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Abstract: In this paper we study one-dimensional Schrddinger operators on the lattice
with a potential given by the skew shift. We show that Anderson localization takes place
for most phases and frequencies and sufficiently large disorders.

1. Introduction

In this paper we study the positivity of the Lyapunov exponent, the regularity of the
integrated density of states, and the nature of the spectrum for the Schrédinger operators,

Hey ey Vn = —Vnt1 — Yne1 + (T (x, Y)W ONL3(Z), (1.1)

whereT,, = (x + y, y + w) (mod 1) is the skew-shift on the two-dimensional tofi}&
The number will be assumed to be Diophantine. The study of families of Schrédinger
operators with potentials that are in some sense random has a long and rich history,
starting with the famous work by P. Anderson [1]. It is not our intention to review
this subject, as some of the history as well as many references can be found in [7].
Furthermore, the methods in this paper have little overlap with the work that has been
done on the purely random case. Our approach is motivated by the recent works [3]
and [7].

The main results in this paper are as follows. Fix a nonconstant real-analytic function
vo onT? and some small > 0. Then there exists a s@t ¢ T with megT \ Q,] < «,
and a large constanp(e, vo) so that for anyw € Q. andi > Ao, the equation (1.1)
with v = Avg has the following properties:
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e The Lyapunov exponents of (1.1) are positive for all energies, see Prop. 2.11.
e The integrated density of states is continuous with modulus of continuity

h(t) = exp(—c| Iogt|2%1‘),

see Prop. 2.13.

e The operators (1.1) display Anderson localization, i.e., there efdsts” T2 with
megT?\ ©.] < ¢ so that for all(x, y) € Q. the spectrum is pure point and the eigen
functions decay exponentially, see Theorem 3.7.

2. A Large Deviation Theorem for the Monodromy Matrices and Positivity
of the Lyapunov Exponents for Large Disorder

Consider the Schrédinger operator (1.1), wheiga trigonometric polynomial, say. An
important example is(x, y) = cog2rx). Any solution of (1.1) is of the form

1pn+l> <Wl>
M,  E
< wn . ¥ ) wO
whereM,, (x, y; E) = ]‘[}:n Aj(x,y; E) with (T = T, for simplicity)

Aj(x,y; E) = [U(Tj(x’ly)) -k _01] : (2.1)

The matrixM,,(x, y; E) is called the fundamental, or monodromy matrix of Eq. (1.1).
As usual,

1
Ln(E):/ —log ||M,(x, y; E)ll dxdy
T2 n

andL(E) = lim,_» L,(E) = inf, L, (E) denotes the Lyapunov exponent. Clearly,
L(E) > 0 for all E. Kingman’s subadditive ergodic theorem asserts that

1
Zlog||M,(x, y; E)|| = L(E) fora.e.(x,y) € T? asn — oo.
n

A more quantitative version of this convergence statement will be of particular impor-
tance in this paper. In fact, the goal of this section is to prove an estimate of the form

supmeq (x, y) € 12| ]3 10g My (x, v E)| = Lo (E)| > n~" | = Cexp{—n?)
E n
2.2)

for all positive integers: and some constaiat > 0, see Prop. 2.11 below for a more
precise statement. These so-called “large deviation estimates” have been of central im-
portance in some recent papers by the authors, see [3, 7], and [4]. They are a key ingredient
in the proof of localization in [3] on the one hand, and are essential for proving regu-
larity of the density of states as well as positivity of the Lyapunov exponent in [7]. The
Schrédinger equations considered in [3] and [7] were of the form (1.1)Wvglven by

the shift rather than the skew-shift, i.e., 7 (x, y) = (x + w1, y + @w2) (modZ?) in the

case of two dimensions. We want to emphasize that the methods from these papers do
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not directly apply to the skew-shift and a completely new approach was required for the
proof of Prop. 2.11 below. To understand the difficulty introduced by the skew-shift, let
us briefly review some basic aspects of the techniques underlying the proof of the large
deviation estimates in [3] for the case of the shift. Firstly, the map

1
un(z1,22) = ; |09 M), (21, z2; E)|| (23)

extends to a subharmonic function on a complex neighborho@d.dfloreover, these
subharmonic functions are bounded in that neighborhood uniformly ldsing the
standard Riesz—representation for subharmonic functions one obtains the decay of the
Fourier coefficients

C
(01, )| < ———M 2.4
G 2)|_|€1I+|€2|+1 (2.4)
with some absolute constagt The second important idea is to exploit the almost
invariance ofu,, under the transformatiofi. In fact, it follows immediately from the
definition of M, as a product that

sup
(x,y)€T?

1& K
= 2 un (T4, ) = n(x, )| < C—. (2.5)
k=1

Fourier expanding the sum in (2.5) leads to a series in which the main contributions are
given by the resonances of the shift, i.e., thbseZ? \ {0} for which

Ik - ol < 1.

Sincew = (w1, wp) is assumed to be Diophantine, such resonances only occur for a
sparse set of frequencieand the decay (2.4) then controls the size of these contributions
(in [3] certain technical problems arise due to the dulecay provided by (2.4), which
however do not concern us here).

The difficulty one faces with this method in the case of the skew-shift derives from
the failure of uniform boundedness of the subharmonic function (2.3). This is due to the
fact that iteration of the skew-shift is given by

T*(x,y) = (x + ky + k(k — Dw/2, y + kw) modZ?. (2.6)

Complexifying in the variable therefore produces an imaginary part of size about

in half of the factors of the produdt,,, cf. (2.1). Therefore, most factors 8f,, will be

of sizee” rather than bounded as in the case of the shift. Instead of (2.4) one can only
assert that

Cn
[€1] 4 [€2] + 1

However, since one typically has a resonance at th€Gite the Fourier series argument
based on the decay (2.7) does not even provide|that- L, |2 — O.

Of course, the argument which we outlined above is rather crude as the structure
of M,, only enters through the almost invariance (2.5). The tool that will allow us to
exploit the structure a#f,, more carefully is the “avalanche principle” from [7]. We now
reproduce the statement of this principle from [7], but refer the reader to that paper for
the proof.

ity (L1, £2)] < (2.7)



586 J. Bourgain, M. Goldstein, W. Schlag

Proposition 2.1.Let A1, ..., A, beasequenceof arbitrary unimodular 2 x 2-matrices.
Suppose that
min ||A;| > u>n and (2.8)
1<j<n
1
max [log||Ajtall +log[lA;[l —log|lAj114;]] < - logu. (2.9)
1<j<n 2
Then
n—1 n—1 n
log||A, - ... A1l + Zlog 1A — Zlog IA;+14;]| < C;. (2.10)
j=2 j=1

Proposition 2.1 will allow us to prove (2.2) inductively. More precisely, assume
that (2.2) holds for some integersaand 2:. Consider the monodromy matrd{y with a
choice of N which is basically subexponentialin Let the matricest ; be the matrices
M, o T/" so that

0
My(x,y; E) = ]_[ Aj(x,y; E).
j=N/n

By (2.2) conditions (2.8) and (2.9) will hold for alk, y) € T? up to a set of measure
not exceeding

exp(—n”). (2.11)

The advantage of passing to the much shorter monodromy matdic@sstead ofM

lies with the fact that the size of their subharmonic extensions is:ond¢her thanv.

This allows one to prove that the averages appearing in (2.10) are close to their respective
means up to a set which is subexponentially smal jicf. Lemma 2.6 below. However,

in order to apply the avalanche principle we had to remove a set of size given by (2.11),
whereas the goal is to prove (2.2) f§ir The key tool to circumvent this difficulty is the
following BMO estimate for subharmonic functions, which have the additional property
of being the sum of two functions, one of which is smallZiff and one that is small

in L. This mechanism is really the new feature compared to the methods from [3].

2.1. Subharmonic functions with small BMO-norm.
Definition 2.2. Throughout this paper e(x) := ¢2** . Forany 0 < p < 1,
A, ={zeCl|l—p <zl <1+ p}
For a function « defined on A, we shall write u(x) instead of u(e(x)). It will be clear
from the context whether we mean u(z) for complex z or u(x) = u(e(x)) for real x. For

any positive integer d,

T .= RY/7¢
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denotes the d-dimensional torus. BMO(T) is the space of functions of bounded mean
oscillation on T, see[16] . Identifying functions that differ only by an additive constant,
the norm on BMO(T) is given by

1
Il fllBmMO(T) := SUP—/IIf —{f)ldx,

et 1
where (f); = |71|f1 f(x) dx. The open unit disk will be denoted by ID.

