
&p.1:Abstract To study the role of the basal ganglia in learn-
ing of sequential movements, we trained two monkeys to
perform a sequential button-press task (2×5 task). This
task enabled us to examine the process of learning new
sequences as well as the execution of well-learned se-
quences repeatedly. We injected muscimol (a GABA ag-
onist) into different parts of the striatum to inactivate the
local neural activity reversibly. The learning of new se-
quences became deficient after injections in the anterior
caudate and putamen, but not the middle-posterior puta-
men. The execution of well-learned sequences was dis-
rupted after injections in the middle-posterior putamen
and, less severely, after injections in the anterior cau-
date/putamen. These results suggest that the anterior and
posterior portions of the striatum participate in different
aspects of learning of sequential movements.

&kwd:Key words Procedural learning · Basal ganglia ·
Caudate · Putamen · Muscimol · Monkey&bdy:

Introduction

The role of the basal ganglia in learning has been sug-
gested by recent experimental studies. They include clas-
sical conditioning (Graybiel et al. 1994), reinforcement
learning (Dunnett and Iversen 1982; Schultz and Romo
1990; Robbins and Everitt 1996), and procedural or im-
plicit learning (Butters et al. 1985; Squire 1986; Saint-

Cyr et al. 1988; Knopman and Nissen 1991; Knowlton et
al. 1996). Cellular mechanisms have been proposed that
might underlie these types of learning (Calabresi et al.
1996). Such experimental findings have stimulated theo-
retical approaches to formulate functional models of the
basal ganglia (Dominey et al. 1995; Hikosaka 1994;
Houk, et al. 1995).

We have been studying learning of sequential hand
movements by training monkeys on a sequential button-
press task, called the “2×5 task” (Hikosaka et al. 1995a).
Our previous behavioral analysis suggested that learning
proceeded at different levels: short-term sequence-selec-
tive, long-term sequence-selective, and long-term se-
quence-unselective processes. As the learning of a given
sequence reached the long-term stage, the performance
became extremely skillful, with anticipatory eye and
hand movements, but on the other hand became less flex-
ible (e.g., less likely to be transferred to the other hand;
Miyashita et al. 1996). These results suggested that the
neural systems necessary for short-term learning of new
sequences (learning mechanism) may be separate from
the neural systems for the storage or retrieval of long-
term memories (memory mechanism).

This hypothesis led us to a prediction that can be test-
ed experimentally: a selective lesion of the learning
mechanism would produce a difficulty in learning of new
sequences, while leaving the performance of well-
learned sequences intact; a selective lesion of the memo-
ry mechanism would produce a difficulty in performing
well-learned sequences, while leaving the new learning
intact.

The 2×5 task was ideal for this experiment because
we can generate a practically unlimited number of new
sequences. Instead of lesioning, we injected muscimol (a
GABA agonist) to block the local neural activity revers-
ibly. These experimental procedures allowed us to exam-
ine the functions of different parts of the basal ganglia
repeatedly in the same animal.
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Materials and methods

This study was performed using two male Japanese monkeys (Ma-
caca fuscata): monkey PI and monkey ME (8–9 kg). They were
kept in individual primate cages in an air-conditioned room where
food was always available. They were carried to the experimental
room in a primate chair before each experimental session. The
monkeys were given a restricted amount of fluid during training
and experiments. Their health conditions such as body weight and
appetite were checked daily. Supplementary water and fruit were
provided daily. Animal care and experiments were in accordance
with Principles of laboratory animal care(NIH publication No.
86–23, revised 1985).

Surgical procedures

A head holder and a chamber for unit recording and drug injection
were implanted under surgical procedures. The monkey was sedat-
ed with ketamine (4.6–6.0 mg/kg) and xylazine (1.8–2.4 mg/kg)
intramuscularly and then general anesthesia was induced by intra-
venous injection of pentobarbital sodium (4.5–6.0 mg/kg per
hour). Surgical procedures were conducted in aseptic conditions in
an operating room.

