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Abstract: A notion of the rational Baker—Akhiezer (BA) function related to a con-
figuration of hyperplanes i€" is introduced. It is proved that the BA function ex-

ists only for very special configurations (locus configurations), which satisfy a certain
overdetermined algebraic system. The BA functions satisfy some algebraically inte-
grable Schrodinger equations, so any locus configuration determines such an equation.
Some results towards the classification of all locus configurations are presented. This
theory is applied to the famous Hadamard problem of description of all hyperbolic equa-
tions satisfying Huygens’ Principle. We show that in a certain class all such equations
are related to locus configurations and the corresponding fundamental solutions can be
constructed explicitly from the BA functions.

Introduction

The notion of the Baker—Akhiezer function (BA function) has been introduced by Kri-
chever [1] in the theory of finite-gap or algebro-geometric solutions of the nonlinear
PDE's, integrable by the inverse scattering method [2]. The BA function is a far-reaching
generalisation of the classical function
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well-known as a solution to the classical Lame equation:
d2
Ly =2), L=—-—+2p(x), r=—p().
dx

Hereo, ¢ andg are classical Weierstrass elliptic functions (see e.qg. [3]).
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Inthe degenerate case one has the corresponding trigonometric and rational versions:
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Certain multidimensional versions of these functions in the rational and trigonometric
cases have been introduced by Chalykh and Veselov in [4] in the theory of the quantum
Calogero—Moser problem. In this paper we will restrict ourselves by the rational case
only. The construction of [4] (see also [5]) relates such a BA funatida a configuration
2 of the hyperplane$l, in a complex Euclidean spa¢e" given by the equations
(a, x) = 0, taken with some multiplicities:, € Z. Herea € A, A is a finite set of
noncollinear vectors. The functiof(k, x), k, x € C" is determined by certain analytic
properties irk (see Sect. 1) and exists only for very special configurations.

The most important property of the BA function is that it is an eigenfunction of the
multidimensional algebraically integrable Schrédinger operatowhich in our case
has the form

o o + 1 )
L=-A+) " (m(a x))z(a @) (1)
acA ’

(see [4,5]).

When#2! is a Coxeter configuration, i.&f consists of the reflection hyperplanes for
some finite reflection groupy with W-invariant multiplicities, then the corresponding
operatorL is the Hamiltonian of the generalised quantum Calogero—Moser problem (see
Olshanetsky and Perelomov [6]) with special integer-valued parameters. The existence
of the BA function in this case was proved in [5] with the help of Heckman'’s result [7].

At that time it was believed that the Coxeter case is the only one whexists, but
it turned out not to be the case. The first non-Coxeter examples have been found by the
authors in [8] (see also [9]).

According to the general procedure proposed by Berest and Veselov in [10] this led to
new examples of the hyperbolic equations satisfying Huygens’ Principle in Hadamard’s
sense. Motivated by these results Berest and Lutsenko started the investigation of the case
when the potential depends on two coordinates only and found other new examples of
the huygensian equations [11]. Later Berest proved [12] that they have actually found all
such equations under the assumption that the potential is homogeneous of(d&jree
Since a generic Berest—Lutsenko potential could not be described by the construction
[4], we were motivated to revise it.

In Sect. 1 we give such a revised definition of the BA function, which can be derived
from the corresponding Schrodinger equation and therefore covers all possible cases.
It is remarkable that an effective way exists to check for a given configuration whether
a BA function exists or not. Namely, as we prove in Sects. 2 and 3, the following
overdetermined system of algebraic equations is a necessary and sufficient condition for
the existence of the Baker—Akhiezer function:

3 mg(mg + 1)(B, B)(a, B2 1

(13’ x)2j+l

= 0 on the hyperplanéx, x) = 0 (2)

BeA
B#a

foreachw e Aandj =1,2,...,m,.
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They are equivalent to the vanishing of the fingtodd terms in the Laurent expansion
of the corresponding potential

) = 3 Ml D@ -

2
by (a, x)

at the hyperplanéxr, x) = 0. A similar characterisation of the rational finite-gap poten-
tials in one dimension has been first proposed in the famous paper [13] by Airault, McK-
ean and Moser, who introduced the term “locus” in this situation. We will also use this
terminology, calling Egs. (2) as well as its general affine version (see bklous equa-

tions. Duistermaat and Griinbaum [14] discovered the interpretation of such equations
as a trivial monodromy condition for the corresponding one-dimensional Schrodinger
equation in the complex domain. We give a similar interpretation for our locus equations
(2) in Sect. 2.

However to describe all the configurations, satisfying the locus equations (2) (the
locus configurationsseems to be a very difficult problem. At the moment it is solved
only in dimension 2, where the answer is given by the Berest—Lutsenko construction.
In dimensionn > 2 all known examples of the locus configurations are the Coxeter
configurations and their special “deformations” [8,9]. In Sect. 4 we present all the results
known in this direction so far.

The generalisation of our construction to the affine configurations of the hyperplanes
is discussed in Sect. 5. The potenti@nd the locus equations in that case have the form:

K

o mi(mi + D(ai, ;)
s ; (@i %) +ci)? @

Z mj(mj + 1)(()lj,aj)(0{i,0(j)zs_l

((aj, x) +cj)&+L 0 ®)

J#l
identically on the hyperplang;, x) +¢; =0foralli =1,... ,Kands =1,... ,m;.
Unfortunately, so far little is known about the affine locus configurations, which are
not linear, i.e. with not all the hyperplanes passing through one point. Apart from the
one-dimensional case investigated in [13,15], there are only some reducible examples
discovered by Berest and Winternitz [16]. In fact, we show that the classification problem
for the affine locus configurations can be reduced to the linear case (2) by the isotropic
projectivisation procedure.

In the last section we discuss the relations of our BA functioand locus configu-

rations to Huygens’ Principle. The main result says that for any locus configuration in
dimensiom the corresponding hyperbolic equation

(Ong1+ulxt, ..., x,)p =0 (6)

satisfies Huygens’ Principle for large enough @dddConversely, we show that if Eq. (6)
satisfies Huygens’ Principle and all Hadamard's coefficients are rational functions, then
u(x) has a form (4) for some locus configuration.

We conjecture that this construction gives all huygensian equations of the form
(On41 + ulx1,...,x:))¢ = 0. In the caser = 1 it is a well-known result by Stell-
macher and Lagnese [17]. Whenr= 2 andu is homogeneous this follows from Berest's
theorem [12]. The proof of the general case would lead to the solution of the famous
Hadamard problem in the class (6).
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1. Rational Baker—Akhiezer Function Related to a Configuration of Hyperplanes

Let A be afinite set of noncollinear vectars= (a4, ... , o,) € C" with multiplicities
mq € N. We will assume thao, o) = Y74 a? # 0.

Definition. A function v (k, x), k,x € C" will be called Baker—Akhiezer function
(BA function), if the following two conditions are fulfilled:

1) ¥ (k, x) has the form

_PkX)
I/f(k,x)——A(k) e,

whereA(k) = [[,c4 (k, @)™, P(k, x) is a polynomial ink with the highest term
A(k);
2) foralla € A,
0o (Y (k, x) (k, a)™) = 32(1ﬂ(k,X)(k, o))
=... =82 L(yk, x)(k,®)") =0

(7)

(8)

on the hyperplané&l,: (k, «) = 0, whered, = («, %) is the normal derivative for
this hyperplane.

Notice that (7) means that is a rational function ok with the prescribed poles
along the hyperplandd,,, « € A and with the asymptotic behaviour at infinity:

¥ = (14 o0(1) e*®

whenk — oo along the rays outside the singularities (cf. [1]).
First of all, in the same way as in [4,5] one can prove the following

Theorem 1.1. If the Baker—Akhiezer functiof exists then it is unique and satisfies the
algebraically integrable Schrédinger equation

Ly = —k*y, €)
where
_ My (Mo + 1)(051 a)
L=—-A+ ag w2 . (10)

Algebraic integrability of the operator (10) means th& a part of arich (supercomplete)
commutative ring of partial differential operators (see [5] for precise definitions). This
ring is described by the following theorem.

Theorem 1.2. Let’R 4 be the ring of polynomialg (k) satisfying the following proper-
ties:

dflk)y=033fk)y=...= 82" 1f(k)y=0 (11)

on the hyperplanéwx, k) = 0 for anya € A.
If the Baker—Akhiezer functiop (k, x) exists then for any polynomigl(k) € R 4
there exists some differential operatby (x, %) such that
Lk, x) = fk)p(k, x).
All such operators form a commutative ring isomorphic to the fiag. The Schrodinger
operator (10) corresponds tf(k) = —k2.
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We give the proof of these statements in a more general affine situation in Sect. 5.
We should note that there exists the following explicit formulaZfgr(due to Yu. Be-
rest [18]).

Theorem 1.3. The commuting partial differential operatofsy for f € R 4 are given
by the formula

Ly =cn(ad)Vf(x0)], (12)

wherecy = (—=1)V /2NN, N = degf, f is the operator of multiplication by (x), and
(adp)N means theV!™ iteration of the standardd-procedureadsB = AB — BA.

The proof follows from the results of the next section (see Corollary 2.5).
We should note that originally in [4] another axiomatics for thefunction was
proposed. A functio (k, x) of the form

¢k, x) = Pk, x)e¥ (13)

was considered, wherB(k, x), as in (7), is a polynomial it with the highest term
A(k), with the property

A (P (k, %)) = 3Pk, x)) = ... = 82"« L (k, x)) = 0 (14)

at the hyperplanél,,.

Comparing (13), (14) with (7), (8) we see that the difference between these two
axiomatics is due to the additional fact]i[#a (k, B)™# . In the Coxeter situation
considered in [4] (see Sect. 4 below) this factor is not essential because of its symmetry.

