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Abstract: In this paper we study one-dimensional Schrödinger operators on the lattice
with a potential given by the skew shift. We show that Anderson localization takes place
for most phases and frequencies and sufficiently large disorders.

1. Introduction

In this paper we study the positivity of the Lyapunov exponent, the regularity of the
integrated density of states, and the nature of the spectrum for the Schrödinger operators,

Hω,(x,y)ψn = −ψn+1− ψn−1+ v(T n
ω (x, y))ψn on2(Z), (1.1)

whereTω = (x + y, y +ω) (mod 1) is the skew-shift on the two-dimensional torusT2.
The numberω will be assumed to be Diophantine. The study of families of Schrödinger
operators with potentials that are in some sense random has a long and rich history,
starting with the famous work by P. Anderson [1]. It is not our intention to review
this subject, as some of the history as well as many references can be found in [7].
Furthermore, the methods in this paper have little overlap with the work that has been
done on the purely random case. Our approach is motivated by the recent works [3]
and [7].

The main results in this paper are as follows. Fix a nonconstant real–analytic function
v0 onT2 and some smallε > 0. Then there exists a set�ε ⊂ T with mes[T \�ε] < ε,
and a large constantλ0(ε, v0) so that for anyω ∈ �ε andλ ≥ λ0, the equation (1.1)
with v = λv0 has the following properties:
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• The Lyapunov exponents of (1.1) are positive for all energies, see Prop. 2.11.
• The integrated density of states is continuous with modulus of continuity

h(t) = exp
(
−c| log t | 1

24−
)
,

see Prop. 2.13.
• The operators (1.1) display Anderson localization, i.e., there exists�̃ε ⊂ T2 with

mes[T2 \ �̃ε] < ε so that for all(x, y) ∈ �̃ε the spectrum is pure point and the eigen
functions decay exponentially, see Theorem 3.7.

2. A Large Deviation Theorem for the Monodromy Matrices and Positivity
of the Lyapunov Exponents for Large Disorder

Consider the Schrödinger operator (1.1), wherev is a trigonometric polynomial, say. An
important example isv(x, y) = cos(2πx). Any solution of (1.1) is of the form(

ψn+1

ψn

)
= Mn(x, y;E)

(
ψ1

ψ0

)
,

whereMn(x, y;E) =∏1
j=n Aj (x, y;E) with (T = Tω for simplicity)

Aj(x, y;E) =
[
v(T j (x, y))− E −1

1 0

]
. (2.1)

The matrixMn(x, y;E) is called the fundamental, or monodromy matrix of Eq. (1.1).
As usual,

Ln(E) =
∫

T2

1

n
log‖Mn(x, y;E)‖ dxdy

andL(E) = limn→∞ Ln(E) = inf n Ln(E) denotes the Lyapunov exponent. Clearly,
L(E) ≥ 0 for allE. Kingman’s subadditive ergodic theorem asserts that

1

n
log‖Mn(x, y;E)‖ → L(E) for a.e.(x, y) ∈ T2 asn→∞.

A more quantitative version of this convergence statement will be of particular impor-
tance in this paper. In fact, the goal of this section is to prove an estimate of the form

sup
E

mes
[
(x, y) ∈ T2

∣∣∣ ∣∣∣1
n

log‖Mn(x, y;E)‖ − Ln(E)

∣∣∣ > n−σ
]
≤ C exp

(−nσ )
(2.2)

for all positive integersn and some constantσ > 0, see Prop. 2.11 below for a more
precise statement. These so-called “large deviation estimates” have been of central im-
portance in some recent papers by the authors, see [3,7], and [4].They are a key ingredient
in the proof of localization in [3] on the one hand, and are essential for proving regu-
larity of the density of states as well as positivity of the Lyapunov exponent in [7]. The
Schrödinger equations considered in [3] and [7] were of the form (1.1) withT given by
theshift rather than the skew-shift, i.e.,T (x, y) = (x + ω1, y + ω2) (modZ2) in the
case of two dimensions. We want to emphasize that the methods from these papers do
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not directly apply to the skew-shift and a completely new approach was required for the
proof of Prop. 2.11 below. To understand the difficulty introduced by the skew-shift, let
us briefly review some basic aspects of the techniques underlying the proof of the large
deviation estimates in [3] for the case of the shift. Firstly, the map

un(z1, z2) = 1

n
log‖Mn(z1, z2;E)‖ (2.3)

extends to a subharmonic function on a complex neighborhood ofT2. Moreover, these
subharmonic functions are bounded in that neighborhood uniformly inn. Using the
standard Riesz–representation for subharmonic functions one obtains the decay of the
Fourier coefficients

|ûn(1, 2)| ≤ C

|1| + |2| + 1
(2.4)

with some absolute constantC. The second important idea is to exploit the almost
invariance ofun under the transformationT . In fact, it follows immediately from the
definition ofMn as a product that

sup
(x,y)∈T2

∣∣∣ 1

K

K∑
k=1

un(T
k(x, y))− un(x, y)

∣∣∣ ≤ C
K

n
. (2.5)

Fourier expanding the sum in (2.5) leads to a series in which the main contributions are
given by the resonances of the shift, i.e., thosek ∈ Z2 \ {0} for which

‖k · ω‖ � 1.

Sinceω = (ω1, ω2) is assumed to be Diophantine, such resonances only occur for a
sparse set of frequenciesk and the decay (2.4) then controls the size of these contributions
(in [3] certain technical problems arise due to the non-2 decay provided by (2.4), which
however do not concern us here).

The difficulty one faces with this method in the case of the skew-shift derives from
the failure of uniform boundedness of the subharmonic function (2.3). This is due to the
fact that iteration of the skew-shift is given by

T k(x, y) = (x + ky + k(k − 1)ω/2, y + kω) modZ2. (2.6)

Complexifying in the variabley therefore produces an imaginary part of size aboutn

in half of the factors of the productMn, cf. (2.1). Therefore, most factors ofMn will be
of sizeen rather than bounded as in the case of the shift. Instead of (2.4) one can only
assert that

|ûn(1, 2)| ≤ Cn

|1| + |2| + 1
. (2.7)

However, since one typically has a resonance at the site(0, n) the Fourier series argument
based on the decay (2.7) does not even provide that‖un − Ln‖2 → 0.

Of course, the argument which we outlined above is rather crude as the structure
of Mn only enters through the almost invariance (2.5). The tool that will allow us to
exploit the structure ofMn more carefully is the “avalanche principle” from [7]. We now
reproduce the statement of this principle from [7], but refer the reader to that paper for
the proof.
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Proposition 2.1.LetA1, . . . , An be a sequence of arbitrary unimodular 2×2-matrices.
Suppose that

min
1≤j≤n ‖Aj‖ ≥ µ ≥ n and (2.8)

max
1≤j<n[log‖Aj+1‖ + log‖Aj‖ − log‖Aj+1Aj‖] ≤ 1

2
logµ. (2.9)

Then

∣∣∣log‖An · . . . · A1‖ +
n−1∑
j=2

log‖Aj‖ −
n−1∑
j=1

log‖Aj+1Aj‖
∣∣∣ < C

n

µ
. (2.10)

Proposition 2.1 will allow us to prove (2.2) inductively. More precisely, assume
that (2.2) holds for some integersn and 2n. Consider the monodromy matrixMN with a
choice ofN which is basically subexponential inn. Let the matricesAj be the matrices
Mn ◦ T jn so that

MN(x, y;E) =
0∏

j=N/n

Aj (x, y;E).

By (2.2) conditions (2.8) and (2.9) will hold for all(x, y) ∈ T2 up to a set of measure
not exceeding

exp
(−nσ ). (2.11)

The advantage of passing to the much shorter monodromy matricesMn instead ofMN

lies with the fact that the size of their subharmonic extensions is onlyn rather thanN .
This allows one to prove that the averages appearing in (2.10) are close to their respective
means up to a set which is subexponentially small inN , cf. Lemma 2.6 below. However,
in order to apply the avalanche principle we had to remove a set of size given by (2.11),
whereas the goal is to prove (2.2) forN . The key tool to circumvent this difficulty is the
following BMO estimate for subharmonic functions, which have the additional property
of being the sum of two functions, one of which is small inL∞ and one that is small
in L1. This mechanism is really the new feature compared to the methods from [3].

2.1. Subharmonic functions with small BMO-norm.

Definition 2.2. Throughout this paper e(x) := e2πix . For any 0 < ρ < 1,

Aρ := {z ∈ C | 1− ρ < |z| < 1+ ρ}.
For a function u defined on Aρ we shall write u(x) instead of u(e(x)). It will be clear
from the context whether we mean u(z) for complex z or u(x) = u(e(x)) for real x. For
any positive integer d ,

Td := Rd/Zd
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denotes the d-dimensional torus. BMO(T) is the space of functions of bounded mean
oscillation on T, see [16]. Identifying functions that differ only by an additive constant,
the norm on BMO(T) is given by

‖f ‖BMO(T) := sup
I⊂T

1

|I |
∫
I

|f − 〈f 〉I | dx,

where 〈f 〉I = 1
|I |
∫
I
f (x) dx. The open unit disk will be denoted by D.

Lemma 2.3.Suppose u is subharmonic on Aρ , with supAρ
|u| ≤ N . Furthermore,

assume that u = u0 + u1, where

‖u0 − 〈u0〉‖L∞(T) ≤ ε0 and ‖u1‖L1(T) ≤ ε1. (2.12)

Then for some constant Cρ depending only on ρ,

‖u‖BMO(T) ≤ Cρ

(
ε0 log

(
N/ε1

)+√Nε1

)
. (2.13)

Proof. By Riesz’s representation theorem, there is a positive measureµwith supp(µ) ⊂
Aρ/2 and a harmonic functionh such that for anyz ∈ Aρ/2,

u(z) =
∫

log |z− ζ | dµ(ζ )+ h(z), (2.14)

where

µ(Aρ/2)+ ‖h‖L∞(Aρ/4) ≤ Cρ N. (2.15)

We first claim that one may assume

supp(µ) ⊂ D ∩Aρ/2. (2.16)

Indeed, defineµ∗ by

µ∗(E) = µ(E ∩ D)+ µ(E∗),

where

E∗ =
{
z−1 : z ∈ E

}
for any measurableE ⊂ C. For any|z| = 1,∫

log |z− ζ | dµ(ζ )−
∫

D

log |z− ζ | dµ∗(ζ ) =
∫

C\D
log |ζ | dµ(ζ ).