For muscimol injection, Teflon-made guide tubes (diameter
0.85 mm) were implanted toward the striatum and fixed to the
skull using dental acrylic resin. The operation was performed un-
der anesthesia with ketamine and xylazine. The locations of the
guide tubes were determined on the basis of magnetic resonance
(MR) images (Hitachi Laboratory MRIS, 2.11 T), using the proce-
dure described by Kato et al. (1995), and were confirmed by sin-
gle-unit recording. The guide tubes were directed to the striatum
(caudate and putamen, left and right) at three anteroposterior lev-
els (6 mm anterior, 2 mm anterior, and 2 mm posterior to the ante-
rior commissure). The results of the unit recording were also used
to determine the depths of muscimol injections.

Apparatus

The monkey sat in a primate chair facing a black panel on which
16 light-emitting diode (LED) buttons were mounted in a 4×4
matrix. At the bottom of the panel was another LED button,
which was used as a home key. To have the monkey use only one
hand for button press, a vertical Plexiglas plate was attached to
the chair between the panel and the hand not being used. To
change the hand for use, the plate was placed on the other side.
The animal’s head was fixed with a head holder connected to the
primate chair.

Behavioral paradigm

As described in detail in a previous paper (Hikosaka et al. 1995a),
the monkeys were trained to perform a sequential button-press
task, called the 2×5 task. Figure 1A shows an example of the se-
quence of events in a single task trial. At the start of a trial, the
home key turned on. When the animal pressed the home key for
500 ms, two of the 16 target LED buttons turned on simultaneous-
ly, which we call “set”. The animal had to press the illuminated
buttons in the correct (predetermined) order, which he had to find
out by trial and error. If successful, the illumination of the buttons
turned off and another pair of LED buttons, a second set, was illu-
minated, which the monkey had to press again in the predeter-
mined order. A total of five sets were presented in a fixed order for
completion of a trial, which we call “hyperset”. When the animal
pressed a wrong button in any set, the trial was aborted and the an-
imal then had to start again from the home key as a new trial. The
same hyperset was used throughout a block of experiments until
the monkey completed ten cumulative, successful trials (Fig. 1B);
a different hyperset was used for the next block. After each suc-
cessful set, a fluid reward was delivered. To encourage the monkey

to complete the whole hyperset, the amount of reward was in-
creased gradually from the first to the final set.

Experimental procedures

In order to examine the mechanism of long-term storage of proce-
dural memories and their retrieval, it was crucial for the monkeys
to have acquired long-term memories for sequential movements
before the injection experiments. For this purpose, we chose some
hypersets as “learned hypersets” such that the monkeys performed
these hypersets almost every day for more than 3 months (number
of learned hypersets: 28 for monkey PI, 16 for monkey ME). In
consequence, the monkeys performed the learned hypersets very
skillfully, with few errors (Fig. 1B, left). In daily training sessions,
the monkeys performed 20–40 hypersets containing the learned
hypersets and, in addition, “new hypersets”, which the monkey ex-
perienced for the first time. Note that as many new hypersets as
necessary could be generated by having the computer generate
random numbers. For each new hyperset, the monkeys learned the
correct sequence by trial and error, which was quite different from
the learned hypersets (Fig. 1B, right).

We injected muscimol solution in saline (5µg/µl, except for
one case using 10µg/µl) to block the neural activities. Usually
multiple injections of muscimol were administered (bilateral, two
or four sites). The solution of 1µl was injected for each site at a
rate of 0.2µl/min.

After the muscimol injection (within 200 min), we collected
data by asking the monkey to perform learned and new hypersets
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Fig. 1 A An example of “hyperset” in the 2×5 task. To complete a
trial, the monkey had to press ten buttons (two buttons × five sets)
in a correct (predetermined) order. B An example of a block of
practice trials using a learned hyperset (left) and a new hyperset
(right; monkey ME). The numbers of completed sets (ordinate)
are shown for consecutive trials (abscissa). In the learned hyper-
set, the monkey completed the block (ten successful trials) with no
error. In the new hyperset, the same monkey made errors initially
at the third or fourth set, but the number of completed sets in-
creased gradually. Thus, the monkey made 12 errors before com-
pleting the block. Before the injection experiments, the monkeys
had performed learned hypersets almost every day for more than 3
months. New hypersets were used only once (for one block) and
had never been used previously&/fig.c:



as in the daily training session. The number of hypersets examined
was usually 20–30 for learned hypersets and 5–10 for new hyper-
sets, depending on the efficiency of the monkey’s performance.