It turns out that this minor change makes the axiomatics less restrictive and leads to
aricher class of the integrable Schrodinger operators. We will prove (see Corollary 2.7)
that if there existg satisfying the conditions (13), (14) then there exists also the BA
functiony with the properties (7), (8) and in that cage= %. The converse is not
true: there are configurations for whighdoes exist bu$# does not (see the Remark 2
after the proof of Theorem 4.4).

2. Monodromy and BA Functions

LetL = —A+u(x) be a Schrédinger operator with a meromorphic potential having
a pole along the hyperplarié, : («, x) = 0, which is assumed to be non-isotropic:
(o, ) # 0.

We are looking for a formal solutiog of the Schrodinger equatiabyy = A¢ in the
form

P =D 6 (@), (15)
s>0
for somepu, where the coeﬁicient¢§“) = ¢§°‘)(xL) are some analytic functions on the
hyperplandl,, x* is an orthogonal projection aof ontoIT,, ¢g*> # 0.
Let's suppose that the equatidp = L¢ has a solution of the form (15) with some
u < 0. Then substitution into the equation gives immediately that the poterttial
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must have a second order pole aldig: the Laurent expansion in the normal direction
o has the form

u(x) = Z c,Ea)(a, x)k (16)

k>-2

with c(flz) = u(u — D(a, a).
Moreover, we obtain the following recurrent relations for the coeffici¢g9ﬁ§

s—2
@) (=1 = (+)+s—D)gs = R+ b2~ Y iz, (17)

i=—

(s = 1,2,...), whereA is the Laplaciam restricted to the hyperplan@, and we
omitted all the indices in the coefficients.

If 2 ¢ Z we can determine ab; from (17) and obtain the solution (15) starting
from anarbitrary function ¢9 (the same procedure gives also another solution with
pwo=—1—pu).

In the one-dimensional case this is a classical way (going back to Frobenius, see e.g.
[27]) to construct the basis of solutions of the corresponding equation

—¢" +u(x)p =xrp (18)

in the vicinity of its regular singular point. In the case when Eg. (18) has no monodromy
in the complex domain, i.e. all the solutions are single-valued, we have that

1) w must be anintegept = —m, m € Z,
2) the first 22 + 1 equations from (17) must be compatible.

In case this is true foeachenergy leveh we will say that the Schrédinger operator has
trivial monodromy.

In the multidimensional case there exists a generalisation of Frobenius’s theory for
the partial differential equations with regular singularities in the complex domain (see
[28]). For the Schrddinger equation with a singularity along a hypersurface the regularity
condition means that the potential has at most a second order pole.

The considerations above motivate the following

Definition. We say that a Schrédinger operatdr= —A + u(x) with meromorphic
potentialu(x) with a second order pole along the hyperpldrg : («, x) = 0has local
trivial monodromy around this hyperplane if

1) the Laurent coefficierrt(f‘z) in the expansion (16) has the fom(fz) = mg(my +
1 (e, ) for somemn, € Z 4,
2) the system (17) with = —m,, is compatible for any functiopg and for allx € C.

Theorem 2.1. L has local trivial monodromy arountl,, if and only if the coefficients
of the normal Laurent expansion of the potentiét) nearIl,

u(x) =Y @ x)*
§>—2
satisfy the following conditiong:_» = m, (my + 1)(«, @) for somen, € Z,, and

c(_al) = c&a) = ng) =...= cg;)u_l =0onIl,. (29)
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Inthat case the Laurent expansions of the corresponding eigenfungt{@ss satisfy
the conditions

¢ =) = ... = g5 | =00nT,. (20)

Proof. The proof is similar to the one-dimensional case considered by J.Duistermaat
and A.Grinbaum [14]. Let’'s demonstrate the idea in the simplest casemhen 1.

After substituting (15) into the Schrédinger equation, we deduceithat? and derive

the following recurrent relations faf*:

(—2+c_2)pp =0

2¢1 4 c-190 =0

2¢2 + (=A — Mo + cogo + c—1¢1 =0 , (21)
O3 + (—=A — M1+ c1¢o + cop1 + c—1¢2 =0

whereA is the Laplaciam restricted to the hyperplarié (we omitted all the subindices

a in these formulas and assumed thate) = 1). These relations allow one to find all
the coefficients uniquely excepy (which is an arbitrary function) angs, provided

the first four equations are consistent. From the first equation it follows-that= 2.
Expressingb; andg, from the second and the third equations and substituting them into
the fourth one we arrive at the relation

- 1 1 ~ 1,
(=A - A)(—chmo) - 5671(—A — Mo + (c1 — coc—1 + Zc_l)qﬁo =0,

which should be valid for alhg andi. Vanishing of the leading term ingivesc_1¢g = 0,

i.e.c_1 = 0. The relation reduces after thatdgpg = 0, thusc; = 0. Notice that the
second equation impligg; = 0 sincec_; = 0. This completes the proof in the case
whenm, = 1. Inthe general case one should use induction arguments (see [14], p. 196).
O

Remark.One can consider a more general case, whan has a singularity along an
arbitrary hypersurface(x) = 0. However, analysis of the corresponding relations (21)
shows that the hypersurface has to be a hyperplane (cf. [19]).

Now let’s consider a Schrédinger operator{l¥orresponding to some Baker—Akhiezer
functionr. We claim that such an operator has local trivial monodromy around all the
singular hyperplanes. To prove this one can consider for a gittes(n — 1)-dimensional
family of the solutions of the Schrédinger equation

(L—Mp=0
of the formg = v (k, x) with k2 = —A. They have proper pole behaviour near the
hyperplandq, x) = 0. Unfortunately;/fé"‘) depends ok and is not an arbitrary function

on the hyperplane, so we have to present additional arguments. We’'ll prove a slightly
more general result, which we will use also in Sect. 6.

Theorem 2.2. Let the Schrddinger operatdt = —A + u(x) have an eigenfunction
v (k, x),

Ly = —k%y
of the formyr = P(k, x)e**), where P is a finite sum of some functions which are
homogeneous ik and meromorphic inc. Then the singularities af(x) are second
order poles located on a union of non-isotropic hyperplanes anuas local trivial
monodromy around these hyperplanes.



540 O. A. Chalykh, M. V. Feigin, A. P. Veselov

Proof. The fact that singularities af(x) must be located on the hyperplanes was proved
by Yu.Yu. BerestandA. P. Veselov in [20] under the assumptionRtiag polynomial in
k, but their proof works also in the case wheiis a finite sum of functions homogeneous
in k. The fact that these hyperplanes must be non-isotropic follows from the zero-residue
lemma of the same paper [20] (see also [19]).

Let’'s now prove that the conditions (19) are satisfied. After a proper choice of or-
thonormal basis we may assume that the hyperplane under consideration has the equation
x1 = 0, and let’s consider the Laurent expansion for the funcfidh, x):

+00
Yk, x) =x7" Y ik, X2, ... xa)x]. (22)
i=0

Let's prove first thain has to be positive. LeP? be the highest homogeneous term of
P, then from the Schrddinger equation we have;d/0x; PO =0.S0P%k, x + ki) is
constant while varies, hence iP? vanishes on the hyperplang = 0, then it vanishes
identically. Thus,P? and therefore) can not be zero at the hyperplane,sdn (22)
must be positive.

Substituting (22) into the Schrédinger equation immediately givesthat m (m +
1) and leads to the following recurrence relations:

J
mm +1) = (G +2=m)+1=m)¥jr2=A-ky; — Y v (23)
i=—1

(G=-1,012..)A="2 4+ .+ 3?5_22 . To prove (19) let’s suppose that, =

dx2
c1 = ... = cp-3 = 0, butcy,_1 # 0 for somep < m + 1. Consideringj =

-1,1,3,...,2p — 3, itis easy to see that; = Y3 = ... = ¥2,_1 = 0. From the
form of the functiony it follows thaty; = Pj(k, x2, ... , x,)e®¥), whereP; is afinite
sum of homogeneous functionsknk = (ka, ... , kn), % = (xo, ..., xn). Let P]Q be the
highest homogeneous term®f. By induction one can prove thRQj = (—l)fkfj P(?Clj
andpPy, | = (—1)i=Pk2Y=P=YpOcy  1b;, where the constaat; > 0 andby = by =
... = b, = 0 (by assumption) ank; > Oform > j > p+1. Indeed, forPZOj it follows
easily from the relations (23). Fd’é’j_l one can use induction arguments similar to [14]
(Prop. 3.3, p. 196).
Now let’s consider Eq. (23) with the resonance vajue 2m — 1:
2m—1
O=A—-k)om1— Y civvom1-i.

i=—1

Since this holds identically for atithe highest homogeneous term should vanish. Simple
calculation shows that this term is equal to

_ 2(m—
—(P9,_1k2 + P, _5,c2p-1) = (=1 PP PQ(byy + am)cop-1.

Sinceb,, +a,, > 0 andPéJ # Oitvanishes only i, 3 = 0. This completes the proof.
O
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Itis remarkable that the BA function turns out to be symmetric with respecatal
x. For Coxeter configurations this property has been established in [5].

Theorem 2.3. The Baker—Akhiezer functiah(k, x) is symmetric with respect toand
ki gk, x) = P(x, k).