Lemma 2.3.Suppose « is subharmonic on A,, with supy, lul < N. Furthermore,
assumethat u = ug + u1, where

lluo — (uo)llzoe(ry < €0 and lugll 1) < &1. (2.12)
Then for some constant C,, depending only on p,
lullemo(m) < Cp<80|09(N/81) + Nel)- (2.13)

Proof. By Riesz’s representation theorem, there is a positive measuid supgu) C
A, /2 and a harmonic functioh such that for any € A, 2,

u(z) = / log |z — ¢ldu(s) + h(z), (2.14)
where
w(Aps2) + lIhllLe(A, ) < Cp N. (2.15)
We first claim that one may assume
suppn) € DN Ay (2.16)
Indeed, defing.* by
w*(E) = p(END) + u(E®),
where
E* = {le 1z € E}
for any measurabl& c C. For any|z| = 1,

/Iog|z—;|du<c>—/,Iog|z—;|du*<c>=f logl¢|du(0).
D c\D

Since the term on the right-hand side is nonnegative and no largeCthan sub-
tracting this constant from andug changesV by at most a multiplicative constant,
whereas both the hypothesis and the conclusion of the lemma remain unchanged. This
implies claim (2.16). In particular, since

/Iog|e(t)—§|dt =0 forall |¢] <1
T
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we can assume that
For =r-e(x)withO<r <1let

1—r2
1—2rco92rn(x — y)) +r2

Pe(y) =

be the usual Poisson kernel]#fl = 1, thenP, = §,. Foranyf e LY(T) with (f) = 0,
the anti-derivativeD 1 f is defined as

t
(D7rH() = / f(x)dx wheretg is chosen so thatD™1f) =0 (2.18)
1o

for arbitraryr € T. The existence ofy is guaranteed by the mean value theorem. We
shall also need (2.18) in cage= §g,, 9o € T. In that case letg = 6p + % (mod 1.

Observe thaD 1 f is unique whereas the choicemfis not necessarily unique.
For any; = |¢]e(y) € D one has the elementary relation
2|Z| sin(2r (x — y))
1—2¢|cos2n(x — y)) + [¢|?

where# denotes the Hilbert transform ai?} is the standard notation for the conjugate
function of the Poisson kernel, cf. Katznelson [9]. In particular,

% logle(x) — ¢] = = 0 (1) = (HP)(),

logle(x) — ¢| = (D" YHP)(x) = (HD—l(P; - l))(x).
Hence (2.14), (2.16), and (2.17) imply that
Ul = H[D‘l f(PC(.) —Ddu) + H_lh]. (2.19)

The anti-derivative appearing in (2.19) is a harmonic functiorDorin fact, if z =
r-e(t) €D, then

t t o
(D—l(P,(.) — 1))(0 =/ (P (x) — 1) dx =/ 2" cos2rnx)r" dx
4 =

n=1
~1n1
= — Z — sinrnt)r" (2.20)
T =n

-1
= —3log(1l —z) = —2Arg(1 — 2),
T

where Arg denotes the principal branch of the argument, i.e.,

[N

1
Arg(z) = x ifand only if z = |z]e(x) and — > <x<=.

N

In particular,

1

; 1
(D_l(Pl(')—l))(t):{It_i if —§Sf<0

2.21
-t ifo<r<i (221)
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Fig. 1. The right-hand side of (2.24)

and similarly for P, with arbitrary|¢| = 1. For any|¢| < 1 denote
he = D7HP () — D).

The functions are harmonic in the sense of (2.20). et 0 be aC*-function on
the line with suppy) C [—1,1] and [ x (x)dx = 1. Let R be a large number to be
determined below and set

¢r(x) = Rx(Rx). (2.22)
Clearly,

Y 16r(K)| < CR. (2.23)
k

We claim that for any € T and any|¢| < 1,

(he % pR)(t — CoR™Y) — C1R™Y < he (1) < (he % ¢r)(t + CoR™Y) + C1R 7Y,
(2.24)

provided Cg, C1 are suitable absolute constants. Since all the functions appearing in
(2.24) are harmonic, it suffices by the maximum principle to prove the claifg fes 1.

By translation invariance, we may even get 1. In that casef, is given by the saw—
tooth function (2.21) for which (2.24) is evident, see Fig. 1 (the rounded—off curve lying
inside the saw—tooth function represents the convolution of (2.21)#yitkvhereas the
dashed line is given by raising that smoothed out function and translating it to the left
until it lies above the saw-tooth). Lét be the harmonic function given by (2.14). In
view of (2.15) one has

I(H ) | Loory < Cpllhllzoqa,, < Cp N.
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Therefore,

(h % ¢r)(t — CoR™Y) — CoNR™Y < (H7h)(1) < (h * ¢pr)(t + CoR™Y) + CoNR ™2
(2.25)

with the same constaly as in (2.24), but a different choice 6% also depending op.

Let F = [...] denote the expression in brackets on the right-hand side of (2.19). By
construction,(F) = 0. Integrating (2.24) over the positive measudye(¢) with mass
controlled by (2.15) and adding (2.25) yields

(Fx¢r)(t —CoR™H —C,NR™1 < F(t) < (F x ¢g)(t + CoR™H +C, NR71,
(2.26)

foranyt € T. Thus
I Flloo < I(F — H  ug) * ¢rlloo + IH 1o * ¢rlloc + CNR™?

= Z‘(F - H’luo)A(k)M&(kn ¥ lluo * Horllo + CNR™L  (2:27)
k#0

SinceF = Htug + H1u1 by (2.19), the sum in (2.27) can be estimated as follows:

S| (F = #7u) (k)‘|¢R(k)|<Z‘H Hua (0|16 (0|
k40

< Z luall1lgr (k)] < Ce1R.

k0

Next we claim that|Her |1 < C log R. With Q(y) = & cot(rr y) being the kernel oH,

(He ) - 01 = | [[00 = - 0 ]ert x|

C
/| 2 PRV AX = P

providedR|y| > C. Thus,
/ |(How ()] dy < ClogR. (2.28)
Rly|>C]
On the other hand,
| |owwm|dy < cinselerd < clonlerE<c. @29)
R|y|=C]

Thus

lluo * Herlloo < lluollocHrll1 < Ceolog R.

In view of the preceding
1 Flloo < C(so logR + e1R + NR—l). (2.30)

The lemma follows from (2.19) and (2.30) by takiRg= /N /s1. O
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Remark 2.4. The main application of Lemma 2.13 in this paper will be to estimates on
the measure of the set
{x € Tl ux) — (u)| > 1}.

In fact, by the well-known John—Nirenberg inequality [16], the measure of this set does
not exceed

cA
Cexpl ————). 2.31
p( IIMIIBMO) ( )

The exponential integrability of the Hilbert transform of a bounded function can be
derived much more easily than by going through BMO and John—Nirenberg. Indeed, it
is a classical, and rather simple fact that for any real-valued fungtion T such that

| f| < 1, one has the bound

ex H)()|)dt < 2
A P(Of|( f)()|> _m

forany0< « < 1, see Theorem 1.9in [9] (witla < 1 being optimal). Using this bound

in the previous proof instead of the deeper fact tHat L — BMO leads directly to

the estimate (2.31) on the measure. Since the BMO-estimate (2.13) might be of interest
in its own right, we have chosen to present Lemma 2.3 in this way.

Lemma2.5.Let u : T2 — R satisfy lull foo(r2y < 1. Assume that u extends as a

separately subharmonic function in each variable to a neighborhood of T2 such that for
some N > landp > 0,

sup sup |u(z1,z2)| < N.
z1€A, 22€ A,

Furthermore, suppose that u = ug + u1 on T2 where
lluo — (u)llLoo(r2y < €0 @nd |luall 12y < €1

With O < e, £1 < 1. Here (u) := [, u(x, y) dxdy. Thenfor any § > 0,

mes{(x, y) € T2 ‘ u(x, y) — (u)| > B’ |Og(N/81)] < Cqulexp(—cB—%”),

1
where B = gglog(N/e1) + N%ef. The constants ¢, C only depend on p.

Proof. We may assume that) = 0 without significantly changing the hypotheses. Let

_1
M = stl 2 | and denote the Fejér-kernel @with Fourier support—M +1, M —1]
by Fj;. Then

u*1 Fy = ug*1 Fyy +uy %1 Fy,
wherex; denotes the convolution inalone. It is clear that for fixed € T,

2
luo*1 Fy(x, )lirge < €0 and flug 1 Fur(x, )llg2 < Mex < 2N /e,
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SinceFy > 0, (u*1 Fy)(x, -) extends to a subharmonic function in the second variable
satisfying

Sup |u *1 Fpy(x,z)| = N.
zeA,

Hence Lemma 2.3, in conjunction with the John—Nirenberg inequality, implies that for
anyi > 0,

CcA
ey megy € T | (w1 Fan)(x. ») = (@1 Fa)(x. )] > 2] < Cexp(= ).
(2.32)
where B := C,(eglog(N/e1) + N%(gl%)_ 2.33)

Observe that for any, x’ € T

Sup |(u *1 Far)(x, y) — (u 1 Fa) (X', Y)| < Mull poo(r2y |x — x| < M |x — x|
yeT
(2.34)

Let V' c T be aM 1) /4-net. In view of (2.32) and (2.34) one concludes that

cA

1 M
mes[y eT| sup | %1 Far)(x, y) — (51 Fa)(x, )| > Ek] =c> exp(——).

B
(2.35)

Now let» = 2¢/B and denote the set on the left-hand side of (2.35) with this choice
of A by B1. Thus

_1
mesBy) < CN%, 2B~ 2 exp(—cB—%) < CNZal—lexp(—cB—%). (2.36)

Now fix somey € T\ B1 and consider the decomposition:af, y) as a function of the
first variable given by

uC,y) =ul,y) — @1 Fy)(, ) + @ *1 Fy) (-, y). (2.37)
From the Riesz representation
u(z,y) = / log|z — ¢ldu(g) + h(z) with w(Ap/2) + lhliLea, ) < Co N,
it is standard to deduce that the Fourier coefficients
ull,y) = /Tu(x, y)e(—€x)dx
decay as follows:

C)N
i (e, )| < &' -
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In particular, by definition ofy; and because of our choice pfsee (2.35),

1
lu,y) = (1 Fa)(, y)ll2 =< C, NM™2  and

2.38
sup |(u 1 Fan)(x, y) — (@ %1 Fa)(x, )| < v/B. (2.38)
xeT
The mean appearing in the second term is uniformly small. In fact, far all,
[((u %1 Far)(x, )| < / [(uo *1 Fm)(x, y)|dy + / |1 x1 Fp)(x, y)|dy
T T (2.39)

< lluoll poor2) + Mlluallpacr2) < 0+ 2N%/e1.

