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Abstract: The perturbative treatment of quantum field theory is formulated within the
framework of algebraic quantum field theory. We show that the algebra of interacting
fields is additive, i.e. fully determined by its subalgebras associated to arbitrary small
subregions of Minkowski space. We also give an algebraic formulation of the loop
expansion by introducing a projective systemA(n) of observables “up ton loops”, where
A(0) is the Poisson algebra of the classical field theory. Finally we give a local algebraic
formulation for two cases of the quantum action principle and compare it with the usual
formulation in terms of Green’s functions.

1. Introduction

Quantum field theory is a very successful frame for our present understanding of ele-
mentary particle physics. In the case of QED it led to fantastically precise predictions
of experimentally measurable quantities; moreover the present standard model of ele-
mentary particle physics is of a similar structure and is also in good agreement with
experiments. Unfortunately, it is not so clear what an interacting quantum field theory
really is, expressed in meaningful mathematical terms. In particular, it is by no means
evident how the local algebras of observables can be defined. A direct approach by
methods of constructive field theory led to the paradoxical conjecture that QED does
not exist; the situation seems to be better for Yang-Mills theories because of asymptotic
freedom, but there the problem of big fields which can appear at large volumes poses at
present unsurmountable problems [1,21].

In this paper we will take a pragmatic point of view: interacting quantum field theory
certainly exists on the level of perturbation theory, and our confidence on quantum field
theory relies mainly on the agreement of experimental data with results from low orders
of perturbation theory. On the other hand, the general structure of algebraic quantum
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field theory (or “local quantum physics”) coincides nicely with the qualitative features
of elementary particle physics, therefore it seems to be worthwhile to revisit perturbation
theory from the point of view of algebraic quantum field theory. This will, on the one
hand, provide physically relevant examples for algebraic quantum field theory, and on
the other hand, give new insight into the structure of perturbation theory. In particular,
we will see that we can reach a complete separation of the infrared problem from the
ultraviolet problem. This might be of relevance forYang-Mills theory, and it is important
for the construction of the theory on curved spacetimes [7].

The plan of the paper is as follows. We will start by describing the Stückelberg–
Bogoliubov–Shirkov–Epstein–Glaser-version of perturbation theory [6,14,28,26,7].
This construction yields the localS-matricesS(g) (g ∈ D(R4)) as formal power se-
ries ing (Sect. 2). The most important requirement which is used in this construction
is the condition of causality (15) which is a functional equation forg → S(g). The
results of Sects. 3 and 4 are to a large extent valid beyond perturbation theory. We only
assume that we are given a family of unitary solutions of the condition of causality.
In terms of these localS-matrices we will construct nets of local observable algebras
for the interacting theory (Sect. 3). We will see that, as a consequence of causality, the
interacting theory is completely determined if it is known for arbitrary small spacetime
volumes (Sect. 4).

In Sect. 5 we algebraically quantize a free field by deforming the (classical) Poisson
algebra. In a second step we generalize this quantization procedure to the perturbative
interacting field. We end up with an algebraic formulation of the expansion inh̄ of the
interacting observables (“loop expansion”).

In the last section we investigate two examples for the quantum action principle: the
field equation and the variation of a parameter in the interaction. Usually this principle is
formulated in terms of Green’s functions [20,18,22], i.e. the vacuum expectation values
of time ordered products of interacting fields. Here we give a local algebraic formulation,
i.e. an operator identity for a localized interaction. In the case of the variation of a
parameter in the interaction this requires the use of the retarded product of interacting
fields, instead of only time ordered products (as in the formulation in terms of Green’s
functions).

For a local construction of observables and physical states in gauge theories we refer
to [10,11,5]. There, perturbative positivity (“unitarity”) is, by a local version of the
Kugo-Ojima formalism [17], reduced to the validity of BRST symmetry [3].

2. Free Fields, Borchers’ Class and LocalS-Matrices

An algebra of observables corresponding to the Klein–Gordon equation

( +m2)ϕ = 0 (1)

can be defined as follows: Let
ret,av be the retarded, resp. advanced Green’s functions
of ( +m2)

( +m2)
ret,av = δ, supp
ret,av ⊂ V̄±, (2)

whereV̄± denotes the closed forward, resp. backward lightcone, and let
 = 
ret−
av.
The algebra of observablesA is generated by smeared fieldsϕ(f ), f ∈ D(R4), which
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obey the following relations

f 	→ ϕ(f ) is linear, (3)

ϕ(( +m2)f ) = 0, (4)

ϕ(f )∗ = ϕ(f̄ ), (5)

[ϕ(f ), ϕ(g)] = i < f,
 ∗ g >, (6)

where the star denotes convolution and< f, g >= ∫
d4xf (x)g(x). As a matter of fact,

A (as a∗-algebra with unit) is uniquely determined by these relations.
The Fock space representationπ of the free field is induced via the GNS-construction

from the vacuum stateω0. Namely, letω0 : A → C be the quasifree state given by the
two-point function

ω0(ϕ(f )ϕ(g)) = i < f,
+ ∗ g >, (7)

where
+ is the positive frequency part of
. Then the Fock spaceH, the vector�
representing the vacuum and the Fock representation are up to equivalence determined
by the relation

(�, π(A)�) = ω0(A), A ∈ A.
On H, the fieldϕ (we will omit the representation symbolπ ) is an operator valued
distribution, i.e. there is some dense subspaceD ⊂ H with

(i) ϕ(f ) ∈ End(D)
(ii ) f 	→ ϕ(f )� is continuous ∀� ∈ D.

There are other fieldsA onH, on the same domain, which are relatively local toϕ,

[A(f ), ϕ(g)] = 0 if (x − y)2 < 0 ∀(x, y) ∈ (suppf × suppg). (8)

They form the so called Borchers classB. In the case of the free field in 4 dimensions,B
consists of Wick polynomials and their derivatives [13]. Fields from the Borchers class
can be used to define local interactions,

HI (t) = −
∫
d3x g(t, x)A(t, x), g ∈ D(R4), (9)

(where the minus sign comes from the interpretation ofA as an interaction term in the
Lagrangian) provided they can be restricted to spacelike surfaces. The corresponding
time evolution operator from−τ to τ , whereτ > 0 is so large that suppg ⊂ (−τ, τ )×
R3, (theS-matrix) is formally given by the Dyson series

S(g) = 1+
∞∑
n=1

in

n!
∫
dx1 . . . dxn T

(
A(x1) . . . A(xn)

)
g(x1) . . . g(xn). (10)

with the time ordered products (“T -products”)T
(
. . .

)
. It is difficult to derive (10) from

(9) if the fieldA cannot be restricted to spacelike surfaces. Unfortunately, this is almost
always the case in four spacetime dimensions, the only exception being the fieldϕ itself
and its derivatives. Therefore one defines the timeordered products ofn factors directly
as multilinear (with respect toC∞-functions as coefficients) symmetric mappings from
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Bn to operator valued distributionsT
(
A1(x1) . . . An(xn)

)
onD such that they satisfy the

factorization condition1

T
(
A(x1) . . . A(xn)

) = T
(
A(x1) . . . A(xk)

)
T

(
A(xk+1) . . . A(xn)

)
(11)

if {xk+1, . . . , xn} ∩ ({x1, . . . , xk} + V̄+) = ∅. TheS-matrix S(g) is then, as a formal
power series, by definition given by (10) . Since its zeroth order term is1, it has an
inverse in the sense of formal power series

S(g)−1 = 1+
∞∑
n=1

(−i)n
n!

∫
dx1 . . . dxn T̄

(
A(x1) . . . A(xn)

)
g(x1) . . . g(xn), (12)

where the “antichronological products”̄T (. . . ) can be expressed in terms of the time
ordered products

T̄
(
A(x1) . . . A(xn)

) def=
∑

P∈P({1,...,n})
(−1)|P |+n

∏
p∈P

T
(
A(xi), i ∈ p). (13)

(HereP({1, . . . , n}) is the set of all ordered partitions of{1, . . . , n}and|P | is the number
of subsets inP .) TheT̄ -products satisfy anticausal factorization

T̄
(
A(x1) . . . A(xn)

) = T̄
(
A(xk+1) . . . A(xn)

)
T̄

(
A(x1) . . . A(xk)

)
(14)

if {xk+1, . . . , xn} ∩ ({x1, . . . , xk} + V̄+) = ∅.
The crucial observation now (cf. [16]) is thatS(g) satisfies the remarkable functional

equation

S(f + g + h) = S(f + g)S(g)−1S(g + h), (15)

f, g, h ∈ D(R4), whenever(suppf + V̄+) ∩ supph = ∅ (independent ofg). Equivalent
forms of this equation play an important role in [6] and [14]. Forg = 0 this is just the
functional equation for the time evolution and may be interpreted as the requirement of
causality [6]. Actually, for formal power seriesS(·) of operator valued distributions, the
g = 0 equation is equivalent to the seemingly stronger relation (15), because both are
equivalent to condition (11) for the time ordered products. We call (15) the “condition
of causality”.