Since the term on the right-hand side is nonnegative and no larger thanCρ N , sub-
tracting this constant fromu andu0 changesN by at most a multiplicative constant,
whereas both the hypothesis and the conclusion of the lemma remain unchanged. This
implies claim (2.16). In particular, since∫

T

log |e(t)− ζ | dt = 0 for all |ζ | ≤ 1
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we can assume that

〈u〉 = 〈h〉 = 0. (2.17)

For ζ = r · e(x) with 0 ≤ r ≤ 1 let

Pζ (y) = 1− r2

1− 2r cos(2π(x − y))+ r2

be the usual Poisson kernel. If|ζ | = 1, thenPζ = δζ . For anyf ∈ L1(T) with 〈f 〉 = 0,
the anti-derivativeD−1f is defined as

(D−1f )(t) =
∫ t

t0

f (x) dx wheret0 is chosen so that〈D−1f 〉 = 0 (2.18)

for arbitraryt ∈ T. The existence oft0 is guaranteed by the mean value theorem. We
shall also need (2.18) in casef = δθ0, θ0 ∈ T. In that case lett0 = θ0 + 1

2 (mod 1).
Observe thatD−1f is unique whereas the choice oft0 is not necessarily unique.

For anyζ = |ζ |e(y) ∈ D one has the elementary relation

d

dx
log |e(x)− ζ | = 2π |ζ | sin(2π(x − y))

1− 2|ζ | cos(2π(x − y))+ |ζ |2 = Qζ (x) = (HPζ )(x),

whereH denotes the Hilbert transform andQζ is the standard notation for the conjugate
function of the Poisson kernel, cf. Katznelson [9]. In particular,

log |e(x)− ζ | = (D−1HPζ )(x) =
(
HD−1(Pζ − 1)

)
(x).

Hence (2.14), (2.16), and (2.17) imply that

u|T = H
[
D−1

∫
(Pζ (·)− 1) dµ(ζ )+H−1h

]
. (2.19)

The anti-derivative appearing in (2.19) is a harmonic function onD. In fact, if z =
r · e(t) ∈ D, then(

D−1(Pr(·)− 1)
)
(t) =

∫ t

− 1
2

(Pr(x)− 1) dx =
∫ t

− 1
2

2
∞∑
n=1

cos(2πnx)rn dx

= −1

π

∞∑
n=1

1

n
sin(2πnt)rn

= −1

π
� log(1− z) = −2Arg(1− z),

(2.20)

where Arg denotes the principal branch of the argument, i.e.,

Arg(z) = x if and only if z = |z|e(x) and − 1

2
≤ x <

1

2
.

In particular, (
D−1(P1(·)− 1)

)
(t) =

{
−t − 1

2 if − 1
2 ≤ t < 0

1
2 − t if 0 < t ≤ 1

2
(2.21)
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Fig. 1.The right-hand side of (2.24)

and similarly forPζ with arbitrary|ζ | = 1. For any|ζ | ≤ 1 denote

hζ = D−1(Pζ (·)− 1).

The functions are harmonic in the sense of (2.20). Letχ ≥ 0 be aC∞-function on
the line with supp(χ) ⊂ [−1,1] and

∫
χ(x) dx = 1. LetR be a large number to be

determined below and set

φR(x) = Rχ(Rx). (2.22)

Clearly, ∑
k

|φ̂R(k)| ≤ CR. (2.23)

We claim that for anyt ∈ T and any|ζ | ≤ 1,

(hζ ∗ φR)(t − C0R
−1)− C1R

−1 ≤ hζ (t) ≤ (hζ ∗ φR)(t + C0R
−1)+ C1R

−1,

(2.24)

providedC0, C1 are suitable absolute constants. Since all the functions appearing in
(2.24) are harmonic, it suffices by the maximum principle to prove the claim for|ζ | = 1.
By translation invariance, we may even setζ = 1. In that case,hζ is given by the saw–
tooth function (2.21) for which (2.24) is evident, see Fig. 1 (the rounded–off curve lying
inside the saw–tooth function represents the convolution of (2.21) withφR, whereas the
dashed line is given by raising that smoothed out function and translating it to the left
until it lies above the saw-tooth). Leth be the harmonic function given by (2.14). In
view of (2.15) one has

‖(H−1h)′‖L∞(T) ≤ Cρ‖h‖L∞(Aρ/4) ≤ Cρ N.
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Therefore,

(h ∗ φR)(t − C0R
−1)− C2NR−1 ≤ (H−1h)(t) ≤ (h ∗ φR)(t + C0R

−1)+ C2NR−1

(2.25)

with the same constantC0 as in (2.24), but a different choice ofC2 also depending onρ.
Let F = [. . . ] denote the expression in brackets on the right-hand side of (2.19). By
construction,〈F 〉 = 0. Integrating (2.24) over the positive measuredµ(ζ ) with mass
controlled by (2.15) and adding (2.25) yields

(F ∗ φR)(t − C0R
−1)− Cρ NR−1 ≤ F(t) ≤ (F ∗ φR)(t + C0R

−1)+ Cρ NR−1,

(2.26)

for anyt ∈ T. Thus

‖F‖∞ ≤ ‖(F −H−1u0) ∗ φR‖∞ + ‖H−1u0 ∗ φR‖∞ + CNR−1

≤
∑
k �=0

∣∣∣(F −H−1u0
)∧
(k)

∣∣∣|φ̂R(k)| + ‖u0 ∗HφR‖∞ + CNR−1. (2.27)

SinceF = H−1u0 +H−1u1 by (2.19), the sum in (2.27) can be estimated as follows:∑
k �=0

∣∣∣(F −H−1u0
)∧
(k)

∣∣∣|φ̂R(k)| ≤∑
k �=0

∣∣∣Ĥ−1u1(k)

∣∣∣|φ̂R(k)|
≤
∑
k �=0

‖u1‖1|φ̂R(k)| ≤ Cε1R.

Next we claim that‖HφR‖1 ≤ C logR. WithQ(y) = π cot(πy) being the kernel ofH,

|(HφR)(y)−Q(y)| =
∣∣∣∫ [Q(y − x)−Q(y)

]
φR(x) dx

∣∣∣
≤
∫

C|x|
|y|2 φR(x) dx ≤

C

R|y|2 ,

providedR|y| ≥ C. Thus,∫
[R|y|>C]

∣∣∣(HφR)(y)

∣∣∣ dy ≤ C logR. (2.28)

On the other hand,∫
[R|y|≤C]

∣∣∣(HφR)(y)

∣∣∣ dy ≤ C‖HφR‖2R
− 1

2 ≤ C‖φR‖2R
− 1

2 ≤ C. (2.29)

Thus

‖u0 ∗HφR‖∞ ≤ ‖u0‖∞‖HφR‖1 ≤ Cε0 logR.

In view of the preceding

‖F‖∞ ≤ C
(
ε0 logR + ε1R +NR−1

)
. (2.30)

The lemma follows from (2.19) and (2.30) by takingR = √N/ε1. !"
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Remark 2.4. The main application of Lemma 2.13 in this paper will be to estimates on
the measure of the set

{x ∈ T | |u(x)− 〈u〉| > λ}.
In fact, by the well-known John–Nirenberg inequality [16], the measure of this set does
not exceed

C exp
(
− cλ

‖u‖BMO

)
. (2.31)

The exponential integrability of the Hilbert transform of a bounded function can be
derived much more easily than by going through BMO and John–Nirenberg. Indeed, it
is a classical, and rather simple fact that for any real-valued functionf on T such that
|f | ≤ 1, one has the bound∫

T

exp
(
α|(Hf )(t)|

)
dt ≤ 2

cos(απ/2)

for any 0≤ α < 1, see Theorem 1.9 in [9] (withα < 1 being optimal). Using this bound
in the previous proof instead of the deeper fact thatH : L∞ → BMO leads directly to
the estimate (2.31) on the measure. Since the BMO-estimate (2.13) might be of interest
in its own right, we have chosen to present Lemma 2.3 in this way.

Lemma 2.5.Let u : T2 → R satisfy ‖u‖L∞(T2) ≤ 1. Assume that u extends as a
separately subharmonic function in each variable to a neighborhood of T2 such that for
some N ≥ 1 and ρ > 0,

sup
z1∈Aρ

sup
z2∈Aρ

|u(z1, z2)| ≤ N.

Furthermore, suppose that u = u0 + u1 on T2 where

‖u0 − 〈u〉‖L∞(T2) ≤ ε0 and ‖u1‖L1(T2) ≤ ε1

with 0 < ε0, ε1 < 1. Here 〈u〉 := ∫
T2 u(x, y) dxdy. Then for any δ > 0,

mes
[
(x, y) ∈ T2

∣∣∣ |u(x, y)− 〈u〉| > Bδ log(N/ε1)
]
≤ CN2ε−1

1 exp
(
−cB− 1

2+δ
)
,

where B = ε0 log(N/ε1)+N
3
2 ε

1
4
1 . The constants c, C only depend on ρ.

Proof. We may assume that〈u〉 = 0 without significantly changing the hypotheses. Let

M =
⌈
N2ε

− 1
2

1

⌉
and denote the Fejér-kernel onT with Fourier support[−M+1,M−1]

by FM . Then

u ∗1 FM = u0 ∗1 FM + u1 ∗1 FM,

where∗1 denotes the convolution inx alone. It is clear that for fixedx ∈ T,

‖u0 ∗1 FM(x, ·)‖L∞y ≤ ε0 and ‖u1 ∗1 FM(x, ·)‖L1
y
≤ Mε1 ≤ 2N2√ε1.
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SinceFM ≥ 0, (u∗1FM)(x, ·) extends to a subharmonic function in the second variable
satisfying

sup
z∈Aρ

|u ∗1 FM(x, z)| ≤ N.

Hence Lemma 2.3, in conjunction with the John–Nirenberg inequality, implies that for
anyλ > 0,

sup
x∈T

mes
[
y ∈ T

∣∣∣ ∣∣(u ∗1 FM)(x, y)− 〈(u ∗1 FM)(x, ·)〉∣∣ > λ
]
≤ C exp

(
−cλ
B

)
,

(2.32)

where B := Cρ(ε0 log(N/ε1)+N
3
2 ε

1
4
1 ). (2.33)

Observe that for anyx, x′ ∈ T

sup
y∈T

|(u ∗1 FM)(x, y)− (u ∗1 FM)(x′, y)| ≤ M‖u‖L∞(T2) |x − x′| ≤ M |x − x′|.
(2.34)

Let N ⊂ T be aM−1λ/4-net. In view of (2.32) and (2.34) one concludes that

mes
[
y ∈ T

∣∣∣ sup
x∈T

∣∣(u ∗1 FM)(x, y)− 〈(u ∗1 FM)(x, ·)〉∣∣ > 1

2
λ
]
≤ C

M

λ
exp
(
−cλ
B

)
.