Assuming as we may tha < 1, one checks from (2.33) that the bound in (2.39)
is no larger thanC+/B. Hence (2.38) implies that for any € T \ Bi (recall that

_1
M =[N% %)
1
luG-, y) = (1 Fa) G, )l < Cpef and sup|(u %1 Far)(x, y)| < CVB.
xeT

Applying Lemma 2.3 to the function(-, y) with the decomposition given by (2.37)
therefore yields

1
sup luC-. y)lemo < C,p(v/BIog(N/e1) + N2eP) < C, VB log(N/e1). (2.40)
yeT\By

It remains to be shown that
v(y) = (u(,y) = /;Tu(x, y)dx

is close to zero for most. Clearly,v extends to a subharmonic functiondp such that

suplv(z)] <N and (v) = (u) =0.

zeA,
With vo(y) := (uo(:, y)) andvi(y) := (u1(-, y)) one has
llvollLoe(ry < €0 and Jlvillpa(ry < 1.
Therefore, Lemma 2.3 implies that
lvlemo < C(e0log(N/e1) + v/Nez) < CB.
Thus
mes[y €T ‘ ()| > «/E] < Cexp(—cB—%). (2.41)

Denoting the set on the left-hand sidefByy let 5 := B1UB». One concludes from (2.36),
(2.41), and (2.40) by means of the John—Nirenberg inequality that

mes[(x, y) € T2 ‘ u(x, y)| > B Iog(N/el)] <mesB) + C exp(—cB’%H),

and the lemma follows. O
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2.2. Averages of subharmonic functions over orbits of the skew-shift. In what follows
we assume thab € (0, 1) is Diophantine in the sense that

lnw| > en~1(1+ logn)~2 for anyn € Z*, (2.42)

wheree > 0 is some arbitrary but fixed small number. K&t be the set of those that
satisfy (2.42). Itis clear that

megT \ 2.] < Ce

with an absolute constaat The choice of logarithmin (2.42) is mainly for convenience.
A very small power loss is also acceptable. Throughout this section we wilpise
this sense. LeT,, : T?> — T?, T, (x, y) = (x + v, y + ») (modZ?) be the skew-shift.
Observe that the iterates &f, are given by

TF(x,y) = (x + ky + k(k — Dw/2, y + kw) modZ? (2.43)
foranyk € Z.

Lemma2.6.Let u : T2 — R extend to some neighborhood of T2 as a separately
subharmonic function in each variable so that for some p > 0,

sup sup |u(z1,z2)| = 1. (2.44)

71€A, 22€ A,

Fixasmall ¢ > Oandlet w € Q,, see (2.42) For any § > 0 there exist constants ¢, C
such that

K
1 1
mes[(x, y) € T2 ‘ ‘? Y woTh(x,y) — (u)’ - K*sz] < Cexp<—c1<5),
k=1
(2.45)

for any positiveinteger K. Here (1) = 1, u(x, y) dxdy and the constants depend only
onp,$d,e.

Proof. Leti(¢, y) = folu(x, y)e(—£x) dx denote the Fourier coefficient with respect
to the first variable. As above one deduces by means of the Riesz representation of the
subharmonic function — u(z, y) and from (2.44) that

supli(¢, y)| < Cp e (2.46)
yeT

With some positive integep; to be determined, let

u(e,y) =Y s, elx) + Y @1, y)e(frx)
lea1<p1 lea]> p1 (2.47)

= u1(x, y) +ua(x, y),
whereu; andiu are the respective sums on the right-hand side of (2.47). By (2.46),
1

sup @1, y)ll 2 < Cpy *. (2.48)
yeT :
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With some positive integep, to be determined below, let

ui(.y) = Y A0y €)e(tix + Lay) + Y ity L)e(trx + L)

[€1]<p1 [e1]<p1 2.4
121> p2 [€21<p2 (2.49)

=:u2(x,y) +usx,y).

Using the Riesz representation in the second variable one derives from (2.44) that

l1,42)] < 12 dy|d 2.50
it 021 = [ | [ et—tamute nas|ar = 72— (2.50)
Therefore,
l
lualizes < 3 | 32 aea toetan)] , < Cpupy®
[€1l<p1 |€2|>p2
In particular,
1 K
- k -1
mes{ye']l“ AK‘;MZOT (x,y)‘dx>K ]
(2.51)

K
1
< K/T2 ?‘];uzo Tk(x,y))dxdy

_1
< Klluzll 12y < C Kp1p,

Let B be the set on the left-hand side of (2.51). In view of (2.43),

sup
x,yeT?

1 K
—Zu3o Tk(x,y) — (u))
=1

K
% Z ]_+C|g2| ‘ge[gl(ky + wk(k —1)/2) + ﬁzkw]‘

[€11<p1,|€2|<p2
[€1]+]€2|#0

18 0 &
=3 E‘ > ettoka)|
lo=1 k=1

P11 p2 K-1 %
o> L 1is, (Z min (K. ||melw||—1)) (2.52)
€1 1éz= m=1

c 1 "

— — min(K, ||£ -

K(Zl 7, Min(K. €20l ™)
po-

IA

1
c p1 K-1 2
; -1
+ < /pilogpz eZllemm(K, Imeso] )
s

=: 51+ 5. (2.53)
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To obtain the second term in line (2.52), one uses the well-known method of Weyl—
differencing, cf. Montgomery [11, Chap. 3]. In fact,

K 2 K-1 2
1k + wk(k — 1)/2) + Cok ’ <k+2% min(k, —— =
]k;e[ 1(ky + wk(k — 1)/2) + ko] 2 ( |1_e(€1wm)|)
K-1
<C Y min(K, [[tzom] "),
m=1

which leads to (2.52). In view of (2.42) (witlhh ~ b denotingb < a < 2b), for any
positive integemR,

R

R
1 _ _ 1 . 1ni
D min(L Kol ™) < 30 D gz MIn( K20

=1 1<2/i<K ¢=1

1

R
+ D Xijtoll k115
=1

2
<C Z ] 21IogR+CZ(IO§If)

1<21<K =1
log K )2
c( g9K)

log R.

Here the constants depend arThus,

S1<C, log p2. (2.54)

(log k)2
K

By Dirichlet's principle there is an integer ¥ ¢ < K and an integemp so that
gcd(p,g) = 1 and|w — §| < q— In view of (2.42), one also hag > cg(log—K)z
By means of the standard bound on the divisor function and the usual estimates for

reciprocal sums, cf. [11, Chap. 3],

r1 K-1 nK
Y. D min(K, [mtiol ™Y < Cep(prK)™? Y min(K, ko] ™)
L1=1m=1 k=1

2
+ p1Klogg + K +¢q Iogg)

K
= Co(prk)? (2

< Cep(p1K)HH22,
(2.55)

wheregz > 0 is an arbitrarily small parameter. One obtains from (2.53), (2.54), and
(2.55) that

K
1
sup | = Y usoTH(r,y) — ()| < S1+ 5, < Cp TP K" 2log ps  (2.56)
x,yeT? k=1
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with a constant that depends bothscamde;. Fix some small > 0 and choosg; = K3
andpy = exp(4K5 . The conclusion from the preceding is as follows, cf. (2.48), (2.51),
and (2.56): There exists a sub&etC T of measure

megB) < CK 3 exp(—2K‘3> < Cexp(—K8>, (2.57)

such that (choosinge3 < §)

K
1 k
sup | = > uoTHew) — w
yeT\B KkX:;L L}

K
1
< sup| = Yo T, y)
k=1

K
1 k
+ su —’ u20T"(x, dx
e 1 P % k2=1 20T (x,y)

x yeT\B JT (2.58)

+ sup
(x,y)€T?