3. Interacting Local Nets

The arguments of this and the next section are to a large extent independent of perturba-
tion theory. We start from the assumption that we are given a family of unitariesS(f ) ∈
A, ∀f ∈ D(R4,V) (i.e. f has the formf = ∑

i fi(x)Ai, fi ∈ D(R4,R), Ai ∈ V),
whereV is an abstract, finite dimensional, real vector space, interpreted as the space of
possible interaction Lagrangians, andA is some unital∗-algebra. In perturbation theory
V is a real subspace of the Borchers’ class. The unitariesS(f ) are required to satisfy
the causality condition (15). We first observe that we obtain new solutions of (15) by
introducing the relativeS-matrices

Sg(f )
def= S(g)−1S(g + f ), (16)

1 Due to the symmetry and linearity ofT (. . . ) it suffices to consider the caseA1 = A2 = · · · = An.
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where nowg is kept fixed andSg(f ) is considered as a functional off . In particular,
the relativeS-matrices satisfy local commutation relations

[Sg(h), Sg(f )] = 0 if (x − y)2 < 0 ∀(x, y) ∈ supph× suppf. (17)

Therefore their functional derivativesAg(x) = δ
δh(x)

Sg(hA)|h=0, A ∈ V, h ∈ D(R4),
provided they exist, are local fields (in the limitg → constant this is Bogoliubov’s
definition of interactig fields) [6].

We now introduce local algebras of observables by assigning to a regionO of
Minkowski space the∗-algebraAg(O) which is generated by{Sg(h) , h ∈ D(O,V)}.

A remarkable consequence of relation (15) is that the structure of the algebraAg(O)
depends only locally ong [16,7], namely, ifg ≡ g′ in a neighbourhood of a causally
closed region containingO, then there exists a unitaryV ∈ A such that

V Sg(h)V
−1 = Sg′(h), ∀ h ∈ D(O,V). (18)

Hence the system of local algebras of observables (according to the principles of alge-
braic quantum field theory this system (“the local net”) contains the full physical content
of a quantum field theory) is completely determined if one knows the relativeS-matrices
for test functionsg ∈ D(R4,V).

The construction of the global algebra of observables for an interaction Lagrangian
L ∈ V may be performed explicitly (cf. [7]). Let$(O) be the set of all functions
θ ∈ D(R4)which are identically to 1 in a causally closed open neighbourhood ofO and
consider the bundle ⋃

θ∈$(O)
{θ} × AθL(O). (19)

Let U(θ, θ ′) be the set of all unitariesV ∈ A with

V SθL(h) = Sθ ′L(h)V, ∀ h ∈ D(O,V). (20)

ThenAL(O) is defined as the algebra of covariantly constant sections, i.e.

AL(O) � A = (Aθ )θ∈$(O) (Aθ ∈ AθL(O)) (21)

VAθ = Aθ ′V, ∀V ∈ U(θ, θ ′). (22)

AL(O) contains in particular the elementsSL(h),

(SL(h))θ = SθL(h). (23)

The construction of the local net is completed by fixing the embeddingsi21 : AL(O1)

↪→ AL(O2) for O1 ⊂ O2. But these embeddings are inherited from the inclusions
AθL(O1) ⊂ AθL(O2) for θ ∈ $(O2) by restricting the sections from$(O1) to$(O2).
The embeddings evidently satisfy the compatibility relationi12 ◦ i23 = i13 for O3 ⊂
O2 ⊂ O1 and define thus an inductive system. Therefore, the global algebra can be
defined as the inductive limit of local algebras

AL
def= ∪O AL(O). (24)

In perturbation theory, the unitariesV ∈ U(θ, θ ′) are themselves formal power
series, therefore it makes no sense to say that two elementsA,B ∈ AL(O) agreein nth
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order, but only that they agreeup to nth order (because(Aθ − Bθ) = O(gn+1) implies
Aθ ′ − Bθ ′ = V −1(Aθ − Bθ)V = O(gn+1)).

The time ordered products and hence the relativeS-matricesSθL(h) are chosen as to
satisfy Poincaré covariance (see the normalization conditionN1 below), i.e. the unitary
positive energy representationU of the Poincaré groupP↑

+ under which the free field
transforms satisfies

U(L)SθL(h)U(L)−1 = SθLL(hL),
θL(x) := θ(L−1x), hL(x) := D(L)h(L−1x),

(25)

∀L ∈ P↑
+ providedL is a Lorentz scalar andV transforms under the finite dimensional

representationD of the Lorentz group. This enables us to define an automorphic action
of the Poincaré group on the algebra of observables. Let forA ∈ AL(O), θ ∈ $(LO)

(αL(A))θ
def= U(L)Aθ

L−1U(L)
−1. (26)

By inserting the definitions one finds thatαL(A) is again a covariantly constant section
(22). SoαL is an automorphism of the net which realizes the Poincaré symmetry

αLAL(O) = AL(LO), αL1L2 = αL1αL2. (27)

For the purposes of perturbation theory, we have to enlarge the local algebras some-
what. In perturbation theory, the relativeS-matrices are formal power series in two
variables, and therefore the generators of the local algebras

SL(λf ) =
∞∑
n=0

inλn

n! TL(f⊗n) (28)

are formal power series with coefficients which are covariantly constant sections in the
sense of (22). The first order terms in (28) are, according to Bogoliubov, the interacting
local fields,

TL(hA) =: AL(h), A ∈ V, h ∈ D(R4), (29)

the higher order terms satisfy the causality condition (11) and may therefore be inter-
preted as time ordered products of interacting fields (cf. [14], Sect. 8.1).

Our enlarged local algebraAL(O) (we use the same symbol as before) now consists
of all formal power series with coefficients from the algebra generated by all timeordered
productsTL(f⊗n) with f ∈ D(O,V), n ∈ N0.

4. Consequences of Causality

Another consequence of the causality relation (15) is that theS-matricesS(f ) are
uniquely fixed if they are known for test functions with arbitrarily small supports. Namely,
by a repeated use of (15) we find thatS(

∑n
i=1 fi) is a product of factorsS(

∑
i∈K fi)±1,

where the setsK ⊂ {1, . . . , n} have the property that for every pairi, j ∈ K the causal
closures of suppfi and suppfj overlap. Hence if the supports of allfi are contained in
double cones of diameterd, the supports of

∑
i∈K fi fit into double cones of diameter
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2d. As d > 0 can be chosen arbitrarily small and the relativeS-matrices also satisfy
(15), this implies additivity of the net,

AL(O) =
∨
α

AL(Oα), (30)

where(Oα) is an arbitrary covering ofO and where the symbol
∨

means the generated
algebra.

One might also pose theexistence question: Suppose we have a family of unitaries
S(f ) for all f with sufficiently small support which satisfy the causality condition (15)
for f, g, h ∈ D(O,V), diam(O) sufficiently small, and local commutativity for arbitrary
big separation

[S(f ), S(g)] = 0 if suppf is spacelike to suppg.

By repeated use of the causality (15) we can then defineS-matrices for test functions with
larger support. It is, however, not evident that theseS-matrices are independent of the
way of construction and that they satisfy the causality condition. (We found a consistent
construction only in the simple case of one dimension:x = time.) Fortunately, a general
positive answer can be given in perturbation theory.

Let S(f ) be given forf ∈ D(O,V) for all double cones with diam(O) < r. The
time ordered product ofn factors is then-fold functional derivative ofS atf = 0. It is
an operator valued distribution2 Tn defined on test functions ofn variables with support

contained inUn def= {(y1, . . . , yn) ∈ R
4n |maxi<j |yi − yj | < r

2} and with values inV⊗n.
Especially we knowT1(x) onR

4. On this domain the time ordered products satisfy the
factorization condition (11). In addition, local commutativity of theS-matrices implies

[Tn(x1, . . . , xn), Tm(y1, . . . ym)] = 0 (31)

for (xi − yj )2 < 0 ∀(i, j) and(x1, . . . xn) ∈ Un, (y1, . . . , ym) ∈ Um. By construction
Tn|Un is symmetric with respect to permutations of the factors.

We now show that this input suffices to constructTn(x1, . . . , xn) on the wholeR4n

by induction onn. We assume that theTk ’s were constructed fork ≤ n − 1, that they
fulfil causality (11) and

[Tm(x1, . . . , xm), Tk(y1, . . . yk)] = 0 for (x1, . . . xm) ∈ Um, k ≤ n− 1 (32)

(m arbitrary) and

[Tl(x1, . . . , xl), Tk(y1, . . . yk)] = 0 for l, k ≤ n− 1, (33)

if (xi − yj )2 < 0 ∀(i, j) in the latter two equations. We can now proceed as in Sect. 4
of [7].3

2 Here we change the notation for the time ordered products: letf = ∑
i fi (x)Ai , fi ∈

D(R4), Ai ∈ V. Instead of
∫
dx1 . . . dxn

∑
i1...in

T
(
Ai1(x1) . . . Ain (xn)

)
fi1(x1) . . . fin (xn) (10) we write∫

dx1 . . . dxn Tn(x1, . . . , xn)f (x1) . . . f (xn) ≡ Tn(f
⊗n).