Proof. The idea is to show thaf (x, k) is also the BA function and then to use the
uniqueness (Theorem 1.1). Let's prove tH&&7E-X) is a polynomial inx with the
highest termA(x), where A(x) and P(k, x) are the same as in (7). For that let us
consider conditions (8) fot (k, x). They give a linear system for the coefficients of
the polynomialP with the coefficients, which are polynomial (@, x), « € A. Since
this system has a unique solution, the coefficient® afre rational inc. Let’ denote by
P;(k, x) the homogeneous term é;% of degree—j in k. In terms of P; (k, x) one
can rewrite Eqg. (9) in the following recurrent way:

3
LPj(k, x)_ZZk T Pji1, Polk,x)=1

From this it follows by induction that all the singularities¥{k, x) in x belong to our
configuration of the hyperplanés, x) = 0. Analyzing Laurent expansions fe(x) and

¥ (k, x) on these hyperplanes we conclude thék, x) has a pole of orden, along the
hyperplanesa, x) = 0. All that means thafi (x) P (k, x) is a polynomial inx. But from

the uniqueness of the BA-function it follows easily ti#ik, x) is also homogeneous in

x with the same degreej . Hence the highest term inof the polynomialA (x) P (k, x) is
equal toA (x) A (k). Thusy (x, k) = A(x(”) :¢k%) Properties of the Laurent expansions
in x follow immediately from Theorems 2.1, 2.2. So we have all the conditions for
¥ (x, k) to be a BA function. The theorem is proved

Corollary 2.4. The Baker—Akhiezer functiah satisfies the following bispectral prob-
lem

d 0
L(x, v, x) = —k*y(k,x), Lk, 3—k>w(k,x)=—x2w(k, X), (24

whereL is the Schrédinger operator (10).

Now we are able to prove Theorem 1.3.

Corollary 2.5. The Baker—Akhiezer functiahis an eigenfunction of the operator (12)
forany f € R4.

Proof. Due to Theorem 1.2 and to the symmetryx,bffor any f € R4 there exists
a differential operatot (k, ak) such thatA(k, 8k)1p = f(x)¥. On the other hand,
L(x, axW = —k%y. Now we can use the identity (1.8) from [14] which states in that
case that ) R

(adL) (/Y] = (—adk?®)" (A)[y]

forallr € Z,.. Forr = N = ordA = degf the differential operato(—adk?)” (A) in
the right-hand side has zero order and is, in fact, the operator of multiplicatiofi(by
with ¢ = (=2)V N!. This means thay is an eigenfunction of the operat(nrdL)’(f)
with the eigenvaluef (k). This proves the Theorem 1.31
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Now let's explain why the existence @f with the properties (13), (14) (our old
axiomatics, see Sect. 1) implies the existence of the BA fungtiohhis follows from
the following general statement, showing that the new axiomatics is in some sense the
most general one.

Let A be any set of noncollinear vectors, = —A + u(x) be a corresponding
Schroédinger operatoA (k) = [, 4(a, k)"<«. Consider the functiong of the form

. Pk, x) (k.x)
ok ) = oA

P is some polynomial it andx: P = A(k)A(x) + ..., where dots mean the terms of
lower order both irk and inx.

: (25)

Theorem 2.6. If the Schrédinger equatiofiy = —k?p has a solutiony of the form
(25) thengp(k, x) has to be BA function.

Proof. The proof now is almost evident. Theorems 2.1 and 2.2 provide conditions (8)
for ¢ in the x-variable, and it has the required form (7)inHence,p(x, k) is a BA
function and according to Theorem 208, k) = ¢(k, x). O

Corollary 2.7. If a function¢ satisfies conditions (13)—(14) thgn= A~1(k)¢ is the
Baker—Akhiezer function (7)—(8).

Proof. As it follows from the results of the papers [4,5], the functiprmust be an
eigenfunction of the same equation (9). Then the arguments we used in the proof of
theorem 2.3 show that = A~1(k)¢ satisfies the conditions of theorem 2.6 and therefore

is the Baker—Akhiezer functionoo

3. Locus Equations and the Existence of the BA Function

Let A, asin Sect. 1, be a finite set of non-collinear vectors C" with given multiplic-
itiesm, € Z4, 2 be the corresponding configurations of hyperplajagé) = 0in C”"
andL = —A + u(x) be the Schrddinger operator with the potential

u(x) = Z mq(mq + 1) (c, Ol). (26)

2
by (a, x)

Theorems 2.1 and 2.2 from the previous section imply that if the BA function for the
configuratior®l exists then in the normal Laurent expansions (16) of the potertia)
the first odd termsg’]‘.ll (j =1,....my) should vanish identically on the hyperplane

(a, x) = 0. More explicitly, these conditions have the form of the following highly
overdetermined algebraic system:
3 mg(mg + 1) (B, B) (e, B)*/ 1

(,Bs x)2j+l

= 0 onthe hyperplanér,x) =0  (27)
BeA
B«
forj=1,2,...,m,.
We will call Egs. (27)locus equationsfollowing Airault, McKean and Moser [13],
who used this terminology in the one-dimensional case. The configur&iomkich
satisfy the locus equations we will cédicus configurations
The remarkable fact is that the locus equations (27) are not only necessary, but are
also sufficient for the existence of the BA function. We will give the proof following the
paper [21].
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Theorem 3.1. For any locus configuratio® the BA functiony (k, x) does exist and
can be given by the following Berest's formula:

Yk, x) = (=" MIAGK)I L+ Y] ] (@ x)™expk, x)),  (28)
acA

whereM =3 1mq, Ak) =[] cqa, ).

Proof. Let's consider the linear spadewhich consists of the functions(x), x € C*,
with the following analytic properties:

1) ¢(x) [[4ea(e x)™« is holomorphic inC";
2) for eacha € A the Laurent expansion (15) fgr should not contain the terms of
order—mgy +2j —1(j =1,...,my), i.€. the conditions (20) hold.

The basic observation is the following

Lemma. The spacé/ defined above is invariant under the Schrédinger operator with
the potential (26) provided that the locus conditions (27) are fulfilled.

It follows easily from the imposed conditions on the Laurent expansions imvthe
direction foru(x) and¢ € V.
Now let’s define the functiong; (i =0, 1, ...) in the following way:

0o = 1_[ (o, x)™exp(k, x)
acA

and
giv1= (L +Kk*)pi. (29)

It's obvious thatypg belongs toV, hence by the lemmeg; also belongs td’. From the
definition of these functions and the property Joit is clear thaty; can be presented in
theformg; = R; (k, x)exp(k, x), whereR; = Q; [[,c 4 (@, x)~"« for some polynomial
Q;(k, x). From (29) it follows that the degrees of the polynomi@sin x decrease:
degQ;+1 < degQ;. Therefore, for som& ¢y # 0 butpy41 = (L+k%¢y =0.Thus,
¢ = @y is an eigenfunction for the Schrédinger operatoiLet’s prove thatV in fact
equalsM =}, 4 mq. If we denote bny’ the highest homogeneous termsifin x,
we see from (29) that

RO =2 k;o/ox; (RP).
j=1
From this we obtain immediately that for= M = )" 4 mq,
Ry = (=2"M! [T (e k)™ (30)

acA

From this we conclude that fér> M R; (which is polynomial ink) will be of negative
degree inc. Thus, it cannot be an eigenfunction for the Schrédinger opefab@cause
of the following lemma due to F.A.Berezin [22].

Lemma. If a quasipolynomialy in k ¥ = P(k, x)exp(k, x) satisfies the Schrédinger
equation(—A + u(x))y = —k?y, then the highest term ihof the polynomialP must
be polynomial inx.
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This contradiction proves that the last non-zero function in the sequence (29) is
oum - Moreover, sincepy, belongs to the spacé we obtain using (30) that (k, x) =
(R%)_l‘PM satisfies axiomatics (7),(8) in as well as ink according to Theorem 2.3.

So, we proved that (k, x) defined by formula (28) is the BA function associated to a
configuration4d. O

Remark. The remarkable formula (28) far was discovered by Yu. Berest ([18]), who
proved that ifyy does exist then it should have the form (28).

4. Analysis of the Locus Equations and Locus Configurations

The next step would be to classify all the solutions of the locus equatiotiss(con-
figurationg. Unfortunately, this problem seems to be very difficult. In this section we
present some results in this direction and all the known examples.

4.1. Coxeter systemd he most natural examples of the locus configurations are given
by the mirrors of the Coxeter groups. Recall that a Coxeter gigup by definition a

finite group generated by some orthogonal reflectigris) = x — Z(S‘;“))a with respect
to hyperplanes iR" (see [23]). If we consider all the reflections from the Coxeter group
W, then the sef! of the corresponding hyperplanes x) = 0 will be invariant under

the action ofW. The configuratior( of these hyperplanes with arbitrai-invariant
multiplicities m, € Z4 gives an example of locus configuration. This fact follows
immediately from the symmetry of the corresponding potentia) with respect to any
reflections,, o € A.

In this case the Schrédinger operatas the quantum Hamiltonian of the generalised
Calogero — Moser system (see [24,6]). The existence of the BA function for the root
system of typed,, with m, = 1 was proved in [4], where some explicit formula ffr
has been found. This was done for the general Coxeter system in [5], using Heckman'’s
formula [7] for the so-called shift operators in terms of the Dunkl operators [25]. Notice
that our approach gives a new proof of this result.

Remark.In principle, one may try to extend these examples to the complex case, by
considering a finite group generated by orthogonal reflections in complex Euclidean
space. However, it is known (see e.g. [26]) that all such groups are nothing but the
complexified Coxeter groups.

4.2. Deformed root system3.he first non-Coxeter locus configuratiar (m) was in-
troduced in [8]. It consists of the following vectorsRY1: ¢; — e;j with multiplicity m
(1 <i < j <n)ande; — \/me,11 with multiplicity 1 (i = 1, ... , n). Notice that for
m = 1 we have the root syster),. We can allow the parameterto be negative simply
by considering the vectoks — ¢; with the multiplicity —1 — m in that case (then, of
course, we will have a complex configurationGA™1).

The Corresponding Schrodinger operator has the form:

2m(m + 1) 2(m + 1)
=at ; (x;i — x/)z Z; (xi — ﬂxn-‘rl)z. 1)
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A(m) | 1

m
A cosO = L
m+1

Figure 1.

ca(m, & 1 ¢ /1
2¢ = m—f
coszé = m+l+1

Figure 2.

In the simplest nontrivial case= 2 we have the following configuration (see Fig. 1).

