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Abstract: We study the linearized stability efvortex ¢z € Z) solutions of the magnetic
Ginzburg—Landau (or Abelian Higgs) equations. We prove that the fundamental vortices
(n = £1) are stable for all values of the coupling constantand we prove that the

higher-degree vorticegi{| > 2) are stable fon < 1, and unstable fok > 1. This
resolves a long-standing conjecture (see, eg, [JT]).

1. Introduction

In this paper, we determine the stability of magnetic (or Abelian Higgs) vortices. These
are certain critical points of the energy functional

1 A
W, A)=§fRz{|vw|2+<vxA>2+Z<|w|2—1)2} 1)

for the fields
A:R?> > R? and w:R2—>(C.

HereV, = V — i A is the covariant gradient, arid > 0 is a coupling constant. For
a vector,A, V x A is the scalab1A2 — d2A1, and for a scala, V x & is the vector
(—092&, 01&). Critical points of (v, A) satisfy theGinzburg—Landa{GL) equations

A
—Aw+§<|w|2—1>w =0, )
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VXVXA+Im@Vay) =0, 3

whereA, = Vy - Vy.

Physically, the functionaf (v, A) gives the difference in free energy between the
superconducting and normal states near the transition temperature in the Ginzburg—
Landau theoryA is the vector potentiaN x A is the induced magnetic field), angdis
anorder parameterThe modulus off is interpreted as describing the local density of
superconducting Cooper pairs of electrons.

The functional€ (v, A) also gives the energy of a static configuration in the Yang-
Mills-Higgs classical gauge theory @?, with abelian gauge groufi (1). In this case
A is a connection on the principal(1)- bundleR? x U (1), andy is theHiggs field
(see [JT] for details).

A central feature of the functiondl(ys, A) (and the GL equations) is its infinite-
dimensional symmetry group. Specificalfiy, A) is invariantundet/ (1) gauge trans-
formations

Y ey, N

A A+ Vy (5)

for any smoothy : R — R. In addition,£(y, A) is invariant under coordinate transla-
tions, and under the coordinate rotation transformation

Y > PgT ) AW > gA(g i) (6)

forg € SO(2).
Finite energy field configurations satisfy

Y| — 1 as |x| > o @)

which leads to the definition of thepological degregdeq /), of such a configuration:
v st st
|x|=R

deqy) = deg| —

gV g( o

(R sufficiently large). The degree is related to the phenomendéimotuantizationin-

deed, an application of Stokes’theorem shows that a finite-energy configuration satisfies

1
degy) = Z/Rz(v x A).

We study, in particular, “radially-symmetric” or “equivariant” fields of the form

an\r) .
n()xj_’

1]ﬁ(n)(x) — fn(r)einé" A(n) (x) =n (8)

where(r, 0) are polar coordinates ar2, it = %(—xz, x1)!, n is an integer, and
fnran : [0, 00) — R.

It is easily checked that such configurations (if they satisfy (7)) have degrébe
existence of critical points of this form is well-known (see Sect. 2.1). They are called
n-vortices
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Our main results concern the stability of theseortex solutions. Let
L™ = HessE(y™, A™)
be the linearized operator for GL around th&ortex, acting on the space
X = L%(R? C) @ L%(R?, R?).

The symmetry group of(y, A) gives rise to an infinite-dimensional subspace of
ker(L™) c X (see Sect. 3.2), which we denote here Zym. We say then-vortex
is (linearly) stableif for somec > 0,

L(n)lzéym > ¢,

and unstableif L™ has a negative eigenvalue. The basic result of this paper is the
following linearized stability statement:

Theorem 1.1. (Stability of fundamental vortices)
For all A > 0, thet1-vortex is stable.

2. (Stability / instability of higher-degree vortices)
For |n| > 2, then-vortex is

stable fori < 1,
unstable forx > 1.

Theorem 1 is the basic ingredient in a proof of the nonlinear dynamical stability / insta-
bility of the n-vortex for certain dynamical versions of the GL equations. These include
the GL gradient flow equations, and the Abelian Higgs (Lorentz-invariant) equations.
These dynamical stability results are established in a separate work ([G2]). Other work
on dynamics of magnetic vortices appears in [DS, S, S2].