3 In contrast to the (inductive) Epstein–Glaser construction ofTn(x1, . . . , xn) [14,7] the present construc-
tion is unique, normalization conditions (e.g.N1–N4 in Sect. 5) are not needed, because the non-uniqueness
of the Epstein–Glaser construction is located at the total diagonal
n ≡ {(x1, . . . , xn) | x1 = · · · = xn}. But
here the time ordered products are given in the neighbourhoodUn of 
n.
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LetJ denote the family of all non-empty proper subsetsI of the index set{1, . . . , n}
and define the setsCI def= {(x1, . . . , xn) ∈ R

4n | xi  ∈ J−(xj ), i ∈ I, j ∈ I c} for any
I ∈ J . Then ⋃

I∈J
CI ∪ Un = R

4n. (34)

We use the short-hand notations

T I (xI ) = T (
∏
i∈I

Ai(xi)), xI = (xi, i ∈ I ). (35)

OnD(CI ) we set

TI (x)
def= T I (xI )T

Ic (xIc ) (36)

for anyI ∈ CI . ForI1, I2 ∈ J , CI1 ∩ CI2  = ∅ one easily verifies4

TI1|CI1∩CI2 = TI2|CI1∩CI2 . (37)

Let now {fI }I∈J ∪ {f0} be a finite smooth partition of unity ofR4n subordinate to
{CI }I∈J ∪ Un: suppfI ⊂ CI , suppf0 ⊂ Un. Then we define

Tn(h)
def= Tn|Un(f0h)+

∑
I∈J

TI (fIh), h ∈ D(R4n,V⊗n). (38)

As in [7] one may prove that this definition is independent of the choice of{fI }I∈J ∪{f0}
and thatTn is symmetric with respect to permutations of the factors and satisfies causality
(11). Local commutativity (32) and (33) (withn−1 replaced byn) is verified by inserting
the definition (38) and using the assumptions. By (10) we obtain from theT -products
the correspondingS-matrixS(g) for arbitrary large support ofg ∈ D(R4,V), andS(g)
satisfies the functional equation (15).

5. Perturbative Quantization and Loop Expansion

Causal perturbation theory was traditionally formulated in terms of operator valued
distributions on Fock space. It is therefore well suited for describing the deformation
of the free field into an interacting field by turning on the interactiong ∈ D(R4,V). It
is much less clear how an expansion in powers ofh̄ can be performed, describing the
deformation of the classical field theory, mainly because the Fock space has no classical
counter part.

Usually the expansion in powers ofh̄ is done in functional approaches to field theory
by ordering Feynman graphs according to loop number. In this section we show that the
algebraic description provides a natural formulation of the loop expansion, and we point
out the connection to formal quantization theory.

4 In contrast to [7] the Wick expansion of theT -products is not used here, because local commutativity of
theT -products is contained in the inductive assumption.
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5.1. Quantization of a free field and Wick products. In quantization theory one asso-
ciates to a given classical theory a quantum theory. One procedure is the deformation
(or star-product) quantization [2]. This procedure starts from a Poisson algebra, i.e. a
commutative and associative algebra together with a second product: a Poisson bracket,
satisfying the Leibniz rule and the Jacobi identity; and to deform the product as a func-
tion of h̄, such that5 a ×h̄ b is a formal power series in̄h, the associativity is maintained
and

a ×h̄ b
h̄→0−→ ab,

1

h̄
(a ×h̄ b − b ×h̄ a)

h̄→0−→ {a, b}. (39)

Actually this scheme can easily be realized in free field theory (cf. [9]). Basic functions
are the evaluation functionalsϕclass(x), ( +m2)ϕclass= 0, with the Poisson bracket

{ϕclass(x), ϕclass(y)} = 
(x − y) (40)

(
 is the commutator function (2)). Because of the singular character of
 the fields
should be smoothed out in order to belong to the Poisson algebra. Hence our fundamental
classical observables are

φ(t) = t0 +
N∑
n=1

∫
ϕclass(x1) . . . ϕclass(xn)tn(x1, . . . , xn)dx1 . . . dxn,

t ≡ (t0, t1, . . . ),

(41)

wheret0 ∈ C arbitrary,N < ∞, tn is a suitable test “function” (we will admit also
certain distributions) with compact support. The Klein Gordon equation shows up in the
property:A(t) = 0 if t0 = 0 andtn = ( i + m2)gn for all n > 0, somei = i(n) and
somegn with compact support.

In the quantization procedure we identifyϕclass(x1) . . . ϕclass(xn) with the normally
ordered product (Wick product): ϕ(x1) . . . ϕ(xn) : (ϕ is the free quantum field ((3)–
(6)). Wick’s theorem may be interpreted as the definition of ah̄-dependent associative
product,

:
∏
i∈I

ϕ(xi) : ×h̄ :
∏
j∈J

ϕ(xj ) :

=
∑
K⊂I

∑
α:K→J injective

∏
j∈K

ih̄
+(xj − xα(j)) :
∏

l∈(I\K)∪(J\α(K))
ϕ(xl) : (42)

in the linear space spanned by Wick products (the “Wick quantization”).6 To be precise
we have to fix a suitable test function space (or better: test distribution space) in (41)
which is small enough such that the product is well defined for allh̄ and which contains
the interesting cases occuring in perturbation theory, e.g. products of translation invariant
distributions (particularlyδ-distributions of difference variables) with test functions of
compact support should be allowed fortn as in Theorem 0 of Epstein and Glaser.

5 The deformed product is called a∗-product in deformation theory. In order to avoid confusion with the
∗-operation we denote the product by×h̄.

6 The observation that the Wick quantization is appropriate for the quantization of the free field goes back
to Dito [9].
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Let

Wn
def= {t ∈ D′(R4n)symm , suppt compact,

WF(t) ∩ (R4n × V n+ ∪ V n−) = ∅}
(43)

(see the Appendix for a definition of the wave front set WF of a distribution). In [7] it
was shown that Wick polynomials smeared with distributionst ∈ Wn,

(ϕ⊗n)(t) def=
∫

: ϕ(x1) . . . ϕ(xn) : t (x1, . . . , xn) dx1 . . . dxn, (ϕ⊗0)
def= 1, (44)

are densely defined operators on an invariant domain in Fock space. This includes in
particular the Wick powers

: ϕn(f ) := (ϕ⊗n)(t), f ∈ D(R4), t (x1, . . . , xn) = f (x1)

n∏
i=2

δ(xi − x1) (45)

The product of two such operators is given by

(ϕ⊗n)(t)×h̄ (ϕ
⊗m)(s) =

min{n,m}∑
k=0

h̄k(ϕ⊗(n+m−2k))(t ⊗k s) (46)

with thek-times contracted tensor product

(t ⊗k s)(x1, . . . , xn+m−2k) = S n!m!ik
k!(n− k)!(m− k)!

∫
dy1 . . . dy2k
+(y1 − y2) . . .


+(y2k−1 − y2k)t (x1, . . . , xn−k, y1, y3, . . . , y2k−1)

s(xn−k+1, . . . , xn+m−2k, y2, y4, . . . , y2k) (47)

(S means the symmetrization inx1, . . . , xn+m−2k). The conditions on the wave front
sets oft ands imply that the product(t⊗k s) exists (see the Appendix) and is an element
of Wn+m−2k. The∗-operation reduces to complex conjugation of the smearing function.

Let W0
def= C andW def= ⊕∞

n=0 Wn. For t ∈ W let tn denote the component oft in

Wn. The∗-operation is defined by(t∗)n
def= (t̄n). Equation (46) can be thought of as the

definition of an associative product onW,

(t ×h̄ s)n =
∑

m+l−2k=n
h̄ktm ⊗k sl . (48)

The Klein–Gordon equation defines an idealN in W which is generated by( +
m2)f, f ∈ D(R4). Actually this ideal is independent ofh̄ (because a contraction with
( +m2)f vanishes) and coincides with the kernel ofφ defined in (41). Hence the product
(48) is well defined on the quotient spacēW = W/N . For a given positive value of̄h,
W̄ is isomorphic to the algebra generated by Wick products(ϕ⊗n)(t), t ∈ Wn (44). In
the limit h̄→ 0 we find

lim
h̄→0

φ(t)×h̄ φ(s) = lim
h̄→0

φ(
∑
n

h̄nt ⊗n s)

= φ(t ⊗0 s) = φ(t) · φ(s) (49)
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(we set(t ⊗k s)n
def= ∑

m+l=n tm+k ⊗k sl+k, cf. (47)), with the classical product·, and

lim
h̄→0

1

ih̄
[φ(t), φ(s)]h̄ = φ(t ⊗1 s − s ⊗1 t) = {φ(t), φ(s)} (50)

with the classical Poisson bracket. Thus(W,×h̄) provides a quantization of the given
Poisson algebra of the classical free fieldϕclass(40).We point out that we have formulated
the algebraic structure of smeared Wick products without using the Fock space.

