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Abstract: The perturbative treatment of quantum field theory is formulated within the
framework of algebraic quantum field theory. We show that the algebra of interacting
fields is additive, i.e. fully determined by its subalgebras associated to arbitrary small
subregions of Minkowski space. We also give an algebraic formulation of the loop
expansion by introducing a projective systettt’ of observables “up ta loops”, where

AU is the Poisson algebra of the classical field theory. Finally we give a local algebraic
formulation for two cases of the quantum action principle and compare it with the usual
formulation in terms of Green'’s functions.

1. Introduction

Quantum field theory is a very successful frame for our present understanding of ele-
mentary particle physics. In the case of QED it led to fantastically precise predictions
of experimentally measurable quantities; moreover the present standard model of ele-
mentary particle physics is of a similar structure and is also in good agreement with
experiments. Unfortunately, it is not so clear what an interacting quantum field theory
really is, expressed in meaningful mathematical terms. In particular, it is by no means
evident how the local algebras of observables can be defined. A direct approach by
methods of constructive field theory led to the paradoxical conjecture that QED does
not exist; the situation seems to be better for Yang-Mills theories because of asymptotic
freedom, but there the problem of big fields which can appear at large volumes poses at
present unsurmountable problems [1,21].

In this paper we will take a pragmatic point of view: interacting quantum field theory
certainly exists on the level of perturbation theory, and our confidence on quantum field
theory relies mainly on the agreement of experimental data with results from low orders
of perturbation theory. On the other hand, the general structure of algebraic quantum

* Work supported by the Deutsche Forschungsgemeinschaft



6 M. Dutsch, K. Fredenhagen

field theory (or “local quantum physics”) coincides nicely with the qualitative features
of elementary particle physics, therefore it seems to be worthwhile to revisit perturbation
theory from the point of view of algebraic quantum field theory. This will, on the one
hand, provide physically relevant examples for algebraic quantum field theory, and on
the other hand, give new insight into the structure of perturbation theory. In particular,
we will see that we can reach a complete separation of the infrared problem from the
ultraviolet problem. This might be of relevance for Yang-Mills theory, and it is important
for the construction of the theory on curved spacetimes [7].

The plan of the paper is as follows. We will start by describing the Stuckelberg—
Bogoliubov—Shirkov—Epstein—Glaser-version of perturbation theory [6,14,28,26,7].
This construction yields the locakmatricesS(g) (g € D(R*) as formal power se-
ries ing (Sect. 2). The most important requirement which is used in this construction
is the condition of causality (15) which is a functional equationgor S(g). The
results of Sects. 3 and 4 are to a large extent valid beyond perturbation theory. We only
assume that we are given a family of unitary solutions of the condition of causality.
In terms of these loca$-matrices we will construct nets of local observable algebras
for the interacting theory (Sect. 3). We will see that, as a consequence of causality, the
interacting theory is completely determined if it is known for arbitrary small spacetime
volumes (Sect. 4).

In Sect. 5 we algebraically quantize a free field by deforming the (classical) Poisson
algebra. In a second step we generalize this quantization procedure to the perturbative
interacting field. We end up with an algebraic formulation of the expansignoiithe
interacting observables (“loop expansion”).

In the last section we investigate two examples for the quantum action principle: the
field equation and the variation of a parameter in the interaction. Usually this principle is
formulated in terms of Green’s functions [20, 18, 22], i.e. the vacuum expectation values
oftime ordered products of interacting fields. Here we give alocal algebraic formulation,
i.e. an operator identity for a localized interaction. In the case of the variation of a
parameter in the interaction this requires the use of the retarded product of interacting
fields, instead of only time ordered products (as in the formulation in terms of Green’s
functions).

For a local construction of observables and physical states in gauge theories we refer
to [10,11,5]. There, perturbative positivity (“unitarity”) is, by a local version of the
Kugo-Ojima formalism [17], reduced to the validity of BRST symmetry [3].

2. Free Fields, Borchers’ Class and Locab-Matrices
An algebra of observables corresponding to the Klein—Gordon equation

@+m?p=0 @)

can be defined as follows: Letet 4y be the retarded, resp. advanced Green’s functions
of @ 4+ m?)

@ + m?®) Aretay =8,  SUPPAretay C Vi, )

whereV.. denotes the closed forward, resp. backward lightcone, and4etA et — Aqy.
The algebra of observablesis generated by smeared fieldsf), f € D(R?*), which
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obey the following relations

f — o(f)is linear, 3)
o(@+m? f) =0, (4)
()" =o(f), (5)
()o@l =i< f,Axg>, (6)

where the star denotes convolution andf, g >= [ d*xf (x)g(x). As a matter of fact,
A (as ax-algebra with unit) is uniquely determined by these relations.

The Fock space representationf the free field is induced via the GNS-construction
from the vacuum stateg. Namely, letwg : A — C be the quasifree state given by the
two-point function

wo(p(Ne(@) =i < f, Ay xg >, (7

where A is the positive frequency part af. Then the Fock spacH, the vectorQ
representing the vacuum and the Fock representation are up to equivalence determined
by the relation

(2, m(A)Q) = wo(A), A € A

On H, the fieldp (we will omit the representation symbal) is an operator valued
distribution, i.e. there is some dense subspace H with

(1) @(f) € End(D)
(i) f > o(fH P is continuous Vo € D.

There are other fielda on#, on the same domain, which are relatively locapto

[A(f), p(e)1=0 if (x—y)?<0 V¥(x,y) € (suppf x suppg).  (8)

They form the so called Borchers cld$sin the case of the free field in 4 dimensioffs,
consists of Wick polynomials and their derivatives [13]. Fields from the Borchers class
can be used to define local interactions,

H;(t) = —/dsxg(t,x)A(t, x), g € DRY, (9)

(where the minus sign comes from the interpretatiod @fs an interaction term in the
Lagrangian) provided they can be restricted to spacelike surfaces. The corresponding
time evolution operator from-z to r, wherer > 0is so large thatsupp C (-7, 1) %

R3, (the S-matrix) is formally given by the Dyson series

S(g) = 1+Zi?/dxl...dxnT(A(xl)...A(xn))g(xl)...g(x,,). (10)
n=1 "

with the time ordered productsl“iproducts")T(. . ) It is difficult to derive (10) from

(9) if the field A cannot be restricted to spacelike surfaces. Unfortunately, this is almost
always the case in four spacetime dimensions, the only exception being the ifiedtf

and its derivatives. Therefore one defines the timeordered productactors directly

as multilinear (with respect t6°°-functions as coefficients) symmetric mappings from
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B" to operator valued distributioﬂS(Al(xl) .. An(x,,)) onD such that they satisfy the
factorization conditioh

T(A(x1) ... AG)) = T(A(x1) ... AT (AGoksa) - - Alxn)) (11)

if {Xte1s .20} N {x1, ..., x} + V) = @. The S-matrix S(g) is then, as a formal
power series, by definition given by (10) . Since its zeroth order terfp ishas an
inverse in the sense of formal power series

S(g)_1 =1+ Zl (_nl!) /dxl codxy T(A(xl) e A(xn))g(xl) g, (12)

where the “antichronological productg’(...) can be expressed in terms of the time
ordered products

T(AGy...A@)E Y )P [[T(AG).iep).  (13)

PeP({1,...,n}) pEP
(HereP({1, ..., n})isthe setofall ordered partitions{ff, . . ., n} and| P| is the number
of subsets inP.) The T-products satisfy anticausal factorization
T(A(x1) ... A(xn) = T(A(xks1) - .- AG)) T(A(xD) ... A(xp)) (14)

if (s - X} N (o x4+ V) =0
The crucial observation now (cf. [16]) is th&fg) satisfies the remarkable functional
equation

S(f+g+h) =S(f+8S(g *Sg+h), (15)

£, g, h € D(R*), wheneve(suppf + V) N supp: = ¥ (independent of). Equivalent
forms of this equation play an important role in [6] and [14]. o& O this is just the
functional equation for the time evolution and may be interpreted as the requirement of
causality [6]. Actually, for formal power serie-) of operator valued distributions, the

g = 0 equation is equivalent to the seemingly stronger relation (15), because both are
equivalent to condition (11) for the time ordered products. We call (15) the “condition
of causality”.