The statement of Theorem 1 was conjectured in [JT] on the basis of humerical ob-
servations (see [JR]). Bogomolnyi ([B]) gave an argument for instability of vortices
for A > 1, [n| > 2. Our result rigorously establishes this property. The instability of
higher-degree vortices for sufficiently largewas established in [ABG]. The stability
of vortices of Ginzburg—Landau equations without magnetic field was studied in [LL,
M, OS1]. The stability of “monopole” solutions of a non-abelian generalization of (2-3)
was studied in [AD] (see also [G1]).

The solutions of (2)—(3) are well-understood in the caseritital coupling A = 1.

In this case, th&ogomolnyi method[B]) gives a pair of first-order equations whose
solutions are global minimizers @f(y, A) among fields of fixed degree (and hence
solutions of the GL equations). Taubes ([T1,T2]) has shown that all solutions of GL
with A = 1 are solutions of these first-order equations, and that for a given degtee
gauge-inequivalent solutions form m2parameter family. The|2| parameters describe

the locations of the zeros of the scalar field. This is discussed in more detail in [JT] (see
also [BGP]) and Sect. 6. We remark that foe= 1, ann-vortex solution (8) corresponds

to the case when ajlk| zeros of the scalar field lie at the origin.

The remainder of this paper is organized as follows. In Sect. 2 we describe in detalil
various properties of the-vortex. In particular, we establish an important estimate on
then-vortex profiles which differentiates between the cases 1 andx > 1. In Sect.

3, we introduce the linearized operator, fix the gauge on the space of perturbations,
and identify the zero-modes due to symmetry-breaking. Sections 4 through 7 comprise
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a proof of Theorem 1. A block-decomposition for the linearized operator is described
in Sect. 4. This approach is similar to that used to study the stability of non-magnetic
vortices in [OS1] and [G1]. In Sect. 5, we establish the positivity of certain blocks (those
corresponding to the radially-symmetric variational problem, and those containing the
translational zero-modes) for all, which completes the stability proof for thel-
vortices. The basic techniques are the characterization of symmetry-breaking in terms
of zero-modes of the Hessian (or linearized operator), and a Perron-Frobenius type
argument, based on a version of the maximum principle for systems (Proposition 6),
which shows that the translational zero-modes correspond to the bottom of the spectrum
of the linearized operator. A more careful analysis is needeg:far 2. This requires

us to review some aspects of the critical case=(1) in Sect. 6. The stability / instability
proofforin| > 2is completed in Sect. 7. We use an extension of Bogomolnyi's instability
argument, and another application of the Perron-Frobenius theory.

2. Then-Vortex
In this section we discuss the existence, and propertiesyoftex solutions.

2.1. Vortex solutionsThe existence of solutions of (GL) of the form (8) is well-known:

Theorem 2 (Vortex existence; [P, BC])For every integen, and every. > 0, there is
a solution

a,(r) .
n()xj_

Iﬂ(”)(x) — fn(r)eme A(")(x) —n )

of the variational equations (2)—(3). In particular, the radial functiorfs,(@,) minimize
the radial energy functional

00 N2 £2 N2
5,(”)(f,a):}/ {(f/)2+n2(1 a) f +n2(a) +&(f2—1)2}rdr (10)
2 Jo r2 r2 4

(which is the full energy functional (1) restricted to fields of the form (8)) in the class

/
{(fia:[0,00) = R | 1— f € Hrdr), > € L2 (rdr), & € L?(rdr)).
r r

The functionsf,, a, are smooth, and have the following properties (iog 0):

1.0< f, <1,0<a, <1on(0, co0),

2. f),a, >0,

3. fy ~cr", a, ~ dr?, asr — 0(c > 0andd > 0 are constants),
4.1— fu,1—a, - Oasr — oo, with an exponential rate of decay.