The Fock representation is recovered, via the GNS construction, from the vacuum
stateω0(t) = t0. It is faithful for h̄  = 0 but is one dimensional in the classical limit
h̄ = 0. This illustrates the superiority of the algebraic point of view for a discussion of
the classical limit.

5.2. Normalization conditions and retarded products. To study the perturbative quanti-
zation of interacting fields we need some technical tools which are given in this subsec-
tion.

The time ordered products are constructed by induction on the numbern of factors
(which is also the order of the perturbation series (10)). In contrast to the inductive
construction of theT -products in sect. 4, we do not knowTn|Un here. So causality (11)
and symmetry determine the time ordered products uniquely (in terms of time ordered
products of less factors) up to the total diagonal
n = {(x1, . . . , xn) ∈ R

4n|x1 = x2 =
· · · = xn}. There is some freedom in the extension to
n. To restrict it we introduce the
following additional defining conditions (“normalization conditions”, formulated for a
scalar field without derivative coupling, i.e.L is a Wick polynomial solely inφ, it does
not contain derivatives ofφ; for the generalization to derivative couplings see [5])

N1 covariance with resp. to Poincaré transformations and possibly discrete symmetries,
in particular

N2 unitarity:T (A1(x1) . . . An(xn))
∗ = T̄ (A∗

1(x1) . . . A
∗
n(xn)),

N3 [T (A1(x1) . . . An(xn)), φ(x)]
= ih̄

∑n
k=1 T (A1(x1) . . .

∂Ak
∂φ
(xk) . . . An(xn))
(xk − x),

N4 ( x +m2)T (A1(x1) . . . An(xn)φ(x))

= −ih̄∑n
k=1 T (A1(x1) . . .

∂Ak
∂φ
(xk) . . . An(xn))δ(xk − x),

where[φ(x), φ(y)] = ih̄
(x − y). N1 implies covariance of the arising theory, and
N2 provides a∗-structure.N3 gives the relation to time ordered products of sub Wick
polynomials. Once these are known (in an inductive procedure), only a scalar distribution
has to be fixed. Due to translation invariance the latter depends only on the relative
coordinates. Hence, the extension of the (operator valued)T -product to
n is reduced
to the extension of a C-number distributiont0 ∈ D′(R4(n−1) \ {0}) to t ∈ D′(R4(n−1)).
(We call t an extension oft0 if t (f ) = t0(f ), ∀f ∈ D(R4(n−1) \ {0})). The singularity
of t0(y) andt (y) aty = 0 is classified in terms of Steinmann’s scaling degree [27,7]

sd(t)
def= inf {δ ∈ R , lim

λ→0
λδt (λx) = 0}. (51)

By definition sd(t0) ≤ sd(t), and the possible extensions are restricted by requiring

sd(t0) = sd(t). (52)
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Then the extension is unique for sd(t0) < 4(n−1), and in the general case there remains
the freedom to add derivatives of theδ-distribution up to order(sd(t0)− 4(n− 1)), i.e.

t (y)+
∑

|a|≤sd(t0)−4(n−1)

Ca∂
aδ(y) (53)

is the general solution, wheret is a special extension [7,24,14], and the constantsCa are
restricted byN1, N2, N4, permutation symmetries and possibly further normalization
conditions, e.g. the Ward identities for QED [10,5]. For an interaction with mass dimen-
sion dim(L) ≤ 4 the requirement (52) implies renormalizability by power counting,
i.e. the number of indeterminate constantsCa does not increase by going over to higher
perturbative orders. In [10] it is shown that the normalization conditionN4 implies the
field equation for the interacting field corresponding to the free fieldφ (see also (77) and
Sect. 6.1 below).

We have defined the interacting fields as functional derivatives of relativeS-matrices
(29). Hence, to formulate the perturbation series of interacting fields we need the per-
turbative expansion of the relativeS-matrices:

Sg(f ) =
∑
n,m

in+m

n!m!Rn,m(g
⊗n; f⊗m), (54)

whereg, f ∈ D(R4,V). The coefficients are the so called retarded products (“R-
products”). They can be expressed in terms of time ordered and anti-time ordered prod-
ucts by

Rn,m(g
⊗n; f⊗m) =

n∑
k=0

(−1)k
n!

k!(n− k)! T̄k(g
⊗k)

×h̄ Tn−k+m(g⊗(n−k) ⊗ f⊗m). (55)

They vanish if one of the firstn arguments is not in the past light cone of some of the
lastm arguments ([14], Sect. 8.1),

suppRn,m
(
. . .

) ⊂ {(y1, . . . yn, x1, . . . , xm) , {y1, . . . yn} ⊂ ({x1, . . . , xm} + V̄−)}.
(56)

In the remaining part of this subsection we show that the time ordered products can
be defined in such a way thatRn,m is of orderh̄n. For this purpose we will introduce
the connected part(a1 ×h̄ · · · ×h̄ an)

c of (a1 ×h̄ · · · ×h̄ an), where theai are normally
ordered products of free fields, and the connected partT cn of the time ordered product
Tn (or “truncated time ordered product”). In both cases the connected part corresponds
to the sum of connected diagrams, provided the vertices belonging to the sameai are
identified. Besides the (deformed) product×h̄ (42)

a ×h̄ b =
∑
n≥0

h̄nMn(a, b), (57)

wherea, b are normally ordered products of free fields, we have the classical product
a · b = M0(a, b), which is just the Wick product

:
∏
i∈I

ϕ(xi) : · :
∏
j∈J

ϕ(xj ) :=:
∏
i∈I

ϕ(xi)
∏
j∈J

ϕ(xj ) : (58)
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and which is also associative and in addition commutative. Then we define(a1×h̄ · · ·×h̄

an)
c recursively by

(a1 ×h̄ · · · ×h̄ an)
c def= (a1 ×h̄ · · · ×h̄ an)−

∑
|P |≥2

∏
J∈P

(aj1 ×h̄ · · · ×h̄ aj|J |)
c, (59)

where {j1, . . . , j|J |} = J , j1 < · · · < j|J |, the sum runs over all partitionsP of
{1, . . . , n} in at least two subsets and

∏
means the classical product (58).T cn is defined

analogously

T cn (f1 ⊗ · · · ⊗ fn)
def= Tn(f1 ⊗ · · · ⊗ fn)−

∑
|P |≥2

∏
p∈P

T c|p|(⊗j∈pfj ), (60)

and similarly we introduce the connected antichronological productT̄ cn ≡ (T̄n)
c.

Proposition 1. Let the normally ordered products of free fields a1, . . . , an be of order
O(h̄0). Then

(a1 ×h̄ · · · ×h̄ an)
c = O(h̄n−1). (61)

Proof. We identify the vertices belonging to the sameai and apply Wick’s theorem (42)
toa1×h̄ · · ·×h̄ an. Each “contraction” (i.e. each factor
+) is accompanied by a factorh̄.
In the terms∼ h̄0 (i.e. without any contraction)a1, . . . , an are completely disconnected,
the number of connected components isn. By a contraction this number is reduced by
1 or 0. So to obtain a connected term we need at least(n − 1) contractions. Hence the
connected terms are of orderO(h̄n−1). %&
Let B � A1, . . . , An = O(h̄0) andxi  = xj , ∀1 ≤ i < j ≤ n. Then there exists a
permutationπ ∈ Sn such that

T c
(
A1(x1) . . . An(xn)

) = (Aπ1(xπ1)×h̄ · · · ×h̄ Aπn(xπn))
c = O(h̄n−1). (62)

We want this estimate to hold true also for coinciding points

T c
(
A1(x1) . . . An(xn)

) = O(h̄n−1) on D(R4n). (63)

By the following argument this can indeed be satisfied by appropriate normalization
of the time ordered products, i.e. (63) is an additional normalization condition, which
is compatible withN1–N4. We proceed by induction on the numbern of factors. Let
us assume that theT c-products with less thann factors fulfil (63) and that we are
away from the total diagonal
n. Using causal factorization, (60) and the shorthand
notationT (J ) := T (

∏
j∈J Aj (xj )), J ⊂ {1, . . . , n}, we then know that there exists

I ⊂ {1, . . . , n}, I  = ∅, I c  = ∅, with

T
(
A1(x1) . . . An(xn)

) = T (I)×h̄ T (I
c) =

|I |∑
r=1

|I c|∑
s=1

∑
I1&···&Ir=I

∑
J1&···&Js=I c∑

k≥0

h̄kMk

(
T c(I1) · · · · · T c(Ir ), T c(J1) · · · · · T c(Js)

)
, (64)

where& means the disjoint union. We now pick out the connected diagrams. The term
k = 0 on the r.h.s. has(r + s) disconnected components. Analogously to Proposition 1
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we conclude that it must holdk ≥ (r+s−1) for a connected diagram. Taking the validity
of (63) forT c(Il) andT c(Jm) into account, we obtain

∑r
l=1(|Il | − 1)+∑s

m=1(|Jm| −
1) + (r + s − 1) = n − 1 for the minimal order in̄h of a connected diagram. So the
h̄-power behaviour (62) holds true onD(R4n \
n), and (63) is in fact a normalization
condition.

