unsplit family V of rational curves
(rcV manifold). We let E be a rank r vector bundle on X. We begin by
observing some general facts.

Proposition (1.1). Let X be a projective manifold and V ⊂ Hom(P1, X)
an unsplit family of rational curves whose locus is the whole X. Then X is
a rcV manifold if and only if the Picard number ρ(X) is 1.

Proof. The “only if” part follows, for instance, from IV. 3.13.3 in [Ko] and
the assumption on the unsplitteness of the family V . Note that this part is
true even if X is not smooth. The “if” part (which will not be needed in the
paper) is proved in [KMM1]. (For other similar results see also [K-S]).

Let us note that rationally connectedness and ρ(X) = 1 imply that X is
Fano, so in fact PicX = Z. The following result concerns vector bundles of
higher rank.

Proposition (1.2). In the above notation suppose moreover that there exists
an integer a such that for any f ∈ V we have f ∗E = O(a)⊕r . Then there
exists a (uniquely defined) line bundle L over X such that deg f ∗L = a
and E ∼= L⊕r .
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Proof. The argument applies induction with respect to r. Let us consider
the projectivisation p : P(E) → X with the relative O(1) bundle which we
will denote by L. We note that for any f ∈ V and y ∈ p−1( f(0)) we have
a unique lift-up f̂ : P1 → P(E) such that p ◦ f̂ = f and deg( f̂ ∗(L)) = a,
and f̂ (0) = y. That is, since P( f ∗E) = P1 × Pr−1, the morphism f̂ is ob-
tained by composing P( f ∗ E) → P(E)with the morphism P1 → P1×{y} ⊂
P1 × Pr−1. Thus, for a generic f we have f̂ ∗TP(E) = f ∗TX ⊕ O⊕(r−1).
We can choose an irreducible V̂ ⊂ Hom(P1,P(E)) which parameterizes
these lift-ups, that is, via the natural morphism p∗ : Hom(P1,P(E)) →
Hom(P1, X), defined by p∗( f̂ ) = p ◦ f̂ , the component V̂ dominates V .

Claim (1.2.1). The morphism p∗ : V̂ → V is proper and thus surjective,
moreover V̂ is an unsplit family.

Proof. We use valuative criterion of properness [Hartshorne, II.4.7]. Let ∆
be a spectrum of a discrete valuation ring (or a germ of a smooth curve in the
analytic context) with a closed point δ and the general point ∆0. Then for
any family of morphims F∆ : ∆ × P1 → X coming from ∆ → V we have
P(F∗

∆(E)) = ∆×P1×Pr−1. Take now F̂∆0 : ∆0×P1 → P(E), coming from
a lift-up ∆0 → V̂ of ∆ → V . By the construction F̂∆0 is the composition of
P(F∗

∆(E)) → P(E)with the product id×ψ0 : ∆0×P1 → (∆0×P1)×Pr−1,
for some ψ0 : ∆0 → Pr−1. The morphism ψ0 extends to ψ : ∆ → Pr−1,
thus F̂∆0 extends to F̂∆ which is the composition of P(F∗

∆(E)) → P(E)
with the product id × ψ, hence p∗ is proper.

The proof of unsplitting of V̂ is similar. Namely let W and Ŵ denote
the image of V and V̂ in Chow(X) and Chow(P(E)), respectively. Let
p∗ : Ŵ → W denote, by abuse of notation, the push-forward map. Similarly
as above we prove that p∗ is proper. Therefore Ŵ is proper and V̂ is unsplit.

To proceed with the proof of the proposition let us consider the rcV̂ fibration
of P(E). Let Y ⊂ P(E) be a general fiber of this fibration. It is projective
and smooth, and by the Proposition (1.1) ρ(Y ) = 1. By the surjectivity
of p∗ : V̂ → V and rational connectedness of X, the restriction map
pY : Y → X is surjective and, sinceρ(Y ) = 1, it has no positive dimensional
fiber, so it is a finite morphism. Moreover, the restriction of L to Y , call it LY ,
has intersection equal a with any curve from Ṽ = V̂ ∩ Hom(P1,Y ).