We call @™, A™) ann-vortex(centred at the origin).
It follows immediately that the functiong, anda, satisfy the ODEs

2 1-— a, 2 A
~af O 4 27 -1 g =0 (1)

and

—a/+ I 2 g) =0, (12)

r
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Remark 1The n-vortex is known to be the unique solution of (GL) of the form (8)
whenx > 212 [ABGI]. In the appendix, we show that for > 2n2, any such solution

minimizes&"™ .
Remark 2The functionsf,, anda,, also depend oi, but we suppress this dependence
for ease of notation. When it will cause no confusion, we will also drop the subscript

Remark 3The discrete symmetny — v, A — —A of (GL) interchangegy ™, A™)
and(y ™, AC™). Thus, we can assune> 0.

2.2. An estimate on the vortex profileBhe following inequality, relating the exponen-
tially decaying quantitieg” and 1— «a, plays a crucial role in the stability / instability
proof.

Proposition 1. We have

{f’(r) > nd- “(r))f(r) for A <1

i) < n(=a(r) “(r))f(r) for A>1" (13)

Proof. Definee(r) = f'(r) — "4~ £(r). The properties listed in Theorem 2 imply
thate(r) — 0 asr — 0 and as — oo. Using the ODEs ((11)-(12)) we can derive the
equation

(=A, +@)e+ %/ — - nr2f,

where

1+n(l-a) rf’

oz(r)_r—(l+ ~)+ f? +—>0

f

and the result follows from the maximum principlex

3. The Linearized Operator

In this section, we introduce the linearized operator (or Hessian) aroungwbeex,
and identify its symmetry zero-modes.

3.1. Definition of the linearized operatokie work on the real Hilbert space
X = L*R% C) @ L*(R% R?)
with inner-product

< (6.B).(0.C) >x= /RZ{Re(ém +B-C).

We define the linearized operatdry, 4 (= the Hessian of (y, A)) at a solution(yr, A)
of (2)—(3) through the quadratic form
2

a
mg(lﬁ +e§+68n, A+ €eB+8C)|e=s=0 = ((n, C), Ly, a(§, B))x

forall (¢, B), (n, C), € X. The resultis

L <§) _ ([—AA +5@IIP— DI + 597 +il2Vay + Y V] B)
v Im(Va¥ — YVaI) + (~A+ YV + Y2 B )
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3.2. Symmetry zero-mode®le identify the part of the kernel of the operator

L(n) = Ll//(”),A(")
which is due to the symmetry group.
Proposition 2. We have
1.
AL
Lo (lvay ) —0 (14)
foranyy : R? — R.
2.
9:ur®
Lo (a;lz('”) -0 (15)
forj=1,2

Proof. We use the basic result that the generator of a one-parameter group of symmetries
of £(y, A), applied to ther-vortex, lies in the kernel of . The vector in (14) is easily
seento be the generator of a one-parameter family of gauge transformations (4-5) applied
to then-vortex. Similarly, the vector in (15) is the generator of coordinate translations
applied to the:-vortex. O

Remark 4Applying the generator of the coordinate rotational symmetry (6) to:the
vortex gives us nothing new. This is covered by the gauge-symmetry case.

We defineZsym to be the subspace af spanned by thé2 zero-modes described in
Proposition 2. We recall that thevortex is calledstableif there is a constant > 0
such that

L®ly, > e, (16)
andunstableif L™ has a negative eigenvalue.
3.3. Gauge fixing.In order to remove the infinite dimensional kernelIdf” arising
from gauge symmetry, we restrict the class of perturbations. Specifically, we restrict

L™ to the space of those perturbatiof§s B) € X which are orthogonal to thé?2
gauge zero-modes (14). That is,

irv™\ (&) _q
vy )P\ B[y
for all y. Integration by parts gives the gauge condition
Im(y™E) =V . B. (17)

As is done in [S], we consider a modified quadratic fatffd, defined by

<o, LWy >=< o, LMg > +f(lm(¢(")§) —V.B)?