(2.35)

Now let λ = 2
√
B and denote the set on the left-hand side of (2.35) with this choice

of λ by B1. Thus

mes(B1) ≤ CN2ε
− 1

2
1 B−

1
2 exp

(
−cB− 1

2

)
≤ CN2ε−1

1 exp
(
−cB− 1

2

)
. (2.36)

Now fix somey ∈ T \B1 and consider the decomposition ofu(·, y) as a function of the
first variable given by

u(·, y) = u(·, y)− (u ∗1 FM)(·, y)+ (u ∗1 FM)(·, y). (2.37)

From the Riesz representation

u(z, y) =
∫

log |z− ζ | dµ(ζ )+ h(z) with µ(Aρ/2)+ ‖h‖L∞(Aρ/4) ≤ Cρ N,

it is standard to deduce that the Fourier coefficients

û(, y) :=
∫

T

u(x, y) e(−x) dx

decay as follows:

|û(, y)| ≤ CρN

|| .
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In particular, by definition ofFM and because of our choice ofy, see (2.35),

‖u(·, y)− (u ∗1 FM)(·, y)‖2 ≤ Cρ NM− 1
2 and

sup
x∈T

∣∣(u ∗1 FM)(x, y)− 〈(u ∗1 FM)(x, ·)〉∣∣ ≤ √B. (2.38)

The mean appearing in the second term is uniformly small. In fact, for allx ∈ T,∣∣〈(u ∗1 FM)(x, ·)〉∣∣ ≤ ∫
T

|(u0 ∗1 FM)(x, y)| dy +
∫

T

|(u1 ∗1 FM)(x, y)| dy
≤ ‖u0‖L∞(T2) +M‖u1‖L1(T2) ≤ ε0 + 2N2√ε1.

(2.39)

Assuming as we may thatB ≤ 1, one checks from (2.33) that the bound in (2.39)
is no larger thanC

√
B. Hence (2.38) implies that for anyy ∈ T \ B1 (recall that

M =
⌈
N2ε

− 1
2

1

⌉
)

‖u(·, y)− (u ∗1 FM)(·, y)‖1 ≤ Cρ ε
1
4
1 and sup

x∈T

∣∣(u ∗1 FM)(x, y)
∣∣ ≤ C

√
B.

Applying Lemma 2.3 to the functionu(·, y) with the decomposition given by (2.37)
therefore yields

sup
y∈T\B1

‖u(·, y)‖BMO ≤ Cρ(
√
B log(N/ε1)+N

1
2 ε

1
8
1 ) ≤ Cρ

√
B log(N/ε1). (2.40)

It remains to be shown that

v(y) := 〈u(·, y)〉 =
∫

T

u(x, y) dx

is close to zero for mosty. Clearly,v extends to a subharmonic function onAρ such that

sup
z∈Aρ

|v(z)| ≤ N and 〈v〉 = 〈u〉 = 0.

With v0(y) := 〈u0(·, y)〉 andv1(y) := 〈u1(·, y)〉 one has

‖v0‖L∞(T) ≤ ε0 and ‖v1‖L1(T) ≤ ε1.

Therefore, Lemma 2.3 implies that

‖v‖BMO ≤ C
(
ε0 log(N/ε1)+

√
Nε1

)
≤ CB.

Thus

mes
[
y ∈ T

∣∣∣ |v(y)| > √B] ≤ C exp
(
−cB− 1

2

)
. (2.41)

Denoting the set on the left-hand side byB2, letB := B1∪B2. One concludes from (2.36),
(2.41), and (2.40) by means of the John–Nirenberg inequality that

mes
[
(x, y) ∈ T2

∣∣∣ |u(x, y)| > Bδ log(N/ε1)
]
≤ mes(B)+ C exp

(
−cB− 1

2+δ
)
,

and the lemma follows. !"
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2.2. Averages of subharmonic functions over orbits of the skew-shift. In what follows
we assume thatω ∈ (0,1) is Diophantine in the sense that

‖nω‖ ≥ ε n−1(1+ logn)−2 for anyn ∈ Z+, (2.42)

whereε > 0 is some arbitrary but fixed small number. Let�ε be the set of thoseω that
satisfy (2.42). It is clear that

mes[T \�ε] < Cε

with an absolute constantC. The choice of logarithm in (2.42) is mainly for convenience.
A very small power loss is also acceptable. Throughout this section we will use�ε in
this sense. LetTω : T2 → T2, Tω(x, y) = (x + y, y + ω) (modZ2) be the skew-shift.
Observe that the iterates ofTω are given by

T k
ω(x, y) = (x + ky + k(k − 1)ω/2, y + kω) modZ2 (2.43)

for anyk ∈ Z.

Lemma 2.6.Let u : T2 → R extend to some neighborhood of T2 as a separately
subharmonic function in each variable so that for some ρ > 0,

sup
z1∈Aρ

sup
z2∈Aρ

|u(z1, z2)| ≤ 1. (2.44)

Fix a small ε > 0 and let ω ∈ �ε, see (2.42). For any δ > 0 there exist constants c, C
such that

mes
[
(x, y) ∈ T2

∣∣∣ ∣∣∣ 1

K

K∑
k=1

u ◦ T k
ω(x, y)− 〈u〉

∣∣∣ > K−
1
12+2δ

]
≤ C exp

(
−cKδ

)
,

(2.45)

for any positive integer K . Here 〈u〉 = ∫
T2 u(x, y) dxdy and the constants depend only

on ρ, δ, ε.

Proof. Let û(, y) = ∫ 1
0 u(x, y)e(−x) dx denote the Fourier coefficient with respect

to the first variable. As above one deduces by means of the Riesz representation of the
subharmonic functionz %→ u(z, y) and from (2.44) that

sup
y∈T

|û(, y)| ≤ Cρ ||−1. (2.46)

With some positive integerp1 to be determined, let

u(x, y) =
∑
|1|≤p1

û(1, y)e(1x)+
∑
|1|>p1

û(1, y)e(1x)

=: u1(x, y)+ ũ1(x, y),

(2.47)

whereu1 andũ1 are the respective sums on the right-hand side of (2.47). By (2.46),

sup
y∈T

‖ũ1(·, y)‖L2
x
≤ Cp

− 1
2

1 . (2.48)
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With some positive integerp2 to be determined below, let

u1(x, y) =
∑
|1|≤p1|2|>p2

û(1, 2)e(1x + 2y)+
∑
|1|≤p1|2|≤p2

û(1, 2)e(1x + 2y)

=: u2(x, y)+ u3(x, y).

(2.49)

Using the Riesz representation in the second variable one derives from (2.44) that

|û(1, 2)| ≤
∫

T

∣∣∣∫
T

e(−2y)u(x, y) dy

∣∣∣ dx ≤ Cρ

1+ |2| . (2.50)

Therefore,

‖u2‖L2(T2) ≤
∑
|1|≤p1

∥∥∥ ∑
|2|>p2

û(1, 2)e(2y)

∥∥∥
L2
y

≤ C p1p
− 1

2
2 .

In particular,

mes
[
y ∈ T

∣∣∣ ∫
T

1

K

∣∣∣ K∑
k=1

u2 ◦ T k(x, y)

∣∣∣ dx > K−1
]

≤ K

∫
T2

1

K

∣∣∣ K∑
k=1

u2 ◦ T k(x, y)

∣∣∣ dxdy
≤ K‖u2‖L1(T2) ≤ C Kp1p

− 1
2

2 .

(2.51)

Let B be the set on the left-hand side of (2.51). In view of (2.43),

sup
x,y∈T2

∣∣∣ 1

K

K∑
k=1

u3 ◦ T k(x, y)− 〈u〉
∣∣∣

≤ 1

K

∑
|1|≤p1,|2|≤p2|1|+|2|�=0

C

1+ |2|
∣∣∣ K∑
k=1

e
[
1(ky + ωk(k − 1)/2)+ 2kω

]∣∣∣
≤ 1

K

p2∑
2=1

C

2

∣∣∣ K∑
k=1

e(2kω)

∣∣∣
+ 1

K

p1∑
1=1

p2∑
2=0

C

1+ 2

(
K−1∑
m=1

min
(
K, ‖m1ω‖−1

)) 1
2

(2.52)

≤ C

K

p2∑
2=1

1

2
min(K, ‖2ω‖−1)

+ C

K

√
p1 logp2

 p1∑
1=1

K−1∑
m=1

min
(
K, ‖m1ω‖−1

)
1
2

=: S1+ S2. (2.53)
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To obtain the second term in line (2.52), one uses the well-known method of Weyl–
differencing, cf. Montgomery [11, Chap. 3]. In fact,

∣∣∣ K∑
k=1

e
[
1(ky + ωk(k − 1)/2)+ 2kω

]∣∣∣2 ≤ K + 2
K−1∑
m=1

min
(
K,

2

|1− e(1ωm)|
)

≤ C

K−1∑
m=1

min
(
K, ‖1ωm‖−1),

which leads to (2.52). In view of (2.42) (witha ∼ b denotingb ≤ a ≤ 2b), for any
positive integerR,

R∑
=1

1


min(1,K−1‖ω‖−1) ≤

∑
1≤2j≤K

R∑
=1

χ[‖ω‖∼2−j ]
1


min(1,K−12j )

+
R∑
=1

χ[‖ω‖≤K−1]
1



≤ C
∑

1≤2j≤K

2j

K
j2 2−j logR + C

R∑
=1

(logK)2

K

≤ C
(logK)2

K
logR.

Here the constants depend onε. Thus,

S1 ≤ Cε

(logK)2

K
logp2. (2.54)

By Dirichlet’s principle there is an integer 1≤ q ≤ K and an integerp so that
gcd(p, q) = 1 and|ω − p

q
| ≤ 1

qK
. In view of (2.42), one also hasq ≥ cε

K
(logK)2

.
By means of the standard bound on the divisor function and the usual estimates for
reciprocal sums, cf. [11, Chap. 3],

p1∑
1=1

K−1∑
m=1

min(K, ‖m1ω‖−1) ≤ Cε2(p1K)ε2

p1K∑
k=1

min(K, ‖kω‖−1)

≤ Cε2(p1K)ε2
(p1K

2

q
+ p1K logq +K + q logq

)
≤ Cε2(p1K)1+2ε2,

(2.55)

whereε2 > 0 is an arbitrarily small parameter. One obtains from (2.53), (2.54), and
(2.55) that

sup
x,y∈T2

∣∣∣ 1

K

K∑
k=1

u3 ◦ T k(x, y)− 〈u〉
∣∣∣ ≤ S1+ S2 ≤ Cp

1+ε2
1 K−

1
2+ε2 logp2 (2.56)
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with a constant that depends both onε andε2. Fix some smallδ > 0 and choosep1 = K
1
3

andp2 = exp
(
4Kδ

)
. The conclusion from the preceding is as follows, cf. (2.48), (2.51),

and (2.56): There exists a subsetB ⊂ T of measure

mes(B) ≤ CK
4
3 exp

(
−2Kδ

)
≤ C exp

(
−Kδ

)
, (2.57)

such that (choosing 2ε2 < δ)

sup
y∈T\B

∥∥∥ 1

K

K∑
k=1

u ◦ T k(·, y)− 〈u〉
∥∥∥
L1
x

≤ sup
y∈T

∥∥∥ 1

K

K∑
k=1

ũ1 ◦ T k(x, y)

∥∥∥
L1
x

+ sup
y∈T\B

∫
T

1

K

∣∣∣ K∑
k=1

u2 ◦ T k(x, y)

∣∣∣ dx
+ sup

(x,y)∈T2

∣∣∣ 1

K

K∑
k=1

u3 ◦ T k(x, y)− 〈u〉
∣∣∣

≤ CK−
1
6 +K−1+ C K

1
3+ε2Kδ− 1

2+ε2 ≤ C K−
1
6+2δ

(2.58)

with constants that depend on bothδ andε. To obtain (2.45), one uses Lemma (2.3) to
convert theL1-bound (2.58) into anL∞-bound at the cost of removing an exponentially
small set. For any fixedy ∈ T \ B, consider the bounded subharmonic function

vy(z) := 1

K

K∑
k=1

u ◦ T k(z, y) with z ∈ Aρ.