For control experiments, the same amount of saline was inject-
ed at the same sites as used for the muscimol injections (a and b, g
and k, or g in Fig. 2A). There was no indication that the monkeys’
performances changed after any of the saline injections. Therefore,
the data for all of the saline injection experiments were grouped
and used as control data.

Data analysis

The muscimol injections were classified into three groups based
on their locations: (1) anterior caudate and putamen, (2) middle-
posterior putamen, and (3) middle-posterior caudate. This classifi-
cation was substantiated by the within-group similarities of the in-
jection effects.

The parameter we analyzed in the present study was the num-
ber of errors before the monkey completed ten cumulative, suc-
cessful trials. Only the errors due to pressing the buttons in the in-
correct order were included; other types of errors such as pressing
of a non-illuminated button were excluded. For each of the three
groups of injection, the numbers of errors obtained for different
hypersets were averaged separately for learned hypersets and new
hypersets. The averaged value for each group was then compared
with the averaged value obtained in the control (saline) injections
using the Mann-Whitney U-test.

Histological reconstruction

One of the monkeys (monkey PI) was killed at the end of the se-
ries of experiments under deep pentobarbital anesthesia and was
perfused with formaldehyde through the heart. The brain was
blocked for coronal sectioning, fixed in formaldehyde, and dehy-
drated in aqueous sucrose solution. Frozen sections (50µm thick)
were made and stained with cresyl violet, and the tracks of injec-
tion tubes were reconstructed. Injection sites were estimated based
on the tracks and electrophysiological mapping (see Fig. 2A). The
results were consistent with the estimation based on MRI inspec-
tion.

Results

In the control experiments in which saline was injected
into the striatum, the mean number of errors before com-
pleting ten cumulative, successful trials was much small-
er for learned hypersets than that for new hypersets
(mean, 0.3 and 16.9 for monkey PI; 0.3 and 10.0 for
monkey ME, respectively).

The number of errors for new hypersets increased sig-
nificantly after muscimol injections into the anterior cau-
date and putamen (mean, 37.4 for monkey PI, P<0.005;
21.6 for monkey ME, P<0.005), but not after injections
into the middle-posterior putamen (mean, 20.9 for mon-
key PI, P>0.05; 13.0 for monkey ME, P>0.05).

The number of errors for learned hypersets increased
after anterior caudate and putamen and middle-posterior
putamen injections, but the deficits were more severe for
the latter (mean, 3.0 for monkey PI, P<0.005; 2.2 for
monkey ME, P<0.005) than for the former (mean, 2.5 for
monkey PI, P<0.05; 1.0 for monkey ME, P<0.05).

These results suggest that the anterior caudate/puta-
men preferentially contributes to the process of learning
(learning mechanism) although it contributes, to some
degree, to the execution of well-learned sequences
(memory mechanism). In contrast, the middle-posterior
putamen participates in the memory mechanism, but not
in the learning mechanism.

The blockade of middle and posterior caudate (tested
in monkey PI) produced no significant changes in the
number of errors for learned hypersets and new hyper-
sets.

Discussion

When a new hyperset was presented, the monkey had to
find out the correct sequence by trial and error. With re-
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Fig. 2 A Sites of muscimol injection in monkey PI at three antero-
posterior levels, which were 6 mm anterior, 2 mm anterior, and
2 mm posterior to the anterior commissure (AC). A total of 23 ex-
periments (muscimol injections) were carried out. Injections were
bilateral for all experiments with the following combinations: a
(n = 4), b (n = 1), a and b (n = 1), c (n = 1), d (n = 1), f (n = 1), g
(n = 3), i (n = 1), g and k (n = 2), h and l (n = 1), e (n = 2), j (n = 3),
e and j (n = 2), where n is the number of experiments). These injec-
tion sites were classified into three groups: anterior caudate and
putamen (ANT; crosses); middle and posterior putamen (PUT;
filled circles); middle and posterior caudate (CD; open circles). In-
jections in monkey ME were made at analogous positions: a and b
(n = 4), g and l (n = 4), as determined by MRI inspection. B Aver-
aged numbers of errors (mean, SD) for each of the three muscimol
injection groups (two groups for monkey ME) and a saline injec-
tion group (Cont). The data were calculated for learned hypersets
and new hypersets separately. Each of the post-muscimol data were
compared with the postsaline data (Mann-Whitney U-test); signifi-
cant differences are indicated by **P < 0.005 and *P < 0.05. Note
that the scale of the ordinate is different between new hypersets and
learned hypersets. (n number of blocks, NT not tested)&/fig.c:



peated practice of particular hypersets for several weeks,
the monkeys’ performance for these hypersets became
very skillful and the skill was retained for a long time
without further practice (Hikosaka et al. 1996a; Miya-
shita et al. 1996). Therefore it is reasonable to suppose
that there would be different mechanisms for learning of
new sequences and for execution of well-learned se-
quences.

We actually found that the local functional blockade
of different portions of the monkey striatum induced dif-
ferent effects on learning and execution of sequential
movements: performances in learning of new hypersets
became deficient only after the blockade of the anterior
striatum, whereas the execution of learned hypersets be-
came deficient after the blockade of the middle-posterior
putamen and, to a lesser degree, after the blockade of the
anterior striatum.

These results suggest that different subdivisions of the
striatum contribute to different aspects of learning and
execution of sequential movements. This view is consis-
tent with anatomical studies suggesting that there are
multiple separated subchannels within the basal ganglia-
thalamo-cortical system (Selemon and Goldman-Rakic
1985; Alexander and Crutcher 1990; Hoover and Strick
1993; Parent and Hazrati 1995).

The anterior part of the striatum receives massive pro-
jections from the dorsolateral prefrontal cortex, which is
heavily related to spatial working memory (Sawaguchi
and Goldman-Rakic 1991; Funahashi et al. 1993). This is
the kind of memory that is required when the monkey
tries to learn new sequences (Hikosaka et al. 1995b). The
anterior striatum also receives dense projections from the
presupplementary motor area (pre-SMA; Parthasarathy
et al. 1992) where we found neurons that were preferen-
tially activated during learning of new hypersets (Miya-
shita et al. 1995). It is reasonable therefore that the mon-
key had difficulty in learning new sequences when the
anterior striatum was functionally blocked.

The modest increase in the number of errors for
learned hypersets by the blockade of the anterior stria-
tum might also be explained by the deficient spatial
working memory, because any errors in learned hyper-
sets, though rare, would not be corrected without work-
ing memory.

The blockade of the middle-posterior putamen led to
the deteriorated performances for learned hypersets. It is
well known that this part of the putamen receives inputs
mainly from the sensory-motor cortical areas, including
the premotor and supplementary motor areas as well as
the primary motor area (Percheron et al. 1984; Hoover
and Strick 1993; Strick et al. 1995). One possibility is
that the long-term memory of sequential procedures is
stored somewhere in these cortical areas and is sent to
the putamen for the learned sequences to be executed.

However, the effects of muscimol injections in the
striatum were generally modest. Thus, the performances
after the blockade of the middle-posterior putamen were
still much better than those for new hypersets. Likewise,
the monkeys were still able to learn new sequences,

though more slowly, after the blockade of anterior stria-
tum. Therefore, it seems likely that, although different
parts of the striatum may play differential roles in learn-
ing and memory for sequential movements, their contri-
butions are not exclusive but partial, in that other brain
areas also participate in these processes (Miyashita et al.
1995; Hikosaka et al. 1996b).

In conclusion, by combination of a new learning task
(2×5 task) and the reversible blockade of neural activi-
ties with muscimol, we revealed the differential roles of
the subdivisions of the monkey striatum in learning and
memory for sequential movements: (1) the anterior cau-
date and putamen takes part in the mechanism that is
necessary for the learning of new sequences and, to a
lesser degree, for the execution of well-learned sequenc-
es; (2) the middle-posterior putamen is preferentially re-
lated to the long-term storage or retrieval of memory for
sequential movements.
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