1 K
X Zugo Tk(x, y) — (u)‘
k=1
<CK 84+ K14 CKitegd-ite < c g5+

with constants that depend on bdtlande. To obtain (2.45), one uses Lemma (2.3) to
convert thel.1-bound (2.58) into a.>*-bound at the cost of removing an exponentially
small set. For any fixed € T \ B, consider the bounded subharmonic function

K
1 .
vy(2) = e E uoT*(z,y) with ze Ap.
k=1

It is important to notice thay is real. Otherwisel'*(z, y) ¢ A, x A, for largek,
see (2.43). One has the decomposition

K

1« 1
22 uoTHCy) = () + 2 Y uoT . y) — {u).
k=1

k=1

In view of (2.58) one obtains from Lemma 2.3 (with= 1,e9 = 0, ande; = K—%+2a)
that

1
< Cy K~ 1219,

1 K
H?Zu o TX(, )
k=1 BMO,

By the John—Nirenberg inequality thus

sup me{x eT ‘ lvy(x) — (vy)| > Cs K‘%2+25] < Cexp(—K‘s). (2.59)
yeT\B

Since (2.58) implies thativy) — (u)| < C;s K‘%”‘S, the lemma follows from (2.59)
and (2.57). O
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Remark 2.7. It will be important in the proof of localization below that the previous
lemma requires only finitely many conditions@nMore precisely, the arithmetic nature
of w only enters into the estimate 6f and S». Furthermore, what is required for the
bound onsS is the following: If for someK 1 < x < 1 and some positive distinct
integerst, ¢/,

Lol <« and ||£ o] < «,

then|¢ — €| > ¢,k ~1(logx)~2. This clearly requires the Diophantine condition (2.42)
only for 1 < k < K. As far asS, is concerned, it is evident from the estimateSef
that (2.42) is used only in the range<lk < p1K < K2

2.3. Themain inductive step in the proof of thelarge deviation theorem. Consider equa-
tions of the form

—Yn+1 — Yn—1 + A0(T5 (X, Y)¥n = EVn, (2.60)

whereT,, : T?2 — T2, T,,(x, y) = (x + y, y + w) (modZ?) is the skew-shift, and is
a nonconstant real—-analytic function B4 satisfying some further conditions that will
specified below. Let

Aj(x,y; A E) = [)\U(Tci(xiy)) - E —01} .

The matrixM,,(x, y; A, E) = ]_[l, Aj(x,y; A, E) denotes the monodromy matrix of

Eq. (2.60). As usual, =

1
LBy = /T 10G [ My (x, v: . E)| dxdy

andL(A, E) =lim,_.« L,(1, E) denotes the Lyapunov exponent. Introduce a scaling
factor

S, E) =10g(Cy + |A|+ |E]) = 1, (2.61)
whereC, is a constant depending only on the potentiab that for allz
1 1
sup sup=log | M, (z. y: A, E)|| + sup sup — 10g || M, (z1.z2: &, E)|| < S(x, E).

zeA, yeT I 71€A), 22€ A,

(2.62)

Herep = p, is determined by. Observe that (2.62) basically requires the function
to extend in the first variable to an analytic function@n {0} such that

suplv(z, )| < C(zl? + IzI™%)

yeT

with some constant, see (2.43). For example, any trigonometric polynomial

v, y) = Y aggelkx +£y)
|k|+1€|<d
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satisfies this requirement. Another possibility, which is slightly more technical to state,
but applies to any analytic function on a neighborhoot'&fis as follows: For alk,

1
sup sup =log|M,(z1, z2; A, E)|| < S(A, E). (2.63)
1€ A, 22€ Ay /n

The difference from (2.62) here is that in the second termtheariable only needs to be
taken in an annulus of thicknegs Observe that (2.63) can be stated for any potential

that extends analytically to a neighborhoodI&f of size p. This is essential for real-
analyticv. The reason (2.63) is sufficient for our purposes is the following simple fact.
Suppose: is a subharmonic function ad,,,, bounded by one. Then there is the Riesz
representation

u(z) = / loglz — ¢|du(¢) + h(2),
where

w(Ap/m) + 17l Lo (A, @) < Cpn. (2.64)

In particular, one has the decay of the Fourier coefficients
C
()] = = (2.65)

The reader will easily verify that (2.64), (2.65) are all that is required in the proof of the
following lemma.

The following lemma provides the inductive step in the proof of the large deviation
theorem. It is based on the avalanche principle and all our previous lemmas.

Lemma 2.8.Fix e > 0 small and let w € Q,, see (2.42) Supposen and N > n are
positive integers such that

1 -
meq (v, ») € T2 | | log | My (x, y: &, )| = La(h, B)| > SG, E) 5] < N2,

(2.66)
meq (v, v) € T2 | | - log IMan(x, yi 1, B — L B)] > 56, ) L] < 10
(2.67)
Assume that
min(L, (%, E), L2, (A, E)) > yS(), E), (2.68)
Lo, E) — Lon(h, E) < :—()S(A, E), (2.69)
9ynS > 10log2N) and n? < N. (2.70)

Then there is some absolute constant Cq with the property that (with Ly = Ly (A, E)
etc.)

Ly > ySO, E) —2(L, — L2,) — CoS(A, E)ynN~1

(2.71)
and Ly — Loy < CoS(A, EynN—™.
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Furthermore, for any o < 4 thereist = 7(0’) > O so that

1
A . _ -7
meq () € T2 || G log My (e, i 2, )| = LG B)| = SG. ENTT] )
< C exp(—N?)
with some constant C = C (o, ¢).

Proof. We shallfixw, A, andE for the purposes of this proof and suppress these variables
in the notation. In particula§ = S(, E). Denote the set on the left-hand side of (2.66)
by B, and the set on the left-hand side of (2.67)&. For any(x, y) € T?\ B,,

1M, (x, V)| > expiny S — 2=Sn) = ex g—ysn> =
nl Y = Yo T 107 T ¥ ) T

By (2.70), > 2N. Furthermore, for anyx, y) ¢ B, U T "B, U By, (2.66)—(2.69)
imply

log | My, o T" (x, y)|| + l0g | My (x, y) || — log [| M2, (x, y)

4 9 1
<2n(L, — L2,) + 1—251@ < 2—)6Sn =5 log w.

Applying Prop. 2.1N times yields a se; ¢ T2 with measure
megBi) <4N - N0 =4N~° (2.73)
so that for any(x, y) € T? \ By,

N

0 X, + E 0 oT/(x,
N g N y N]. . g n y

N
2 1 . Sn 1
_= = J 2Ty -1
= ,2—1 - log|| Mz, o T (x, | < C( = u) <csiNL (2.74)
Integrating (2.74) ovet? yields
|ILy + L, —2L2,| < CSnN~t 4+ 16SN~°, (2.75)

which implies the first inequality in (2.71). To obtain the second inequality in (2.71),
observe that by virtue of (2.70) all arguments so far apply equally well4g instead

of My . Subtracting (2.75) from the analogous inequality invohing yields the desired
bound. Denote

1
un(x,y) = log | My (x, Y1,

and similarly withr and 2. In view of (2.63), botht,, anduy, extend to separately
subharmonic functions in both variables such that

sup  sup [lun(zr, 22)| + luzi (21, 22)l | = €5,
Z]_E.Ap ZzEA(p/n)
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Applying Lemma 2.6 tas, /S andug,/(2S) (cf. the comments following (2.63), in
particular (2.64) and (2.65)) therefore implies that there is #set T2 with measure
(6 > Ois a fixed small number)

megB3y) < C exp(—N5>, (2.76)
such that for anyx, y) € G := T2\ (B1U Ba),
i (x, ¥) + Ly — 2L, < CSnN~1 4 C5 SN~ 1242 2.77)

see (2.74). For small the second term is the larger one sinée> n2. Fix such an
integerN. Consider the following decomposition @f:= uy as a function of':

u=uxg+Lnxge +uxge — LnxXge =: uo+uz.
Hereug is the sum of the first two terms (agd := T2\ G). In view of (2.77) and (2.75),

luo — (U)lloo = llto — Lnllooc = llu — LnllLo(G)
<lluy + L, — L2n||L°°(g) + Ly + Ly — Loy|

< C5 SN~ 122
(2.78)

On the other hand, (2.73) and (2.76) imply that
luzlls < 25 megGY) < CS[N 2+ exp(—N’)] < C5s SN~°. (2.79)

Applying Lemma 2.5 to the function/S with ¢g ande1 given by (2.78) and (2.79),
respectively, proves (2.72). Indeed, in this case the quaBifitym Lemma (2.5) satisfies

B <Cy N1+ 1og(N1%) 4 CN2N"1,
which gives the value of stated above. O

Remark 2.9. In view of Remark 2.7 itis clear that Prop. 2.11 only requires the Diophan-
tine condition (2.42) in the range £ k < N2. This will be relevant in the proof of
localization below.