3. Interacting Local Nets

The arguments of this and the next section are to a large extent independent of perturba-
tion theory. We start from the assumption that we are given a family of units¢igse

A Vf e DR V) (i.e. f has the formf = Y, fi(x)A;, fi € DR R), A; € V),
whereV is an abstract, finite dimensional, real vector space, interpreted as the space of
possible interaction Lagrangians, adds some unitak-algebra. In perturbation theory

V is a real subspace of the Borchers’ class. The unitaigd are required to satisfy

the causality condition (15). We first observe that we obtain new solutions of (15) by
introducing the relatives-matrices

(1) E's(e) L5 (g + ). (16)

1 Due to the symmetry and linearity @f(. . .) it suffices to consider the cagg = Ay = - -- = Aj,.
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where nowg is kept fixed andS, (f) is considered as a functional ¢t In particular,
the relativeS-matrices satisfy local commutation relations

[Se(h), Sg(F)l =0 if (x—y)?> <0 ¥(x,y) € supph x suppf. (17)

Therefore their functional derivatives, (x) = 5% S¢(hA)lr=0, A € V, h € D(RY),
provided they exist, are local fields (in the limjt — constant this is Bogoliubov’s
definition of interactig fields) [6].

We now introduce local algebras of observables by assigning to a ré&gioh
Minkowski space the-algebrad, (O) which is generated b§S, (1) , h € D(O, V)}.

A remarkable consequence of relation (15) is that the structure of the aldetd
depends only locally og [16,7], namely, ifg = g’ in a neighbourhood of a causally
closed region containin€, then there exists a unitaby € A such that

VSV t=S,(h), VYheD®O,V). (18)

Hence the system of local algebras of observables (according to the principles of alge-
braic quantum field theory this system (“the local net”) contains the full physical content
of a quantum field theory) is completely determined if one knows the relstivatrices
for test functiong € D(R4, V).

The construction of the global algebra of observables for an interaction Lagrangian
L € V may be performed explicitly (cf. [7]). Le®(O) be the set of all functions
6 e D(R*) which are identically to 1 in a causally closed open neighbourhodarid
consider the bundle

L 10} x Ae(0). (19)
0e®(O)

Letl/ (0, 0') be the set of all unitarieg < A with
VSor(h) = Sy r(h)V,  YheDWO,V). (20)
Then A, (O) is defined as the algebra of covariantly constant sections, i.e.
Az(0) 3 A = (Ag)geco(0) (Ag € Ag(0)) (21)
VAg = Ag'V, YV €U, 0). (22)
A, (O) contains in particular the elemerig (1),
(Sc(h))o = Soc(h). (23)

The construction of the local net is completed by fixing the embeddingsA,(O1)

— A, (0O2) for O1 c O,. But these embeddings are inherited from the inclusions
Ay (01) C Agr(O2) for6 € ®(0») by restricting the sections from (O1) to ®(O2).

The embeddings evidently satisfy the compatibility relatigno io3 = i13 for O3 C

0O, C 01 and define thus an inductive system. Therefore, the global algebra can be
defined as the inductive limit of local algebras

AT Up AL (0). (24)

In perturbation theory, the unitaridé € (0, 0’) are themselves formal power
series, therefore it makes no sense to say that two elemettss A, (O) agreein n"
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order, but only that they agres to n™ order (becaused, — By) = O(g" 1) implies
Ag — By = V71(Ag — By)V = O(g")).

The time ordered products and hence the relativeatricesSy - (k) are chosen as to
satisfy Poincaré covariance (see the normalization conditbhelow), i.e. the unitary
positive energy representati@n of the Poincaré grouﬂ?l under which the free field
transforms satisfies

U(L)Soc (MU (L) = Sy, £(h1),

1 1 (25)
01 (x) := 0(L™x), hy(x) := D(L)h(L™1x),

VL € Pl provided/ is a Lorentz scalar and transforms under the finite dimensional
representatiom of the Lorentz group. This enables us to define an automorphic action
of the Poincaré group on the algebra of observables. Let ferA,(0), 6 € ©(LO)

(@L(A)s EUL)Ag, UL (26)

By inserting the definitions one finds that (A) is again a covariantly constant section
(22). Sow; is an automorphism of the net which realizes the Poincaré symmetry

OlL.Aﬁ(O) = Aﬁ(LO), QL L, =0 L,. (27)

For the purposes of perturbation theory, we have to enlarge the local algebras some-
what. In perturbation theory, the relatiematrices are formal power series in two
variables, and therefore the generators of the local algebras

X .pan

A
SeGf) =Y. =
n=0 ’

Te(f®") (28)

are formal power series with coefficients which are covariantly constant sections in the
sense of (22). The first order terms in (28) are, according to Bogoliubov, the interacting
local fields,

Tr(hA) =: Ap(h), A€V, h e DRY, (29)

the higher order terms satisfy the causality condition (11) and may therefore be inter-
preted as time ordered products of interacting fields (cf. [14], Sect. 8.1).

Our enlarged local algebtd (O) (we use the same symbol as before) now consists
of all formal power series with coefficients from the algebra generated by all timeordered
productsT (f®") with f € D(O, V), n € Nq.

4. Consequences of Causality

Another consequence of the causality relation (15) is thatSHmeatricesS(f) are
uniquelyfixed if they are known for test functions with arbitrarily small supports. Namely,
by a repeated use of (15) we find ti$&d ", f;) is a product of factor§ (3", .« i)+,
where the setX C {1, ..., n} have the property that for every pajrj € K the causal
closures of supg; and suppf; overlap. Hence if the supports of g}l are contained in
double cones of diametel, the supports o}, f; fit into double cones of diameter
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2d. Asd > 0 can be chosen arbitrarily small and the relativenatrices also satisfy
(15), this implies additivity of the net,

Ar(0) =\/ Ac(Ow), (30)

where(O,) is an arbitrary covering a® and where the symbg) means the generated
algebra.

One might also pose thexistence question: Suppose we have a family of unitaries
S(f) for all f with sufficiently small support which satisfy the causality condition (15)
for f, g, h € D(O, V), diam©O) sufficiently small, and local commutativity for arbitrary
big separation

[S(f), S(g)]=0 if suppf is spacelike to supp.

By repeated use of the causality (15) we can then défimatrices for test functions with
larger support. It is, however, not evident that th&smatrices are independent of the
way of construction and that they satisfy the causality condition. (We found a consistent
construction only in the simple case of one dimensios: time.) Fortunately, a general
positive answer can be given in perturbation theory.

Let S(f) be given forf € D(O, V) for all double cones with diag®) < r. The
time ordered product of factors is the:-fold functional derivative of§ at f = 0. Itis
an operator valued distributiéT,, defined on test functions afvariables with support

contained iri4, d=Ef{(y1, oy yn) € R max - j|y; — y;| < 5} and with values in®n,

Especially we knowr’; (x) onR*. On this domain the time ordered products satisfy the
factorization condition (11). In addition, local commutativity of thienatrices implies

[Tn(x11-"v-xn)va(yl""ym)] :0 (31)

for (x; — yj)2 <0 V@, j)and(xy,...x,) €Uy, V1, ..., ym) € Uy. By construction
Talu, s symmetric with respect to permutations of the factors.