Let us consider the pull-back p̃ : P(p∗
Y E) → Y with the induced

morphism p̃Y : P(p∗
Y E) → P(E) such that p ◦ p̃Y = pY ◦ p̃. By the uni-

versal property of the fiber product the projective bundle p̃ admits a section
s : Y → P(p∗

Y E) such that p̃Y ◦ s is the embedding of Y into P(E). This
gives us a sequence of bundles over Y :

0 −→ E ′ −→ p∗
Y (E) −→ LY −→ 0

where E ′ is a bundle of rank r − 1 and over Y it satisfies the required
assumptions with respect to the family Ṽ . Thus, by the inductive assumption,
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E ′ ∼= L⊕(r−1)
Y . But because Y is Fano, H1(Y,OY ) = 0 and thus the above

sequence of vector bundles splits; therefore p∗
Y (E) ∼= L⊕r

Y .
Now we shall be done by the following.

Lemma (1.2.2). Let X be a Fano manifold with p : P(E) → X a projec-
tivisation of a rank r bundle. Suppose that Ψ : Y → X is a finite morphism.
If P(Ψ∗(E)) ∼= Y × Pr−1 then P(E) ∼= X × Pr−1.

Proof. By L let us denote the relative O(1) over P(E). We claim that
rL − p∗detE is nef and (rL − p∗detE)r = 0 over P(E). This follows
because the pull-back of rL − p∗detE to P(Ψ∗(E)) has these features. By
the same reason rL − p∗(detE + KX ) = −KP(E) is ample and therefore
P(E) is a Fano manifold and by Kawamata-Shokurov base-point-freeness
rL− p∗detE defines a contraction, ϕ : P(E) → Z, onto a normal projective
variety of dimension r − 1. Any fiber of ϕ is mapped, via p, surjectively
onto X, with no positive dimensional fiber. Let T be a general fiber of ϕ.
Then, T is smooth and by adjunction we find out that

KT = (KP(E))|T = (p∗ KX + (p∗(detE)− rL))|T = (p∗ KX )|T

and therefore the restriction p|T : T → X is unramified. Since X, being
Fano, is simply-connected, it follows that T is a section of p. Thus we
conclude that Z ∼= Pr−1 and P(E) ∼= X × Pr−1.

As an immediate consequence we get the following

Proposition (1.3). Let X be a rationally connected manifold with respect
to an unsplit family V and let E be an ample vector bundle on X which is
a subsheaf of TX. If deg( f ∗E) = rank(E) for some (hence for any) f ∈ V,
then X ∼= Pn and E ∼= O(1)⊕r .

Proof. By the above splitting result (Proposition (1.2)) we reduce the situ-
ation to the case r = 1, that is the Wahl’s theorem (in the special case of
ρ(X) = 1).

Tangent cone to a family of curves

Let X be a smooth projective variety and V ⊂ Hom(P1, X), a closed
irreducible component as before; assume that V is generically unsplit so
that for a general [ f ] ∈ V we have f ∗TX = O(2)⊕O(1)⊕(d)⊕O⊕(n−d−1);
in particular for a general [ f ] the map f is an immersion.

Fix a general x ∈ X and consider Vx := V ∩ Hom(P1, X; 0 
→ x).
Let t be a local coordinate around 0 ∈ P1. Consider a derivative map
Φx : Vx → P(Tx X) = P(( f ∗TX)0) which is defined at [ f ] ∈ Vx , if f is an
immersion at 0, by Φx([ f ]) = [(T f )0(∂/∂t)], c.f. [Mori79, pp. 602–603].
In the formula T f : TP1 → f ∗TX is the tangent map and Tx X is identified
naturally, via f ∗, with ( f ∗TX)0.
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By P we denote the “natural projectivisation” (that is vector spaces
modulo homotheties) in opposition to “Grothendieck projectivisation” (that
is projective spectrum of the symmetric algebra of a vector space) which we
denote by P. Using the latter formalism the map Φx is the value over 0 of
the natural section of P( f ∗ΩX ) obtained by the surjective (at 0) morphism
of derivatives: D f : f ∗ΩX −→ ΩP1 ∼= O(−2).