Due to (60)(Tn − T cn ) is completely given by timeordered products of lower orders
< n and hence is known also on
n. The problem of extendingTn to
n concerns solely
T cn . The normalization conditionsN1–N4 are equivalent to the same conditions forT cn
andT̄ cn (i.e. Tn andT̄n everywhere replaced byT cn andT̄ cn ). Due toN3–N4 it remains
only the extension of< �, T c(A1 . . . An)� >, where allAj are different from free
fields and� is the vacuum. It is obvious that this can be done in a way which maintains
(63) and is in accordance withN1–N2.

We emphasize that the (ordinary) time ordered productTn does not satisfy (63)
because of the presence of disconneted diagrams. On the other hand the connected
antichronological product̄T cn fulfills the estimate (63), as may be seen by unitarityN2.
We now turn to the retarded products (55):

Proposition 2. Let D(R4,V) � fj , gk = O(h̄0). Then the following statements hold
true:

(i) All diagrams which contribute to Rn,m(f1 ⊗ · · · ⊗ fn; g1 ⊗ · · · ⊗ gm) have the
property that each fj -vertex is connected with at least one gk-vertex.

(ii) Rn,m(f1 ⊗ · · · ⊗ fn; g1 ⊗ · · · ⊗ gm) = O(h̄n).
Proof. (i) We work with the notationRn,m(Y ;X), Y ≡ {y1, . . . , yn}, X ≡ {x1, . . . , xm}
(cf. [14]), and consider a subdiagram with verticesJ ⊂ Y which is not connected with
the other vertices(Y \ J ) ∪X. Because disconneted diagrams factorize with respect to
the classical product (58), the corresponding contribution toRn,m(Y ;X) (55) reads∑

I⊂Y
(−1)|I |

(
T̄ (I ∩ J c)T̄ (I ∩ J )

)
×h̄

(
T (I c ∩ J )T (I c ∩ J c,X)

)
. (65)

However, this expression vanishes due to
∑
P⊂J (−1)|P |T̄ (P ) ×h̄ T (J \ P) = 0 (the

latter equation is equivalent to (13), it is the perturbative version ofS−1S = 1). Hence
for non-vanishing diagramsJ must be the empty set.

(ii) We express theR-product in terms of the connectedT - andT̄ -products

Rn,m(f1 ⊗ · · · ⊗ fn; g1 ⊗ · · · ⊗ gm)

=
∑

I⊂{1,...,n}
(−1)|I |

∑
P∈Part(I )

∑
Q∈Part(I c&{1,...,m})(∏

p∈P
T̄ c|p|(⊗i∈pfi)

)
×h̄

(∏
q∈Q

T c|q|(⊗i∈qfi ⊗⊗j∈qgj )
)
, (66)

where again
∏

means the classical product (58) and& stands again for the disjoint union.
From (63) we know∏

p∈P
T̄ c|p|(⊗i∈pfi) = O(h̄|I |−|P |),

∏
q∈Q

T c|q|(⊗i∈qfi ⊗⊗j∈qgj ) = O(h̄|I c|+m−|Q|). (67)
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From part (i) we conclude that the terms of lowest order (inh̄) in(∏
p∈P

T̄ c|p|(. . . )
)
×h̄

(∏
q∈Q

T c|q|(. . . )
)
=

∑
n≥0

h̄nMn

(∏
p∈P

T̄ c|p|(. . . ),
∏
q∈Q

T c|q|(. . . )
)

(68)

do not contribute. For simplicity we first consider the special casem = 1. Then only
connected diagrams contribute. Hence we obtainn ≥ |P | + |Q| − 1 similarly to the
reasoning after (64). For arbitrarym ≥ 1 the terms with minimal power in̄hcorrespond to
diagrams which are maximally disconnected.According to part (i) these diagrams havem

disconnected components each component containing precisely one vertexgj .Applying
them = 1-argument to each of this components we getn ≥ |P |+ |Q|−m. Taking (67)
into account it results the assertion:(|I |−|P |)+(|I c|+m−|Q|)+(|P |+|Q|−m) = n.
%&

5.3. Interacting fields. We first describe the perturbative construction of the interacting
classical field. LetL be a function of the field which serves as the interaction Lagrangian
(for simplicity, we do not consider derivative couplings). We want to find a Poisson
algebra generated by a solution of the field equation

( +m2)ϕL(x) = −
(∂L
∂ϕ

)
L(x), (69)

with the initial conditions

{ϕL(0, x), ϕL(0, y)} = 0 = {ϕ̇L(0, x), ϕ̇L(0, y)}
{ϕL(0, x), ϕ̇L(0, y)} = δ(x − y).

(70)

We proceed in analogy to the construction of the interacting quantum field in Sect. 3
and construct in a first step solutions with localized interactionsθL with θ ∈ D(R4)

which coincide at early times with the free field (hence the initial conditions (70) are
trivially satisfied for sufficiently early times). They are given by a formal power series
in the Poisson algebra of the free field

ϕθL(x) =
∞∑
n=0

∫
y0

1≤y0
2≤...y0

n≤x0
dy1dy2 . . . dyn θ(y1) . . . θ(yn)

{L(y1), {L(y2), . . . {L(yn), ϕ(x)} . . . }}
(71)

Analogous to the quantum case, the structure of the Poisson algebra associated to a
causally closed regionO does not depend on the behaviour of the interaction La-
grangian outside ofO, i.e. there is, forθ, θ ′ ∈ $(O) a canonical transformationv
with v(ϕθL(x)) = ϕθ ′L(x) for all x ∈ O. The interacting fieldϕL may then be defined
as a covariantly constant section within a bundle of Poisson algebras.

Starting from the classical interacting field, one may try to define the quantized
interacting field by replacing products of free classical fields by the normally ordered
product of the corresponding free quantum fields (as in sect. 5.1) and the Poisson brackets
in (71) by commutators

{· , ·} → 1

ih̄
[· , ·]h̄, (72)
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where the commutator refers to the quantized product×h̄. Note that in general this
replacement produces additional terms, e.g. the termsk ≥ 2 in

1

ih̄
[: ϕn(x) :, : ϕm(y) :]h̄ =

min {n,m}∑
k=1

(ih̄)k−1 n!m!
(n− k)!(m− k)!(


+(x − y)k −
+(y − x)k
)
: ϕ(n−k)(x)ϕ(m−k)(y) :

(73)

which correspond to loop diagrams. Due to the distributional character of the fields with
respect to the quantized product the integral in (71), as it stands, is not well defined
(there is an ambiguity for coinciding points due to the time ordering). But as we will see
Bogoliubov’s formula (29) for the interacting quantum field as a functional derivative
of the relativeS-matrix may be interpreted as a precise version of this integral.

From the factorization property (11), (14) of time ordered and anti-time ordered
products, one gets the following recursion formula for the retarded products ((54), (55)):
if suppg is contained in the past and suppf, supph in the future of some Cauchy surface,
we find

Rn+1,m(g ⊗ h⊗n; f⊗m) = −[T1(g), Rn,m(h
⊗n; f⊗m)]h̄, (74)

where we used the fact thatT̄1 = T1. Hence, form = 1 andyi  = yj ∀i  = j the retarded
productRn,1(y1, . . . , yn; x) can be written in the form7

R
(L(y1) . . .L(yn);ϕ(x)

) = (−1)n
∑
π∈Sn

$(x0 − y0
πn)$(y

0
πn − y0

π(n−1)) . . .

$(y0
π2 − y0

π1)[L(yπ1), [L(yπ2) . . . [L(yπn), ϕ(x)]h̄ . . . ]h̄]h̄.
(75)

(Due to the locality of the interactionL this is a Poincaré covariant expression.) This
formula confirms part (ii) of Proposition 2 for non-coincidingyi . Our main application
of (75) is the study of the classical limith̄ → 0 of the quantized interacting field (29).
Due to Proposition 2 (part (ii))R

(
h̄−1L(y1) . . . h̄

−1L(yn);ϕ(x)
)

contains no terms with
negative powers of̄h and thus has a well-defined classical limit. We conclude that the
quantized interacting field (29), (54)

ϕθL(h) =
∞∑
n=0

in

n!h̄n Rn,1((θL)
⊗n;hϕ), h ∈ D(R4), (76)

tends to the classical interacting field (71) in this limit. Note that the factorh̄−1 in the
interaction Lagrangian is in accordance with the quantization rule (72), since in (75)
there is for each factorL precisely one commutator. InRn,1((θL)⊗n; f ϕ) the above
mentioned ambiguities for coinciding points in the iterated retarded commutators have
been fixed by the definition of time ordered products as everywhere defined distributions.