We now show that this input suffices to constriligtxy, . . ., x,) on the wholeR*
by induction ornn. We assume that thE’s were constructed fot < n — 1, that they
fulfil causality (11) and

[Tm(-xlay-xm)sTk(ylsyk)]:O for (xls"~xm) eumv kSn_l (32)
(m arbitrary) and
(Ti(x1, ..., x), Tk(ye, ... y)1=0 for L k<n-—1, (33)

if (x; — y.,~)2 < 0 V(, j)inthe latter two equations. We can now proceed as in Sect. 4
of [7].3

2 Here we change the notation for the time ordered products: flet= Y fimA;, fi €
DR, A; € V. Instead off dxy ... dxy Yigoin T(Ai (k1) - gy, o)) fiy (x1) - - fi, (x) (10) we write

[dxy...dxy Ty(xy, ..., xn) f@&D) . f ) = T (f).

3 In contrast to the (inductive) Epstein—Glaser constructioR,of1, . . . , xp) [14,7] the present construc-
tion is unigue, normalization conditions (eNg1-N4 in Sect. 5) are not needed, because the non-uniqueness
of the Epstein—Glaser construction is located at the total diagepat {(x1, ..., Xxp) | x1=---=x,}. But
here the time ordered products are given in the neighbourbipaaf A, .
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Let 7 denote the family of all non-empty proper subskets the index setd, . . ., n}

and define the se® X {(x1,...,x,) € R¥ | x; ¢ J=(xj), i €1, j € I} for any
I € J.Then
o v, =Rr" (34)
IeJ

We use the short-hand notations

o =T([[Ait),  xr=@,ieD. (35)

iel
OnD(C;) we set
7)) €T ) T (xpe) (36)
foranyl € C;. Forly, I; € J, C1, N Cy, # ¥ one easily verifigs
Thleyne, = Trle,ne,,- (37)

Let now {fr};c7 U { fo} be a finite smooth partition of unity @&* subordinate to
{Cr}reg Uy suppf; C Cy, suppfo C U,. Then we define

T L' Ty, (foh) + Y Tr(fih), e DRY, V2", (38)

IeJ

Asin [7] one may prove that this definition is independent of the choi¢¢0f < .7 U{ fo}

and thaff;, is symmetric with respect to permutations of the factors and satisfies causality
(11). Local commutativity (32) and (33) (with— 1 replaced by) is verified by inserting

the definition (38) and using the assumptions. By (10) we obtain fronT theoducts

the corresponding-matrix S(g) for arbitrary large support of € D(R%, V), andS(g)
satisfies the functional equation (15).

5. Perturbative Quantization and Loop Expansion

Causal perturbation theory was traditionally formulated in terms of operator valued
distributions on Fock space. It is therefore well suited for describing the deformation
of the free field into an interacting field by turning on the interacgoa D(R*, V). It
is much less clear how an expansion in powerg ofin be performed, describing the
deformation of the classical field theory, mainly because the Fock space has no classical
counter part.

Usually the expansion in powers bfs done in functional approaches to field theory
by ordering Feynman graphs according to loop number. In this section we show that the
algebraic description provides a natural formulation of the loop expansion, and we point
out the connection to formal quantization theory.

4 In contrast to [7] the Wick expansion of tHeproducts is not used here, because local commutativity of
the T-products is contained in the inductive assumption.
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5.1. Quantization of a free field and Wick products. In quantization theory one asso-
ciates to a given classical theory a quantum theory. One procedure is the deformation
(or star-product) quantization [2]. This procedure starts from a Poisson algebra, i.e. a
commutative and associative algebra together with a second product: a Poisson bracket,
satisfying the Leibniz rule and the Jacobi identity; and to deform the product as a func-
tion of &, such thata x; b is a formal power series i, the associativity is maintained

and

— 1 —
axpb 20 o, @ xn b = b X a) 20 b (39)

Actually this scheme can easily be realized in free field theory (cf. [9]). Basic functions
are the evaluation functionajgias{x), (@ + m%)egcass= 0, with the Poisson bracket

{@clasdx), Pelasdy)} = A(x —y) (40)

(A is the commutator function (2)). Because of the singular charactar thie fields
should be smoothed out in order to belong to the Poisson algebra. Hence our fundamental
classical observables are

N
$) =10+ f Glasdx1) - - GclasdXn)n (51, -« x)dx1 .. o,
n=1 (41)

t=(fo,f1,...),

whererg € C arbitrary, N < oo, t, is a suitable test “function” (we will admit also
certain distributions) with compact support. The Klein Gordon equation shows up in the
property:A(r) = 0 if 1o = 0 andt, = (@; + m?)g, foralln > 0, some = i(n) and
someg,, with compact support.

In the quantization procedure we identifyasdx1) . . . ¢clasdx,) With the normally
ordered product (Wick product)p(x1) ... ¢(x,) : (¢ is the free quantum field ((3)—
(6)). Wick’s theorem may be interpreted as the definition 6fdependent associative
product,

e xn [ Jetp:

iel jelJ
= Z Z 1_[ i}"lA+(Xj — xa(j)) : 1_[ o(xp) : (42)
Kcl a:K—J injective jeK le(I\K)U(J\a(K))

in the linear space spanned by Wick products (the “Wick quantizatfomé)be precise

we have to fix a suitable test function space (or better: test distribution space) in (41)
which is small enough such that the product is well defined faor alid which contains

the interesting cases occuring in perturbation theory, e.g. products of translation invariant
distributions (particularly-distributions of difference variables) with test functions of
compact support should be allowed fpras in Theorem 0 of Epstein and Glaser.

5 The deformed product is calledsaproduct in deformation theory. In order to avoid confusion with the
x-operation we denote the product Ry,.

6 The observation that the Wick quantization is appropriate for the quantization of the free field goes back
to Dito [9].
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Let

def

Wy = {t € D'(R*)symm, SUppr compact 43)
WF(r) N R* x VI UVT) = @)

(see the Appendix for a definition of the wave front set WF of a distribution). In [7] it
was shown that Wick polynomials smeared with distributiogs\V,,

@®")( & f L(x1) o) (s ) dxy . dx, (@0 E1 (44

are densely defined operators on an invariant domain in Fock space. This includes in
particular the Wick powers

L () = @®D(0). f e DRY, t(rn. ... x) = fan) [[30i —x)  (45)

i=2
The product of two such operators is given by

min{n,m}

@=)(@) xn @=™")s) = Y B@ETTE) @ @y s) (46)
k=0

with thek-times contracted tensor product

k

n'm!i
(t ®k $)(X1, ..., Xpgm—2k) = Sk!(n S T—ey fdylu-dyzkAJr(yl —-y2)...
Ay (Yok—1 — Yt (X1, ooy Xp—k, Y1, Y35+ -+ 5 Y2k—1)
S(Xn—kq1s -+ o Xnpm—2ks Y2, Y4y - -5 Y2k) (47)
(S means the symmetrization i, ..., x,+n—2). The conditions on the wave front

sets oft ands imply that the productr ®y s) exists (see the Appendix) and is an element

of W, +m—2r. Thex-operation reduces to complex conjugation of the smearing function.