It is important to notice thaty is real. OtherwiseT k(z, y) �∈ Aρ × Aρ for large k,
see (2.43). One has the decomposition

1

K

K∑
k=1

u ◦ T k(·, y) = 〈u〉 + 1

K

K∑
k=1

u ◦ T k(·, y)− 〈u〉.

In view of (2.58) one obtains from Lemma 2.3 (withN = 1,ε0 = 0, andε1 = K− 1
6+2δ)

that ∥∥∥∥∥ 1

K

K∑
k=1

u ◦ T k(·, y)
∥∥∥∥∥

BMOx

≤ Cδ K
− 1

12+δ.

By the John–Nirenberg inequality thus

sup
y∈T\B

mes
[
x ∈ T

∣∣∣ |vy(x)− 〈vy〉| > Cδ K
− 1

12+2δ
]
≤ C exp

(
−Kδ

)
. (2.59)

Since (2.58) implies that|〈vy〉 − 〈u〉| ≤ Cδ K
− 1

6+2δ, the lemma follows from (2.59)
and (2.57). !"
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Remark 2.7. It will be important in the proof of localization below that the previous
lemma requires only finitely many conditions onω. More precisely, the arithmetic nature
of ω only enters into the estimate ofS1 andS2. Furthermore, what is required for the
bound onS1 is the following: If for someK−1 ≤ κ < 1 and some positive distinct
integers, ′,

‖ω‖ < κ and ‖′ ω‖ < κ,

then|− ′| ≥ cεκ
−1(logκ)−2. This clearly requires the Diophantine condition (2.42)

only for 1 ≤ k ≤ K. As far asS2 is concerned, it is evident from the estimate ofS2
that (2.42) is used only in the range 1≤ k ≤ p1K ≤ K2.

2.3. The main inductive step in the proof of the large deviation theorem. Consider equa-
tions of the form

−ψn+1− ψn−1+ λv(T n
ω (x, y))ψn = Eψn, (2.60)

whereTω : T2 → T2, Tω(x, y) = (x + y, y + ω) (modZ2) is the skew-shift, andv is
a nonconstant real–analytic function onT2 satisfying some further conditions that will
specified below. Let

Aj(x, y; λ,E) =
[
λv(T

j
ω (x, y))− E −1

1 0

]
.

The matrixMn(x, y; λ,E) = ∏1
j=n Aj (x, y; λ,E) denotes the monodromy matrix of

Eq. (2.60). As usual,

Ln(λ,E) = 1

n

∫
T2

log‖Mn(x, y; λ,E)‖ dxdy

andL(λ,E) = limn→∞ Ln(λ,E) denotes the Lyapunov exponent. Introduce a scaling
factor

S(λ,E) = log(Cv + |λ| + |E|) ≥ 1, (2.61)

whereCv is a constant depending only on the potentialv so that for alln

sup
z∈Aρ

sup
y∈T

1

n
log‖Mn(z, y; λ,E)‖ + sup

z1∈Aρ

sup
z2∈Aρ

1

n2 log‖Mn(z1, z2; λ,E)‖ ≤ S(λ,E).

(2.62)

Hereρ = ρv is determined byv. Observe that (2.62) basically requires the functionv

to extend in the first variable to an analytic function onC \ {0} such that

sup
y∈T

|v(z, y)| ≤ C(|z|d + |z|−d)

with some constantd, see (2.43). For example, any trigonometric polynomial

v(x, y) =
∑

|k|+||≤d
ak, e(kx + y)
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satisfies this requirement. Another possibility, which is slightly more technical to state,
but applies to any analytic function on a neighborhood ofT2, is as follows: For alln,

sup
z1∈Aρ

sup
z2∈Aρ/n

1

n
log‖Mn(z1, z2; λ,E)‖ ≤ S(λ,E). (2.63)

The difference from (2.62) here is that in the second term thez2-variable only needs to be
taken in an annulus of thicknessρ

n
. Observe that (2.63) can be stated for any potentialv

that extends analytically to a neighborhood ofT2 of sizeρ. This is essential for real-
analyticv. The reason (2.63) is sufficient for our purposes is the following simple fact.
Supposeu is a subharmonic function onAρ/n bounded by one. Then there is the Riesz
representation

u(z) =
∫

log |z− ζ | dµ(ζ )+ h(z),

where

µ(Aρ/(2n))+ ‖h‖L∞(Aρ/(4n)) ≤ Cρ n. (2.64)

In particular, one has the decay of the Fourier coefficients

|û()| ≤ Cn


. (2.65)

The reader will easily verify that (2.64), (2.65) are all that is required in the proof of the
following lemma.

The following lemma provides the inductive step in the proof of the large deviation
theorem. It is based on the avalanche principle and all our previous lemmas.

Lemma 2.8.Fix ε > 0 small and let ω ∈ �ε, see (2.42). Suppose n and N > n are
positive integers such that

mes
[
(x, y) ∈ T2

∣∣∣ ∣∣∣1
n

log‖Mn(x, y; λ,E)‖ − Ln(λ,E)

∣∣∣ > S(λ,E)
γ

10

]
≤ N−10,

(2.66)

mes
[
(x, y) ∈ T2

∣∣∣ ∣∣∣ 1

2n
log‖M2n(x, y; λ,E)‖ − L2n(λ,E)

∣∣∣ > S(λ,E)
γ

10

]
≤ N−10.

(2.67)

Assume that

min(Ln(λ,E), L2n(λ,E)) ≥ γ S(λ,E), (2.68)

Ln(λ,E)− L2n(λ,E) ≤ γ

40
S(λ,E), (2.69)

9γ nS ≥ 10 log(2N) and n2 ≤ N. (2.70)

Then there is some absolute constant C0 with the property that (with LN = LN(λ,E)

etc.)

LN ≥ γ S(λ,E)− 2(Ln − L2n)− C0 S(λ,E)nN
−1

and LN − L2N ≤ C0 S(λ,E)nN
−1.

(2.71)
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Furthermore, for any σ < 1
24 there is τ = τ(σ ) > 0 so that

mes
[
(x, y) ∈ T2

∣∣∣ ∣∣∣ 1

N
log‖MN(x, y; λ,E)‖ − LN(λ,E)

∣∣∣ > S(λ,E)N−τ
]

≤ C exp
(−Nσ

) (2.72)

with some constant C = C(σ, ε).

Proof. We shall fixω, λ, andE for the purposes of this proof and suppress these variables
in the notation. In particular,S = S(λ,E). Denote the set on the left-hand side of (2.66)
by Bn and the set on the left-hand side of (2.67) byB2n. For any(x, y) ∈ T2 \ Bn,

‖Mn(x, y)‖ ≥ exp(nγ S − γ

10
Sn) = exp

(9γ

10
Sn
)
=: µ.

By (2.70),µ ≥ 2N . Furthermore, for any(x, y) �∈ Bn ∪ T −nBn ∪ B2n, (2.66)–(2.69)
imply

log‖Mn ◦ T n(x, y)‖ + log‖Mn(x, y)‖ − log‖M2n(x, y)‖
≤ 2n(Ln − L2n)+ 4γ

10
Sn ≤ 9γ

20
Sn = 1

2
logµ.

Applying Prop. 2.1N times yields a setB1 ⊂ T2 with measure

mes(B1) ≤ 4N ·N−10 = 4N−9 (2.73)

so that for any(x, y) ∈ T2 \ B1,∣∣∣∣∣∣ 1

N
log‖MN(x, y)‖ + 1

N

N∑
j=1

1

n
log‖Mn ◦ T j (x, y)‖

− 2

N

N∑
j=1

1

2n
log‖M2n ◦ T j (x, y)‖

∣∣∣∣∣∣ ≤ C
(Sn
N
+ 1

µ

)
≤ CSnN−1. (2.74)

Integrating (2.74) overT2 yields

|LN + Ln − 2L2n| ≤ C SnN−1+ 16SN−9, (2.75)

which implies the first inequality in (2.71). To obtain the second inequality in (2.71),
observe that by virtue of (2.70) all arguments so far apply equally well toM2N instead
ofMN . Subtracting (2.75) from the analogous inequality involvingL2N yields the desired
bound. Denote

uN(x, y) = 1

N
log‖MN(x, y)‖,

and similarly withn and 2n. In view of (2.63), bothun andu2n extend to separately
subharmonic functions in both variables such that

sup
z1∈Aρ

sup
z2∈A(ρ/n)

[
|un(z1, z2)| + |u2n(z1, z2)|

]
≤ CS.
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Applying Lemma 2.6 toun/S andu2n/(2S) (cf. the comments following (2.63), in
particular (2.64) and (2.65)) therefore implies that there is a setB2 ⊂ T2 with measure
(δ > 0 is a fixed small number)

mes(B2) ≤ C exp
(
−Nδ

)
, (2.76)

such that for any(x, y) ∈ G := T2 \ (B1 ∪ B2),

|uN(x, y)+ Ln − 2L2n| ≤ CSnN−1+ Cδ SN
− 1

12+2δ, (2.77)

see (2.74). For smallδ the second term is the larger one sinceN ≥ n2. Fix such an
integerN . Consider the following decomposition ofu := uN as a function onT2:

u = uχG + LNχGc + uχGc − LNχGc =: u0 + u1.

Hereu0 is the sum of the first two terms (andGc := T2\G). In view of (2.77) and (2.75),

‖u0 − 〈u〉‖∞ = ‖u0 − LN‖∞ = ‖u− LN‖L∞(G)
≤ ‖uN + Ln − L2n‖L∞(G) + |LN + Ln − L2n|
≤ Cδ SN

− 1
12+2δ.

(2.78)

On the other hand, (2.73) and (2.76) imply that

‖u1‖1 ≤ 2S mes(Gc) ≤ CS
[
N−9+ exp

(−Nδ
)] ≤ Cδ SN

−9. (2.79)

Applying Lemma 2.5 to the functionu/S with ε0 andε1 given by (2.78) and (2.79),
respectively, proves (2.72). Indeed, in this case the quantityB from Lemma (2.5) satisfies

B ≤ Cδ N
− 1

12+2δ log(N10)+ CN
3
2N−

9
4 ,

which gives the value ofσ stated above. !"
Remark 2.9. In view of Remark 2.7 it is clear that Prop. 2.11 only requires the Diophan-
tine condition (2.42) in the range 1≤ k ≤ N2. This will be relevant in the proof of
localization below.