We define Sx ⊂ P(Tx X) as the closure of the image of the map Φx and
we call it tangent cone of curves from V at the point x. J.-M. Hwang and
N. Mok call this variety of minimal rational tangents [H-M]. The name of
tangent cone follows from the fact that Sx is (at least around [ f ]) the tangent
cone to Locus(Vx). Indeed, let π : X̂x → X be the blow-up of X at x with the
exceptional divisor Ex = P(Tx X). Consider f̂ : P1 → Ĉ ⊂ X̂x , the lift-up
of f , then f̂ ∗(T X̂x) = O(2)⊕O⊕(d)⊕O(−1)⊕(n−d−1). Thus Hom(P1, X̂x)

is smooth at [ f̂ ] and of dimension d + 3. Moreover, by [Ko], II.3.4, the
evaluation morphism F̂ : Hom(P1, X̂x)× P1 → X̂x is an immersion along
[ f̂ ] × P1 and moreover, by definition, F̂([ f̂ ], 0) = Φx([ f ]). On the other
hand if we take an irreducible component V̂ of Hom(P1, X̂x)which contains
[ f̂ ] then Locus(V̂ ) outside of Ex coincides with a component of Locus(Vx).

Thus around Φx ([ f ])we get Sx = Ex∩ ˜Locus(Vx), with ˜Locus(Vx) denoting
the strict transform of Locus(Vx), so Sx is the tangent cone to Locus(Vx).

For our purposes we need the following observation which follows from
the above discussion (see also [Hw], Proposition (2.3)).

Lemma (2.1). The projectivised tangent space of the tangent cone Sx at
Φx([ f ]) is equal to P(( f ∗TX)+0 ) ⊂ P(( f ∗TX)0) = P(Tx X).

Proof. By [Ko] II.3.4 the tangent space to Locus(Vx) at f(p) for p �= 0 is
the image of the evaluation of sections of the twisted pull-back of TX which
is Im(T F̂)p = ( f ∗TX)+p ⊂ ( f ∗TX)p = T f(p)X. Thus passing with p to 0
we get the result.

Lemma (2.2). Let V ⊂ Hom(P1, X) be as above and moreover suppose
that E ↪→ TX is a reflexive subsheaf with a torsionfree cokernel. If for
a general [ f ] ∈ V the tangent map T f : TP1 → f ∗TX factors to an
injection TP1 ↪→ f ∗E , then ( f ∗TX)+ ↪→ f ∗E .

Proof. We choose a general f which is an immersion at 0 → x. Then
Φx([ f ]) ∈ P(E x) = P(( f ∗E )0) ⊂ P(Tx X) = P(( f ∗TX)0) and the same
holds for morphisms in a neighborhood of [ f ] in Vx . Thus around Φx([ f ])
the tangent cone Sx is contained in P(E x) = P(( f ∗E )0), so is its tangent
space P(( f ∗TX)+0 ).

Now we use the Lemma (2.2) to conclude the case f ∗E ∼= O(2) ⊕
O(1)r−1 which we have singled out in our preliminary discussion. In view
of Mori result we will be done by the following
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Proposition (2.3). Let X be a manifold which is rationally connected with
respect to some unsplit family V ⊂ Hom(P1, X). Assume that E is an
ample vector bundle admitting a sheaf injection E → TX and for a general
[ f ] ∈ V we have f ∗E ∼= O(2)⊕ O(1)r−1. Then E ∼= TX.