The Stability of Magnetic Vortices 263

fora = (£, B) € X. Clearly,L™ agrees with. on the subspace &f specified by the
gauge condition (17). This modification has the important effect of shifting the essential
spectrum away from zero (see (26)). A straightforward computation gives the following
expression for :

i (E ) _ (-84 + 3@ =D+ 3107 + 30— DY +2iVay - B
B 2Im[VaAVE] + [-A + [¢ 2B '

To establish Theorem 1, it suffices to prove th&t > ¢ > 0 on the subspace dof
orthogonal to the translational zero-modes (15).

L™ is a real-linear operator oX. It is convenient to identifyL2(R?; R?) with
L?(R?; C) through the correspondence

B .
B:(B;><—>BCEB1—182, (18)

and then to complexify the spader— X = [L2(R?; C)]* via
(5. B) — (§.&, B¢, B°). (19)

As aresult,L™ is replaced by the complex-linear operator

=~ (n)

L = diag{—Aa, —A4, —A, —A}+ V),
where
5@UIP-D 43P =Dy —i@5¥) i@a¥)
v — G =DYF S@YP D+ 3R —i@a) i@3Y)
i(039) i(9a9) vz 0
~i(949) —i(039) 0 |yP

Here we have used the notation
4 =0, —iA,

whered, = 91 — id2 (and the superscript ¢ has been dropped from the complex function
A obtained from the vector-field via (18)).
The components of ™ are bounded, and it follows from standard results ([RSII])

= (n) ~
thatL is a self-adjoint operator ok, with domain

pi") = (H2®% O
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4. Block Decomposition

We write functions orR? in polar coordinates. Precisely,
X = [L2®R* O = [L2,, ® LS} O)1F, (20)

whereL2 = L2(R™, rdr).

rad =
Let p, : U(1) — Aut([L3(SY; ©)]*) be the representation whose action is given by

pu () (&, n, B, C)(x) = (", ey, e7 1" B, ! C)(R_gx),

whereR,, is a counter-clockwise rotation i®? through the angle. It is easily checked
=~ (n)
that the linearized operatdr commutes witho, (g) for any g € U (1). It follows
= (n)
thatL leaves invariant the eigenspacesipf (s) for anys € iR = Lie(U(1)). The

= (n)
resulting block decomposition df , which is described in this section, is essential to
our analysis. In particular, the translational zero-modes each lie within a single subspace
of this decomposition.

4.1. The decomposition @™ . In what follows, we define, for conveniendsy) =
n(l—a(r))
=

Proposition 3. There is an orthogonal decomposition

X — @(ei(m—}—n)ﬁL?ad ® ei(m—n)GLrZad D _l-ei(m—l)GLrZad ® iei(m+1)9L?ad), (21)
meZ
. . . = (n)
under which the linearized operator around the vortex, , decomposes as
= (n) ~
L = @ L1(4’11)7
meZ

where
LW = —A.(1d) 4+ V™ (22)
with
Vi = r%diag{[m +nd— ) [m—n@d—a)? [m— 12 [m+ 1%} + V'

and

2efP-D+3r2  Fo-1r? fl=bf —[f +bfl

vi—| 3G-DfF 5@FP-D+ 321 +bf1 f—bf
f'=bf —[f' + bf] 12 0
—[f" + bf] [ =bf 0 f?
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Proof. The decomposition (21) of follows from the usual Fourier decomposition of
= (n)

L?(St; ©), and the relation (20). An easy computation shows fhat preserves the

space of vectors of the form

(£ MHMO_poim=m i pim=16 ;g i(m+1)0) (23)
and that it acts on such vectors via (22)z

It follows that L\ is self-adjoint or[L2,j]*.