2.4. The initial condition via large disorder. Let Vj = v ◦ T j (x, y) and define

fn(x, y; λ,E) = det



λV1 − E −1 0 0 . . . . 0
−1 λV2 − E −1 0 0 . . . 0
0 −1 λV3 − E −1 0 0 . . 0
. . . . . . . . .

. . . . . . . . .

. . . . . . . . .

. . . . . . . . −1
0 0 . . . . 0 −1 λVn − E

 . (2.80)

Recall the simple property

Mn(x, y; λ,E) =
[
fn(x, y; λ,E) −fn−1(T (x, y); λ,E)
fn−1(x, y; λ,E) −fn−2(T (x, y); λ,E)

]
. (2.81)

Finally, let

Dn(x, y; λ,E) = diag(λV1− E, . . . , λVn − E). (2.82)
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Lemma 2.10.There exist constants λ0 and B depending only on v such that for any
positive integer n,

sup
E

mes
[
(x, y) ∈ T2

∣∣∣ ∣∣1
n

log‖Mn(x, y; λ,E)‖ − Ln(λ,E)
∣∣ ≥ 1

20
S(λ,E)

]
≤ n−50,

(2.83)

provided λ ≥ λ0 ∨ nB . Furthermore, for those λ and all E,

Ln(λ,E) ≥ 1

2
S(λ,E) and Ln(λ,E)− L2n(λ,E) ≤ 1

80
S(λ,E).

Proof. The matrix on the right-hand side of (2.80) can be written in the formDn + Bn,
whereDn is given by (2.82). Clearly,‖Bn‖ = 2 and

1

n
log |detDn(x, y; λ,E)| = logλ+ 1

n

n∑
j=1

log |v(T j (x, y))− E/λ|. (2.84)

It is a well-known property of nonconstant real-analytic functionsv that there exist
constantsb > 0 andC depending onv such that

mes
[
(x, y) ∈ T2

∣∣ |v(x, y)− h| < t
] ≤ Ctb (2.85)

for all−2‖v‖∞ ≤ h ≤ 2‖v‖∞ andt > 0, see for example Lemma 11.4 in [7]. Therefore,
for any|E| ≤ 2λ‖v‖∞,

mes
[
(x, y) ∈ T2

∣∣∣ 1

n

n∑
j=1

log |v ◦ T j (x, y)− E/λ| < −ρ
]
< nCe−bρ. (2.86)

One also has the upper bound

sup
(x,y)∈T2

1

n

n∑
j=1

log |v(x, y)− E/λ| ≤ log(3‖v‖∞). (2.87)

Since

‖Dn(x, y; λ,E)−1‖ ≤ λ−1 max
1≤j≤n |v ◦ T

j (x, y)− E/λ|−1,

(2.85) implies that

mes
[
(x, y) ∈ T2

∣∣∣ ‖Dn(x, y; λ,E)−1‖ > 1

4

]
≤ nmes

[
(x, y) ∈ T2

∣∣ |v(x, y)− E/λ| < 4λ−1]
≤ Cnλ−b.

(2.88)

Hence

mes
[
(x, y) ∈ T2

∣∣∣ ‖Dn(x, y; λ,E)−1Bn‖ > 1

2

]
≤ Cnλ−b. (2.89)
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In view of (2.80), (2.84), (2.86), (2.87), and (2.88),∣∣1
n

log |fn(x, y; λ,E)| − logλ
∣∣

≤
∣∣∣1
n

n∑
j=1

log |v(T j (x, y))− E/λ|
∣∣∣+ ∣∣∣1

n
log |det(I +Dn(x, y; λ,E)−1Bn)|

∣∣∣
≤ ρ + log(3‖v‖∞)+ log 2

(2.90)

up to a set of measure not exceeding

Cne−bρ + Cnλ−b. (2.91)

Now letρ = 1
400 logλ and assume(6‖v‖∞)400≤ λ. Then the right-hand side of (2.90)

is no larger than 1
200 logλ. Under these assumptions the measure given by (2.91) is on

the order ofCnλ− b
400. Choosing

λ ≥ nB

for someB depending only onv implies

sup
|E|≤2λ‖v‖∞

mes
[
(x, y) ∈ T2

∣∣∣ ∣∣1
n

log |fn(x, y; λ,E)| − logλ
∣∣ ≥ 1

200
logλ

]
≤ n−100.

In view of (2.81) one therefore obtains

sup
|E|≤2λ‖v‖∞

mes
[
(x, y) ∈ T2

∣∣∣ ∣∣1
n

log‖Mn(x, y; λ,E)‖ − logλ
∣∣ ≥ 1

199
logλ

]
≤ 4n−100. (2.92)

In particular,

|Ln(λ,E)− logλ| ≤ 1

199
logλ+ 4S(λ,E)n−100≤ 1

198
S(λ,E), (2.93)

providedn ≥ 2. Since

logλ ≥ 99

100
sup

|E|≤2λ‖v‖∞
S(λ,E)

for large λ0, (2.93) implies the second statement of the lemma in this range ofE.
Replacing logλ with Ln in (2.92) yields

sup
|E|≤2λ‖v‖∞

mes
[
(x, y) ∈ T2

∣∣∣ ∣∣1
n

log‖Mn(x, y; λ,E)‖ − Ln(λ,E)
∣∣ ≥ 1

90
S(λ,E)

]
≤ 4n−100. (2.94)

If |E| > 2λ‖v‖∞ andλ0 is sufficiently large, then the set in (2.83) is empty. In fact, for
suchE, ∣∣∣1

n
log |detDn(x, y; λ,E)| − log |E|

∣∣∣ ≤ 2,
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and thus ∣∣∣1
n

log |fn(x, y; λ,E)| − log |E|
∣∣∣ ≤ 4

which implies that for largeλ,∣∣∣1
n

log‖Mn(x, y; λ,E)‖ − log |E|
∣∣∣ ≤ 8≤ 1

200
S(λ,E).

Hence

|Ln(λ,E)− log |E|| ≤ 1

200
S(λ,E),

and the lemma follows. !"

2.5. The proof of the large deviation estimate and positivity of the Lyapunov exponent.

Proposition 2.11.Fix ε > 0 small and letω ∈ �ε, see (2.42). Assume v is a nonconstant
real–analytic function on T2. Then for all σ < 1

24 there exist τ = τ(σ ) > 0 and
constants λ1 and n0 depending only on ε, v and σ such that

sup
E

mes
[
(x, y) ∈ T2

∣∣∣ ∣∣∣1
n

log‖Mn(x, y; λ,E)‖ − Ln(λ,E)

∣∣∣
> S(λ,E)n−τ

]
≤ C exp

(−nσ ) (2.95)

for all λ ≥ λ1 and n ≥ n0. Furthermore, for those ω, λ and all E,

L(λ,E) = inf
n
Ln(λ,E) ≥ 1

4
logλ.

Proof. Fix σ < 1
24 throughout the proof and letτ = τ(σ ) > 0 be as in (2.72). Moreover,

let λ ≥ λ0 ∨ nB0 =: λ1 be as in Lemma 2.10. In this proof we shall requiren0 to be
sufficiently large at various places, but of coursen0 will be assumed fixed. In view of
Lemma 2.10 the hypotheses of Lemma 2.8 are satisfied withγ = γ0 = 1

2,

n2
0 ≤ N ≤ n5

0, (2.96)

provided

9n0 ≥ 20 log(2n10
0 ), (2.97)

cf. (2.70) (recall thatS(λ,E) ≥ 1). It is clear that (2.97) holds ifn0 is large. Applying
Lemma 2.8 one obtains (suppressingλ,E for simplicity)

LN ≥ (
1

2
− 1

40
)S − C0 SN

−1n0 ≥ γ1S

and LN − L2N ≤ C0 SN
−1n0 ≤ γ1

40
S

(2.98)
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with γ1 = 1
3. Moreover, with some constantC1 ≥ 1 depending onε,

mes
[
(x, y) ∈ T2

∣∣∣ ∣∣∣ 1

N
log‖MN(x, y; λ,E)‖

− LN(λ,E)

∣∣∣ > S(λ,E)N−τ
]
≤ C1 exp

(−Nσ
)

(2.99)

for all N in the range given by (2.96). In particular, (2.99) implies that

mes
[
(x, y) ∈ T2

∣∣∣ ∣∣∣ 1

N
log‖MN(x, y; λ,E)‖ − LN(λ,E)

∣∣∣ > S(λ,E)
γ1

10

]
≤ C1 exp

(−Nσ
) ≤ N̄−10,

providedn0 is large and

N2 ≤ N̄ ≤ C
1
10
1 exp

( 1

10
Nσ
)
.

The first inequality was added to satisfy (2.70). In view of (2.96), one thus has the range

n4
0 ≤ N̄ ≤ exp

( 1

10
n5σ

0

)
(2.100)

of admissibleN̄ . Moreover,

LN̄ ≥ γ1S − 2C0 SN
−1n0 − C0 SN̄

−1N and

LN̄ − L2N̄ ≤ C0 SN̄
−1N.

(2.101)

At the next stage of this procedure, observe that the left end-point of the range of
admissible indices starts atn8

0, which is less than the right end-point of the range (2.100)
(for n0 large). Therefore, from this point on the ranges will overlap and cover all large
integers. To ensure that the process does not terminate, simply note the rapid convergence
of the series given by (2.101).!"
Remark 2.12. Herman’s method [8] for proving positivity of the Lyapunov exponent for
potentials given by trigonometric polynomials also applies to the skew-shift. However,
it is well-known that his bound only involves the coefficient of the highest frequency of
the trigonometric polynomial. In particular, it does not generalize to analytic functions
covered by Prop. 2.11. On the other hand, for the important examplev(x, y) = cos(2πx),
it gives the superior lower bound

inf
E

L(λ,E) ≥ log(λ/2).

Finally, in [2] the first author has recently shown that for this choice ofv and allsufficiently
small λ > 0 there isω0(λ) > 0 and a subsetEλ ⊂ [−2,2] with the property that
mes([−2,2] \ Eλ)→ 0 asλ→ 0 and such that

inf
E∈Eλ

L(ω,E) > 0 provided 0< ω < ω0.

HereL(ω,E) denotes the Lyapunov exponent for the skew-shiftTω(x, y) = (x+y, y+
ω). Observe that this behavior is the exact opposite of the one displayed by the well-
known almost Mathieu equation asλ → 0. The approach in [2] is based on Kotani’s
theorem [10,14], Aubry-duality, and a perturbative argument for the almost Mathieu
equation.
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2.6. Regularity of the integrated density of states.. Let EC,j (λ, x, y), j = 1, . . . , b −
a + 1 = |C| be the eigenvalues of the restriction of (2.60) to the intervalC = [a, b]
with zero boundary conditions,ψ(a − 1) = ψ(b + 1) = 0. Consider

NC(λ,E, x, y) = 1

|C|
∑
j

χ(−∞,E)(EC,j ).