Proof. Comparing the splitting type of f ∗E and f ∗TX we see that the
tangent map T f : TP1 → f ∗TX factors to a vector bundle (nowhere
degenerate) injection TP1 → f ∗E. In other words, we have surjective
morphism ( f ∗E)∗ → ΩP1 ∼= O(−2). Thus the values of Φ f(p) at any point
p ∈ P1 are in P(E). This holds also for small deformations of the morphism
f at any point p ∈ P1 and therefore (the component of) tangent cone S f(p)
is contained in P(E f(p)). Thus, in view of the previous lemma, we have the
inclusion ( f ∗TX)+ ⊂ f ∗E and hence, by the splitting type of f ∗TX, we
conclude that f ∗E = ( f ∗TX)+ and therefore deg( f ∗E) = deg( f ∗(−KX )).
Since ρ(X) = 1 it follows that det(E) = −KX .

The embedding E ↪→ TX gives rise to a non-trivial morphism det(E) →
Λr TX and thus to a non-zero section of Λr TX ⊗ KX . We use dualities to
have the equalities:

h0(X,Λr TX ⊗ KX ) = hn(X,Ωr
X) = hr(X,Ωn

X )

= hr(X, KX ) = hn−r(X,OX )

and, since X is Fano, the latter number is non-zero only if r = n. Thus
Λr TX ⊗ (detE)−1 ∼= OX so E ↪→ TX is nowhere degenerate, hence an
isomorphism.

Extending rcV fibrations in codimension 1

Let X, E be as in the main theorem; let V be the unsplit family and
ϕ0 : X0 → Z0 be the rcV fibration defined in the prologue. In this section
we assume that dim Z0 ≥ 1 and we see that this will lead to a contradiction.

A general fiber of ϕ0, call it Xg, is rationally connected and, as we have
proved in Lemma (0.3), E is tangent to Xg , that is the injection EX → TX Xg

factors to EXg → TXg.
By the result of the previous sections Xg is isomorphic to Pk and EXg is

either TXg = TPk or O(1)⊕r . We can shrink Z0 and X0 so thatϕ0 : X0 → Z0

is a projective space bundle in étale or analytic topology.
Take now Z̃ an irreducible component of Hilb(X) which contains the

point corresponding to a general fiber Xg. Over Z̃ there exists a universal
flat family X̃ ⊂ Z̃ × X with projections ϕ̃ : X̃ → Z̃ and β̃ : X̃ → X. The
family X̃ → Z̃ extends X0 → Z0, that is we have an inclusion X0 ↪→ X̃
and Z0 ↪→ Z̃ such that ϕ̃ extends ϕ0.

Lemma (3.1). For any z ∈ Z̃ the fiber X̃z := ϕ̃−1(z) is irreducible.
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Proof. This follows from the fact that any two points in X̃z can be joint
by an irreducible curve parametrized by a morphism from V . Indeed, take
x1, x2 ∈ X̃z , then there exists a 1-parameter family of Xt

∼= Pk whose limit
is X̃z with points xt

1, xt
2 ∈ Xt whose limits are x1 and x2, respectively. Now

xt
1 can be joint with xt

2 by a line Ct parametrized by a [ ft] ∈ V . Since V is
unsplit the limit curve is irreducible and the claim follows.

The morphism β̃ is birational with exceptional Locus E(β̃) which is of
codimension 1, by Zariski main theorem. If we set X∗ = X̃ \ E(β̃) then,
via β̃, we have inclusion X∗ ⊂ X and X \ X∗ is of codimension ≥ 2. Let ϕ∗
be the restriction of ϕ̃ to X∗ and let Z∗ = ϕ∗(X∗).

Lemma (3.2). The morphism ϕ∗ : X∗ → Z∗ is proper.