The normalization conditionN4 implies an analogous equation for the retarded prod-
uctRn,1 (cf. [10]). The latter means thatϕL (76) satisfies the same field equation as the
classical interacting field (69)

( +m2)ϕL(x) = −
(∂L
∂ϕ

)
L(x). (77)

7 The notation for the time ordered products introduced in Sect. 2 is used here for the retarded products.
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Here
(
∂L
∂ϕ

)
L is not necessarily a polynomial inϕL (the pointwise product of interacting

fields is in general not defined).
We found that the relativeS-matricesSh̄−1θL(f ) (f ∈ D(R4,V)), and hence all ele-

ments of the algebraAh̄−1θL are power series in̄h. For the global algebras of covariantly
constant sections we recall from [7] that the unitariesV ∈ U(θ, θ ′) can be chosen as
relativeS-matrices

V = Sh̄−1θL(h̄
−1θ−L)−1 ∈ U(θ, θ ′), (78)

whereθ− ∈ D(R4) depends in the following way on(θ− θ ′): we splitθ− θ ′ = θ++ θ−
with suppθ+ ∩ (C(O) + V̄−) = ∅ and suppθ− ∩ (C(O) + V̄+) = ∅, (whereC(O)
means the causally closed region containingO in which θ andθ ′ agree, cf. (18)). SoV
is a formal Laurent series in̄h, and the sections are no longer well defined power series.
ReplacingA andA(O) by

∨
n∈N0

h̄nA and
∨
n∈N0

h̄nA(O) (for the new algebras the
same symbolA will be used again) we obtain modules over the ring of formal power
series inh̄ with complex coefficients. For the further construction the validity of part
(iii) of the following Proposition is crucial:

Proposition 3. (i) Let Rn,m(. . . ; . . . ) = ∑m
a=1R

(a)
n,m(. . . ; . . . ), where R(a)n,m(. . . ; . . . )

is the sum of all diagrams with a connected components. Then

R(a)n,m((h̄
−1θL)⊗n; (h̄−1θ−L)⊗m) = O(h̄−a). (79)

(Note that the range of a is restricted by part (i) of Proposition 2.) This estimate is
of more general validity: instead of a retarded product we could have e.g. a multiple
×h̄-product, a time ordered or antichronological product and the factors may be
quite arbitrary. It is only essential that each factor is of order O(h̄−1).

(ii) Let A ∈ A(O). Then all diagrams which contribute to V ×h̄ A×h̄ V
−1, (where V

is given by (78)) have the property that each vertex of V and of V −1 is connected
with at least one vertex of A. (It may happen that a connected component of V is
not directly connected withA, but that it is connectecd with a connected component
of V −1 and the latter is connected with A.)

(iii)

A(O) � A = O(h̄n) (⇒ V ×h̄ A×h̄ V
−1 = O(h̄n). (80)

In particular if A is the term of n-th order in h̄ of an interacting field, then V ×h̄

A×h̄ V
−1 is a power series in h̄ in which the terms up to order h̄n−1 vanish.

Proof. Part (i) is obtained essentially in the same way as Proposition 1. Part (iii) is a
consequence of parts (i) and (ii), and the following observation: let us consider a diagram
which contributes toV ×h̄ A×h̄ V

−1 according to part (ii). If the subdiagrams belonging
to V andV −1 haver ands connected components, then the whole diagram has at least
(r + s) contractions, which yield a factorh̄(r+s).

It remains the proof of (ii): We use the same notations as in the proof of Proposition 2.
Let Y1 & Y2 = Y ,X1 &X2 = X. We now consider the sum of all diagrams contributing
toR(Y,X) in which the vertices(Y1, X1) are not connected with the vertices(Y2, X2).
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Using (55) and the fact that disconnected diagrams factorize with respect to the classical
product (58), this (partial) sum is equal to∑

I⊂Y
(−1)|I∩Y1|[T̄ (I ∩ Y1)×h̄ T (I

c ∩ Y1, X1)] ·

(−1)|I∩Y2|[T̄ (I ∩ Y2)×h̄ T (I
c ∩ Y2, X2)] = R(Y1, X1) · R(Y2, X2).

(81)

From1 = VV −1 = VV ∗, (54) and (78) we know∑
Y1&Y2=Y, X1&X2=X

(−1)(|Y1|+|X1|)R∗(Y1, X1)×h̄ R(Y2, X2) = 0 (82)

for fixed (Y,X), Y ∪X  = ∅. Next we note

V ×h̄ A×h̄ V
−1 =

∑
n,m

1

n!m!
∫
dy1 . . . dyndx1 . . . dxm θ(y1) . . .

θ(yn)θ−(x1) . . . θ−(xm)
∑

Y1&Y2=Y, X1&X2=X
(−i)(|Y1|+|X1|)

× i(|Y2|+|X2|)R∗(Y1, X1)×h̄ A×h̄ R(Y2, X2), (83)

where we have used the notationsY ≡ {y1, . . . yn}, X ≡ {x1, . . . , xn}. In the integrand of
the latter expression we consider (for givenY andX) fixed decompositionsY = Y3&Y4
andX = X3 &X4, Y3 ∪X3  = ∅. Now we consider the (partial) sum of all diagrams in
which the vertices(Y3, X3) are not connected withA and each of the vertices(Y4, X4) is
connected withA. Part (ii) is proved if we can show that this partial sum vanishes. This
holds in fact true becauseR∗ andR factorize according to (81), and due to the unitarity
(82): ∑

Y1&Y2=Y, X1&X2=X
(−1)(|Y1∩Y4|+|X1∩X4|)[R∗(Y1 ∩ Y4, X1 ∩X4)

×h̄ A×h̄ R(Y2 ∩ Y4, X2 ∩X4)
]

(−1)(|Y1∩Y3|+|X1∩X3|)[R∗(Y1 ∩ Y3, X1 ∩X3)

×h̄ R(Y2 ∩ Y3, X2 ∩X3)
] = 0. %&

Now we are ready to give an algebraic formulation of the expansion inh̄. LetIn
def= h̄nAL.

In is an ideal in the global algebraAL. We define

A(n)

L
def= AL
In+1

, A(n)

L (O) def= AL(O)
In+1 ∩ AL(O)

. (84)

which means that we neglect all terms which are of orderO(h̄n+1). The embeddings
i21 : AL(O1) ↪→ AL(O2) for O1 ⊂ O2 induce embeddingsA(n)

L (O1) ↪→ A(n)

L (O2).

Thus we obtain a projective system of local nets(A(n)

L (O)) of algebras of quantum
observables up to orderh̄n+1.

Note that we may equip our algebrasA(n)

L also with the Poisson bracket induced by
1
ih̄
[·, ·]h̄, because the idealsIn are also Poisson ideals with respect to these brackets. Then
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A(0)
L becomes the local net of Poisson algebras of the classical field theory, whereas for

n  = 0 we obtain a net of noncommutative Poisson algebras.
The expansion in powers ofh̄ is usually called “loop expansion”. This is due to the fact

that the order in̄h of a certain Feynman diagram belonging toRn,m((h̄−1θL)⊗n; f1 ⊗
· · · ⊗ fm), D(R4,V) � fj = O(h̄0), is equal to: (number of propagators (i.e. inner
lines)) -n = (number of loops) +m - (number of connected components). In particular,
using part (i) of Proposition 2, we find that for the interacting fields (m = 1) the order
in h̄ agrees with the number of loops.

6. Local Algebraic Formulation of the Quantum Action Principle

The method of algebraic renormalization (for an overview see [22]) relies on the so called
“quantum action principle” (QAP), which is due to Lowenstein [20] and Lam [18]. This
principle is a formula for the variation of (possibly connected or one-particle-irreducible)
Green’s functions (or of the corresponding generating functional) under

– a change of coordinates (e.g. one applies the differential operator of the field equation
to the Green’s functions),

– a variation of the fields (e.g. the BRST-transformation)
– a variation of a parameter. This may be a parameter in the Lagrangian or in the

normalization conditions for the Green’s functions.

These are different theorems with different proofs. The common statement is that
the variation of the Green’s functions is equal to the insertion of a local or spacetime
integrated composite field operator (for details see [22]). In this section we study two
simple cases of the QAP: the field equation and the variation of a parameter which
appears only in the interaction Lagrangian.