It is well-known that the weak limit (in the sense of measures)

lim
a→−∞,b→+∞ dNC(λ, ·, x, y) = dN(λ, ·)

exists and does not depend on(x, y) ∈ T2 (up to a set of measure zero). The distribu-
tion functionN(λ, ·) is called the integrated density of states. It is connected with the
Lyapunov exponent via the Thouless formula

L(λ,E) =
∫

log |E − E′| dN(λ,E′). (2.102)

In this subsection we show that for largeλ bothL andN have a modulus of continuity
which is at least as good as

h(t) = exp
(
−c| log t | 1

24−
)
. (2.103)

This improves on various well-known continuity properties ofL andN that hold for
very general classes of transformationsT . So far nothing better was known for the skew-
shift than log-continuity, which corresponds to replacing the power of logt in (2.103)
with log logt , see Figotin, Pastur [5] and the references therein.

For the proof of (2.103) we follow the approach from [4], which only requires a
large deviation estimate and the avalanche principle. The latter does not depend on the
transformation, and the former is given by Prop. 2.11. In particular, our assumption of
large disorder is made necessary by that proposition. Since it is rather straightforward
to apply the technique from [4] here, we shall be somewhat brief.

Proposition 2.13.Let ω, v, and λ1 be as in Prop. 2.11. For λ > λ1 both N(λ,E) and
L(λ,E) are continuous in E with modulus of continuity given by (2.103).

Proof. We shall prove this forL. It is standard to deduce the statement aboutN from
that onL by means of (2.102), see [7, Sect. 10]. For the sake of simplicity we shall
suppressλ in the notation. Fix any positiveσ < 1

24. Let N be a large integer and

setn = )C0(logN)
1
σ * with some large constantC0. One deduces from the avalanche

principle and (2.95) that

|LN(E)− 2L2n(E)+ Ln(E)| ≤ Cn

N
,

|L2N(E)− 2L2n(E)+ Ln(E)| ≤ Cn

N
.

(2.104)

The point is that (2.95) insures that the hypotheses (2.8) and (2.9) in Prop. 2.1 are
satisfied up to a set of measure less thanCN exp(−nσ ). This measure can therefore
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be made less thanN−1 by takingC0 large enough. Taking the difference of the two
inequalities in (2.104) yields

|LN(E)− L2N(E)| ≤ Cn

N
,

which after summing over dyadicN gives

|LN(E)− L(E)| ≤ Cn

N
. (2.105)

Inserting (2.105) into (2.104) leads to

|L(E)− 2L2n(E)+ Ln(E)| ≤ Cn

N
. (2.106)

It is clear that the derivatives ofL2n(E) andLn(E) in E are at most of sizeeCn. In view
of this fact (2.106) implies that for any nearbyE,E′,

|L(E)− L(E′)| ≤ Cn

N
+ eCn |E − E′| ≤ C exp

(
−c
∣∣∣log |E − E′|

∣∣∣σ), (2.107)

if one sets|E − E′| = exp(−2Cn).

3. Localization

The purpose of this section is to show that the operator (2.60) has pure point spectrum
with exponentially decaying eigen functions for mostω, x, y ∈ T (i.e., up to a set of
small measure) providedλ is sufficiently large, see Theorem 3.7 below. We will follow
the scheme from [3]. The basic idea behind the proof is to start with a generalized eigen
function with energyE, whose existence is guaranteed by the Shnol–Simon theorem,
and then to show that it in fact decays exponentially. It is well-known that for this to
hold one needs the Green’s functionsGI (x, y;E) on most intervals

I ⊂ Z with dist(I,0) ∼ |I | (3.1)

to possess exponential off–diagonal decay. This in turn is the case provided the mon-
odromy matrices corresponding to those intervalsI have norms which are on the order
of eL(E)|I |, L(E) being the Lyapunov exponent. By the large deviation estimate (2.95),
the bad set of(x, y) ∈ T, where any given one of these monodromy matrices has too
small norm is exponentially small in|I |. The difficulty that arises here is of course that
the sets of bad parameters depend onE. In principle, one would therefore need to remove
the union overE of all these bad sets which might amount to the entire parameter set.

The approach in [3] is to consider the set of parameters where there is some energyE

with the property that, on the one hand, for some intervalJ ⊂ Z centered at 0 the
Green’s functionGJ (x, y;E) has very large norm and, on the other hand, the Green’s
functionGI (x, y;E) fails to have the necessary off–diagonal decay. HereI is an arbitrary
interval as in (3.1), whose length and position is related to the length ofJ , see the proof
of Theorem 3.7 below for details. Using the large deviation theorem it is possible to show
that this set of parameters has small measure, see Lemma 3.6 below. It was observed
in [3] that estimating the measure of the set of parameters that produce these “double
resonances” can be accomplished provided one has some control on its complexity. This
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can be made precise in terms of semi-algebraic sets, which we also use here. The main
technical statement in this context is Lemma 3.3 below. That lemma is in turn based
on a general fact about the number of lattice points that can fall into a semi-algebraic
set of not too large degree and small measure, see Lemma 3.2 for the exact statement.
However, the proof of Lemma 3.3 also heavily exploits the structure of the skew-shift.
It remains to be seen to what extent this method applies to other transformations.

The arguments in this section do not directly invoke the lemmas from the previous
section. We do, of course, use Proposition 2.11 in an essential way.

3.1. An estimate on the number of lattice points falling into a small set of bounded
complexity. We begin by introducing some notation that will be used repeatedly in this
section.

Definition 3.1. For any a, b > 0 let a � b denoteC a ≤ b for some absolute constantC.
The case where C is very large will be written as a � b. Finally, a ∼ b means that both
a � b and a � b.

The following lemma will be important in the process of elimination of the energy.
It is basically contained in Sect. 13 of [3].

Lemma 3.2.Let S ⊂ [0,1] × [0,1] be an open set with the following three properties:

mes(S) < e−Bσ

for some σ > 0, (3.2)

∂S is contained in the union of at most B algebraic curves G = [P = 0] (3.3)

of degree degP < B,

for any line L, S ∩ L has at most B connected components. (3.4)

Suppose M and B are related by the inequalities

log logM � logB � logM. (3.5)

Then

#
{
(m1,m2) ∈ Z2

∣∣∣ |mi | < M and
(m1

M
,
m2

M

)
∈ S
}
< BCM. (3.6)

Furthermore, assume that

#
{
(m1,m2) ∈ Z2

∣∣∣ |mi | < M and
(m1

M
,
m2

M

)
∈ S
}
> M1−10−7

. (3.7)

Then S contains a line segment L of length

|L| > M−1+10−2

which is parallel to some integer vector with coordinates bounded by M10−6
and which

contains a point of the form
(
m1
M
, m2
M

)
.

Proof. See [3]. !"
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3.2. On the number of times a generic orbit of the skew-shift visits a small set of bounded
complexity.

Lemma 3.3.Denote by Tω : T2 −→ T2 the ω-skew-shift on T2. Let S ⊂ T4 × R be a
semi-algebraic set of degree at most B such that

mes(ProjT4S) < e−Bσ

for some σ > 0. (3.8)

Under the assumption (3.5)on M and B,

mes
[
(y0, ω) ∈ T2

∣∣∣ (y0, ω, T
j
ω (0, y0)

) ∈ ProjT4S for some j ∼ M
]
< M−10−8

.

(3.9)

Proof. Let ω ∈ (0,1) be fixed and choose somey0 ∈ [0,1). Then there are(x, y) ∈
[0,1)2 such that modZ2 (with ≡ denoting congruence modZ2)

(x, y) ≡ T j
ω (0, y0) ≡

(
jy0 + j (j − 1)

2
ω, y0 + jω

)
≡
(
jy0 + j − 1

2
(y − y0 + ν′), y0 + jω

)
≡
(j − 1

2
y + j + 1

2
y0 + ν

2
, y0 + jω

)
,

(3.10)

whereν, ν′ ∈ {0,1}. Assumej ∼ M. Rewriting the congruences (3.10) as equalities in
R yields {

x = ν
2 + j−1

2 y + j+1
2 y0 +m1

y = y0 + jω +m2
(3.11)

with |mi |�M. Solving (3.11) fory0, ω one obtains{
y0 = 2

j+1

(− ν
2 + x − j−1

2 y −m1
) = 2x−ν

j+1 − j−1
j+1y − 2

j+1m1

ω = 1
j
(y − y0 −m2) = ν−2x

j (j+1) + 2
j+1y + 2

j (j+1)m1− m2
j
.

(3.12)

Denoting

π(S) = ProjT4(S)

we shall estimate ∫
T2

[ ∑
j∼M

χπ(S)
(
y0, ω, T

j
ω (0, y0)

)]
dy0dω. (3.13)

Using the change of variables given by (3.12) one obtains that the integral (3.13) is no
larger than∑

j∼M
|mi |�M

∫ ∣∣∣∣∣ 2
j+1 − j−1

j+1

− 2
j (j+1)

2
j+1

∣∣∣∣∣χπ(S)(y0(x, y), ω(x, y), x, y) dxdy

∼ M−2
∫

T2

∑
j∼M
|mi |�M

χπ(S)x,y

(2x−ν
j+1 − j−1

j+1y − 2
j+1m1,

ν−2x
j (j+1) + 2

j+1y + 2
j (j+1)m1− m2

j

)
dxdy.

(3.14)
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Hereπ(S)x,y denotes the slice ofπ(S) for fixed (x, y). Restrict(x, y) ∈ T2 to the set
where

mes(π(S)x,y) < e−
1
2B

σ

. (3.15)

By (3.8), the complementary set contributes to the integral (3.14) an amount not exceed-
ing

e−
1
2B

σ

M < e−
1
3B

σ

. (3.16)

For fixed x, y, the setSx,y ⊂ T2 × R is still semi-algebraic of degree at mostB.
Therefore, condition (3.3) of Lemma 3.2 holds forπ(Sx,y) = π(S)x,y , withBC instead
of B. Moreover, for any lineL in [0,1]2

π(S)x,y ∩ L = π
(
Sx,y ∩ (L× R)

)
has at mostBC connected components, each of which is an interval. Thus condition (3.4)
holds withB replaced byBC . Fix a point(x, y) ∈ [0,1]2 satisfying (3.15) and assume∑

j∼M;|mi |�M

χπSx,y

(
2x−ν
j+1 − j−1

j+1y − 2
j+1m1,

ν−2x
j (1+1) + 2

j+1y + 2
j (j+1)m1− m2

j

)
> κM2,

(3.17)

where

κ = M−10−7
.

Fix j ∼ M and consider the affine transformation ofR2

A(z1, z2) :=
(

2x − ν

j + 1
− j − 1

j + 1
y − 2j

j + 1
z1,

ν − 2x

j (j + 1)
+ 2

j + 1
y + 2

j + 1
z1− z2

)
(3.18)

for which

|det(DA)| =
∣∣∣∣− 2j

j+1 0
2

j+1 −1

∣∣∣∣ ∼ 1.

Thus the setA−1π(S)x,y still satisfies conditions (3.2)–(3.4) of Lemma 3.2. Therefore,
in view of (3.6), ∑

|m1|�M,|m2|�M

χπ(S)x,y (A(m1/j,m2/j)) < BCM.