2.4. Theinitial condition via large disorder. LetV; = v o T/(x, y) and define

wWi—E -1 0O 0.... o0
1 AVe-E -1 00... 0
0 1 a-E -100.. 0
£.(eyi b E) =det| : S| (2.80)
. . . R |
0 0 01—k

Recall the simple property

[ By E) o a(T Gy E)
Mnleesyin ) = [fn_l(x, vk B) — fua(T (e, )i 2, E)] - @8

Finally, let
Dy(x,y; A, E) =diagA\V1 — E, ... ,AV, — E). (2.82)
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Lemma 2.10.There exist constants A¢g and B depending only on v such that for any
positive integer n,

21 1 50
supmeq (x, ) € T2 | Z10g 1M (x yi 2 E)] = Ly (6 B)| = 5580 )] <™
(2.83)

provided A > Ao v n®. Furthermore, for those » and all E,

1 1
L,(A, E) = ES(/\, E) and L,(A, E) — Laa (A, E) < @S(X, E).

Proof. The matrix on the right-hand side of (2.80) can be written in the formt B,,,
whereD,, is given by (2.82). Clearlyj| B, || = 2 and

3|og|det1)n(x, yi A, E)| =logi + 1 § log |v(T (x, y)) — E/Al (2.84)
n n
j=1

It is a well-known property of nonconstant real-analytic functienthat there exist
constant® > 0 andC depending o such that

meq(x, y) € T?| |v(x, y) — h| < 1] < Ct* (2.85)

forany|E| < 21]|v]lco»

forall —2||v]jec < h < 2||v||e0 andt > 0, see for example Lemma 11.4in[7]. Therefore,

1 n .
mes[(x, y) € T? ‘ - Zloglv oT/(x,y)— E/A| < —,0] <nCe . (2.86)
j=1

One also has the upper bound
1 n
sup = log|v(x, y) — E/A| < 10g(3l|v]leo)- (2.87)
(.er2 5Ty
Since

1Dy (x, y; A E) "4 < 271 max [vo T (x, y) — E/AI 7Y,
1<j<n
(2.85) implies that

2 -1 1
meq (x.y) € T2 | [ D, (. yi 2 B > 5]
<nmeqd(x,y) € T?| |v(x, y) — E/A| < 4077]
< Cnr7b.

(2.88)

Hence

1
mes{(x, y) € 11“2‘ IDn(x, vi & E) 1Byl > E] < Cnib. (2.89)
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In view of (2.80), (2.84), (2.86), (2.87), and (2.88),
1
|~ 10g] fu(x, y: &, E)| — 10gA|
1 , 1 1
< |= Y loglu(T (x. ) — E/2l| + |~ log| detts + Dy (x. y: 1. EY'B,)
j=1

< p +10g@3||v]le0) + log 2
(2.90)

up to a set of measure not exceeding
Cne™® 4+ cna™". (2.91)

Now letp = 455109 and assumes|v]|»)*%° < 1. Then the right-hand side of (2.90)
is no larger thanz—0 log 2. Under these assumptions the measure given by (2.91) is on
the order ofCn~ 0. Choosing

Aan

for someB depending only or implies
sup mes[(x y) € T? ‘ }— log| fu(x,y: A, E)| — Iog)L| > _— |ng] ,,—100
[E|<2A][v]lco

In view of (2.81) one therefore obtains

51,1 1
sup mes[(x, y)eT ‘ \; log |M, (x, y; A, E)|| — Iog/\] > @Iogk]

|E|<2A[[v]lo
< 407190 (2.92)
In particular,
|L,(, E) —logA| < 1 logi + 4S(x, E)n 190 < iS(x E) (2.93)
e = 199 ’ - 198 7 '

providedn > 2. Since

99
logh > — sup  S(A,E)
100 1<22)jv)1o

for large Ag, (2.93) implies the second statement of the lemma in this rangg. of
Replacing log. with L, in (2.92) yields

1 1
sup  meq (x,3) € T2| |~ log [ My (v, y: 2, )| = Lu(k, )| = oSG, )]
IE|=2M[vloo n 90

< 407190 (2.94)

If |[E| > 2X||v]lc @ndAg is sufficiently large, then the set in (2.83) is empty. In fact, for
suchk,

1
—log|detD,(x, y; &, E)| —log|E|| < 2,
n
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and thus
1
|~10g| f,(x, vi 2, B)| - log|El| < 4
which implies that for large.,
n - — 200
Hence
|L,(h, E) —log|E|| < 1 S(x, E)
nihs 9IEN = 5507 &)

and the lemma follows. O

2.5. The proof of the large deviation estimate and positivity of the Lyapunov exponent.

Proposition 2.11.Fixe > Osmall andletw € 2., see(2.42) Assume v isanonconstant
real-analytic function on T2. Then for all o < 2%1 there exist 1 = t(0) > 0 and
constants A1 and ng depending only on ¢, v and o such that

1
supmeq (x, y) € T2 | |~ 1og | M, (x. y: &, )| = LG, B)|
E n
> S(h, E)n*f] < Cexp(—n°) (2.95)
for all A > A1 and n > ng. Furthermore, for those w, A and all E,

1
LA, E)y=infL,(A, E) > 2 logA.

Proof. Fixo < 2—14through0utthe proofandlet= t(c) > Obeasin (2.72). Moreover,

leth > AoV ng =: A1 be as in Lemma 2.10. In this proof we shall requitgeto be
sufficiently large at various places, but of courgewill be assumed fixed. In view of
Lemma 2.10 the hypotheses of Lemma 2.8 are satisfiedywithyg = %

ng < N <n, (2.96)
provided
9o > 20log2n30), (2.97)

cf. (2.70) (recall thaS(A, E) > 1). Itis clear that (2.97) holds ifg is large. Applying
Lemma 2.8 one obtains (suppressinge for simplicity)

1 1
Ly = (5= 25)5 = Co SN~ > y18

V.

) (2.98)
and Ly — Loy < Co SN Ing < H)S
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with y1 = % Moreover, with some constagy > 1 depending o,

1
meq (x.y) € T2 | | < log [ My (x. y: 3. E)|
—LyGu E)| > S0, E)N"] < C1 exp(—N°)  (2.99)

for all N in the range given by (2.96). In particular, (2.99) implies that

1 1
meq (x.y) € T2 | | 10g My (x. y: 2 E)| = Ly G E)| > SO E) 2
< Crexp(—-N?) < N71°,

providedng is large and
N2<N < Cl%0 exp(l—loN”).
The first inequality was added to satisfy (2.70). In view of (2.96), one thus has the range
nd < N < ex 1—107130) (2.100)

of admissibleN. Moreover,
Ly > S —2CoSNtng— CoSN™IN and

_ (2.101)
Ly —Lyy <CoSN "N.

At the next stage of this procedure, observe that the left end-point of the range of
admissible indices starts:%, which is less than the right end-point of the range (2.100)

(for ng large). Therefore, from this point on the ranges will overlap and cover all large
integers. To ensure that the process does not terminate, simply note the rapid convergence
of the series given by (2.101).0

Remark 2.12. Herman'’s method [8] for proving positivity of the Lyapunov exponent for
potentials given by trigonometric polynomials also applies to the skew-shift. However,
it is well-known that his bound only involves the coefficient of the highest frequency of
the trigonometric polynomial. In particular, it does not generalize to analytic functions
covered by Prop. 2.11. Onthe other hand, forthe important exarople) = co92rx),

it gives the superior lower bound

ir;:f L(A, E) > log(r/2).

Finally, in[2] the first author has recently shown that for this choiaesofd allsufficiently
small A > O there iswp(A) > 0 and a subsef, C [—2, 2] with the property that
meg[—2, 2]\ &) — 0 asr — 0 and such that

inf L(w, E) > 0 provided O< w < wp.

Ecé;,
HereL (w, E) denotes the Lyapunov exponent for the skew-sijjftc, y) = (x+y, y+
). Observe that this behavior is the exact opposite of the one displayed by the well-
known almost Mathieu equation as— 0. The approach in [2] is based on Kotani’'s
theorem [10,14], Aubry-duality, and a perturbative argument for the almost Mathieu
equation.



606 J. Bourgain, M. Goldstein, W. Schlag

2.6. Regularity of the integrated density of states.. Let Eo j(A,x,y),j=1,...,b—
a + 1 = |A| be the eigenvalues of the restriction of (2.60) to the intetvat [a, b]
with zero boundary conditiong;(a — 1) = ¥ (b + 1) = 0. Consider

1
Na( Evx.y) = 1 D Xcoo.E) (EAj)-
J

It is well-known that the weak limit (in the sense of measures)

lim dNA()\,‘,x,Y)ZdN()\,')

a——00,b—+00

exists and does not depend on y) € T (up to a set of measure zero). The distribu-
tion function N (2, -) is called the integrated density of states. It is connected with the
Lyapunov exponent via the Thouless formula

L\, E) :/Iog|E—E’|dN(A,E/). (2.102)

In this subsection we show that for largdoth L and N have a modulus of continuity
which is at least as good as

h(t) = exp(—c| Iogt|2*l4‘). (2.103)

This improves on various well-known continuity propertiesloind N that hold for
very general classes of transformatidhsso far nothing better was known for the skew-
shift than log-continuity, which corresponds to replacing the power of lng2.103)
with log logz, see Figotin, Pastur [5] and the references therein.