The aim of this section is to formulate the QAP (in these two cases) for our local
algebras of observablesAL(O), i.e. we are looking for anoperator identity which holds
true independently of the adiabatic limit. Such an identity does not depend on the choice
of a state, as it is the case for the Green’s functions.

In a second step we compare our formula with the usual formulation of the QAP in
terms of Green’s functions. The latter are the vacuum expectation values in the adiabatic
limit g → 1.8 We specialize to models for which the adiabatic limit is known to exist.
This is the case for pure massive theories [14] and certain theories with (some) massless
particles such as QED andλ : ϕ2n : -theories [4], provided the time ordered products
are appropriately normalized.

Remarks. (1) From the usual QAP (in terms of Green’s functions) one obtains an
operator identity by means of the Lehmann–Symanzik–Zimmermann-reduction for-
malism [19]. Although the latter relies on the adiabatic limit an analogous conclu-
sion from the Fock vacuum expectation values to arbitrary matrix elements is pos-
sible in our local construction: letO be an open double cone and letx1, . . . , xk  ∈
((Ō ∪ {xk+l+1, . . . , xn})+ V̄−), xk+1, . . . , xk+l ∈ O andxk+l+1, . . . , xn  ∈ (Ō + V̄+).
Using the causal factorization of time ordered products of interacting fields (28) we

8 This limit is taken by scaling the test functiong: let g0 ∈ D(R4), g0(0) = 1; then one considers the
limit ε → 0 (ε > 0) of gε(x) ≡ g0(εx). Uniqueness of the adiabatic limit means the independence of the
particular choice ofg0.
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obtain(
�, TθL

(
ϕ(x1) . . . ϕ(xn)

)
�

)
=

(
TθL

(
ϕ(x1) . . . ϕ(xk)

)∗
�,

TθL
(
ϕ(xk+1) . . . ϕ(xk+l )

)
TθL

(
ϕ(xk+l+1) . . . ϕ(xn)

)
�

)
. (85)

Now we chooseθ ∈ $(O) such that{x1, . . . , xk} ∩ (suppθ + V̄−) = ∅ and
{xk+l+1, . . . , xn} ∩ (suppθ + V̄+) = ∅. Due to the retarded support (56) of theR-
products we then know thatTθL

(
ϕ(xk+l+1) . . . ϕ(xn)

)
agrees with the time ordered prod-

uctT0
(
ϕ(xk+l+1) . . . ϕ(xn)

)
of the corresponding free fields. By means ofSθL(f ϕ) =

S(θL)−1S(f ϕ)S(θL) for suppf ∩ (suppθ + V̄−) = ∅ we obtain

TθL
(
ϕ(x1) . . . ϕ(xk)

)∗ = S(θL)−1T0
(
ϕ(x1) . . . ϕ(xk)

)∗
S(θL). (86)

Our assertion follows now from the fact that the statesT0
(
ϕ(xk+l+1) . . . ϕ(xn)

)
�

generate a dense subspace of the Fock space and the same for the statesS(θL)−1

T0
(
ϕ(x1) . . . ϕ(xk)

)∗
S(θL)�. (For the validity of the latter statement it is important

that x1, . . . , xk can be arbitrarily spread over a Cauchy surface which is later than
(Ō ∪ {xk+l+1, . . . , xn}).)

(2) Recently Pinter [23] presented an alternative derivation of the QAP for the vari-
ation of a parameter in the Lagrangian also in the framework of causal perturbation
theory. In contrast to our presentation Pinter’s QAP is formulated for theS-matrix.

6.1. Field equation. The normalization conditionN4 implies

( x +m2)R
(L(y1) . . .L(yn);φ(x)φ(x1) . . . φ(xm)

)
= − i

n∑
l=1

δ(x − yl)R
(L(y1) . . . l̂ . . .L(yn); ∂L

∂φ
(x)φ(x1) . . . φ(xm)

)

− i

m∑
j=1

δ(x − xj )R
(L(y1) . . .L(yn);φ(x1) . . . ĵ . . . φ(xm)

)
,

(87)

where l̂ and ĵ means that the corresponding factor is omitted. This equation takes a
simple form for the corresponding generating functionals (i.e. the relativeS-matrices
(16))

f (x)SgL(f φ) = ( x +m2)
δ

iδf (x)
SgL(f φ)− δ

iδρ(x)

∣∣∣
ρ=0

SgL
(
f φ + ρg

∂L
∂φ

)
.

(88)

To formulate this in terms of our local algebras of observables (cf. sect. 3) we set
g ≡ θ ∈ $(O) and forx ∈ O we can chooseρ such that suppρ ⊂ {y|θ(y) = 1}. Then
(88) turns into

( x +m2)
δ

iδf (x)
SL(f φ) = f (x)SL(f φ)+ δ

iδρ(x)

∣∣∣
ρ=0

SL
(
f φ + ρ

∂L
∂φ

)
, x ∈ O.

(89)
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This is the QAP (in the case of the field equation) for the local algebras of observables.
To compare with the usual form of the QAP we consider the generating functional

Z(f ) for the Green’s functions< �|T (
φL(x1) . . . φL(xm)

)|� >which is obtained from
the relativeS-matrices by

Z(f ) = lim
g→1

(�, SgL(f φ)�), (90)

where� is the Fock vacuum [14]. So by taking the vacuum expectation value and the
adiabatic limit of (88) we get

f (x)Z(f ) = −
(x) · Z(f ), (91)

where
(x) is a insertion of UV-dimension9 3, coinciding with the classical field poly-
nomial δS

δφ(x)
in the classical approximation (whereS = ∫

d4x [1
2(∂µφ(x)∂

µφ(x) −
m2φ2(x)) + g(x)L(x)] is the classical action). Equation (91) is the usual form of the
QAP (cf. eqn. (3.20) in [22]). In the present case the local algebraic formulation (89)
contains more information than the usual QAP (91).

6.2. Variation of a parameter in the interaction. In (54) we have defined retarded prod-
ucts of Wick polynomials, i.e. elements of the Borchers class. Analogously we now
introduce retarded productsRL(g⊗n; f⊗m) of interacting fields

SL+g(f ) = SL(g)−1SL(g + f )
def=

∞∑
n,m=0

in+m

n!m!RL(g⊗n; f⊗m), (92)

whereL, g, f ∈ D(R4,V). Obviously they can be expressed in terms of antichronolog-
ical and time ordered products of interacting fields by exactly the same formula as in
the case of Wick polynomials (55)

RL(g⊗n; f⊗m) =
n∑
k=0

(−1)k
n!

k!(n− k)! T̄L(g⊗k)TL(g⊗(n−k) ⊗ f⊗m). (93)

Thereby the antichronological product of interacting fields is defined analogously to the
time ordered product (28), namely by

T̄L(f⊗m) = dm

(−i)mdλm
∣∣∣
λ=0

SL(λf )−1, (94)

and satisfies anticausal factorization (14) (which justifies the name).The support property
(56) of the retarded products relies on the (anti)causal factorization of theT - and T̄ -
products (11, 14), hence, theR-product of interacting fields ((92), (93)) has also retarded
support (56).

Similarly to Lowenstein in [20], Sect. II.B, we consider an infinitesimal change of
the interaction Lagrangian

L0 → L0 + εL1, (95)

9 We assume thatL has UV-dimension 4.
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whereL0,L1 ∈ V or D(R4,V). For them-fold variation of the time ordered product of
the interacting fields (28) we obtain

dm

dεm

∣∣∣
ε=0

Tθ(L0+εL1)(f
⊗l ) = ∂m

∂εm

∣∣∣
ε=0

∂l

il∂λl

∣∣∣
λ=0

Sθ(L0+εL1)(λf )

= imRθL0((θL1)
⊗m; f⊗l ).

(96)

To formulate this identity for our local algebras of observables we assume thatL1
has compact support, i.e.L1 ∈ D(R4,V). We set

$0(O) def= {θ ∈ $(O) | θ |suppL1 ≡ 1}. (97)

We consider the observables as covariantly constant sections in the bundle over$0(O)
(instead of$(O) as in sect. 3). Then we obtain

dm

dεm
|ε=0TL0+εL1(f

⊗l ) = imRL0(L⊗m
1 ; f⊗l ). (98)

This is the local algebraic formulation of the QAP for the variation of a parameter in the
interaction.