Let Wo £'C andw &' B2 o Wh. Fort € W lett, denote the component ofin

W,. Thex-operation is defined bg*),, def (t,). Equation (46) can be thought of as the
definition of an associative product o#,

(t Xp 8y = Z f"lktm Rk 5;. (48)
m+1—2k=n

The Klein—-Gordon equation defines an idédlin VW which is generated byo +
m?) f, f € D(R%. Actually this ideal is independent éf(because a contraction with
(@+m?) f vanishes) and coincides with the kernepafefined in (41). Hence the product
(48) is well defined on the quotient spadé = W /N . For a given positive value df,
W is isomorphic to the algebra generated by Wick produe®)(¢), t € W, (44). In
the limit 2 — 0 we find

lim 6(1) xn ¢ (s) = };iLnoqs(; Rt @y 5)

=@t ®os) =¢(1) - ¢(s) (49)
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(we set(r Q 5)x def Y mtimn tm+k Ok S+, Cf. (47)), with the classical produgtand
. 1
rl@ol.—h[qb(t), ) =0t @15 —5sQ11t) = {p(1), p(s)} (50)

with the classical Poisson bracket. ThHW, x5) provides a quantization of the given
Poisson algebra of the classical free figddss(40). We point out that we have formulated
the algebraic structure of smeared Wick products without using the Fock space.

The Fock representation is recovered, via the GNS construction, from the vacuum
statewg(t) = tp. It is faithful for # £ 0 but is one dimensional in the classical limit
kA = 0. This illustrates the superiority of the algebraic point of view for a discussion of
the classical limit.

5.2. Normalization conditions and retarded products. To study the perturbative quanti-
zation of interacting fields we need some technical tools which are given in this subsec-
tion.

The time ordered products are constructed by induction on the numtifdiactors
(which is also the order of the perturbation series (10)). In contrast to the inductive
construction of th& -products in sect. 4, we do not kndlly|;4, here. So causality (11)
and symmetry determine the time ordered products uniquely (in terms of time ordered
products of less factors) up to the total diagonal= {(x1, ..., x,) € R¥|x1 = xp =
.-+ = x,}. There is some freedom in the extensiom\tn To restrict it we introduce the
following additional defining conditions (“normalization conditions”, formulated for a
scalar field without derivative coupling, i.£.is a Wick polynomial solely irp, it does
not contain derivatives af; for the generalization to derivative couplings see [5])

N1 covariance with resp. to Poincaré transformations and possibly discrete symmetries,
in particular B

N2 unitarity: T (A1(x1) . . . Ap(x))* = T(A%(x1) . .. A% (x)),

N3 [T(A1(x1) ... Ap(xn)), $(x)]
=in Y p_g T(AL(xn) - 5 () - A () Ak — x),

N4 @ +m*)T(A1(x1) ... A (in)¢(x))
= —ih Yy i1 T(A1(x1)... %(Xk) oo An(xn))8 (X — x),

where[¢(x), #(y)] = ihA(x — y). N1 implies covariance of the arising theory, and
N2 provides ax-structure N3 gives the relation to time ordered products of sub Wick
polynomials. Once these are known (in an inductive procedure), only a scalar distribution
has to be fixed. Due to translation invariance the latter depends only on the relative
coordinates. Hence, the extension of the (operator valliguioduct toA,, is reduced

to the extension of a C-number distributigne D' (R*"—D \ {0}) tor € D' (R*"—D),

(We callr an extension ofy if £ (f) = to(f), YVf € DR**=D\ {0})). The singularity

of 1o(y) andz(y) aty = 0 is classified in terms of Steinmann’s scaling degree [27,7]

sdr) Einf(s e R, lim 3% (2.x) = 0). (51)

By definition sdro) < sd(¢), and the possible extensions are restricted by requiring

sd(rg) = sd(r). (52)
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Then the extension is unique for@&g) < 4(n — 1), and in the general case there remains
the freedom to add derivatives of thalistribution up to ordetsd(zg) — 4(n — 1)), i.e.

1) + > Cad*3(y) (53)

la|<sd(tp) —4(n—1)

is the general solution, wherés a special extension [7,24,14], and the const@ptare
restricted byN1, N2, N4, permutation symmetries and possibly further normalization
conditions, e.g. the Ward identities for QED [10, 5]. For an interaction with mass dimen-
sion dim(£) < 4 the requirement (52) implies renormalizability by power counting,
i.e. the number of indeterminate constafitsdoes not increase by going over to higher
perturbative orders. In [10] it is shown that the normalization condiidnmplies the
field equation for the interacting field corresponding to the free figkke also (77) and
Sect. 6.1 below).

We have defined the interacting fields as functional derivatives of relstivatrices
(29). Hence, to formulate the perturbation series of interacting fields we need the per-
turbative expansion of the relati'ematrices:

in+m
Se(f) = D e Run (855 £, (54)

n,m

whereg, f € D(R* V). The coefficients are the so called retarded produdks (
products”). They can be expressed in terms of time ordered and anti-time ordered prod-
ucts by

n

Rum(8®": f&") = Z(—l)"ﬁfk(g@k)
k=0
Xh Tn—k+m (g®(n7k) & f®m)' (55)

They vanish if one of the first arguments is not in the past light cone of some of the
lastm arguments ([14], Sect. 8.1),

SuppRn,m(- . ) CH{OL oy Xt s xm) {2y} C (g, oo} + ‘7—)}
(56)

In the remaining part of this subsection we show that the time ordered products can
be defined in such a way th&, ,, is of orders”. For this purpose we will introduce
the connected pafttiy xp - -+ xp a,)€ Of (a1 x5 -+ X5 a,), Where they; are normally
ordered products of free fields, and the connected Hadf the time ordered product
T, (or “truncated time ordered product”). In both cases the connected part corresponds
to the sum of connected diagrams, provided the vertices belonging to thensamee
identified. Besides the (deformed) product (42)

axpb=Y h"M,(a.b), (57)
n>0

wherea, b are normally ordered products of free fields, we have the classical product
a -b = Mo(a, b), which is just the Wick product

e - [Jewp) = ]ew) [Jewx: (58)

iel jeJ iel jeJ
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and which is also associative and in addition commutative. Then we defing - - - x5
ay)€ recursively by

- def .
(@1 xp - xnan) = (ay xp - xpan) — Y [ (@ xn-- xnaj,). (59
|P|>2JeP

where{ji, ..., jiy;} = J, j1 < --- < jiy, the sum runs over all partitionB of
{1, ..., n}in atleast two subsets afd means the classical product (58Y. is defined
analogously

T80 0 E (o0 - Y [] 1@l (60

|P|>2 peP
and similarly we introduce the connected antichronological prodfiet (7,,)°.