For the proof of (2.103) we follow the approach from [4], which only requires a
large deviation estimate and the avalanche principle. The latter does not depend on the
transformation, and the former is given by Prop. 2.11. In particular, our assumption of
large disorder is made necessary by that proposition. Since it is rather straightforward
to apply the technique from [4] here, we shall be somewhat brief.

Proposition 2.13.Let w, v, and A1 be asin Prop. 2.11. For A > A1 both N(A, E) and
L(A, E) are continuous in E with modulus of continuity given by (2.103)

Proof. We shall prove this fol. It is standard to deduce the statement akiddtom
that onL by means of (2.102), see [7, Sect. 10]. For the sake of simplicity we shall
suppress. in the notation. Fix any positive < 2—14. Let N be a large integer and

setn = | Co(log N)%J with some large constaidly. One deduces from the avalanche
principle and (2.95) that

C
\LN(E) — 2Loy(E) + Ly(E)| < 7”

on (2.104)
|Lan (E) = 2Lau(E) + Lo(E)| < —.

The point is that (2.95) insures that the hypotheses (2.8) and (2.9) in Prop. 2.1 are
satisfied up to a set of measure less tliavi exp(—n?). This measure can therefore
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be made less thaV ! by taking Cg large enough. Taking the difference of the two
inequalities in (2.104) yields

Cn
[Ln(E) — Loy (E)| < Tk
which after summing over dyadig gives
L (E) ~ L(E) = - (2.105)
Inserting (2.105) into (2.104) leads to
Cn
|L(E) — 2Ly (E) + Ly (E)| < N (2.106)

It is clear that the derivatives @f,,(E) andL, (E) in E are at most of size“”. In view
of this fact (2.106) implies that for any nearliy E’,

c
\L(E) — L(E")| < Wn +eCME - < Cexp(—c‘log|E _E

”), (2.107)

if one set§E — E’| = exp(—2Cn).

3. Localization

The purpose of this section is to show that the operator (2.60) has pure point spectrum
with exponentially decaying eigen functions for mastr, y € T (i.e., up to a set of
small measure) providedis sufficiently large, see Theorem 3.7 below. We will follow

the scheme from [3]. The basic idea behind the proof is to start with a generalized eigen
function with energyE, whose existence is guaranteed by the Shnol-Simon theorem,
and then to show that it in fact decays exponentially. It is well-known that for this to
hold one needs the Green'’s functiaiig(x, y; E) on most intervals

1 C Z with dist(Z, 0) ~ |1 (3.1)

to possess exponential off-diagonal decay. This in turn is the case provided the mon-

odromy matrices corresponding to those intervateve norms which are on the order

of LB L(E) being the Lyapunov exponent. By the large deviation estimate (2.95),

the bad set ofx, y) € T, where any given one of these monodromy matrices has too

small norm is exponentially small i |. The difficulty that arises here is of course that

the sets of bad parameters dependom principle, one would therefore need to remove

the union ovelE of all these bad sets which might amount to the entire parameter set.
The approach in [3] is to consider the set of parameters where there is some Energy

with the property that, on the one hand, for some inteat Z centered at O the

Green’s functionG (x, y; E) has very large norm and, on the other hand, the Green'’s

functionGy (x, y; E) failsto have the necessary off-diagonal decay. Hé&san arbitrary

interval as in (3.1), whose length and position is related to the lengthsde the proof

of Theorem 3.7 below for details. Using the large deviation theorem it is possible to show

that this set of parameters has small measure, see Lemma 3.6 below. It was observed

in [3] that estimating the measure of the set of parameters that produce these “double

resonances” can be accomplished provided one has some control on its complexity. This
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can be made precise in terms of semi-algebraic sets, which we also use here. The main
technical statement in this context is Lemma 3.3 below. That lemma is in turn based
on a general fact about the number of lattice points that can fall into a semi-algebraic
set of not too large degree and small measure, see Lemma 3.2 for the exact statement.
However, the proof of Lemma 3.3 also heavily exploits the structure of the skew-shift.
It remains to be seen to what extent this method applies to other transformations.

The arguments in this section do not directly invoke the lemmas from the previous
section. We do, of course, use Proposition 2.11 in an essential way.

3.1. An estimate on the number of lattice points falling into a small set of bounded
complexity. We begin by introducing some notation that will be used repeatedly in this
section.

Definition 3.1. For anya, b > Oleta < b denoteC a < b for someabsoluteconstant C.
The case where C isvery largewill bewrittenasa <« b. Finally, a ~ b meansthat both
a<banda 2 b.

The following lemma will be important in the process of elimination of the energy.
It is basically contained in Sect. 13 of [3].

Lemma 3.2.Let S C [0, 1] x [0, 1] be an open set with the following three properties:

mesS) < e 5’ for someo > 0, (3.2)
aS iscontained in the union of at most B algebraic curvesT" = [P = Q] (3.3)
of degree degP < B,

for anyline £, SN L hasat most B connected components. (3.4)

Suppose M and B arerelated by the inequalities

loglogM « logB « logM. (3.5)
Then
#{(ml,mz) e 72 ’ Imi| < M and (% %) c S} < BMm. (3.6)
Furthermore, assume that
m m —7
#{(ml, my) € 7? ‘ |m;] < M and (ﬁ ﬁz) € S} > M0 (3.7)

Then S contains a line segment £ of length
L] > M—1+1(r2

which is parallel to some integer vector with coordinates bounded by M9 and which

contains a point of the form (44, %2).

Proof. See[3]. O
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3.2. Onthe number of timesa generic orbit of the skew-shift visitsa small set of bounded
complexity.

Lemma 3.3.Denote by 7, : T2 — T2 the w-skew-shift on T?. Let S ¢ T* x R bea
semi-algebraic set of degree at most B such that

—B?

megProjraS) < e for some o > 0. (3.8)

Under the assumption (3.5)on M and B,

mes[(yo, w) € T? ‘ (vo, @, (0, y0)) € Projp4$ for some j ~ M] <M1
(3.9)
Proof. Letw € (0, 1) be fixed and choose somg € [0, 1). Then there aréx, y) €
[0, 1) such that mod.? (with = denoting congruence mdtf)
JjG -1
2
i —1
= (jyo+]—(y—yo+v’),yo+jw) (3.10)
j—1 j+1
( y VT3

wherev, V' € {0, 1}. Assumej ~ M. Rewriting the congruences (3.10) as equalities in
R yields

(x,y) = TJ(0, yo) = (jyo+ w,yo+jw)

,yo+jw>,

x=2+12 y+12 Yo+ my (3.11)
y=yo+ jo+m2
with |m;|<M. Solving (3.11) foryo, w one obtains
2 2¢ 1 2
{yo=1m(—§+x 2 y my) = j+f_j+1y jrim (3.12)
— 4 _ _ _ ﬂ :
=30 = yo—m2) = §75; + 7y + o~

Denoting
7 (S) = Projpa(S)
we shall estimate
/ [Z xx(s)(yo. @, T2 (0, yo))}dyodw- (3.13)
j~M

Using the change of variables given by (3.12) one obtains that the integral (3.13) is no
larger than

2 j=1
> /‘ 2 s o, y), o(x, y), x, y) dxdy
j~M TJG+D J+1
[m;|SM
- 3.14
~M 2/ Z X (S)s,y (3:14)
j~M
Im <M

22—y ] 2
(j+lv j+1y ~ jr1'M1s ,(;+1) + ;+1Y+ j(]+1)m1_ 'z)dXdy'
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Herex (S),,, denotes the slice of () for fixed (x, y). Restrict(x, y) € T? to the set
where

mes(S)y.y) < e 257 (3.15)
By (3.8), the complementary set contributes to the integral (3.14) an amount not exceed-
ing

_1lpo _lpo
e 2" M <e 37 . (3.16)

For fixedx, y, the setS, , C T? x R is still semi-algebraic of degree at maBt
Therefore, condition (3.3) of Lemma 3.2 holds fofS, ;) = 7 (S)x,y, with B€ instead
of B. Moreover, for any lineC in [0, 1]2

7(S)x,y NL=m(SxyN(LxR))

has at mosB connected components, each of which is an interval. Thus condition (3.4)
holds with B replaced byB€. Fix a point(x, y) € [0, 1] satisfying (3.15) and assume

29—y _j-1. 2 . v=2 2 . 2 . m
> X”Sw</+1 1Y T 7ML jan T oY T igan ™ /)
J~M;imi|SM

> KMZ,
(3.17)

where
7
k=M1

Fix j ~ M and consider the affine transformationR#

A( ) <2x—v j—1 2j v—2x+ 2 N 2 )
21,22) ‘= | — - - - - 1, 7T X X 1—2
b2 Jj+1 ]+1y ]+1l](1+1) J+1y J+11 2
(3.18)

for which

_2

|detDA)| =| Lt )~1.
1 1

Thus the sen—ln(S)x,}, still satisfies conditions (3.2)—(3.4) of Lemma 3.2. Therefore,
in view of (3.6),