The next example is related to the root systenf'pitype. Let’s consider the following
set of vectors iR

e te with multiplicity &
2e¢; with multiplicity m
2Vke,41  with multiplicity [
ei £ v/ke, 1 with multiplicity 1

C’H—l(ms l) =

wherel andm are integer parameters such that % €Z,1<i < j<n.Inthecase

of the C2(m, [)-system the parameters [ can be arbitrary integers; the corresponding

guantum problem was considered in [8,9]. The corresponding configuration has the form
shown in Fig. 2.
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Forn > 1 the corresponding Schrédinger operator has the form:

" Ak(k+ D&+ AD Emm 4+ D)
J

i<j i i

i-1 N
(32)

LAk 4+ D(x? +kx2, )

1i+1)
2 + Z ( 2 _ py2 )2 ’
Xn+1 i=1 Xi X1

wherek = 2L In the casé = m the systenC,,1(m, [) coincides with the classical

root systemC,,;1 (or D,+1 for Il = m = 0). Again, as for thed, (m) system, the
parameters, [, m may be negative; in that case the corresponding multiplicities in (4.2)
should be-1 — k, —1 — m or —1 — [ respectively.

The simplest way to check the validity of the locus equations for these configurations
is to use the following important property of system (27):

Theorem 4.1. A configuration®( satisfies the locus equations (27) if and only if each
two-dimensional subsystem dfgives a locus configuration. In other words, for each
two-dimensional plang C C" the vectorsx € AN with their multiplicitiesm,, must
satisfy the locus equations.

Remark.Notice the analogy with the similar property of the Coxeter and root systems.

Proof. Let us denote bﬁ the orthogonal projection of a vect@ronto the hyperplane

(a, x) = 0, then(B, x) = (B8, x) on this hyperplane. Let denote the two-dimensional
plane spanned by andy # «. Then the subsum of (27) ovgr € = becomes pro-
portional to(7, x) ~%/~1 restricted to the hyperplarie, x) = 0. All these subsums for
different two-dimensional hyperplanes are independent, so we come to the following
equivalent form of (27): for any two-dimensional plane= C" and for eacle € ANw

andj =1,...,mg,

Y mpmp+ (B, B, HZ (B, x) Pt =0for (@, x) =0.  (33)

Be Anm
B#a

That gives the statement of the theorem.

If we analyse the configurations, (m) andC,,11(m, [) from this point of view, we
will have in each two-dimensional plane either a usual root system or one of their defor-
mationsA>(m) andCa(m, ). For these two cases the locus equations can be checked
by direct calculation.

One can see that our configuratiotygm) andC,,1(m, [) have one common feature:
they are obtained from Coxeter configurations by adding a special orbit of the Coxeter
group with multiplicity 1 (a sort of “one-orbit deformation” of a Coxeter configuration).
The following result demonstrates that such a property is not accidental: the hyperplanes
with large multiplicities always form a Coxeter subsystem.

Definition. Let’s say that the hyperplari@s € 2( has a large multiplicityn g if in each
two-dimensional plane containing the vecbthere are no more thamg + 1 vectors
from A (without taking into account the multiplicities).
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Theorem 4.2. The setB c 21 of all hyperplanes with large multiplicities forms a
Coxeter configuration and all other hyperplanes and their multiplicities are invariant
under the action of this Coxeter group.

Proof. We shall prove that for eaclg < B the corresponding reflection preserves
the setl together with multiplicities. This implies, in particular, that(B) C B. To
prove the invariance d¥ undersg let's consider as in Theorem 4.1 an arbitrary two-
dimensional planer, which containg3, and the corresponding two-dimensional locus
equation (33):

> mymy + D )BTy ) g n=0=0,
yeANt
y#B

wherej = 1,...,mg. Now we look at these equations for fixed generias a linear
system for unknowns, = m,, (m, + 1)(y, ¥)(B, y) (¥, x)~3 of the form

i—1
B .
2w (ﬁ) lpv=0=0 j=1....mp. (34)
y2p N

We need the following elementary lemma:

Lemma. If three unit vectors, y, ¥’ belong to some two-dimensional subspac€’in
and

B _ (6.7
(v, x)? (/. x)?

for all x such that(8, x) = O then eithery = £y’ or sg(y) = +y’.

Let's regroup the terms in (34) into the groups corresponding to different values of

2
%' From the properties of the Vandermond determinant we easily conclude that the

sum ofz,, in each group should vanish. On the other hand, using the lemma we see that
there are only two terms in each group, and they correspond to the pairs of yectors

with sg(y) = £y’ Finally, we arrive at the conditiogy, + z,|(s,»)—o0 = 0, which gives
my(my, +1) =m, (m, +1),i.e.m, =m,. 0O

Remark.The Schrédinger operators (31), (32) remain integrable in a usual (Liouville)
sense for the general (non-integer) values of the parammatdrshere exists at least

n = dimV independent commuting operatats = L, Lo, ..., L,. Indeed, for the

A, (m) case fn is integer) it's easy to check that the polynomigls= k] + &5+ ... +

k), +m%k;+l (s =1, 2,...)satisfy the conditions (11) and, according to Theorem 1.2,
there exist differential operatofs;, with the highest symbolg; such thatL;y = psy

and thereforé¢L, L;] = 0. Since the coefficients of these operators depengimarnn a
rational way, (see the explicit formula (12)) one can define such operators for ganeral
Fors = 2 one has the Schrodinger operator (31), and dtheive its quantum integrals.

In the case of th&,,1(m, [)-system similar arguments prove the integrability of the
Schrddinger operator (32) for the generah, and the commuting quantum integrals

L, have the symbol, = k2* + ... + k2 +¢* %2 (g = FH s =1.2,...).
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4.3. Locus configurations on the planéu. Berest and |. Lutsenko [11] in the context
of Huygens’ Principle have introduced the following family of the real potentiaie
the real plane. In polar coordinates they have the form

2 92

where
Xxj(p) =coskjp+0;),ky >...> ki >0,
kj (S N, Qj eR

andW(xa, ..., xm]is the Wronskian o1, ..., xum-

One can consider the natural complexification of the Berest—Lutsenko family in the
following way. The set of all non-isotropic lines i@ is isomorphic to the cylinder
C* ~ CP1\{0, oo} and can be parametrised by a complex paramsi®ods),

X COSp + ysing = 0.

Any configuration corresponds to a finite number of pointin ¢1, ..., ¢y with
multiplicitiesmy, ... , my. The corresponding potential has the form
mj(m;j +1) (mj +
36
r2 Z S|n2(<p (pj (36)

wherer? = x2 + y2 € C\{0} andg(modr) = arctan)XC. The complex Berest-Lutsenko
potentials given by formula (35) with tr@omplexparameter®;, have the form (36)

with ¢; being the roots of the trigonometric polynomial[¢]; their multiplicities are
known to have a “triangular” formmf(m—JJ’l) (see [13)).

Theorem 4.3. All the locus configurations on the plane are determined by the complex
Berest—Lutsenko formula (35).

Proof. First of all the locus equations (27) in this case are equivalent to the following

one-dimensional locus equations (cf. [13]) for the potentigl) = Z;V:l %:
J

<—> ZM —0 (=1...,N,s=12,....m).
de = sif(p — ¢))
P=9i
Now we can use the result from [21], which says that in its turn this is equivalent to the
existence of the differential operatér with -periodic coefficients, intertwining the

_ _d* ; _ _d?.
operatorl = g7 + v(p) with Lo = Pk

LoD =DoLg. (37)

The idea of the proof is close to the one demonstrated in the proof of Theorem 3.1, and
we shall not reproduce it here.

So, the only remaining thing to prove is that relation (37) implies thatan be
obtained fromLg by classical Darboux transformations. Let's assume théias the
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minimal order among all the intertwiners @f and £y and consider its kernel/ =
KerD. As it follows from (37)V is invariant undeilo: if Df = 0thenD(Lof) =
LDf = 0. Due tor-periodicity of the coefficients oD, Ker D is also invariant under
the shiftT : f(¢) — f(¢ + 7).

We would like to show that the spectrum £§|y is simple and has the form
k3, k3, ... k%), where 0< k1 < k2 < ... < ky are some integers. Suppose that there
exists an eigenfunctiofi e V with the eigenvalue. k2, k € Z. SinceLo commutes
with T, we can assume thgtis a Bloch eigenfunction:

{ﬁof=)~f
Tf=unf"

If A # k2, f has to be a pure exponent:= CeV=he orf = Ce V=0, SinceDf =0
the operatotD can be factorised as

~ d f
D=DoF, F=——*>—,
dy f
whereD is an-periodic differential operator of order one less thar{see e.g. [27]).
Whenf = CetV=* we haveF = j—(pi«/—k andLoDoF = DoFolg= DoLgoF.

ThusLoD =Do Lo, soD is also an intertwiner with order one less than the order of
D.

Thus the spectrum ofg|y consists only of the squares of integers= k2, k € Z.
The same arguments show that# 0. So we have only to prove that the spectrum
is simple. First of all there could be only one eigenfunction, corresponding to a given
L = k2. Indeed, otherwis& er D contains the whol& er (Lo — 1) and thereforeD
can be factorised a® = Dj o (Lo — A) with D1 being another intertwiner of less
order. Suppose thaty has a Jordan block with = k°. Consider the Jordan basis
fo, f1,...: (Lo—A) fo=0, (Lo—A) f1 = fo,....Sincefpcan not be a pure exponent
(see above)fo = A cogke + 0p), thenf, = % sin(ky + 6g) + B cogke + 61). Now
from the invariance oK er D under the shif” we conclude tha% sin(ky + 6p) also
belongs toKer D. Together withfp the last function generatdser (Lo — 1), which
leads to factorisatio® = D o (Lo — 1) and reducibility ofD.