Proposition 1. Let the normally ordered products of free fields ay, . . ., a,, be of order
O(1°). Then

(a1 xp - xp an)° = OH"™). (61)

Proof. We identify the vertices belonging to the samand apply Wick’s theorem (42)
toas x5 - - - xpa,. Each “contraction” (i.e. each factar, ) is accompanied by a factbr

In the terms~ 7Y (i.e. without any contraction)y, . . ., a, are completely disconnected,
the number of connected components.i8y a contraction this number is reduced by
1 or 0. So to obtain a connected term we need at lgast 1) contractions. Hence the
connected terms are of ord®(#"~1). O

LetB 5> A1,..., A, = 0% andx; # xj, Y1 <i < j < n. Then there exists a
permutationt € S, such that

TC(A]_()C]_) Ay (xn)) = (Az1(xz1) Xp -+ Xp Aga (xnn))c = O(hn_l)~ (62)
We want this estimate to hold true also for coinciding points
T°(A1(x1) ... Au(x)) = O(H"™Y)  on DR™). (63)

By the following argument this can indeed be satisfied by appropriate normalization
of the time ordered products, i.e. (63) is an additional normalization condition, which
is compatible withN1-N4. We proceed by induction on the numbeof factors. Let

us assume that th&“-products with less than factors fulfil (63) and that we are
away from the total diagonahk,. Using causal factorization, (60) and the shorthand
notation7 (J) := T(]_[jej Aj(x;)), J C {1,...,n}, we then know that there exists
Ic{l,....n}, I #0, I¢ # @, with

11

T(A1(r) .- A(x) = T(D xp TAY =Y D" Y >

r=1s=1 Iu---ul,=I Jiu---uJg=I¢

SR M(TD) e T, TG - T, (64)
k>0

whereLI means the disjoint union. We now pick out the connected diagrams. The term
k = 0 onther.h.s. hag + s) disconnected components. Analogously to Proposition 1
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we conclude that it must hold> (r+s — 1) for a connected diagram. Taking the validity
of (63) for T¢(1;) andT*(J,,) into account, we obtaid j_, (17| — 1) + >3, _1(|Jm| —
1)+ (r +s —1) = n — 1 for the minimal order ir: of a connected diagram. So the
fi-power behaviour (62) holds true @R** \ A,), and (63) is in fact a normalization
condition.

Due to (60)(T,, — T,¥) is completely given by timeordered products of lower orders
< n and hence is known also a@),. The problem of extending, to A,, concerns solely
T. The normalization conditiond1-N4 are equivalent to the same conditions ¢jr
andTf (i.e. T, andT, everywhere replaced 3§¢ and 7). Due toN3-N4 it remains
only the extension ok €, 7T¢(A1...A,)Q >, where allA; are different from free
fields and is the vacuum. It is obvious that this can be done in a way which maintains
(63) and is in accordance witki1-N2.

We emphasize that the (ordinary) time ordered prodiyctioes not satisfy (63)
because of the presence of disconneted diagrams. On the other hand the connected
antichronological produck? fulfills the estimate (63), as may be seen by unitalg/

We now turn to the retarded products (55):

Proposition 2. Let D(R*, V) 5 f;, gk = O(1%). Then the following statements hold
true:

(i) All diagrams which contribute to R, (/1 ® -+ ® fu; 81 ® -+ ® g») have the
property that each f;-vertex is connected with at least one g, -vertex.

(") Rn,m(fl R Q81 - ®gm) = om").

Proof. (i) We work with the notatiorR,, ,, (Y; X), Y = {y1, ..., yn}, X = {x1, ..., xm}

(cf. [14]), and consider a subdiagram with vertices: Y which is not connected with

the other verticesY \ J) U X. Because disconneted diagrams factorize with respect to
the classical product (58), the corresponding contributioR,tg, (Y; X) (55) reads

Z(—l)"'(f(l NJOTUN J)) Xp (T(I" NITU N JC, X)). (65)
Icy
However, this expression vanishes dutg,(—1)!?!T(P) x, T(J \ P) = 0 (the
latter equation is equivalent to (13), it is the perturbative versiofidfs = 1). Hence

for non-vanishing diagram$ must be the empty set. B
(i) We express theR-product in terms of the connect&d and T -products

Rn,m(fl@"'@flﬂé’l@"'®gm)

= ) oy 2.

Ic{1,...,n} PePari(l) QePart/cufl,...,m})
(TT Ty @iep ) xn (T Tioy @ico fi © ®jegen)).  (66)
peP q€Q

where agairf | means the classical product (58) anstands again for the disjoint union.
From (63) we know

l_[ T\Z|(®,~€pﬁ) = o@!-1Ph,
PEP

17 (®ica fi ® ®jeqss) = OGN IHTm=120), (67)
qeQ
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From part (i) we conclude that the terms of lowest orde#fim

([T 7)< (LT 7e-0) = Sonan(TT Tt TT 7 ) €9

pepP qeQ peP qeQ

do not contribute. For simplicity we first consider the special ease 1. Then only
connected diagrams contribute. Hence we obtain |P| + |Q] — 1 similarly to the
reasoning after (64). For arbitrary > 1 the terms with minimal power incorrespond to
diagrams which are maximally disconnected. According to part (i) these diagrams have
disconnected components each component containing precisely onegvepplying
them = 1-argument to each of this components werget | P| + | Q| — m. Taking (67)

into account it results the asserti@i:| — | P|) + (| I¢|+m— | Q)+ (| P|+|Q| —m) = n.

O

5.3. Interacting fields. We first describe the perturbative construction of the interacting
classical field. LeL be a function of the field which serves as the interaction Lagrangian
(for simplicity, we do not consider derivative couplings). We want to find a Poisson
algebra generated by a solution of the field equation

oL
© +miece) = =(5) 0. (69)

with the initial conditions

{9£(0.%), 0£(0.y)} = 0= {9(0.x), 9£(0.y)}
{9£(0.%), 90, y)} = (X —y).

We proceed in analogy to the construction of the interacting quantum field in Sect. 3
and construct in a first step solutions with localized interactifisvith 6 € D(R?)
which coincide at early times with the free field (hence the initial conditions (70) are
trivially satisfied for sufficiently early times). They are given by a formal power series
in the Poisson algebra of the free field

(70)

Poc(x) = Z / dyidys...dy, 0(31) ... 6()
y9<yd<..y0=x0 (71)

{LO), {L2), - ALn), ()} ... 1)

Analogous to the quantum case, the structure of the Poisson algebra associated to a
causally closed regio® does not depend on the behaviour of the interaction La-
grangian outside oD, i.e. there is, fom, 8’ € ©(O) a canonical transformation

with v(gy £ (x)) = g (x) for all x € O. The interacting field», may then be defined

as a covariantly constant section within a bundle of Poisson algebras.

Starting from the classical interacting field, one may try to define the quantized
interacting field by replacing products of free classical fields by the normally ordered
product of the corresponding free quantum fields (as in sect. 5.1) and the Poisson brackets
in (71) by commutators

1
{, }%E[ ‘In, (72)
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where the commutator refers to the quantized product Note that in general this
replacement produces additional terms, e.g. the térm< in

1 min {n,m}
SLe"W s "M = ) (mY

k=1

n'm!

(n —k)'(m — k)! (73)
(Arr = 0F = As(y =) 10" P " P ()

which correspond to loop diagrams. Due to the distributional character of the fields with
respect to the quantized product the integral in (71), as it stands, is not well defined
(there is an ambiguity for coinciding points due to the time ordering). But as we will see
Bogoliubov’s formula (29) for the interacting quantum field as a functional derivative
of the relativeS-matrix may be interpreted as a precise version of this integral.

From the factorization property (11), (14) of time ordered and anti-time ordered
products, one gets the following recursion formula for the retarded products ((54), (55)):
if suppg is contained in the past and suppsupp’ in the future of some Cauchy surface,
we find

Ryi1.m(g ® h®"; f&") = —[T1(8), Rum(h®"; fE™)]p, (74)
where we used the fact th&t = 71. Hence, forn = 1 andy; # y; Vi # j the retarded
productR, 1(y1, . .., y»; x) can be written in the forrh

R(L(yD) ... LOn)ip®) = (D" >~ 0a®—y2)002, =%, 1) -
7eS, (75)

0% — YO DL, [L(x2) - - - [LOmn), 9@)]n - . InTh.