> Xus)., (A(ma/j.ma/j)) < BEM.

|m1|SM,|ma2| <M

In conjunction with (3.17) this implies that there exists a subset {j ~ M} such that

#7 > B"kM and (3.19)
. K 1 . 10
S tan, Amafj,ma/ ) > M = SMI0 (3.20)

lmi|SM
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for any choice ofj € 7. In view of (3.20), condition (3.7) of Lemma 3.2 holds for the
setA‘ln(S)x,y. Hence, for anyj € 7 there exists a vectar € Z?\ {0} such that

Jual + 2| < M2 (3.21)
and a lattice pointz € Z2, |m|<M such that

PHrvi=m/j+tve A n(S),,

for all
0<t<M Yo, (3.22)
Applying the affine transformatioa given by (3.18) yields
(2?6_” J_l 2 (tvy + P 1)—Zx
]+21 ]+1 j+1 JG+D (3.23)
+?y+ 1(t111+P1)— (tv2+P2)> €m(S)x,y
forallr asin (3.22). Here = (v1, v2) andP = (P1, P2) = m/j depend ory.
Because of (3.19) and (3.21), there is a subBet 7, so that
#7' > M2 4y 5 y310° Yy (3.24)

and for which all choices of € 7’ have the same vecteor We first consider the case
whereuv lies on the line

v = 2v1. (3.25)

Denoting byZ ") the line segment given by (3.23), assume that for some chojcetof’
inJ’,

dist £, £Y)) < 1.
Thus there exist, ' as in (3.22) so that

'<2x—v -1 2 2 )
— — my — v
T R L L I L

2x—v j -1 2 2j" )
— — t T (3.26
<ﬂ+1 1 J+1l sl (3.26)
and
v —2x 2 2mq ma 2v1
— + - Y+ — — — + (= — V2
’(J(J+1) Jj+1 jG+1y (J+1 ))
— 2x 2 2m’, m 2
(s ey s = 24 (2 ) <7 (327)
JG+1  j+1 0 G+ Jj+1
Since by (3.25)
2j 2
4 1, (3.28)

—_ =
jHLTT 1
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subtracting (3.26) from (3.27) and multiplying the resulting expressigr(py-1) ;' (;'+
1) yields
12jj' G+ Dx = (G = 1ji' G + Dy = 2jj'G+Dx 4+ jj'G+ DG =Dy
+27'(G + Dx = 2jj'G' + Dy = 2+ Dx + 2j(j + Dj'yll S T™*,
which is the same as
12" = DA+ HA+ jHx] S M. (3.29)

Here|| - | denotes the distance to the nearest integer. The poiat¥ for which (3.29)
holds for an arbitrary choice of distinct4 j, j/ < M form a set of measurg M°.
Taking

r = M100
one concludes that the contribution of those paints the integral (3.14) is at most
M~ (3.30)

Excluding those points, one can therefore assume that for any chojcg gf in 7/,
dist £V, £y > 1, (3.31)

where the line segments”) C 7(S). . We will show that this leads to a contradiction.

For an arbitrary se2 ¢ R? denote by\' (22, r) the number ofr-balls needed to
cover the sef2. N is also referred to as “entropy”. In view of (3.31), (3.24), and the

property tha{£)| > M_1+1%0’

N 7(S)x,y, L >N U E(j), r Z#j/file(lflTl)o)

10 et 10
> Ml—3-10*6r_1M1i00_1 (3.32)
> Mg L,

On the other handz (S),,, lies within ae‘fltB"-neighborhood of at mosB¢ many
algebraic curve§' of degree not exceeding®. By our assumption (3.5}, > e 1B7,
Therefore,

NI, 1) <o) < BSe71,

3.33
N@(S)ay, 1) < B ™L (3:33)

Because of log/ > log B this contradicts (3.32).
It remains to consider the case where the vegtarZ?\ {0} satisfies (3.21) but

v2 # 2v1.

It follows from (3.23) that the segmerit/) is oriented in the direction

2 .
e sG+D -1
2; :

S J

V2 . 1 1
wheres := — # 1, infact, |[s — 1| > > —.
s 2v1 # Is = 2] T M
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£
Po
Lo
Fig. 2. The bushc ()
Thus for any choice of # j/,
. B . B B
sU+D-1 G+ D-1 1 2s| > M3, (3.34)
J J M

One now again considers the system of lif€$’|j € J'}. Let £Y denote ar-
neighborhood of2”). Then, on the one hand,

/2 E X oo dxdy 2 #7' M~ 107 2 Moz, (3.35)
'H‘ : T
jed’

On the other hand, since eaf,f;l") is contained in a-neighborhood ofr (S),y, (3.33)
implies that

. . 2 : .
/Tz 2 xpp dxdyS| 3 xpp| TN@ Sy DI D w’w- (3.36)
jed’ jed’ jed’
One concludes from (3.35) and (3.36) that
Y x| zMBBC > M, (3.37)

jed’ o
Hence there is a subsystgi/’)|j € 7"} of cardinality
#7" > M3
such that the tube{scgj)u € J"} have a common poinky. It follows from (3.34) that
(LD, £97) > M3 for any choice ofj # . (3.38)

Choose alin& that crosses the majority of linesin the bygh’’ | j € 7"} transversely.

Recalling thatr (S). , N Lo has at mosB¢ « M 30 many components, one obtains
two distinctj, j' € J” for which the points

Lon LY, LonLY) € n(8),
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belong to the same componentafs). , N Lo. In view of (3.38) and (3.22) this implies
that

mesz, (7 (S)x.y N Lo) = M4,
Since one can translatg by an amount/—1, one finally obtains
mes (S)z,y) 2 M,

which again contradicts (3.15). We have reached the conclusion that our assumption
(3.17) fails. Recalling estimates (3.16), (3.30) on the exceptianal)-sets, this implies
that

1 .
(3.13) (3.14)< W(e_%B + M4 M?) < 2M7107

which proves (3.9). O

3.3. Averaging the monodromy matrix over long orbits. For the remainder of this paper

we shall assume that there is a large deviation estimate as in Prop. 2.11, without spec-
ifying A in our notation. More precisely, we shall write the large deviation estimate in
the form

supmeq (x.y) € T2| |2 log 11, (x. ¢ )| - L(E)| > n™7] < C exp—n").
E n
(3.39)

By Prop. 2.11 this holds provided > 0 is sufficiently small and for alt > ny(x, v, ¢),
wherew € Q.. Moreover, for the sake of simplicity will be assumed to be a trigono-
metric polynomial. The extension to real-analytic potentials is straightforward.

Lemma 3.4.Let T, be the w-skew-shift, » satisfying
kol > ¢, |k|™+¢ forallk € Z,0 < k| < N. (3.40)
Then, denoting

1 .
(T (x,y) — E -1
[T ("" 3]

J=No

1
ung(x,y) == FO log

there exist constantso > 0, C > 1 sothat for N > N§ one has the uniform bound

< N5°. (3.41)

N
H L®(T2)

=3

j=1

UNg © Ta{ — /zuNo(x,y)dxdy’
T
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Proof. By the large deviation theorem, the set

Q= [(x,y) GTZ(Ibtzxzo(xvy)—/”f*’OI = NO_G]

satisfies
megQ) < ¢ V0. (3.42)

Sincev is a trigonometric polynomiak? is clearly semi-algebraic expressed by poly-
nomials in(x, y) of degree not exceedinigg. Henced2 is contained in the union of

no more tharNOC many algebraic curveB of degree bounded bzyoc. Therefore, one
has the entropy bounds

NI, 1) < Nocr_l,
and since, by (3.42)

. 1 o
sup dist((x, y), 0Q) < e 2%,
(x,y)€Q

one also has

N, 1) SNST1, (3.43)

providedr > e=3N 1t clearly suffices to prove (3.41) fav < 1N . Consider the
expression

N

1 . y
~z 2 I ey =T ey
J#i'=1
1 al . ./ P Syl . ./ -2
~ 5 2 16 =i+ GG =D =G = D)es2l+ 116G = el |
J#EI=1

(3.44)

where| - || denotes both the natural distance Bhand T. Settingk = j — j’ and
¢=j+j —1,(3.44) can be rewritten in the form

1 1 _
2 2 kG + Sl + k|l

O<lk|<N
[|<2N

<N Y {sup 3 [l + Ckoll + lkol12). (3.45)
O<lkl<N  ° |¢|<N
Let

6] = lkwll = § > N~
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Then the inner sum in (3.45) is at most

SNLHe %(82 N ) Nt _N Hs. (3.46)
par § kel
Summing (3.46) over & |k| < N implies that
(3.44) (3.45)< N°®, (3.47)
again invoking (3.40). Fixingx, y) € T2, we shall estimate #, where
J={(i=1....N|T/(x,y) e Q).
Letr > % and choose a collection of diskB(Ps, T)|s = 1, ... , r} covering2, where
by (3.43)
r<N§TL (3.48)
Since by (3.47)
N
N72 3T @ y) = T ()72 S NE, (3.49)

j#i'=1
we obtain in particular that

r—zN—zi#[j £ j

s=1

T/ (x,) € D(P, 0, T/ (v, y) € D(P, )] S N, (350)

Definefors =1,...,r,
Js=1{j=1...,N|T/(x,y) € D(P;, 1)}
sothaty c |J, J;. Clearly, (3.48) implies that

#T SNST T+ Y HT (3.51)
#T,>1
Furthermore, by (3.50),
> #T)? S TN (3.52)
#J,>1

It follows from (3.51), and (3.52) that
#T NSt r oNYTE S NS ot NS o Y2NTTe,
Optimizing inzt yields
#7 < NEN3*e. (3.53)

Sinceu v, is bounded, (3.53) implies that
N

1

v
j=1

Inequality (3.41) follows provided& > NOCl with some largeCy. O

SNG + CNTHT < NG° + NSN3,

uno (T (3, 1)) = /T o
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The somewhat technical assumption (3.40), which requires only finitely many con-
ditions onw in terms ofk, was made in order to insure that Lemma 3.3 can be applied.
This will be important in the proof of localization, see Theorem 3.7 below. The previous
lemma turns out to have several applications, one of which is the following uniform
upper bound on the norm of the monodromy matrices.