Thus we have proven thater D is generated by the functions, . . . , x, of the form
xj = codk;p + 6;). The general formula (see e.qg. [29]) from the theory of Darboux

transformations says that= —de—(pzz logW(x1, ..., xa]- The theorem is proveno

We should mention that although the formula (35) is explicit, it is not so easy to
extract the geometric information about the locus configurations. For example, it is not
clear how to prove the following theorem using this formula.

It is very easy to show that all two-line locus configurations consist of two perpen-
dicular lines with arbitrary multiplicities. Let’s consider the first non-trivial case of three
lines (@, x) = 0, (8,x) = 0 and(y,x) = 0, x € C2 with arbitrary multiplicities
mgq, mg, m, € Z,, and ask when they form a locus configuration. Modulo the natural
rotational equivalence we have the following classification.

Theorem 4.4. All the three line locus configurations are listed below:

1) the CoxeterA, configuration with multiplicitiegm, m, m);
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2) the deformedi,(m) configuration (31) with multiplicitiesl, 1, m) whenm is posi-
tive and(1, 1, —m — 1) whenm is negative;

3) the three line complex Berest—Lutsenko configurations, which can be parametrised
in this case as:

a=1a),8=0b),y=01:a°—ab+b>+1=0,
with multiplicities(1, 1, 1).

Proof. Let A be an arbitrary three line locus configuration. Let us consider the first
case whe®( has at least two lines with multiplicities greater than 1. Then Theorem 4.2
states tha®( has to be a Coxetefs-system. Now let us suppose that there is only one

vectory = (0, 1) with multiplicity m > 1. Theorem 4.2 states that other two vectors

have to be symmetric with respect to the vectorso we may fix the normalisation

a = (1,1), B= (1, —A). The locus equation (27) fer has the form:

2L+ 21— A% m(m+ D

=0 if x+xrxy=0.

(x —ay)3 y3
From that it immediately follows that can take only the following values: =
+—-L_ 4+—_L_ anditis easy to check th&t is equivalent to the systemz(m)

V2m+1’ T 2m+1 . k
or A»(—m — 1). The last case we have to consider is the case when all three vectors

a=1,a), 8 =(@{1,>b),y = (0,1) have multiplicity 1. The locus equation (27) for the
vectory takes the form

2a(@®>+1) 2b(h%2+1) .
3 5 =0 ify=0
(x +ay) (x + by)

or
(a+b)@®+b%—ab+1) =0.

The locus equations (27) correspondingitands can be written as follows:

14+a®>A+ab)+ba—b3=0
A+b5A+ab)y+ab—a)®=0"

In the case: 4+ b = 0 this system of equations is fulfilled if and onlyaf = %, which
implies thatl is either the Coxeter systenyp or the deformed systemz(—2). In the
caser? + b% — ab+ 1 = 0 the above system holds automatically without any additional
restrictions. Thus, the theorem is provemn.

Remark 1.We should mention that some of the configurations 3) contain an isotropic
line (@ = +i,b = 0 ora = 0,b = +i) and therefore actually reduce to the two-line
configurations. Notice also that when= i //3 = —b we have a»(—2) configuration.

Remark 2.1t can be checked that for the configurations 3) from Theorem 4.4 the function
¢ with the properties (13—-14) doesn't exist. This demonstrates that the converse for the
statement of Corollary 2.7 is not true.

Notice that from this result it follows that the locusmofines is non-empty only for
the special sets of multiplicities. Moreover, if the locus configuration is real then the set
of multiplicities determines it uniquely up to rotation due to the following result.
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Theorem 4.5. There exists no more than one locus configuratioRfwith a given
cyclically ordered set of multiplicities.

Proof. Let A = {«1, ... , ax} be such a configuration for a given set of multiplicities
{m1, ... ,my}, and let us fix the normalisatian = (— sing;, cosg;), 0 < @1 < o <
... < ¢y < . Considering the locus equations, we have, in particular, that

ﬁérn;@n,4—1>cos¢j——¢»

= sin(g; — @i)
J#i

=0fori=1...,N.

Let's now introduce the function

ilmi +Dmjom;+1
U1, ... ,0N) = Zm (msmz(;:n_f(zf) )'

i<j

We conclude that ifb = (¢4, ... , ¢n) defines a locus configuration then necessarily

d
—U(p1,...,0n) =0.
0¢;

FunctionU being a sum of convex functions is a convex function in the domaing <
@2 < ... < m.Suppose it has one more extremum in the pdirt (¢1, ..., @y). Then

U1, ..., en) should be a constant along the segment (& — ®)t, 0 <t <1, as

well as each functioﬁ%. From that it follows tha; = ¢; + ¢g for some

J
constantyg for all i. This means that systefw;} is defined uniquely up to a rotation.
O

Corollary 4.6. If all the multiplicities are equal then the only real configuration on the
plane is Coxeter, i.e. dihedral.

The consideration of all two-dimensional subsystems implies the following more general
result.

Corollary 4.7. Any real locus configurations iR" with equal multiplicities must be
Coxeter.

5. Affine Locus

In this section we present some results concerning the case when the singular set of the
potentialx (x) of the Schrodinger operator is an affine configurat®mf hyperplanes.
So, we consider a Schrédinger operatos — A + u(x) with rational potential having
second order poles along some non-isotropic hyperplan€g.ihet (o, x) + ¢ = 0
(s = 1,..., K) be the equations of these hyperplanes. We will suppose also that the
potentialu(x) decays at infinity, i.eu(x) — 0 whilex — oo along the rays outside
singularities.

Impose now the condition thathas local trivial monodromy around its singularities.
Then Theorem 2.1 from Sect. 2 allows us to reformulate this condition as some algebraic



552 O. A. Chalykh, M. V. Feigin, A. P. Veselov

conditions on the arrangeme@t of the singular hyperplange;, x) 4+ c¢; = 0. First of
all, it follows that the potentiak (x) must be of the form

K
_ mj(mj—i—l)(otj,otj)
n = ; (@) 0 +¢))? 9

forsomeintegeray, ... , mg. Thenconditions (19) imply that the Schrédinger operator
with the potential of the form (38) has local trivial monodromy around its singularities
if and only if the following relations are satisfied:

)Zs—l

Z mj(m; + D(aj, aj)(a;, a;

((ej, x) 4+ )=+t 0 55

J#F

identically on the hyperplang;, x) +¢; =0foralli =1,... ,Kands =1,... ,m;.

We will call the relations (39)ocus equationsThe equations (27) from Sect. 3 are
their particular case, when all the hyperplanes pass through the origin. Sometimes we
will refer to (39) and (27) as to affine and linear cases respectively.

As it follows from Sect. 2, the locus equations (39) are necessary for the existence of
a certain eigenfunction of the corresponding Schrddinger opetgege Theorem 2.2).

As well as in the linear case (Sect. 3) Egs. (39) are sufficient for this. The following
result has been proven in [21].

Theorem 5.1. Let L = —A + u(x) be a Schrddinger operator with the potential of the
form (38) which satisfies the affine locus equations (39). Thieas an eigenfunction
of the forme (k, x) = P (k, x)exp(k, x), whereP is a polynomial ink, L¢ = —k%p.

This eigenfunction (up to a normalization factor ) is given by Berest’s formula anal-
ogous to (28):

K
Yk, x) = [(=2" MIC ()] (L + kM H (@), x) +¢;)" exp(k,x)],  (40)

whereM = Zlemj andC (k) = 1_[;(:1(0!]', k)™ . The normalization is chosen in such
away thaty (k, x) = (1 + o(1))exp(k, x) ask — oc.

We start the analysis of the affine locus equations and their solutions (locus configu-
rations) from the one-dimensional case.

5.1. One-dimensional casén this case we have a configurationfopointszy, ... , zx
with multiplicitiesm1, ... , mg on the complex plane and the potential

K
M(Z)szj(mj+1).

— -.)2
j=1 (@=z))

The locus equations in this case (far; = 1) have been introduced in the paper by
Airault, McKean and Moser [13]. Duistermaat and Griinbaum [14] obtained them for
the general multiplicities and proved that they are equivalent to the existence of the
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differential operatorD with rational coefficients, intertwining, = —di:; + u(z) and
) :
Lo= —;7!

LoD =DolLyg.

All such operatord. are the results of the classical Darboux transformations applied to
Lo, so the potentiak(z) can be given in this case in terms of the Wronskians by the
well-known explicit formula:

d2
u(z) = —ZP logWixs, ..., xml

where the polynomialg, . .. , x, are defined by the recurrent relations = 0, x; =

X1 .- X = xm—1 (see Burchnall-Chaundy [32], Adler—Moser [15]). The Wronskian
is a polynomialP,,(z, c1, ... , cy) With the coefficients depending on the additional
integration constants,, ... , ¢, (see [15] for the details).

Thus, the locus in the one-dimensional case is a union of the rational algebraic
varieties of the dimensions = 1, 2, 3, ..., parametrised by, . .. , ¢, and the locus
configurations are simply the roots of the corresponding Schur polyno®jdls c1,

., ¢m). The solutiomyr of the corresponding Schrédinger equatiett” + u(z)y =
—12y has the form

m

Vo= (1 + Zai (Z)Ai) e, (42)
i=1

This is a degenerate rational case of the hyperelliptic BA function, corresponding to a

general finite-gap operator [2]. These rational BA functign@l1) are characterized by

the following properties in the spectral parameter (cf. [33]).4s¢t. . , &, be arbitrary

parametersy;, be the Laurent coefficients gfata = 0:¢ = 3 >°  A%y(z). Impose

the followingm linear conditions on the coefficients_,,, ... , ¥, —1:
m
wm—l + Z Esz—Zs =0
=1
mo1
wm73 + Z stmfzs'fZ =0
s=1

m? : (42)
Ym-5+ 21 EsVUm—2s—4 = 0

'w.;m—&-l + "Elw—m =0

They are equivalent to a non-degenerate systenmfanknown functionsz; (z) and
determineyr of the form (41) uniquely. The usual arguments [1,33] show that such a
function satisfies the Schrodinger equatiott” + u(z)y = —A%y with the rational
potential

u(z) = 2a3(z). (43)
Notice that for givergy, . .. , &, the system (42) determinegadimensional linear sub-
spaceV (&1, ... , &,) in C¥" and therefore corresponds to a point of the Grassmannian
Gr(m, 2m). It is more convenient to identify the system of conditions (42) with a point
of some infinite-dimensional Grassmanniﬁméz) (see [33] for the details). Namely,

let's consider the linear spa€¥[A]] of formal series im., and letW be a subspace of
CI[[A]] with the following properties:
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1) A"C[A] € W C A~™C[A], whereC[A] is the space of polynomials and both inclu-
sions have the same codimensian
2) MW CW.