Proof. Since ϕ̃ is proper, it is enough to show that if E(β) meets a fiber
of ϕ̃ then it contains all such a fiber. Let E(β) = ⋃

Ei be a decomposition
into irreducible components. Since ϕ̃ extends ϕ0 defined on a subset of
X it follows that none of Ei meets a generic fiber of ϕ̃ so dim(ϕ̃(Ei)) ≤
dim Z − 1 = n − k − 1. As the dimension of any fiber of ϕ̃|Ei is ≤ k it
follows that, actually, all fibers of ϕ̃|Ei are of dimension k. But all fibers of
ϕ̃ are irreducible and of dimension k, hence our claim.

Let ϕ̂ : X̂ → Ẑ be the normalization of ϕ̃ : X̃ → Z̃, with the induced
morphism β̂ : X̂ → X. Since X∗ ⊂ X̃ is smooth it lifts up to X∗ ⊂ X̂. The
restriction ϕ̂ to X∗, call it ϕ̂∗, is proper and call its image Ẑ∗.

Lemma (3.4). Outside a subset of codimension ≥ 2 the morphism ϕ̂∗ is
a Pk-bundle (in the analytic topology).

Proof. This is a result of Fujita. Let B be a curve obtained by intersection of
dim Z − 1 general very ample divisor on Ẑ and let B∗ = B ∩ Ẑ∗. By Bertini
B∗ is smooth and X∗

B = (ϕ̂∗)−1(B) ∩ X∗ is smooth as well. Moreover, the
induced morphism ϕ̂B : X∗

B → B∗ is generically projective bundle, so it
is a projective bundle by [Fu], Lemma (2.12). Thus, by Bertini, outside of
codimension ≥ 2 the morphism ϕ̂∗ is smooth and with fibers equal to Pk.

Let ϕ′ : X ′ → Z ′ be the restriction of ϕ̂ which is a Pk-bundle. By the
above lemmas the codimension of X \ X ′ is ≥ 2 and therefore we can
take a general smooth projective curve B′ in X which is contained in X ′
and is not contained in fibers of ϕ′. Then B = ϕ′(B′) is projective and
contained in Z ′, and since our choice was general it is moreover smooth.
Let X B = (ϕ′)−1(B). Again, by the generality of the choice we can assume
that E|X B → TX |X B is a subsheaf inclusion which is generically of maximal
rank.

Lemma (3.5). In the above notation E|X B is a locally free subsheaf of TX B /B.
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Proof. The vector bundle E is tangent to a general fiber of ϕ0, as proved in
the Lemma (0.3). Therefore the sheaf inclusion E|X B ↪→ TX |X B generically
factors via E|X B → TX B/B. Since the cokernel of the composition TX B/B →
TX B → TX |X B is torsion free (it is actually locally free) the inclusion
E|X B ↪→ TX B/B over X B follows.

Conclusion. We arrive to a contradiction by applying the following result,
which is due to Campana and Peternell, to the Pk bundle f ∗ : X B → B and
to the ample vector bundle E|X B .

Lemma. ([C-P], Lemma (1.2)) Let X be a n-dimensional projective mani-
fold, ϕ : X → Y a Pk bundle (k < n) of the form X = P(V ) with a vector
bundle V on Y. Then the relative tangent sheaf TX/Y does not contain an
ample locally free subsheaf.
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Astérisque 211 (1992)

[KMM1] Kollár, J., Miyaoka, Y., Mori, Sh., Rational curves on Fano varieties, in: Proc.
Alg. Geom. Conf., Trento 1990, Springer LNM 1515 (1992), 100–105

[KMM2] Kollár, J., Miyaoka, Y., Mori, Sh., Rationally connected varieties, J. Alg. Geom. 1
(1992), 429–448

[Mi] Miyaoka, Y., The Chern classes and Kodaira dimension of a minimal variety, in:
Algebraic Geometry, Sendai 1985, Adv. Stud. Pure Math. 10 (1987), 449–476

[Mo] Mori, S., Projective manifolds with ample tangent bundles, Ann. Math. 110
(1979), 593–606

[Wa] Wahl, J., A cohomological characterization of Pn , Invent. math. 72 (1983),
315–322