We are now going to investigate the usual QAP by using Epstein and Glaser’s defi-
nition of Green’s functions (90). In (96) them-fold variation of the parameterε results
in a retarded insertion of(θL1)

⊗m. In the usual QAP(θL1)
⊗m is inserted into thetime

ordered product, i.e. one considers

imTθL0((θL1)
⊗m ⊗ f⊗l ) = ∂m

∂εm

∣∣∣
ε=0

∂l

il∂λl

∣∣∣
λ=0

SθL0(θεL1 + λf ). (99)

Obviously (96) and (99) do not agree. However, let us assume that we are dealing with
a purely massive theory and thatL0 andL1 have UV-dimension dim(Lj ) = 4. Or: if
dim(Lj ) < 4 we assume thatLj is treated in the extension to the total diagonal as
if it would hold dim(Lj ) = 4. Hence it may occur that the scaling degree increases
in the extension to a certain amount: sd(t0) ≤ sd(t) ≤ 4n − b for a scalar theory
without derivative couplings, whereb is the number of external legs (cf. (51)–(53)). (In
the BPHZ framework one says thatLj is “oversubtracted with degree 4”.) Then there
exists a normalization of the time ordered products, which is compatible with the other
normalization conditionsN1–N4and (63), such that the Green’s functions corresponding
to (99) exist and agree, i.e. we assert

dm

dεm

∣∣∣
ε=0

lim
θ→1

(
�, Tθ(L0+εL1)(f

⊗l )�
)
= im lim

θ→1

(
�, TθL0((θL1)

⊗m ⊗ f⊗l )�
)
(100)

for all m, l ∈ N0, which is equivalent to

lim
θ→1

(
�, Sθ(L0+εL1)(λf )�

)
= lim

θ→1

(
�, SθL0(θεL1 + λf )�

)
. (101)

(We assume that the derivatives∂
m

∂εm
and ∂l

∂λl
commute with the adiabatic limitθ → 1.

This seems to be satisfied for vacuum expectation values in pure massive theories as it is
the case here [14].) This is the usual form of the QAP (in terms of Epstein and Glaser’s
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Green’s functions) for the present case (cf. Eq. (2.6) of [20]10). In contrast to the field
equation, the QAP (100) does not hold for the operators before the adiabatic limit.

Proof of (100). For a better comparison with Lowenstein’s formulation, we present a
proof which makes the detour over the corresponding Gell–Mann Low expressions.
First we comment on the equality of Epstein and Glaser’s Green’s functions with the
Gell–Mann Low series

lim
θ→1

(�, SθL(f )�) = lim
θ→1

(�, S(θL + f )�)

(�, S(θL)�) , (102)

which is proved in the appendix of [12]. This can be understood in the following way: let

P� be the projector on the Fock vacuum� andP⊥
�

def= 1−P�. UsingS(θL)∗ = S(θL)−1

we obtain

(�, SθL(f )�) = (S(θL)�, (P� + P⊥
� )S(θL + f )�)

= (�, S(θL + f )�)

(�, S(θL)�) · |(�, S(θL)�)|2

+ (�, S(θL)−1P⊥
� S(θL + f )�)

(103)

and

1 = (�, S(θL)−1(P� + P⊥
� )S(θL)�)

= |(�, S(θL)�)|2 + (�, S(θL)−1P⊥
� S(θL)�).

(104)

In (�, S(θL)−1P⊥
� S(θL+f )�) there is at least one contraction betweenS(θL)−1 and

S(θL+f ) (or: the terms without contraction are precisely(�, S(θL)−1�)(�, S(θL+
f )�)). In the mentioned reference the support properties in momentum space of the
contracted terms are analysed and in this way it is proved

lim
θ→1

(�, S(θL)−1P⊥
� S(θL + f )�) = 0. (105)

Inserting this into (103) and (withf = 0) into (104) it results (102).
Because of (102) our assertion (101) is equivalent to

lim
θ→1

(�, S(θ(L0 + εL1)+ λf )�)

(�, S(θ(L0 + εL1))�)
= lim

θ→1

(�, S(θ(L0 + εL1)+ λf )�)

(�, S(θL0)�)
. (106)

This is the QAP in terms of the Gell–Mann Low series. Obviously the nontrivial statement
is

lim
θ→1

(�, S(θ(L0 + εL1))�)

(�, S(θL0)�)
= 1. (107)

A possibility to ensure the validity of this equation is the above assumption (which has
not been used so far) thatL0 andL1 have mass dimension dim(Lj ) ≤ 4 and are treated as

10 Lowenstein works with Zimermanns definition of normal products of interacting fields:
Nδ{

∏l
j=1 ϕij L(x)}, δ ≥ d ≡ ∑l

j=1 d(ϕij L) [29]. For δ = d (i.e. without oversubtraction)

Nδ{
∏l
j=1 ϕij L(x)} agrees essentially with our(: ∏l

j=1 ϕij (x) :)gL (29). The difference is due to the
adiabatic limit and the different ways of defining Green’s functions (Zimmermann uses the Gell–Mann Low
series, cf. (102), (106)).
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dimension 4 vertices in the renormalization procedure. Due to this additional assumption
and the requirements that the adiabatic limit exists and is unique, the normalization of the
vacuum diagrams is uniquely fixed, and with this normalization the vacuum diagrams
vanish in the adiabatic limit

lim
θ→1

(�, S(θL0)�) = 1, lim
θ→1

(�, S(θ(L0 + εL1))�) = 1. (108)

(For a proof see also the appendix of [12].)%&

Remarks. (1) Without the assumption aboutL0 andL1 we find

lim
θ→1

(
�, Sθ(L0+εL1)(λf )�

)
= lim

θ→1

(
�, SθL0(θεL1 + λf )�

)
(
�, SθL0(θεL1)�

) (109)

instead of (101), by using (102) only. This is a formulation of the QAP for general
situations in which (107) does not hold.

(2) By means of the QAP (98) (or (100), or (109)) one can compute the change of
the time ordered products of interacting fields (or of the Green’s functions) under the
variation of parametersλ1, . . . , λs if the interaction Lagrangian has the formL(x) =∑
i ai(λ1, . . . , λs)Li (x), Li ∈ V resp.D(R4,V) (cf. Eqs. (2.7), (2.8)) of [20]). But only

the interactionL may depend on the parameters and not the time ordering operator (i.e.
the normalization conditions for the time ordered products).

Appendix: Wavefront Sets and the Pointwise Product of Distributions

In this appendix we briefly recall the definition of the wavefront set of a distribution and
mention a simple criterion for the existence of the pointwise product of distributions in
terms of their wavefront sets. For a detailed treatment we refer to Hörmander [15], the
application to quantum field theory on curved spacetimes can be found in [25,8,7].

Let t ∈ D′(Rd) be singular at the pointx and letf ∈ D(R4) with f (x)  = 0.
Thenf t ∈ D′(Rd) is also singular atx andf t has compact support. Hence the Fourier
transformf̂ t is aC∞-function. In some directionŝf t does not rapidly decay, because
otherwisef t would be infinitly differentiable atx. Thereby a functiong is called rapidly
decaying in the directionk ∈ R

d \ {0}, if there is an open coneC with k ∈ C and
supk′∈C |k′|N |g(k′)| <∞ for all N ∈ N.

Definition. The wavefront set WF(t) of a distribution t ∈ D′(Rd) is the set of all pairs
(x, k) ∈ R

d ×R
d \ {0} such that the Fourier transform f̂ t does not rapidly decay in the

direction k for all f ∈ D(Rd) with f (x)  = 0.

For example the delta distribution satisfieŝf δ(k) = f (0), hence WF(δ) = {0} ×
R
d \ {0}. The wavefront set is a refinement of the singular support oft (which is the

complement of the largest open set wheret is smooth):

t is singular atx ⇐⇒ ∃k ∈ R
d \ {0} with (x, k) ∈ WF(t).

For the wavefront set of the two-point function one finds

WF(
+) = {(x, k) | x2 = 0, k2 = 0, x‖k, k0 > 0}. (110)
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Let t ands be two distributions which are singular at the same pointx. We localize
them by multiplying withf ∈ D(Rd), wheref (x)  = 0. We assume that(f t) and(f s)
have only one overlapping singularity, namely atx. In general the pointwise product
(f t)(y)(f s)(y) does not exist. Heuristically this can be seen by the divergence of the
convolution integral

∫
dk (̂f t)(p−k)(̂f s)(k). But this integral converges ifk1+k2  = 0

for all k1, k2 with (x, k1) ∈ WF(t) and (x, k2) ∈ WF(s). This makes plausible the
following theorem:

Theorem. Let t, s ∈ D′(Rd) with

{(x, k1 + k2) | (x, k1) ∈ WF(t) ∧ (x, k2) ∈ WF(s)} ∩ (Rd × {0}) = ∅. (111)

Then the pointwise product (ts) ∈ D′(Rd) exists.

By means of this theorem one verifies the existence of the distributional products
(ϕ⊗n)h̄(t) (44) and(t ⊗k,h̄ s) (47).

Acknowledgements. We thank Gudrun Pinter for several discussions on the quantum action principle, and
Volker Schomerus and Stefan Waldmann for discussions on deformation quantization. In particular we are
grateful to Stefan Waldmann for drawing our attention to reference [9].

Note added in proof. Renormalization can also be done entirely on the level of retarded
products [1, 2, 3]. This leads to a direct proof that the interacting fields are power series
in h̄.
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