We will suppose that the number= m (W) in 1) cannot be reduced. The set of all such
subspaces forn =0, 1, 2, ... we will denote aﬁréz) following [33].

It is easy to see that the subspaceCdfir]] consisting of all Laurent serieg =
Y+ Ay, which satisfy the conditions (42) represent nothing but a general point of

S=—m
Gréz). In these notations the one-dimensional BA function correspondinig te the
unique elementry of the form (41), such that its Laurent expansion. at 0 belongs
to W for eachz. We will denote byuw the corresponding potential (43).

These considerations suggest the following extension of the axiomatics (7-8) of the
multidimensional BA function.

5.2. Equipped configurations and BA functioniet A be again a finite set of non-
collinear vectors ilC" . We will prescribe to each vectare A a subspacW @ e Gr(()z),
and denote the corresponding integefW *)) asm,. We will call the corresponding

set of hyperplane$l, : («, k) = 0 with the prescribed subspacB&® the equipped
configuration2.

Definition. For a given equipped configuratig® the functiony (k, x) is called the
Baker—Akhiezer function if it satisfies the following two conditions:

1) ¢ has the form

. Pk, x) (k.x)
Y= —A(k) e , (44)

whereA(k) = [[,c4 (e, k)™, P is a polynomial ink with the highest terra (k);
2) for eacha € A the Laurent expansion af in k in the-direction calculated at any
point of the hyperplanél, must belong tav®).

Here by the Laurent expansion of a meromorphic functigh) in the ¢-direction at a
point ko we mean the Laurent expansion of the functfoir) = F (ko + Aa) atr = 0.

If for each subspacé/ @ the corresponding parametegsn (42) are zeros, our
definition reduces to the definition of the BA function from Sect. 1. Now we will prove
the analogues of Theorems 1.1, 1.2 for a general equipped configuration.

Theorem 5.2. If for a given equipped configuratict there exists a BA functiog then
it is unigue and satisfies the Schrodinger equation

(—A + ) (@, @)ug((@, x))) ¥ =k, (45)
acA

whereu, (z) = uy« (z) are the one-dimensional potentials, corresponding to the sub-
spacesv @,
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Theorem 5.3. LetR be the ring of polynomialg (k) with the following properties: for
eacha € A and any pointg € I, the polynomialfy x, () = f (ko + Ax) preserves
the spaceW @: f, ;W& c W®,

If the Baker—Akhiezer functiotr (k, x) exists then for any polynomigi(k) € R
there exists some differential operatby (x, %) such that

Lk, x) = f()y(k, x).

All such operators form a commutative ring isomorphic to the figrhe Schrodinger
operator (45) corresponds tf(k) = —k2.

The proofs of the theorems above follow in a standard way (cf. [4]) from the following
two lemmas.

Lemma 1. If some functiony of the form (44) (without the restrictions on the highest
term of the polynomiaP) satisfies conditions 2 from the definition of the BA function
then the highest term iR must be divisible byA (k) = [, 4 (o, k).

Lemma 2. The BA function corresponding to an equipped configuraBomas the
following asymptotic behaviour at infinity:

¥ (k, x) = exp(k, x) <1+ Y a* (. o) o(k—1>) :
acA (e, k)

Whereai‘)‘) (z) are the first coefficients in the corresponding functions (4d)= ¥y

ando(k—1) means the rational function of k with degree less thdn

To prove the lemmas, let's expardin Laurent series ifia, k) on the hyperplane
(a, k) = 0. For convenience we may suppose thatr) = 1 and choose the orthonormal
basis ink such thatl«, k) = k1, the other coordinatds, . .. , k, we shall denote bﬁ.
Then up to the non-essential factorp (koxo + . .. + k,x,,) Y¥-function (44) takes the
form:

Pk, x) =™ 3" Kas(k, x), (46)

§>—mygy

and the Laurent coefficients are ~ra}ional functions of with possible singularities at
zeros of homogeneous polynomilk) = k; ™ A(k)|i,—o. Since the SU"Zsz_ma kias

is the Laurent expansion feﬁ%, the degrees i of its coefficientss, decrease at
s — oo (by definition, de% = degp —degy). Now we restrict our attention to the terms
kijay with the maximal degree af; in k. From the remark above it follows that we have

a finite number of such terms, and if we extract the highest homogeneous part in
each term, we obtain the following finite expression:

POy, x) = e 3" kjal(k, x), (47)

S>—my

wherea? is the highest term im; and all thez? have the same degreefnlt is clear

now that constructed in that way® must obey the same restrictions (42). This implies,
in particular, that the sum (47) contains at least one term with0. The outcome is
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that if we expandP (k, x) in the seriesirky, P = ijo k{pj (k), and then extract from

this sum the terms with the maximal degreekirthe result must contain at least one
term with j > m,. Now let’s presenf’ as a sum of componen8= Py + P1 + ...,
homogeneous iky, ... . , k, and suppose that the highest tePgis not divisible byk;".

In this case some other terf must contairky"*, but its degree it is clearly less than
the degree of the term coming froRy. This contradiction proves Lemma 1.

Moreover, in the extreme case wheghas the formPy = kT“ Qo with Qolx,=0 # 0,
the reducedy-function (47) up to a factor coincides with the one-dimensional BA
function (41)y (k1, x1). It's easy to see that this factor is simph|x,—o.

In particular, this implies that the second homogeneous t®yriim P (k, x) for the
BA function ¢ satisfies the following condition:

Kp] = [k Po]
[ 1 o ai(x1)| ks " Po k10
wherea; is the first coefficient in the corresponding one-dimensional BA function (41).
We obtained this formula under the assumption thatr) = 1, in general it looks as
follows:

[(@pp] = @oa@o)@b ™ P, @8)

(a,k)

Taking into account the restrictions (48) for all the hyperplanes) = 0, we obtain
that if P = A(k) = [[,c4 (e k)™, then

(o, @)

(a, k)

Py=AK) Y ai” (@, x))
acA

: (49)

which proves Lemma 2.

Let's consider now for a given equipped configuratifrthe corresponding Schro-
dinger operator (45). It is clear that the potential has the form (38). The corresponding
affine configuration of the hyperplan€swe will call dualto the equipped configuration
2. Suppose that the corresponding BA function does exist, then from Theorem 2.2 we
conclude that the Schrddinger operator (45) has local trivial monodromy and hence
satisfies the locus equations (39). In other words, the dual configur@&tiorust be a
locus configuration. We believe that the converse is true, thedichlocus configuration
appears in such way for appropriate BA function. Part 2 of Theorem 5.6 below shows that
each locus configuration is dual to some equipped configuration. So, the only problem is
to check that for the function defined by the formula (40) Properties 2 from the definition
of the BA function hold. Unfortunately, we couldn’t find a proof for this. We can only
remark that for all known affine locus configurations it is true.

5.3. Geometry of affine locus:irst of all, itis easy to check that the following operations
preserve the locus equations and therefore allow to produce the locus configurations:

1) motions of the complex Euclidean spdc&

2) extensions of the configurations @ to C™, m > n, induced by an orthogonal
projectionC™ — C";

3) union of two configurations which are orthogonal to each other.
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At the moment all known examples of the affine locus configurations can be constructed
using these operations from one-dimensional affine and multidimensional linear locus
configurations.

In particular, this is true for the configurations, corresponding to the operators intro-
duced by Yu. Berest and P.Winternitz [16]. Analysis of these examples, however, reveals
one more geometric way to produce the locus configurations.

Let & be any affine configuration of hyperplanesdh. Let's imbedC” in C"*2 in
the following way:x = (x1,...,x,) = (x1,..., X, 1, 0). For any hyperplanél in
C" let's define the hyperplan8 in C"*2 as a linear span dii ¢ C" c C"*2 and the
isotropic vectore = (0, ..., 0, 1,i). If (o, x) + ¢ = O is the equation ofT in C" then
the corresponding equation Bf will be (o, x) + c(x;41 + ix,42) = 0.

The corresponding configuratia® in C"*2 we will call isotropic projectivisation
of &.