It will also be convenient to work with a rotated version of the operéﬁﬁ)r,

RLWRT m >0

Lfr’;) = .
RLYMR)Y m<0
where
r_ L [-1100 oo L[1-100
2| 0011 VA LR
001-1 001-1
We have
where
02+ 532~ 1) —~2)m|L obf 0
A ~2ml} 7*22+b2+%(f271)+f2 0 —2f
m —be 0 @-ﬁ-fz _Z‘ng
0 -2f —2%' @Jrfz
4.2. Properties of.\).
Proposition 4. We have the following:
1.
L;’;) — L(_”’)n (25)
2.
Uess(L%’)) = [min(1, 1), 00). (26)
3. For|n| = 1and|m| > 2,
LW — L% >0 27

with no zero-eigenvalue.
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Proof. The first statement is obvious. The second statement follows in a standard way
from the fact that

lim v () = diag{x, 1,1, 1}.
r—00

To prove the third statement, we compute

m

-1
5 diagim+1+2n(l—a), m+1—-2n(1l—a), m—1, m+ 3}

P i =
-

which is non-negative, with no zero-eigenvalue#or 2,n = 1. O

Remark 5In light of (25), we can assume from now on tlhat> 0. This degeneracy is
a result of the complexification (19) of the space of perturbations.

4.3. Translational zero-mode& he gauge fixing (Sect. 3.3) has eliminated the zero-
modes arising from gauge symmetry. The translational zero-modes remain.
Aswrittenin (15), the translational zero-modes fail to satisfy the gauge condition (17).
Further, they do not lie ii.2. A straightforward computation shows that if we adjust the
vectors in (15) by gauge zero-modes given by (14) with —A;, j = 1, 2, we obtain

_( (Vay _( Vav)2
n‘(wxm@)’ E‘(%vaq)

wheree; = (1,0) ande; = (0, 1). T1 and T satisfy (17), and are zero-modes of the
linearized operator. Note also thAat; decay exponentially ds| — oo, and hence lie
in L2.

It is easily checked thaf; & i 7> lie in them = £1 blocks forI:,(Jf). After rotation
by R, we have

LT =0,
where

a a

/
T =(f,bf,n—,n—).
r r
5. Stability of the Fundamental Vortices
In this section we prove the first part of Theorem 1. Specifically, we show that for some

¢ >0, L,(nﬂ) >cform #1, andL(lﬂ)|Tl > c. In light of the discussions in Sects. 3.3,
4.1, and 4.3, this will establish the stability of thd -vortices.
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5.1. Non-negativity oLg') and radial minimization.
Proposition 5. Ly” > 0for all A.
Proof. From the expression (24) we see thzé’f) breaks up:
LYY = No® Mo (28)
(abusing notation slightly) where

Mo = —A,(Id) + Wo

with
b2+ 53f2-1) —2bf
WO_( —2bf riz+f2>
and
Noo (CA PP+ 2 —2f
°” -2/’ At B4 7))

An easy computation shows thay is precisely the Hessian of the radial energy,

Hes£™ (see (10)). Since the-vortex minimizest,"™, we haveMg > 0. It remains to
showNp > 0. We establish the stronger resWy > 0. Note that

No = GBGo,

where

o —fFIff
GO:( f ar+1/r>'

In fact, Go has no zero-eigenvalue. To see this, we exploit some known results about the
kernel ofGg atA = 1. In Sect. 6, we will show that at= 1, the full linearized operator

is the square of a first-order differential operator,L"|,_1 = F*F. The operator

was analyzed in [S], where it was shown to be Fredholm with indek Zhe operator

Fo = Gol=1 is F restricted to a particular invariant subspace. Thyss a Fredholm
operator from its domain tdirzad. The kernels ofF and F* are known precisely, (see

[S] and Sect. 6) and it follows thadfy has index zero. NowGg is a relatively compact
perturbation offp (due to the decay of the field components — see, again, [S]), and hence
Gy is also Fredholm with index zero. Finally, it is a simple matter to checkdfietas

trivial kernel. If
a(}) -

(—Ar + =0

it follows that

and hence tha8 = 0, and s& = 0. The relationVg > 0 follows from this, and the fact
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5.2. A maximum principle argumenRemoving the equality in Proposition 5 requires
more work. First, we establish an extension of the maximum principle to systems (see,
eg, [LM, PA] for related results). We will use this also in the proof that the translational

zero-mode is the ground statelbf) (Sect. 5.4).