(Due to the locality of the interactiof this is a Poincaré covariant expression.) This
formula confirms part (ii) of Proposition 2 for non-coinciding Our main application

of (75) is the study of the classical linfit — O of the quantized interacting field (29).
Due to Proposition 2 (part (ii)t)?(h‘lﬁ(yl) BT (p(x)) contains no terms with
negative powers aof and thus has a well-defined classical limit. We conclude that the
quantized interacting field (29), (54)

00 .,

Goc(h) =Y —Ria(@D" hg).  h e DERY), (76)
n=0"""

tends to the classical interacting field (71) in this limit. Note that the factdrin the
interaction Lagrangian is in accordance with the quantization rule (72), since in (75)
there is for each factof precisely one commutator. IR, 1((6£)®"; f¢) the above
mentioned ambiguities for coinciding points in the iterated retarded commutators have
been fixed by the definition of time ordered products as everywhere defined distributions.

The normalization conditioN4 implies an analogous equation for the retarded prod-
uct R, 1 (cf. [10]). The latter means thai: (76) satisfies the same field equation as the
classical interacting field (69)

oL
©+miece) = ~(5) 0. (77)

7 The notation for the time ordered products introduced in Sect. 2 is used here for the retarded products.
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Here(%) is not necessarily a polynomial iy (the pointwise product of interacting

fields is in general not defined).

We found that the relativg-matricesS, -1, - (f) (f € D(R*, V)), and hence all ele-
ments of the algebrd, -1, » are power series ih. For the global algebras of covariantly
constant sections we recall from [7] that the unitafies 4/(9, #") can be chosen as
relative S-matrices

V = Sp-15,(070_L)"T € U0, 6), (78)

wheref_ € D(R*) depends in the following way oi@ —6'): we splitd —0" = 6, +6_

with suppéy N (C(O) + V_) = @ and sup@—_ N (C(O) + V4) = @, (whereC(O)
means the causally closed region contairdhin which6 and6’ agree, cf. (18)). S&

is a formal Laurent series in and the sections are no longer well defined power series.
ReplacingA and A(O) by /oy, 7" A and\/, oy, " A(O) (for the new algebras the
same symbold will be used again) we obtain modules over the ring of formal power
series infi with complex coefficients. For the further construction the validity of part
(iii) of the following Proposition is crucial:

Proposition 3.(i) Let Ryu(...;...) = Y™ R (...:...), where R{), (... ...)
isthe sumof all diagramswith a connected components. Then

RO (h~t0L)®"; (h1o_L)®™) = O ™). (79)
(Note that the range of a is restricted by part (i) of Proposition 2.) This estimateis
of more general validity: instead of a retarded product we could have e.g. amultiple
x -product, a time ordered or antichronological product and the factors may be
quite arbitrary. It is only essential that each factor is of order O(7~1).

(i) Let A € A(O). Then all diagramswhich contributeto V x; A x; V1, (where V
is given by (78)) have the property that each vertex of V and of V1 is connected
with at least one vertex of A. (It may happen that a connected component of V is
not directly connected with A, but that it is connectecd with a connected component
of V1 and the latter is connected with A.)

(iii)
AO)5 A=00") = VxpAxyV i=0m". (80)

In particular if A isthe term of n-th order in # of an interacting field, then V xj
A xp V~Lisapower seriesin 7 in which the terms up to order 7”1 vanish.

Proof. Part (i) is obtained essentially in the same way as Proposition 1. Part (iii) is a
consequence of parts (i) and (ii), and the following observation: let us consider a diagram
which contributes t&/ x; A x V1 according to part (ii). If the subdiagrams belonging
to V andV ! haver ands connected components, then the whole diagram has at least
(r + s) contractions, which yield a factd” ™).

It remains the proof of (ii): We use the same notations as in the proof of Proposition 2.
LetY1uY, =Y, X1 u X2 = X. We now consider the sum of all diagrams contributing
to R(Y, X) in which the verticesY1, X1) are not connected with the verticé%, X»).
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Using (55) and the fact that disconnected diagrams factorize with respect to the classical
product (58), this (partial) sum is equal to

D DT Y < TUC N Y, X)) -
icy (81)
(—DMY2AT (I N Y2) x5 TUC N Y2, X2)] = R(Y1, X1) - R(Y2, X2).

Froml=VV~1=VvVv* (54) and (78) we know

> (—) XD R*(y1, X1) xp R(Y2, X2) =0 (82)
YiuYo=Y, X1UXo=X

for fixed (Y, X), Y U X # (. Next we note
1
VxpAxp V= § —/dyl...dyndxl...dme(yl)...
n'm!
n,m

0(yn)0—(x1) ... 0 (xm) > (—i)(¥al+IX1D

YiuYo=Y, X1UXo=X
x iPIHIX2D R*(y) X1) xp A x4 R(Y2, X2), (83)

where we have used the notatidhs= {yi, ... yu}, X = {x1, ..., x,,}. Intheintegrand of
the latter expression we consider (for givéandX) fixed decomposition¥ = Y3 Y,
andX = X3 U Xy, Y3U X3 # (. Now we consider the (partial) sum of all diagrams in
which the vertice$Y3, X3) are not connected with and each of the vertic&€¥y, X4) is
connected with. Part (ii) is proved if we can show that this partial sum vanishes. This
holds in fact true becaus®* and R factorize according to (81), and due to the unitarity
(82):

Z (_1)(\Y1QY4|+\X10X4|) [R*(Yl N Ya, X1 N X2)
YiuYo=Y, X1uXo=X

xp A xp R(Y2NYa, X2N X))
(_1)(|Y1QY3\+|X1FWX3|)[R*(Yl N Ya, X1 N X3)
xp R(Y2NY3, X2N X3)] =0. o

Now we are ready to give an algebraic formulation of the expansibriiat 7, dzefh”Ag.
I, is an ideal in the global algebrd,. We define

Ar(0)

(n) def AL
In+l N AE(O) .

A . APOY (84)

Iy
which means that we neglect all terms which are of o@ét”*1). The embeddings
i21: Az (O1) = A(O2) for O1 € O induce embeddingsl”’ (O1) < AW (05).
Thus we obtain a projective system of local nezs‘;})(o» of algebras of quantum
observables up to ordéf 1.

Note that we may equip our algebrag’) also with the Poisson bracket induced by

%[-, -1n, because the ideals are also Poisson ideals with respect to these brackets. Then
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Af) becomes the local net of Poisson algebras of the classical field theory, whereas for
n # 0 we obtain a net of noncommutative Poisson algebras.

The expansion in powers bfis usually called “loop expansion”. This is due to the fact
that the order irk of a certain Feynman diagram belongingRg,, (5~10£)®"; f1 ®
e ® fm), DR V) fi = 019, is equal to: (number of propagators (i.e. inner
lines)) -n = (number of loops) + - (humber of connected components). In particular,
using part (i) of Proposition 2, we find that for the interacting fiekds=£ 1) the order
in 7 agrees with the number of loops.

6. Local Algebraic Formulation of the Quantum Action Principle

The method of algebraic renormalization (for an overview see [22]) relies on the so called
“quantum action principle” (QAP), which is due to Lowenstein [20] and Lam [18]. This
principle is aformulafor the variation of (possibly connected or one-particle-irreducible)
Green'’s functions (or of the corresponding generating functional) under

— achange of coordinates (e.g. one applies the differential operator of the field equation
to the Green’s functions),

— avariation of the fields (e.g. the BRST-transformation)

— a variation of a parameter. This may be a parameter in the Lagrangian or in the
normalization conditions for the Green’s functions.

These are different theorems with different proofs. The common statement is that
the variation of the Green’s functions is equal to the insertion of a local or spacetime
integrated composite field operator (for details see [22]). In this section we study two
simple cases of the QAP: the field equation and the variation of a parameter which
appears only in the interaction Lagrangian.