Theorem 5.4. The isotropic projectivisation of an affine locus configuratignin C”
is a linear locus configuratioi in C"*2,

Proof. We shall check the first of the locus equations(%),rthe others can be checked in
the same way. So, we need to prove that on a hypergane) + cs (x,+1+ix,+2) =0
the following identity holds:

Z mj(m;+ 1)(a;, a;)(as, a;) —0
s ((Olj» x) + Cj (xn+1 + ixn+2))3 '
whered; denotes the normal vector of the hyperpldiig c C"+2. If [1; c C* has
the the normal vectar; = (j, ..., &}), theng; is the vector(aj, ... , &}, ¢;, ic)).
From that we immediately see th@t;, &;) = (a;, ;) and(ay, &;) = (o, o). Now
sincer = x,41 + ix,+2 # 0 almost everywhere on the hyperplaog, x) + ¢ (x,41 +
ix,+2) = 0 we come to the identity

Z mj(m;+ D(aj, aj)(as, o))

0
((aj, x) +cjr)®

j#s
for (ay, x) 4+ c;A = 0. But this identity after rescaling — Ax takes the form

0 for (o,x)+cs=0,

Z mj(mj + 1)((,¥j,0lj)(015, aj)

o ((aj, x) + cj)3

which is exactly the first locus equation for the configurai®n O

Example.Let & be a direct sum of three-point one-dimensional configurations with the
corresponding potential

n 4
6x;" — 127;x;
u(xi, ... ,xp) = _—.
( 1 }’l) ; (xzs + ‘Cl-)z
Then after the isotropic projectivisation we obtain the locus configuration with the po-
tential of the form (cf. [16]):

n

Iz(xly LN xn+2) = Z

j=1

6)63-1 - lZTj (*n+1 + ixn+2)3xj

(3 + 7 (o1 + ix242)%)2
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In order to obtain a more general Berest—Winternitz's potential [16]

n

U(X1y .0, Xpt2) = Z

j=1

6)6;1 — 127 (g1 + ixpq2 + cj)3xj

O+ 7 (s + ixps2 + ¢))3)2

we should shift the pairwise-orthogonal triples of hyperplanes

1
xj+rj3(xn+1+ix,,+2) =0 (j=1,...,n)
by c; in x,41.

Remark.The BA function in this example can be obtained easily using the following
general remark. Ify; = R;(k, x)exp(k, x) (i =1, 2) are given by the formula (40) for
two orthogonal locus configuratioi®, and&; then the functiony = R Roexp(k, x)

will correspond to the locus configuratiod® = &1 &Sy This is clear from the
structure of formula (40).

Thus, iterating such geometric procedures one can construct many new affine locus
configurations. However, all of them are degenerate in the following sens&. (&}
be the linear space of the normals to all the hyperplanés.ixe call& degeneratéf
the restriction of the complex Euclidean form BiS) is degenerate.

For a degenerate affine configuration one can define the follagdhgpic reduction
procedure, which is inverse to the isotropic projectivisation.

Let K be the kernel of the restriction of the Euclidean form okt@S). Consider
the orthogonal complemet" of V in C" and choose a subspatesuch that

V+Vi=KaL.

By anisotropic reductiorof the degenerate configuratié we shall mean the config-
uration& N {a + L}, where{a + L} is a shift of L by a generic vectat € C".

Theorem 5.5. An isotropic reduction of a degenerate locus configuration is a non-
degenerate locus configuration.

The proof is similar to the case of isotropic projectivisation.

These results may be interpreted in two ways. First, we can say that any affine
locus configuration is a result of the isotropic reduction of some (degenerate) linear
configuration. So, the classification problem for affine locus configurations reduces to
the linear case. On the other hand, as we have shown, to classify all locus configurations it
is sufficient to consider non-degenerate configurations only. Moreover, we can consider
irreducible configurations only, i.e. exclude the unions of orthogonal subconfigurations.
At the moment all the known non-degenerate irreducible locus configurations are linear
or one-dimensional. It may well be the only possible examples.

The following general result clarifies the geometrical structure of affine locus con-
figurations.

Theorem 5.6. Any affine locus configuratio® has the following properties:

1) for each pointyg € C" the subse,, € & of the hyperplanes passing through
form a linear locus configuration;

2) for each hyperplanél € & the subse(IT) € & of the hyperplanes parallel to
IT forms an extended one-dimensional locus configuration.



Multidimensional Baker—Akhiezer Functions and Huygens'’ Principle 559

Conversely, any affine configuration with properties (1), (2) belongs to the locus.

Proof. (1) Let’s consider the locus equations for some hyperplane (o;, x) +¢; =0
passing throughy:

Z mj(mj + 1)(01.,', Otj)(Oll', Olj)zs_l

((aj, x) +cj)>+t =0 for x e I1;, (50)

J#
s=1...,m;.

Now takex = xo+ y, thenx € IT; iff («;, y) = 0 and we have the following relation:

0

2:’WWU+DWpaﬂWh%ykl Ezfmmu+nmwamﬂw%4
P (aj, )=+t (ak, x0) +ex+(ag, ))& +1
J#i

k:xo¢ Ik

for all y such that(w;, y) = 0. Since the second sum is regulawvat 0, the first sum
should vanish on the hyperplaie;, y) = 0. Thus, we obtain a linear locus equation
for the configuratiorsS,,.

(2) To prove the second property, let’s divide all the hyperplanes which are non-parallel
to IT into the subgroups in the following wayl’ andI1” belong to the same group
if and only if their intersection is contained ifi. Then in each group the sum of the
corresponding terms in (50) should vanish due to the property (1). The remaining terms
are exactly the locus equation for the set of parallel pla&€R).

The converse statement now is clear.

We conclude this section by some negative results about locus configuratiRbs in

Theorem 5.7. For any locus configuration in the real plane there exists a point all the
lines pass through.

Proof. First we note that parallel lines cannot appear in locus configuratiof&.in
Indeed, the subset of parallel lines according to the previous theorem must give a real
solution for the one-dimensional locus equations, which is impossible.

Now let’s fix some terminology: by vertices we will mean the intersection points for
the lines from the configuration and by a ray — any ray from the configuration with the
origin at some vertex (some rays may contain other vertices). Let's choose an orientation
on the plane. This allows us to determine the oriented am@lel2) between the ordered
pair of raysi1, I, which varies from—x to . We need the following property of the
locus configurations iR

Lemma. For each rayl; from the locus configuration iR? there exists another ralg
with the same vertex and acute angle betwigemd/>:

0<¢@J25%.

Similarly, there exists a rajg with the same vertex such tha% < ¢(l1,13) < 0.

Proof of the lemma follows from the linear locus equations (27) for the lines passing
through a given vertex: it's clear that the sign of each term in it depends only on the sign
of the cotangent of the oriented angle betweeandg.
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Lemma. Letl; andl; be chosen as in the previous lemma. Thép éontains another
vertex of the configuration, the same is trueffor

The proof follows from simple geometrical considerations.
Let’s consider now any vertex and all the rays of our configuration outgoing from
this vertex. As it easily follows from the lemmas we have only two possibilities:

1) there are no other vertices on these rays or
2) there is at least one more vertex on each ray.

Since we have a finite number of vertices, we obtain immediately that our configuration
has only one vertex. The Theorem is proven.

The same is probably true iR" but at the moment we can prove this only in the
special case when all the multiplicities are equal.

Theorem 5.8. Any affine locus configuration R” with equal multiplicities is a linear
Coxeter configuration.

Proof. It's sufficient to prove that the configuration must be symmetric with respect
to each of its hyperplanes. Since parallel hyperplanes cannot appear in a real locus
configuration, the statement follows from Theorem 5.6 and Corollary 417.

6. Locus Configurations and Huygens’ Principle
Let us consider a linear hyperbolic equation

Lo(x) =0, L=0n41+ux), (51)

whereOy 1 is the D’Alembert operatofly 1 = aijg — 8%212 - .= 3%27

We say after J.Hadamard [30] that it satisfiisygens’ Principle(ng) if its funda-
mental solution is located on the characteristic conoid, i.e. this solution vanishes in the
conoid’s complement.

Hadamard found some criterion for HP to be satisfied in terms of the so-called Ha-
damard coefficient®, (x, £). They are uniquely determined by the following system of
equations:

1
= _E‘C(Uv—l) (52)

Z(xt ét

andthe conditionsthéfp(x, §) = 1andU, (x, &) areregular at = &. These coefficients
are symmetric with respect ioand¢: U, (x, ) = U, (€, x) (for the details see the book
[31]).

Hadamard proved that Eq. (51) satisfies Huygens’ Principle if and om¥yi&f odd
andU,|r = 0 forv > X1 wherel’ = {(x, &) : (x0 — £0)? — Y11 (x; — )% = 0}
is the characteristic conoid. For the case when the potenflahd, as a corollary, all
Hadamard'’s coefficients,) does not depend on at least one of the coordinatesx(gay,
Hadamard’s criterion is equivalent to the conditm% =0.
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We consider Hadamard'’s problem of the description of all huygensian equations of
the form:

(On41 +ulxg, ..., xy))p =0. (53)
In fact, in our case for any locus configuration@i the corresponding potential will
depend only on the first coordinates u = u(x1, ... ,x,), n < N.

It turns out that huygensian equations of the form (53) are closely related to the locus
configurations. For the linear locus configuratior@hthe corresponding potential

mg(mg + 1) (a, @)
u(x) = Z . (54)
aeA (@, x)2

is homogeneous of degree —2.

Theorem 6.1. For any real potentiali(x1, ... , x,) related to a linear locus configura-

tion the hyperbolic equation (53) satisfies HRVifis odd andV > 23 . 4 mq +3.In

that case the fundamental solution can be expressed via the BA function.
Conversely, if the hyperbolic equation (53) with homogeneous potetitigl 1 (Ax)

= A ~2yu(x) satisfies HP and all the Hadamard's coefficients are rational functions, then

the potentiaki(x) must have the form (54) for some linear locus configuration.

Proof. The proof of the first statement repeats the arguments of the paper [10], where
this result has been proven in the Coxeter case. It is based on the following relation
between the BA function and Hadamard's coefficients. If we have the Baker—Akhiezer
functionyr of the form (7), we can present it in the form

Y (&, x) = (Uo(§, x) + Ur(€, x) + ... + Upn (&, x))e®, (55)

whereUg = 1, U,(x, &) is homogeneous of degreev in &, M = degA(k) =
Y wed Mea. Sincey is symmetric ing andx (Theorem 2.3)[J, has the same degree in
x. From the Schrédinger equation (9) for Ly = —&£2y, L = —A + u(x), we obtain:

n
3 .
—2Z§i—Uv+L[UU,1]=0 (v=1,...,M+1withUpy,1 = 0).
o O

SinceU, are homogeneous in this implies the relations (52), s, coincide with
Hadamard'’s coefficients. Now siné&,1 = 0 Hadamard'’s criterion guarantees HP if
N > 2M+3. Notice that it gives also the explicit formula for the Hadamard’s coefficients
and the fundamental solution for (51) (see [10] for the details).