Proposition 6. Let L be a self-adjoint operator on2(R"; R¥) of the form
L=—-Ad)+V,

whereV is ad x d matrix-multiplication operator with smooth entries. Suppose that
L > Oand that fori # j, V;;(x) < Ofor all x. Further, suppos# is irreducible in the
sense that for any splitting of the 4@t . . . , d} into disjoint setsS; and S», there is an

i € Stand aj € S, with V;;(x) < Ofor all x. Finally, suppose thaté = n € L2 with

n > 0 component-wise, ang # 0. Then either

1.£>0o0r
2.n=0and¢ < 0.

Proof. We write& = £+ — £~ with €T, £~ > 0 component-wise, and compute
0 < <& ,LE > = <& L&V > — <& LE>.

Sinceé;r andgj‘ have disjoint support, we have

rhs =) <&, Vi&l >— <& ,n> <0
J#k

Thus we have

1. 0= <&7,LE >.
2. 0= <&, Vg >forall j #k.

SinceL > 0, the first of these implies€~ = 0 and hencd.é ™ = 5. Soifn # 0, then
£t £0.1fp =0ande™ = 0, replace with —& in what follows. An application of the
strong maximum principle (eg. [GT], Thm. 8.19) to each component of the equation

LET =1

now allows us to conclude that for ea;(aheitheré,:r >0 orglj = 0. We know that
for somek, s,j > 0. Looking back at the second listed equation above, and using the
irreducibility of V, we then see thdt. = 0 for all j. Finally, we can easily rule out the

possibility &, = 0 for somek, by looking back at the equation satisfieddy Thus we
have¢ > 0. O

5.3. Positivity ofL(()"). Now we apply Proposition 6 to sho®p > 0. The trick here is
to find a functiont which satisfieslpé > 0. This allows us to rule out the existence of
a zero-eigenvector, which would be positive by Proposition 6. To obtain sgchva
differentiate the vortex with respect to the parameteBpecifically, differentiation of
the Ginzburg—-Landau equations with respect tesults in

Mo =1, (29)
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where
ohf
§= <n8;a/r)

n= <%(1—0f2)f> > 0.

and

We can now establish
Proposition 7. For all A, Lg") >c>0.

Proof. We have already shown in the proof of Proposition 5, fiat- 0 andMg > 0.
Hence, due to (28) and (26), it suffices to show thiat! (Mg) = {0}. Supposé/fo; = 0,
¢ # 0. Proposition 6 then implies > 0 (or else take-¢). Now

0= <Mpt,§> = <, Mok > = <¢,n> > 0
gives a contradiction. O

Remark 6Proposition 6 applied to Eq. (29) also gives> 0. That is, the vortex pro-
files increase monotonically with. This can be used to show that the rescaled vortex
(fa(r/~/2), an(r/~/X)) converges as — oo to (f*, 0), wheref* is the (profile of) the
n-vortex solution of the ordinary GL equatiorA, f* +n2 f*/r2 4+ (f*?> — 1) f* = 0.
This result was established by different means in [ABG].

. (1)

5.4. Positivity ofL; .

Proposition 8. L(lil) > 0 with non-degenerate zero-eigenvalue giverrby

Proof. Letu = inf's ecL'Y < 0, which is an eigenvalue b (26). Su bg =
peclq g y pp

uS. Applying Proposition 6 toL(lil) — u (note thatVl(il) satisfies the irreducibility
requirement) givess > 0 (or § < 0). Further,u is non-degenerate, as jif were
degenerate, we would have two strictly positive eigenfunctions which are orthogonal,
an impossibility. Now ifu < 0, we have< S, T >= 0, which is also impossible. Thus

S is a multiple of T, andu = 0. O

5.5. Completion of stability proof for = £1. We are now in a position to complete
the proof of the first statement of Theorem 1. By Proposition.§;” > ¢ > 0. By
Proposition 8 and (26), " |;. > & > 0. Finally, by (27).L5 " > ¢/ > Ofor|m| > 2.
It follows from Proposition 3 thal. ™ > ¢ > 0 on the subspace df orthogonal to

the translational zero-modes. By the discussion of Sect. 3.3, this gives Theorem 1 for
n==41. O