In conjunction with (3.17) this implies that there exists a subsetJ ⊂ {j ∼ M} such that

#J > B−CκM and (3.19)∑
|mi |�M

χπ(S)x,y (A(m1/j,m2/j)) >
κ

2
M = 1

2
M1−10−7

(3.20)
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for any choice ofj ∈ J . In view of (3.20), condition (3.7) of Lemma 3.2 holds for the
setA−1π(S)x,y . Hence, for anyj ∈ J there exists a vectorv ∈ Z2\{0} such that

|v1| + |v2| < M10−6
(3.21)

and a lattice pointm ∈ Z2, |m|�M such that

P + tv := m/j + tv ∈ A−1π(S)x,y

for all

0 < t < M−1+ 1
200. (3.22)

Applying the affine transformationA given by (3.18) yields(
2x − ν

j + 1
− j − 1

j + 1
y − 2j

j + 1
(tv1+ P1),

ν − 2x

j (j + 1)

+ 2

j + 1
y + 2

j + 1
(tv1+ P1)− (tv2+ P2)

)
∈ π(S)x,y

(3.23)

for all t as in (3.22). Herev = (v1, v2) andP = (P1, P2) = m/j depend onj .
Because of (3.19) and (3.21), there is a subsetJ ′ ⊂ J , so that

#J ′ > M−2.10−6
#J > M−3.10−6

M (3.24)

and for which all choices ofj ∈ J ′ have the same vectorv. We first consider the case
wherev lies on the line

v2 = 2v1. (3.25)

Denoting byL(j) the line segment given by (3.23), assume that for some choice ofj �= j ′
in J ′,

dist(L(j),L(j ′)) < τ.

Thus there existt, t ′ as in (3.22) so that∣∣∣∣(2x − ν

j + 1
− j − 1

j + 1
y − 2

j + 1
m1− 2j

j + 1
tv1

)
−
(

2x − ν

j ′ + 1
− j ′ − 1

j ′ + 1
y − 2

j ′ + 1
m′1−

2j ′

j ′ + 1
t ′v1

)∣∣∣∣ < τ (3.26)

and∣∣( ν − 2x

j (j + 1)
+ 2

j + 1
y + 2m1

j (j + 1)
− m2

j
+ t
( 2v1

j + 1
− v2

))
− ( ν − 2x

j ′(j ′ + 1)
+ 2

j ′ + 1
y + 2m′1

j ′(j ′ + 1)
− m′2

j ′
+ t ′

( 2v1

j ′ + 1
− v2

))∣∣ < τ. (3.27)

Since by (3.25)

− 2j

j + 1
v1 = 2v1

j + 1
− v2, (3.28)
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subtracting (3.26) from (3.27) and multiplying the resulting expression byj (j+1)j ′(j ′+
1) yields

‖2jj ′(j ′ + 1)x − (j − 1)jj ′(j ′ + 1)y − 2jj ′(j + 1)x + jj ′(j + 1)(j ′ − 1)y

+ 2j ′(j ′ + 1)x − 2jj ′(j ′ + 1)y − 2j (j + 1)x + 2j (j + 1)j ′y‖ � τM4,

which is the same as

‖2(j ′ − j)(1+ j)(1+ j ′)x‖ � M4τ. (3.29)

Here‖ · ‖ denotes the distance to the nearest integer. The pointsx ∈ T for which (3.29)
holds for an arbitrary choice of distinct 1≤ j, j ′ � M form a set of measure� M6τ .
Taking

τ = M−100,

one concludes that the contribution of those pointsx to the integral (3.14) is at most

M−90. (3.30)

Excluding those points, one can therefore assume that for any choice ofj �= j ′ in J ′,
dist(L(j),L(j ′)) > τ, (3.31)

where the line segmentsL(j) ⊂ π(S)x,y . We will show that this leads to a contradiction.
For an arbitrary set� ⊂ R2 denote byN (�, τ) the number ofτ -balls needed to

cover the set�. N is also referred to as “entropy”. In view of (3.31), (3.24), and the

property that|L(j)| > M−1+ 1
100,

N
(
π(S)x,y,

τ

10

)
> N

( ⋃
j∈J ′

L(j),
τ

10

)
� #J ′τ−1M−(1− 1

100)

� M1−3·10−6
τ−1M

1
100−1

� M
1

200τ−1.

(3.32)

On the other hand,π(S)x,y lies within a e− 1
4B

σ
-neighborhood of at mostBC many

algebraic curvesG of degree not exceedingBC . By our assumption (3.5),τ , e− 1
4B

σ
.

Therefore,

N (G, τ ) � τ−1(G) < BCτ−1,

N (π(S)x,y, τ ) � BCτ−1.
(3.33)

Because of logM , logB this contradicts (3.32).
It remains to consider the case where the vectorv ∈ Z2\{0} satisfies (3.21) but

v2 �= 2v1.

It follows from (3.23) that the segmentL(j) is oriented in the direction

2
j+1 − v2

v1

− 2j
j+1

= s(j + 1)− 1

j
where s := v2

2v1
�= 1, in fact, |s − 1| ≥ 1

2|v1| ≥
1

M
.
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P0

L(j)

L0

Fig. 2.The bushL(j)

Thus for any choice ofj �= j ′,∣∣∣∣ s(j + 1)− 1

j
− s(j ′ + 1)− 1

j ′

∣∣∣∣ � |1− s|
M2 ≥ M−3. (3.34)

One now again considers the system of lines{L(j)|j ∈ J ′}. Let L(j)
τ denote aτ -

neighborhood ofL(j). Then, on the one hand,∫
T2

∑
j∈J ′

χL(j)
τ
dxdy � #J ′M−1+ 1

100τ � M
1

200τ. (3.35)

On the other hand, since eachL(j)
τ is contained in aτ -neighborhood ofπ(S)x,y , (3.33)

implies that∫
T2

∑
j∈J ′

χL(j)
τ
dxdy�

∥∥∥∥ ∑
j∈J ′

χL(j)
τ

∥∥∥∥∞τ2N (π(S)x,y, τ )�τBc

∥∥∥∥ ∑
j∈J ′

χL(j)
τ

∥∥∥∥∞. (3.36)

One concludes from (3.35) and (3.36) that∥∥∥∥ ∑
j∈J ′

χL(j)
τ

∥∥∥∥∞ � M
1

200B−C � M
1

300. (3.37)

Hence there is a subsystem{L(j)|j ∈ J ′′} of cardinality

#J ′′ � M
1

300

such that the tubes{L(j)
τ |j ∈ J ′′} have a common pointP0. It follows from (3.34) that

� (L(j),L(j ′)) � M−3 for any choice ofj �= j ′. (3.38)

Choose a lineL0 that crosses the majority of lines in the bush{L(j)|j ∈ J ′′} transversely.

Recalling thatπ(S)x,y ∩ L0 has at mostBC � M
1

300 many components, one obtains
two distinctj, j ′ ∈ J ′′ for which the points

L0 ∩ L(j), L0 ∩ L(j ′) ∈ π(S)x,y
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belong to the same component ofπ(S)x,y ∩L0. In view of (3.38) and (3.22) this implies
that

mesL0(π(S)x,y ∩ L0) � M−4.

Since one can translateL0 by an amountM−1, one finally obtains

mes(π(S)x,y) � M−5,

which again contradicts (3.15). We have reached the conclusion that our assumption
(3.17) fails. Recalling estimates (3.16), (3.30) on the exceptional(x, y)-sets, this implies
that

(3.13), (3.14)� 1

M2

(
e−

1
3B

σ +M−99+ κM2) < 2M−10−7
,

which proves (3.9). !"

3.3. Averaging the monodromy matrix over long orbits. For the remainder of this paper
we shall assume that there is a large deviation estimate as in Prop. 2.11, without spec-
ifying λ in our notation. More precisely, we shall write the large deviation estimate in
the form

sup
E

mes
[
(x, y) ∈ T2

∣∣∣ ∣∣∣1
n

log‖Mn(x, y;E)‖ − Ln(E)

∣∣∣ > n−σ
]
≤ C exp

(−nσ ).
(3.39)

By Prop. 2.11 this holds providedσ > 0 is sufficiently small and for alln ≥ n1(λ, v, ε),
whereω ∈ �ε. Moreover, for the sake of simplicityv will be assumed to be a trigono-
metric polynomial. The extension to real–analytic potentials is straightforward.

Lemma 3.4.Let Tω be the ω-skew-shift, ω satisfying

‖kω‖ ≥ cε |k|−1−ε for all k ∈ Z,0 < |k| < N. (3.40)

Then, denoting

uN0(x, y) :=
1

N0
log

∥∥∥∥ 1∏
j=N0

(
v(T

j
ω (x, y))− E −1

1 0

)∥∥∥∥
there exist constants σ > 0, C > 1 so that for N > NC

0 one has the uniform bound

∥∥∥∥ 1

N

N∑
j=1

∣∣∣∣uN0 ◦ T j
ω −

∫
T2
uN0(x, y) dxdy

∣∣∣∣ ∥∥∥∥
L∞(T2)

< N−σ0 . (3.41)
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Proof. By the large deviation theorem, the set

� :=
[
(x, y) ∈ T2

∣∣∣ |uN0(x, y)−
∫

uN0| > N−σ0

]
satisfies

mes(�) < e−Nσ
0 . (3.42)

Sincev is a trigonometric polynomial,� is clearly semi-algebraic expressed by poly-
nomials in(x, y) of degree not exceedingNC

0 . Hence∂� is contained in the union of
no more thanNC

0 many algebraic curvesG of degree bounded byNC
0 . Therefore, one

has the entropy bounds

N (G, τ ) � NC
0 τ
−1,

and since, by (3.42)

sup
(x,y)∈�

dist((x, y), ∂�) � e−
1
2N

σ
0 ,

one also has

N (�, τ) � NC
0 τ
−1, (3.43)

providedτ > e− 1
3N

σ
0 . It clearly suffices to prove (3.41) forN < e

1
10N

σ
0 . Consider the

expression

1

N2

N∑
j �=j ′=1

‖T j (x, y)− T j ′(x, y)‖−2

∼ 1

N2

N∑
j �=j ′=1

[
‖(j − j ′)y + (j (j − 1)− j ′(j ′ − 1)

)
ω/2‖ + ‖(j − j ′)ω‖

]−2
,

(3.44)

where‖ · ‖ denotes both the natural distance onT2 andT. Settingk = j − j ′ and
 = j + j ′ − 1, (3.44) can be rewritten in the form

1

N2

∑
0<|k|≤N
||≤2N

[‖k(y + 1

2
ω)‖ + ‖kω‖]−2

≤ N−2
∑

0<|k|≤N

{
sup
z

∑
|′|≤N

[‖z+ ′kω‖ + ‖kω‖]−2}. (3.45)

Let

‖θ‖ = ‖kω‖ = δ > N−1+ε.
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Then the inner sum in (3.45) is at most

δN1+ε
1/δ∑
s=0

(δ2+ s2δ2)−1 ∼ N1+ε

δ
= N1+ε

‖kω‖ . (3.46)

Summing (3.46) over 0< |k| ≤ N implies that

(3.44), (3.45)� Nε, (3.47)

again invoking (3.40). Fixing(x, y) ∈ T2, we shall estimate #J , where

J = {j = 1, . . . , N | T j (x, y) ∈ �}.
Let τ > 1

N
and choose a collection of disks{D(Ps, τ )|s = 1, . . . , r} covering�, where

by (3.43)

r � NC
0 τ
−1. (3.48)

Since by (3.47)

N−2
N∑

j �=j ′=1

‖T j (x, y)− T j ′(x, y)‖−2 � Nε, (3.49)

we obtain in particular that

τ−2N−2
r∑

s=1

#
[
j �= j ′

∣∣∣ T j (x, y) ∈ D(Ps, τ ), T
j ′(x, y) ∈ D(Ps, τ )

]
� Nε. (3.50)

Define fors = 1, . . . , r,

Js = {j = 1, . . . , N | T j (x, y) ∈ D(Ps, τ )}
so thatJ ⊂⋃s Js . Clearly, (3.48) implies that

#J � NC
0 τ
−1+

∑
#Js>1

#Js . (3.51)

Furthermore, by (3.50), ∑
#Js>1

(#Js)
2 � τ2N2+ε. (3.52)

It follows from (3.51), and (3.52) that

#J � NC
0 τ
−1+√r τN1+ε � NC

0 τ
−1+NC

0 τ
1/2N1+ε.