Conversely, from the chain (52) for Hadamard’s coefficiditéx, £) for the homo-
geneous potential it follows that U, are also homogeneous in(and, therefore, in
£):

Up(Ax, &) = 17 Up(x, §) = Uy(x, A§).

This can be proven by the same calculation as in Lemma 1 from [12], where the case
n = 2 was considered. Let's now consider the functipdefined by the formula (55).
Then, from the Hadamard chain (52) and homogeneity,at follows in the same way

as above thay satisfies the Schrodinger equation

(AN +u()y = —E%y.
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Notice that the potentiak(x) must be rational since all Hadamard’s coefficients are
supposed to be rational. This follows from the first equation of the Hadamard’s chain
(52). Now using Theorems 2.1 and 2.2 and the factitlia} is homogeneous of degree
(-2) we conclude that(x) has the form (54) for some locus configuratiom.

Remark.In the case when = 2, i.e.u = u(x1, x2), a stronger result (namely, without
the assumption that Hadamard’s coefficients are rational) follows from the results by Yu.
Berest and I. Lutsenko [11,12].

Now let's consider an arbitrary (affine) locus configurati&nsuch that the corre-
sponding potentiak(x) given by the formula (38) is real for real This is equivalent
to the condition& = &, where& is a natural complex conjugation of a configu-
ration &. The following result generalises Theorem 6.1 for the general (affine) locus
configurations.

Theorem 6.2. For any affine locus configuratio® c C" with & = & the corre-
sponding hyperbolic equation (53) satisfies Huygens’ Principl€ i odd and large
enough:N > 2M + 3, M = Y- ¥_ m;.

Conversely, if Eq. (53) satisfies Huygens’ Principle and all Hadamard’s coefficients
are rational functions, then the potentia{x) must be of the form (38) for some affine
locus configuration.

Proof. The first part of this theorem can be derived from Theorem 5.1 and the results
by Yu. Berest [34] (see also [19]). We would like, however, to present here another,
more illuminating proof. It is based on a different idea which will help us to prove the
second part also. The idea is to reduce the affine case to the linear one using the isotropic
projectivisation procedure.

The main observation is encapsulated in the following lemmallét, &) (v =
0, 1,...) be some analytic functions ofi2/ariables

x=(01,...,x), § =1, .... %)

which satisfy Egs. (52) with some potentialx). Let’s define now the new functions

dependlng O[f = (.x]_, e s Xny Xp41, -xi‘l-‘rz) andg = (élv cee sna En—Fla §H+2):
Up(F,8) = (tng1 + ix012) ™" Enst + i8n2) " Us( a :
v " " " t P Xng1 +ixn2 Eng1 +iEnt2
(56)
and
~ ~ . _2 X
(X)) = (Xpq1 + iXp42) U(————). (57)

Xn+1+ iXpy2

Lemrpa. T~he relgtions (52) fot/,, (x, &) andu(x) are equivalent to the similar relations
in x, & for U, (X, &) andii(X) defined by the formulas (56) and (57).

The proof is straightforward.

Now suppose that we have the real potential) related to some affine locus con-
figuration& = & C C”". Then the potential (x) defined by (57) corresponds to some
locus configuratior& c C"*2 which is exactly the result of the isotropic projectivisa-
tion defined in the previous section (see Theorem 5.4). Thus, according to Theorem 3.1
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the cgr[esponding Schrodinger operalos —A,, 12 + ii(X) m C"*2 has the BA func-
tion ¢ (¢, x) which is given by the formula (28). Therefong, can be presented in the
form analogous to (55),

VE %) = (UoE, %) + D1, %) + ... + Un(E, £))eD, (58)

Whereﬁo = 1 and the componenﬁv(i, £) are homogeneous of degree in £ and
X, non-singular forx = & and satisfy the relations (52) m & with the potentiak: (x).
Now let's consider their restriction fof, 11 + ix,42 = 401 + a2 = 1,

Up(x, &) = Up(F, E)| tpyatinso-1- (59)

Sp1tidnp2=1

We claim that formula (59) determines Hadamard’s coefficients for the initial potential
u(x).

First of all, let's notice that this formula really determines some functions, §f
only. This can be derived directly from the formula (28). Indeed, it's easy to see from
the inductive procedure (29) that the pre-exponent in the BA function (28) is a linear
combination of the "monomial” ternjg,, . 4 (e, x)? (a, k)% with some integergy, gq-
Thus,x,+1, Xp42, En+1, Ena-2 WIll enter in v only as combinations,,+1 + ix,+2 and
&nt1+i&y42. This means that the coefficierits defined by (59) indeed do not depend
ON Xy 41, Xnt2, Ent1, Ent2- AS a corollary of the homogeneity of, in x andé we may
invert formula (59) and obtain that, are related td/,, by the formula (56). Now using
the lemma we get Egs. (52) fof,. Itis clear then from (59) thdip = 1 andU, are non-
singular whenx = &. The last remark is that the procedure (59) gives us the real-valued
functionsU, of x, & € R" in the case when the initial potentialx) is real,& = &.

So, for any affine locus configuration we constructed Hadamard's coeffidignts
for the corresponding hyperbolic equation (53), &hg,1 = 0. Applying Hadamard’s
criterion, we obtain the first part of the theorem.

To prove the inverse statement, we suppose that the hyperbolic equation (53) is
huygensian and has rational Hadamard'’s coefficieéptsvith Uy, 1 = 0. In that case
we can define the homogeneous functiohst, £) by the formula (56). According to the
lemma, they obey Egs. (52) with the homogeneous potential (57). Then in the same way
asin Theorem 6.1, we conclude that the function (58) satisfies the Schrodinger equation
Ly = —&%y with L = —A, 42 + ii(¥). Now using Theorem 2.2 in the same way
as in Theorem 6.1 we deduce that the potert{&) must correspond to some (linear)
locus conflguratlorG of non-isotropic hyperplanes ®&*+2. But in that case the initial
potentialu (x) (see the formula (57)) will correspond to the isotropic reduc@of S
which should satisfy the locus equations due to Theorem 5.5. The theorem is praven.

Remark.We have assumed that the potentiabf the hyperbolic equation does not
depend onxg, but essentially we have used only the fact that the sequence of Hadamard’s
coefficients terminates at some stéh Actually all the results of this section can be
generalised formally for any equation of the form (51) (even with the complex potential),
which possesses the last property. In that case the singularities of the potential should
satisfy the locus equations @/"-1 with the complex Euclidean structure defined by the
metrics diag—1, 1, ..., 1).

We conjecture that any hyperbolic equati@hy 1 + u#(x))e = 0 with terminating
sequence of Hadamard's coefficients has a rational potertialwhich corresponds
to some locus configuration i6"-1. We have proved this under the assumption that
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the Hadamard'’s coefficients are rational. The proof of this conjecture would lead to the
solution of the famous Hadamard problem in the class (53). Until now this problem is
solved only whem depends on one of the coordinates (K. Stellmacher, J. Lagnese [17])
and wheru is homogeneous and depends on two of the coordinates (Yu. Berest [12]).

7. Some Other Relations and Generalisations

7.1. The Baker—Akhiezer functiotr (k, x) related to an equipped configuration has the
following remarkable property: it satisfies a system of differential equations not only in
x but also ink—variables. The corresponding bispectral property of the one-dimensional
BA function has been observed in the fundamental paper by Duistermaat and Griinbaum
[14].

Let ¢ (k, x) be a BA function related to some equipped configuraggns be the
corresponding dual configuration of the poles of the potentia) given by (38).

Let R be the ring of polynomials defined in Theorem 5.3. Define also the dual ring
S as the ring of all polynomialg(x) in x, satisfying the relations

9\ 2i-1
(05.?’ a) [q (x)] |(ots,x)+cx=0 =0

forall j =1,2,...,m, and for all the hyperplanes of the configuratién

Theorem 7.1. For any p(k) € R andg(x) € S there exist the differential operators
L,(x,d/9x) and M, (k, 3/0k) such that the BA functiotr (k, x) satisfies the following
bispectral problem:

Lp(x,3/9x)(k, x) = p(k)y (k, x) (60)
My (k,8/0k)y (k, x) = q(x)¥(k, x)

The existence of the operatby, (x, 3/9x) is claimed in Theorem 5.3. The existence
of M, (k, 3/0k) follows from the characterisation @f by its analytic properties in.
Namely, one can show that the BA functigrik, x) is the unique function of the form

_ B(x)+... (k.x)
T

whereB(x) = ]_[ivzl((as, x)+c;)™s and the dots denote the polynomiakinf a smaller
degree, such that the following conditions are fulfilled:

9 \2-1
<as, a) [((an x)+ Cs)mxw] |(ax,x)+cS:0 =0

foreachj =1,2,... ,myands = 1,..., N. The fact that the BA function satisfies
these conditions follows from the Schrddinger equation (45) and Theorem 2.2.

7.2. A similar approach can be developed for the trigonometric versions of our Schro-
dinger operators (1). As well as in the rational case discussed in the present paper, the
axiomatics of [4] has to be amended in order to cover the most general case. We in-
tend to discuss such axiomatics in a separate paper. The corresponding locus conditions
have been described in [21]. The bispectral property for the corresponding BA func-
tions results in difference operators in the spectral parameter, which can be viewed as
deformations of the rational Ruijsenaars and Macdonald operators (see [35]).
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7.3 The most of the results of this paper can be generalised to the case when the potential
u(x) of the Schrédinger operator is a matrix-valued function. The locus equations for
that case in dimension 1 have been described in [36]. The multidimensional case is
considered in [37].
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