Corollary 3.5. Assume w satisfies the Diophantine condition (3.40) For any N > NOC ,
thereisa uniformestimate for all £ € R,

1 -
sup  —log|[My(x, y; E)|l < Lng(E) + Ng°. (3.54)
(x,»)€T?

3.4. Double resonances occur with small probability. Fix ¢ > 0 small and letv € Q,,
see (2.42). Since we are assuming that the disérdelarge, Prop. 2.11 guarantees that

i%f L(E) > cg > 0. (3.55)

The purpose of this subsection is to prove the following lemma, which asserts in effect
that double resonances occur with small probability. An analogous statement for the shift
can be found in [3]. The importance of double resonances is of course a standard fact
in the theory of localization, cf. Sinai [15] and Fréhlich, Spencer, Wittwer [6]. In what
follows, H;_n, n;)(w, x, y) denotes the operator given by the left-hand side of (2.60)
(with T = T,) restricted to the intervdl N1, N1] with Dirichlet boundary conditions.

We shall also writd. y (w, E) instead ofL y (E) to indicate the dependence an

Lemma 3.6.Fixasmall ¢ > 0. Let N be an arbitrary positive integer and let Co > 1
be some constant. Define S = Sy ¢ T* x R to be the set of those (w, yo, x, v, E) for
which there exists some N1 < N2 so that

kol > & |k|~ (1 +logk)~2 forall 0 <k < N, (3.56)
(v, 0.30) = B) 7 > e, (357)
v 10g My (@, x,y, E)|l < Ly(, E) — co/10. (3.58)

Here ¢q isthe constant from (3.55)and C3 will be a sufficiently large constant depending
onv. Then

megProjraS) < exp(—%N"). (3.59)

Moreover, S iscontained in a set S’ satisfying the measure estimate (3.59)and which is
semi-algebraic of degreeat most N ¢ for some constant C dependingon v, e, C» and Ca.

Proof. Fix some sufficiently largeVv. Firstly, recall that the large deviation estimate
(3.39) forn = N holds under the condition (3.56) an see Remark 2.9. Now fix some
w asin (3.56) and lepg € T be arbitrary. IfE satisfies (3.57), then by self-adjointness
of H,

|E — E'| < e 3N (3.60)
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for someE’ e Spec(H[_Nl,Nl] (w, 0, yo)>. Observe that these eigenvalugsdo not
depend on(x, y). It follows from (3.60) with sufficiently large€'s and (3.58) that

2 log||My (@, x,y, E)|| < Ly(w, E') — co/20. (3.61)

This can be seen by differentiating the functions on the left-hand side of (3.61) in the
energy. In view of (3.39), the measure of the setxfy) e T? for which (3.61) holds
with fixed E’ does not exceee ™’ . This proves that

megProjS) < NZe V" < eV, (3.62)

as claimed.

It remains to be shown that conditions (3.57), and (3.58) can be replaced by inequal-
ities involving only polynomials of degree at ma¥f for someC, without increasing
the measure estimate (3.59) by more than a factor of two, say. We will not provide all
details, since they can be readily found in [3]. Using Hilbert—Schmidt norms in (3.57)
and expressing the inverse in terms of Cramer’s rule shows that condition (3.57) is semi-
algebraic of degree at moSth. Using Lemma 3.4, we may express the Lyapunov
exponent

1
Ly(w, E) = walog My (. x. v, E)| dxdy
[0,1]

appearing in (3.58) as a discrete average
R 1 ‘
Ly(w, E) = Rﬁlz —log My (w, T;(0,0), E)|| + o(1)
i

with R < N€. Therefore, one obtains a semi-algebraic conditian,in, y, E of degree
at mostN ¢ by rewriting (3.58) in the form

R
1My (@, x. y;: E)[*R < e NROMOTT | My (w. T (0, 0); E)||%.
j=1

Finally, the measure of the s&tdoes not change by more than a factor in this process.
]

3.5. The proof of localization for the skew-shift with large disorder. The following
theorem is the main result of this section.

Theorem 3.7.Fix e > 0 small. Let v = v(x, y) be a nonconstant trigonometric poly-
nomial on T2 and let A1 = A1(v, €) beasin Prop. 2.11. Let T,,(x, y) = (x + y, y +
o) (ModZ2) denotethew-skew-shiftonT2. Thenfor every » > A1 andall (w, x, y) € T3
up to a set of measure ¢, the operator

(Ho.x)¥), = —W¥n-1— Y1+ A(TL(x, Y)Y ONLA(Z)

displays Anderson localization for all energies.
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Proof. Letw € Q., see (2.42). For larg¥, let Sy be asin Lemma 3.6. Then Lemma 3.3
applies toSy and settingV = ¢°9M? it follows that

mes[(yo, w) € T? | (yo, , T (0, y0)) € Projpa(Sy) for some j ~ N] < N0
(3.63)

Let By denote the set on the left-hand side of (3.63) and define

B©O .= lim supBy.

N—o0

Thus mesB©) = 0. SinceT(x, y) = x + T4(0, y) (mod ), this construction applied
to the potentiab(x + -, ) instead ofv produces a sé8*) of measure zero. Finally, set

B .= {(w,x,y) ‘ (y,w) € Bm},

which is again of measure zero. Itis for &l x, y) € Q, x T?\ B that we shall prove
localization.

Fix such a choice ofw, x, y) and anyE € Spec(Hw,(x,y)). By the Shnol-Simon
theorem [12,13] there exists a generalized eigenfunétjosr.,

(Ho,x,yy — E)§ =0 and |§,] S 1+ |n| foralln e Z. (3.64)

Furthermore, we normalizi&g| + |£1] = 1. Fix some large integeN and assume
that (3.57) holds. By our choice b, x, y),

1 .
7 109 My (T (x, y); E)|l > L(E) — co/10

forall N/ ~ Nandj ~ N = e('ogN)z, cf. (3.58). It follows from the avalanche principle
that then also

1 . .
~; 1o My, (T (x, y); E)ll > L(E) — co/10 if
2 a (3.65)

<|jl < N and N% < Ny < —.
¥l 2< 15

l\>|2|

As usual, let

Ga(w,x,y; E) = (HA(a), X,y) — E)_l

be the Green’s function. As beforél, denotes the restriction df to the intervalA
with Dirichlet boundary conditions. Consider intervals

A= [j,j—i-ﬁ], Whereﬁ <|jl < N.
10 2
By definition of G , and because of (3.64), it will suffice to prove that

_ . ) 1
?1?}\( Ga(w, x,y; E)(k, E)) < exp(—ciN) forallk e A with dist(k, dA) > Z|A|'
€

(3.66)
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Herec; > 0is some fixed constant. The proof of (3.66) follows from (3.65) by a standard
argument. In fact, it is a simple consequence of Cramer’s rule and the representation of
the Hamiltonian as the matrix appearing on the right-hand side of (2.80) that far any
and 1<k, ¢ <n,

fie1(x, 1 E) fu_o-1(T(x, y); E)
fa(x, y; E) '
In conjunction with (2.81), Corollary 3.5, and (3.65), this implies (3.66) as desired. Re-

call, however, that we made the assumption that (3.57) holds. To establish this condition
it suffices to show that

G[l,n](-xv y» E)(kv E) =

—2C3N
[Eny1l + 1E-n—1] Se™“3

for someN1 ~ N¢2. In view of (3.64) this estimate holds provided both Green’s
functions

Glj—4csn, j+acan)(@, X, ¥; E) = Gl_acsn acany(@. TV (x, y); E) with j = N1, —N1

satisfy an exponential decay estimate as in (3.66). In view of the preceding argument
involving (3.66) it remains to show that for sonje~ N2 one has the property

log | Macyn (T (x, ¥), E)|l > L(E) — co/10

4C3N

and similarly for—j. That, however, is an immediate consequence of Lemma &14.
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