Optimizing inτ yields

#J � NC
0 N

2
3+ε. (3.53)

SinceuN0 is bounded, (3.53) implies that

1

N

N∑
j=1

∣∣∣uN0(T
j (x, y))−

∫
T2
uN0

∣∣∣ � N−σ0 + CN−1#J � N−σ0 +NC
0 N

− 1
3+ε.

Inequality (3.41) follows providedN > N
C1
0 with some largeC1. !"
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The somewhat technical assumption (3.40), which requires only finitely many con-
ditions onω in terms ofk, was made in order to insure that Lemma 3.3 can be applied.
This will be important in the proof of localization, see Theorem 3.7 below. The previous
lemma turns out to have several applications, one of which is the following uniform
upper bound on the norm of the monodromy matrices.

Corollary 3.5. Assume ω satisfies the Diophantine condition (3.40). For any N > NC
0 ,

there is a uniform estimate for all E ∈ R,

sup
(x,y)∈T2

1

N
log‖MN(x, y;E)‖ < LN0(E)+N−σ0 . (3.54)

3.4. Double resonances occur with small probability. Fix ε > 0 small and letω ∈ �ε,
see (2.42). Since we are assuming that the disorderλ is large, Prop. 2.11 guarantees that

inf
E

L(E) > c0 > 0. (3.55)

The purpose of this subsection is to prove the following lemma, which asserts in effect
that double resonances occur with small probability.An analogous statement for the shift
can be found in [3]. The importance of double resonances is of course a standard fact
in the theory of localization, cf. Sinai [15] and Fröhlich, Spencer, Wittwer [6]. In what
follows, H[−N1,N1](ω, x, y) denotes the operator given by the left-hand side of (2.60)
(with T = Tω) restricted to the interval[−N1, N1] with Dirichlet boundary conditions.
We shall also writeLN(ω,E) instead ofLN(E) to indicate the dependence onω.

Lemma 3.6.Fix a small ε > 0. Let N be an arbitrary positive integer and let C2 ≥ 1
be some constant. Define S = SN ⊂ T4 × R to be the set of those (ω, y0, x, y, E) for
which there exists some N1 < NC2 so that

‖kω‖ ≥ ε |k|−1(1+ logk)−2 for all 0 < k < N, (3.56)∥∥∥(H[−N1,N1](ω,0, y0)− E
)−1
∥∥∥ > eC3N, (3.57)

1
N

log‖MN(ω, x, y,E)‖ < LN(ω,E)− c0/10. (3.58)

Here c0 is the constant from (3.55)andC3 will be a sufficiently large constant depending
on v. Then

mes(ProjT4S) � exp
(
−1

2
Nσ
)
. (3.59)

Moreover, S is contained in a set S′ satisfying the measure estimate (3.59)and which is
semi-algebraic of degree at mostNC for some constantC depending on v, ε,C2 andC3.

Proof. Fix some sufficiently largeN . Firstly, recall that the large deviation estimate
(3.39) forn = N holds under the condition (3.56) onω, see Remark 2.9. Now fix some
ω as in (3.56) and lety0 ∈ T be arbitrary. IfE satisfies (3.57), then by self-adjointness
of H ,

|E − E′| < e−C3N (3.60)
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for someE′ ∈ Spec
(
H[−N1,N1](ω,0, y0)

)
. Observe that these eigenvaluesE′ do not

depend on(x, y). It follows from (3.60) with sufficiently largeC3 and (3.58) that

1
N

log‖MN(ω, x, y,E
′)‖ < LN(ω,E

′)− c0/20. (3.61)

This can be seen by differentiating the functions on the left-hand side of (3.61) in the
energy. In view of (3.39), the measure of the set of(x, y) ∈ T2 for which (3.61) holds
with fixedE′ does not exceede−Nσ

. This proves that

mes
(
ProjT4S

)
� N2

1 e
−Nσ � e−

1
2N

σ

, (3.62)

as claimed.
It remains to be shown that conditions (3.57), and (3.58) can be replaced by inequal-

ities involving only polynomials of degree at mostNC for someC, without increasing
the measure estimate (3.59) by more than a factor of two, say. We will not provide all
details, since they can be readily found in [3]. Using Hilbert–Schmidt norms in (3.57)
and expressing the inverse in terms of Cramer’s rule shows that condition (3.57) is semi-
algebraic of degree at mostCN3

1 . Using Lemma 3.4, we may express the Lyapunov
exponent

LN(ω,E) = 1

N

∫
[0,1]2

log‖MN(ω, x, y,E)‖ dxdy

appearing in (3.58) as a discrete average

LN(ω,E) = R−1
R∑
j=1

1

N
log‖MN(ω, T

j
ω (0,0), E)‖ + o(1)

withR < NC . Therefore, one obtains a semi-algebraic condition inω, x, y,E of degree
at mostNC by rewriting (3.58) in the form

‖MN(ω, x, y;E)‖2R ≤ e−NRc0/10
R∏
j=1

‖MN(ω, T
j
ω (0,0);E)‖2.

Finally, the measure of the setS does not change by more than a factor in this process.
!"

3.5. The proof of localization for the skew-shift with large disorder. The following
theorem is the main result of this section.

Theorem 3.7.Fix ε > 0 small. Let v = v(x, y) be a nonconstant trigonometric poly-
nomial on T2 and let λ1 = λ1(v, ε) be as in Prop. 2.11. Let Tω(x, y) = (x + y, y +
ω) (modZ2)denote theω-skew-shift on T2. Then for everyλ > λ1 and all (ω, x, y) ∈ T3

up to a set of measure ε, the operator(
Hω,(x,y)ψ

)
n
:= −ψn−1− ψn+1+ λv(T n

ω (x, y))ψn on 2(Z)

displays Anderson localization for all energies.
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Proof. Letω ∈ �ε, see (2.42). For largeN , letSN be as in Lemma 3.6. Then Lemma 3.3
applies toSN and settingN̄ = e(logN)2 it follows that

mes
[
(y0, ω) ∈ T2

∣∣∣ (y0, ω, T
j
ω (0, y0)) ∈ ProjT4(SN) for some j ∼ N̄

]
< N̄−10−8

.

(3.63)

Let BN denote the set on the left-hand side of (3.63) and define

B(0) := lim sup
N→∞

BN.

Thus mes(B(0)) = 0. SinceT (x, y) = x+ T (0, y) (mod 1), this construction applied
to the potentialv(x + ·, ·) instead ofv produces a setB(x) of measure zero. Finally, set

B :=
{
(ω, x, y)

∣∣∣ (y, ω) ∈ B(x)
}
,

which is again of measure zero. It is for all(ω, x, y) ∈ �ε ×T2 \B that we shall prove
localization.

Fix such a choice of(ω, x, y) and anyE ∈ Spec
(
Hω,(x,y)

)
. By the Shnol–Simon

theorem [12,13] there exists a generalized eigenfunctionξ , i.e.,

(Hω,(x,y) − E)ξ = 0 and |ξn| � 1+ |n| for all n ∈ Z. (3.64)

Furthermore, we normalize|ξ0| + |ξ1| = 1. Fix some large integerN and assume
that (3.57) holds. By our choice of(ω, x, y),

1

N ′
log‖MN ′

(
T j
ω (x, y);E

)‖ > L(E)− c0/10

for allN ′ ∼ N andj ∼ N̄ = e(logN)2, cf. (3.58). It follows from the avalanche principle
that then also

1

N2
log‖MN2

(
T j
ω (x, y);E

)‖ > L(E)− c0/10 if

N̄

2
< |j | < N̄ and N2 < N2 <

N̄

10
.

(3.65)

As usual, let

GC(ω, x, y;E) :=
(
HC(ω, x, y)− E

)−1

be the Green’s function. As before,HC denotes the restriction ofH to the intervalC
with Dirichlet boundary conditions. Consider intervals

C =
[
j, j + N̄

10

]
, where

N̄

2
< |j | < N̄.

By definition ofGC and because of (3.64), it will suffice to prove that

max
∈∂C

∣∣∣GC(ω, x, y;E)(k, )
∣∣∣ � exp(−c1N̄) for all k ∈ C with dist(k, ∂C) >

1

4
|C|.

(3.66)
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Herec1 > 0 is some fixed constant. The proof of (3.66) follows from (3.65) by a standard
argument. In fact, it is a simple consequence of Cramer’s rule and the representation of
the Hamiltonian as the matrix appearing on the right-hand side of (2.80) that for anyn

and 1≤ k,  ≤ n,

G[1,n](x, y;E)(k, ) = fk−1(x, y;E)fn−−1(T
(x, y);E)

fn(x, y;E) .

In conjunction with (2.81), Corollary 3.5, and (3.65), this implies (3.66) as desired. Re-
call, however, that we made the assumption that (3.57) holds. To establish this condition
it suffices to show that

|ξN1+1| + |ξ−N1−1| � e−2C3N

for someN1 ∼ NC2. In view of (3.64) this estimate holds provided both Green’s
functions

G[j−4C3N, j+4C3N ](ω, x, y;E) = G[−4C3N,4C3N ]
(
ω, T j (x, y);E) with j = N1,−N1

satisfy an exponential decay estimate as in (3.66). In view of the preceding argument
involving (3.66) it remains to show that for somej ∼ NC2 one has the property

1

4C3N
log‖M4C3N

(
T j
ω (x, y), E

)‖ > L(E)− c0/10

and similarly for−j . That, however, is an immediate consequence of Lemma 3.4.!"
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