The aim of this section is to formulate the QAP (in these two cases) for our local
algebras of observablet, (0), i.e. we are looking for anperator identity which holds
true independently of the adiabatic limit. Such an identity does not depend on the choice
of a state, as it is the case for the Green’s functions.

In a second step we compare our formula with the usual formulation of the QAP in
terms of Green'’s functions. The latter are the vacuum expectation values in the adiabatic
limit ¢ — 1.8 We specialize to models for which the adiabatic limit is known to exist.
This is the case for pure massive theories [14] and certain theories with (some) massless
particles such as QED and: ¢?': -theories [4], provided the time ordered products
are appropriately normalized.

Remarks. (1) From the usual QAP (in terms of Green’s functions) one obtains an
operator identity by means of the Lehmann—Symanzik—Zimmermann-reduction for-
malism [19]. Although the latter relies on the adiabatic limit an analogous conclu-
sion from the Fock vacuum expectation values to arbitrary matrix elements is pos-
sible in our local construction: leD be an open double cone and Jat, ..., x; ¢
((OU{xkgi41s - XD V), Xiq1s - Xk € O andxggyg1, ..., X & (O 4 V4.

Using the causal factorization of time ordered products of interacting fields (28) we

8 This limit is taken by scaling the test functi@n let gg € DR, g0(0) = 1, then one considers the
limit ¢ - 0 (¢ > 0) of ge(x) = go(ex). Uniqueness of the adiabatic limit means the independence of the
particular choice ofg.
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obtain

(2 Toclptn - 0@)2) = (Toc(eG) .. p(x0) 2,
Tor (1) - 9Cre) Toz (9 Cikrin) - 9())2). - (85)

Now we choosed € ©(0) such that{xy,..., xx) N (suppb + V) = @ and
{Xki+1, .-, Xn} N (SUPPE + V4) = B. Due to the retarded support (56) of tiRe
products we then know tha@ 2 (¢ (Xit1+1) - - - ga(xn)) agrees with the time ordered prod-
uct To((p(xk+[+1) .. .(p(x,,)) of the corresponding free fields. By meansSgf (f¢) =
SOL)LIS(fe)SOL) for suppf N (suppd + V_) = ¥ we obtain

Toc(p(x1) ... o))" = SOL)  o(p(x1) ... o(xk)) " SOL). (86)

Our assertion follows now from the fact that the staf@$y(xiyi11)...¢(x,))2
generate a dense subspace of the Fock space and the same for thé(stdjed

To(p(x1) ... <p(xk))*S(9£)Q. (For the validity of the latter statement it is important
that x1, ..., x¢ can be arbitrarily spread over a Cauchy surface which is later than
(O U {Xkti415 -+ -5 X0 })2)

(2) Recently Pinter [23] presented an alternative derivation of the QAP for the vari-
ation of a parameter in the Lagrangian also in the framework of causal perturbation
theory. In contrast to our presentation Pinter's QAP is formulated fofthetrix.

6.1. Field equation. The normalization conditiohl4 implies

@x +mAR(LGD) ... LW )P (x1) ... P (xm))

oL
()P (x1) ... B (xm))

= =i 3G = R(LGD - LOw: 52 &

=1

—i ) 8 —xPR(LGD) .. LG p(x1) ... ... xm)),

j=1

where/ andf means that the corresponding factor is omitted. This equation takes a
simple form for the corresponding generating functionals (i.e. the relatwetrices

(16))
8

_ 2
f(x)Sgﬁ(be) =@x+m )i(Sf(x)

) oL
Soc(F0) = 5| Ser (0 +0ags).

(88)

To formulate this in terms of our local algebras of observables (cf. sect. 3) we set
g =0 € ©(0) and forx € O we can choosg such that supp C {y|0(y) = 1}. Then
(88) turns into

8 8

i8f(x)S£(f¢) = f)Sc(fP) + 73000 |0

aL
a9

@ +m?) ) x € O.

(89)

Sc(fo+o
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This is the QAP (in the case of the field equation) for the local algebras of observables.
To compare with the usual form of the QAP we consider the generating functional

Z(f) forthe Green’s functions Q|T(¢£(x1) .. ¢>[;(xm))|§2 > which is obtained from

the relativeS-matrices by

Z(f) = Im (@, Sec(f$)9), (90)

where 2 is the Fock vacuum [14]. So by taking the vacuum expectation value and the
adiabatic limit of (88) we get

FXZ(f) = =AK) - Z(f), (91)

WhereA(x) is a insertion of UV-dimensioh3, coinciding with the classical field poly-

nomial >~ 54)( o) in the classical approximation (whefe = fd“x [%(aﬂqﬁ(x)a“(b(x) —

m?¢?(x)) + g(x)L(x)] is the classical action). Equation (91) is the usual form of the
QAP (cf. egn. (3.20) in [22]). In the present case the local algebraic formulation (89)
contains more information than the usual QAP (91).

6.2. Variation of a parameter in theinteraction. In (54) we have defined retarded prod-
ucts of Wick polynomials, i.e. elements of the Borchers class. Analogously we now
introduce retarded producky (g®*; £©™) of interacting fields

‘n+m

Sere(H) =Sc@ MSeg+NE Y SR O, (92)

n,m=0

whereL, g, f € D(R?, V). Obviously they can be expressed in terms of antichronolog-
ical and time ordered products of interacting fields by exactly the same formula as in
the case of Wick polynomials (55)

®n. ®m K nt ®%k ®(—k) ®m
Re (g™ o) = Z( D g o eI @ o). (93)

Thereby the antichronological product of interacting fields is defined analogously to the
time ordered product (28), namely by

dm

-1
(—l.)w K:OSL ()"f) s (94)

To(fom) =
and satisfies anticausal factorization (14) (which justifies the name). The support property
(56) of the retarded products relies on the (anti)causal factorization &fttaed T-
products (11, 14), hence, tiReproduct of interacting fields ((92), (93)) has also retarded
support (56).

Similarly to Lowenstein in [20], Sect. II.B, we consider an infinitesimal change of
the interaction Lagrangian

Lo— Lo+ €L, (95)

9 We assume that has UV-dimension 4.
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whereLo, £1 € V or D(R*, V). For them-fold variation of the time ordered product of
the interacting fields (28) we obtain

om 81
dem le=0ilgN! ‘A:O
=i"Rory(OLD)®™; ).

dm
——|  Tocorecy (f&) =
dem le—o (Lo+eL1)

SoLotely)(Af) (96)

To formulate this identity for our local algebras of observables we assumé that
has compact support, i.6; € D(R?, V). We set

OO L9 € ©) | Olsuppe, = 1. 97)

We consider the observables as covariantly constant sections in the bundigy&r
(instead of® (O) as in sect. 3). Then we obtain

dm
o le=0TCorers (f®) = i" Reo (L™ [2). (98)
This is the local algebraic formulation of the QAP for the variation of a parameter in the
interaction.