6. The Critical Case,A =1

In order to prove the remainder of Theorem 1, we exploit some results fromthé
case.
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6.1. The first-order equationg-ollowing [B], we use an integration by parts to rewrite
the energy (1) as

1 2
EW, A) = E/Rz {1302+ [v x4+ 3quw2-1)]
+50. = V(Y12 - 1?2} + wdegy) (30)

(recall, since we work in dimension tw¥, x A is a scalar) where dég) is the topo-
logical degree of)r, defined in the introduction. We assume, without loss of generality,
thatdeg(y) > 0. Clearly, wherk = 1, a solution of the first-order equations

%y =0, (31)

1
VxA+§(|1/f|2—l)=0 (32)

minimizes the energy within a fixed topological sector, @eg= », and hence solves
GL. Note that we have identified the vector-fieddvith a complex field as in (18).
Then-vortices (9) are solutions of these equations (when 1). Specifically,

T

ns=Z(1-f? (33)
r 2
and
p=nd=as (34)

r

In fact, itis shown in [T2] that fok = 1, any solution of the variational equations solves
the first- order equations (31)-(32).

Beginning from expression (30) for the energy, the variational equations (previously
written as (2)-(3)) can be written as

1 1
ALY+ ¥V x A+ §<|w|2 — DI+ 50— D(YP -y =0,  (35)
_— 1
iv[oEY] —id:[V x A+ 5("”'2 -] =0  (36)

(hered* = —d: +iA is the adjoint 0f4).

6.2. First-order linearized operatorWe show that the linearized operatoriat= 1 is
the square of the linearized operator for the first-order equations.

Linearizing the first-order equations (31)—(32) about a solutign A) (of the first-
order equations) results in the following equations for the perturbatien (¢, B):

IE+ivyB =0,

V x B + Re(y&) = 0.
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Now usingid:B = V x B +i(V - B), and adding in the gauge condition (17), we can
rewrite this as

Fa =0, (37)

dy iv()
F = AT .
<¢( ) 10, )
If we linearize the full (second order) variational equations (in the form (35)-(36))
around(y, A), we obtain

8A[8*§ +sz] +zB[8 Y]+ ¢ [V x B+ Re(wg)]
+E[V x A+ 3(1Y 2 = DI+ 30— DIAYI? — DE + 2y Re(Y&)] =0

where

and

iY[d%hE +iBy) +iE[35v] —id:[V x B+ Re({£)] = 0.

Proposition 9. Wheni = 1, these linearized equations can also be written
F*Fa = 0.

Proof. This is a simple computation using the fact that the first-order equations (31-32)
hold. O

This relation holds also on the level of the blocks. A straightforward computation
gives

LW |1 = FiFy,
where
o —b ™ f 0
| % %-b 0 f
m=\1 f 0 9 +1/r -2
0 f =% 9 +1/r

6.3. Zero-modes fok = 1. It was predicted in [W] (and proved rigorously in [S])
that forA = 1, the linearized operator around any degtesslution of the first-order
equations has a|i2|-dimensional kernel (modulo gauge transformations). This kernel
arises because the Taubes solutions forfmg@arameter family, and all have the same
energy. The zero-eigenvalues are identified in [B], and we describe them hepg, Let
be the unique solution of

(_Ar+_2+f)Xm=0
r

on (0, co) with

Xm ~r " as r—0
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and
Xm — 0 as r — o
form=12,...,n. Thenitis easy to check that when= 1,
FuWy =0, (38)
where
S Xm
W, = S xm

—(Xgy +mMXm /7)
_(Xr/n +mxm/1)

We remark that

1—a

r

X1=

and it is easily verified that for = 1, Wy = ,—11T gives the translational zero-modes.