We are now going to investigate the usual QAP by using Epstein and Glaser’s defi-
nition of Green'’s functions (90). In (96) the-fold variation of the parameterresults
in aretarded insertion of(6 £1)®™. In the usual QAROL1)®" is inserted into théime
ordered product, i.e. one considers

gm 9!

i"Tyro(0LD)E" ® f&) = —

B Soro@eLy+ Af). (99)

g:Olla)\.l ‘)\:0

Obviously (96) and (99) do not agree. However, let us assume that we are dealing with
a purely massive theory and thég and £1 have UV-dimension diC;) = 4. Or: if
dim(£;) < 4 we assume thaf; is treated in the extension to the total diagonal as

if it would hold dim(£;) = 4. Hence it may occur that the scaling degree increases
in the extension to a certain amount:(g) < sd(r) < 4n — b for a scalar theory
without derivative couplings, wheteis the number of external legs (cf. (51)—(53)). (In

the BPHZ framework one says thé is “oversubtracted with degree 4”.) Then there
exists a normalization of the time ordered products, which is compatible with the other
normalization conditionsl1-N4 and (63), such that the Green’s functions corresponding
to (99) exist and agree, i.e. we assert

m

M (2, Tycotecy (FENR) = i" lim (2, Toco(0LD®" © 7))

de™ le=06—1
(100)
for all m, [ € Np, which is equivalent to
lim (2, Sycorecy 0-KR) = lim (. Sozo@eLa+2)R).  (101)

(We assume that the derivativ§§; anda‘% commute with the adiabatic limét — 1.
This seems to be satisfied for vacuum expectation values in pure massive theories asiitis
the case here [14].) This is the usual form of the QAP (in terms of Epstein and Glaser’s
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Green’s functions) for the present case (cf. Eq. (2.6) of130)n contrast to the field
equation, the QAP (100) does not hold for the operators before the adiabatic limit.

Proof of (100). For a better comparison with Lowenstein’s formulation, we present a
proof which makes the detour over the corresponding Gell-Mann Low expressions.
First we comment on the equality of Epstein and Glaser’s Green’s functions with the
Gell-Mann Low series

(R,S0L+ /HR)

Jim (€2, Soc (HR) = lim —o—cora) (102)

which is proved in the appendix of [12]. This can be understood in the following way: let

Pg, be the projector on the Fock vacunmandPé def 1— Pq.UsingS(0L)* = S(0L)~1

we obtain

(Q.S£(HQ) = (SOLKQ. (Po + Py)SOL+ Q)
_(2,80L+ [

T (Q,500)9Q)
+ (2, S0L)IPSOL + Q)

(R, SOLR)I? (103)

and
1=(Q, SOL)L(Po+ P3)SOL)RQ)

104
= (R, SOLYI? + (2, SOL)LPESOL)Q). (104)

In(Q, S(OL)"1P5 SOL+ f)S) there is at least one contraction betweenL) ! and

S(BL+ f) (or: the terms without contraction are precis&ly, S(6.L)~1Q)(Q, SO L +
)R)). In the mentioned reference the support properties in momentum space of the
contracted terms are analysed and in this way it is proved

9|iml(sz, SOL) TIPS SOL + Q) = 0. (105)
Inserting this into (103) and (witlf = 0) into (104) it results (102).
Because of (102) our assertion (101) is equivalent to

(R, 80Lo+eL) +2)Q) (2, 80(Lo+€L1) + A/)Q)
6-1  (Q,80(Lo+€eL1)Q) 61 (R, SOL)RQ)

Thisisthe QAP interms of the Gell-Mann Low series. Obviously the nontrivial statement
is

(106)

im (Q,S(O0(Lo+€L1)Q)
61 (2, S(0L)S) -

(107)

A possibility to ensure the validity of this equation is the above assumption (which has
not been used so far) thég andL; have mass dimensiondii;) < 4 and are treated as

10 Lowenstein works with Zimermanns definition of normal products of interacting fields:
N(;{]'[l/.:1<p,~j[;(x)}, § > d = Zl/.:ld(w,-j r) [29]. For § = d (i.e. without oversubtraction)
N(;{]'[l/.:1 i r(x)} agrees essentially with our ]'[li:1 (pi/.(x) Dgr (29). The difference is due to the

adiabatic limit and the different ways of defining Green'’s functions (Zimmermann uses the Gell-Mann Low
series, cf. (102), (106)).
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dimension 4 vertices in the renormalization procedure. Due to this additional assumption
and the requirements that the adiabatic limit exists and is unique, the normalization of the
vacuum diagrams is uniquely fixed, and with this normalization the vacuum diagrams

vanish in the adiabatic limit

6!iml(sz, S(OLY)Q) =1, eliml(sz, SO(Lo+€L1)R) = 1. (108)
(For a proof see also the appendix of [12]

Remarks. (1) Without the assumption abodb and £ we find

(sz, Soro(0eLy + Af)Q)

(Q, Soz (eecl)sz) (109)

lim (2. So(cotern (L) = im
6—1 0—

instead of (101), by using (102) only. This is a formulation of the QAP for general
situations in which (107) does not hold.

(2) By means of the QAP (98) (or (100), or (109)) one can compute the change of
the time ordered products of interacting fields (or of the Green'’s functions) under the
variation of parametersy, ..., A, if the interaction Lagrangian has the forfi{x) =
diai(, .., A)Li(x), Li €V resp.D(R*, V) (cf. Egs. (2.7), (2.8)) of [20]). But only
the interactionZ may depend on the parameters and not the time ordering operator (i.e.
the normalization conditions for the time ordered products).

Appendix: Wavefront Sets and the Pointwise Product of Distributions

In this appendix we briefly recall the definition of the wavefront set of a distribution and
mention a simple criterion for the existence of the pointwise product of distributions in
terms of their wavefront sets. For a detailed treatment we refer to Hormander [15], the
application to quantum field theory on curved spacetimes can be found in [25, 8, 7].
Letr € D'(RY) be singular at the point and let f € DR with f(x) # O.
Then ft ep’(Rd) is also singular at and f¢ has compact support. Hence the Fourier
transformf¢ is aC°-function. In some directiong: does not rapidly decay, because
otherwisef'r would be infinitly differentiable at. Thereby a functiog is called rapidly
decaying in the direction € R? \ {0}, if there is an open con€ with k € C and
supyc 1K'[Vg(k')| < ocoforall N € N.

Definition. The wavefront set WF(z) of a distribution ¢ € D' (R?) isthe set of all pairs
(x, k) € RY x R?\ {0} such that the Fourier transform fr does not rapidly decay in the
direction k for all f € D(R?) with f(x) # O.

For example the delta distribution satisfi,éAS(k) = f(0), hence WF§) = {0} x
R? \ {0}. The wavefront set is a refinement of the singular support(afhich is the
complement of the largest open set wheigsmooth):

rissingularatc <= 3k € R?\ {0} with (x, k) € WF(7).
For the wavefront set of the two-point function one finds

WF(AL) = {(x,k) | x> =0, k2 =0, x|k, ko > O}. (110)
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Let+ ands be two distributions which are singular at the same poiwe localize
them by multiplying withf € D(R9), wheref(x) # 0. We assume thatfr) and( fs)
have only one overlapping singularity, namelyxatin general the pointwise product
(fH(»(fs)(y) does not exist. Heuristically this can be seen by the divergence of the
convolution integral dk (f1)(p —k)(fs) (k). But this integral convergesf, + k> # 0
for all k1, ko with (x, k1) € WF() and (x, k2) € WF(s). This makes plausible the
following theorem:

Theorem. Letz, s € D' (RY) with
{(x,k14+ ko) | (x, k1) e WF() A (x, k2) e WF(s)} N (Rd x {0} = 4. (111
Then the pointwise product (ts) € D'(R?) exists.

By means of this theorem one verifies the existence of the distributional products
(@®™")a(1) (44) and(r @ p 5) (47).

Acknowledgements. We thank Gudrun Pinter for several discussions on the quantum action principle, and
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Note added in proof. Renormalization can also be done entirely on the level of retarded
products [1, 2, 3]. This leads to a direct proof that the interacting fields are power series
in 7.
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