7. The (In)stability Proof for |r| > 2

Here we complete the proof of Theorem 1.
The idea is to decomposlé,ﬁ’) into a sum of two terms, each of which has the same

(translational) zero-mode (far = 1) asLi. One term is manifestly positive, and the
other satisfies restrictions of Perron-Frobenius theory.
We begin by modifyingF,,, and defining, for any,

@-L)q 2 f 0
Fm = %q 3 — fT 0 f s
fq 0 o+1r %
0 f -2 O +1/r
where we have defined
nl—a)f
q(r) = 7 (39)

ando, - ¢ denotes an operator composition. By (34), we hawe 1 for A = 1. We also
set, form =1, ... ,n,

a1 xm
T S xm
W=\ +m§—’”)
—(Xpy +m22)

Now W,, has the following properties:

1. W1 is the translational zero-moegér for all A.
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2. Whenx = 1, Wy, = Wy, m = 1,...,n, give the 2n| zero-modes (38) of the
linearized operator.

TheseW,, were chosen in [B] as candidates for directions of energy decreage:(for

2) whenx > 1. Intuitively, we think of W,, as a perturbation that tends to break the
n-vortex into separate vortices of lower degree.

Now, F,,, was designed to have the following properties:

1. F, = F,, whenx = 1 (this is clear).
2. F,,W,, = 0for allm anda (this is easily checked).

A straightforward computation gives
LY = F* o 4 T My, (40)
whereJ = diag{1, 0, 0, 0} and
My =1y = qlng + (0 — ¢°) f?
with

m2

A
In =—0r + — +D*+ Z(f2 - D).
r 2

By construction, whem = 1, the second term in the decomposition (40) must have a
zero-mode corresponding to the original translational zero-mode. In fact, one can easily
check thatMy f' = 0.

Proposition 10.For |z] > 2, M3 has a hon-degenerate zero-eigenvalue corresponding
to f/, and

My>0 A<l
M1 <0 1>1

2
onLZ,

Proof. We recall inequality (13), which implies that far< 1,4 < 1, and forx > 1,
g > 1. The operatoM1 is of the form

M1 = (1—g®(—A,) + first order + multiplication. (41)

One can show tha¥/; is bounded from below (resp. above) fox 1 (respi > 1). We
stick with the casé < 1 for concreteness. Suppakan = un with u = infspedf; <
0. Applying the maximum principle (e.g. Proposition 6 fbe 1) to (41), we conclude
thaty > 0. If x < 0, we have< 75, f/ >= 0, a contradiction. Thug = 0, and is
non-degenerate by a similar argumenti

We also have

Lemma l.For m > 2, M,, — M1 is non-negative foh < 1, non-positive fon. > 1,
and has no zero-eigenvalue.

Proof. This follows from the equation

m2 —1
r2 -

M, —M1=(1-¢? O
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Completion of the proof of Theorem Buppose now < 1. SinceF;; F,, is manifestly

non-negative, and4,, > M1 form > 2, we haveL,(;’) > 0 form > 1 (with only the
translational 0-mode). Combined with (26) and Propositions 7 and 3, this gives stability
of then-vortex fora < 1.

Now suppose. > 1. By (40), Proposition 10 and Lemma 1, we havefos 2, .. .n,

< Wm,Lﬁ,’,’)Wm > < O

We remark that,, corresponds to an element of the un-complexified spaand so
L™ has negative eigenvalues. This establishes the instability eftoetex for|n| > 2,
A > 1, and completes the proof of Theorem 1o

8. Appendix: Vortex Solutions are Radial Minimizers
Proposition 11.For A > 2n2, a solution of Egs. (11)—(12) locally minimiz&&".

Proof. It suffices then to show/y = Hesé’,(”) > 0 (see Sect. 5.1). We writélg =
Lo + Zo, where

Lo = diag{l, —A,}
withl = —A, +b% + 5(f2 - 1) and

. 20f2 —2bf
0_(—2bfr%+f2>'

We note thatf = 0 (one of the GL equations). It follows from the fact thyat- 0 and
a Perron-Frobenius type argument (see [0S1]) thatO with no zero-eigenvalue. It
suffices to showzZg > 0. Clearlytr (Zp) > 0, and

detZo) = 274+ 2L 2 2
0 =24+ 2~ 221 - 0)?)

r

is strictly positive forx > 222, O
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