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Abstract: A notion of the rational Baker–Akhiezer (BA) function related to a con-
figuration of hyperplanes inCn is introduced. It is proved that the BA function ex-
ists only for very special configurations (locus configurations), which satisfy a certain
overdetermined algebraic system. The BA functions satisfy some algebraically inte-
grable Schrödinger equations, so any locus configuration determines such an equation.
Some results towards the classification of all locus configurations are presented. This
theory is applied to the famous Hadamard problem of description of all hyperbolic equa-
tions satisfying Huygens’ Principle. We show that in a certain class all such equations
are related to locus configurations and the corresponding fundamental solutions can be
constructed explicitly from the BA functions.

Introduction

The notion of the Baker–Akhiezer function (BA function) has been introduced by Kri-
chever [1] in the theory of finite-gap or algebro-geometric solutions of the nonlinear
PDE’s, integrable by the inverse scattering method [2]. The BA function is a far-reaching
generalisation of the classical function

ψ = σ(x − z)

σ (x)σ (z)
eζ(z)x,

well-known as a solution to the classical Lame equation:

Lψ = λψ, L = − d2

dx2 + 2℘(x), λ = −℘(z).

Hereσ, ζ and℘ are classical Weierstrass elliptic functions (see e.g. [3]).
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In the degenerate case one has the corresponding trigonometric and rational versions:

ψtrig = (1 − 1

k
cotx)ekx, L = − d2

dx2 + 2

sin2 x
,

ψrat = (1 − 1

kx
)ekx, L = − d2

dx2 + 2

x2 .

Certain multidimensional versions of these functions in the rational and trigonometric
cases have been introduced by Chalykh and Veselov in [4] in the theory of the quantum
Calogero–Moser problem. In this paper we will restrict ourselves by the rational case
only. The construction of [4] (see also [5]) relates such a BA functionψ to a configuration
A of the hyperplanes5α in a complex Euclidean spaceCn given by the equations
(α, x) = 0, taken with some multiplicitiesmα ∈ Z+. Hereα ∈ A, A is a finite set of
noncollinear vectors. The functionψ(k, x), k, x ∈ Cn is determined by certain analytic
properties ink (see Sect. 1) and exists only for very special configurations.

The most important property of the BA function is that it is an eigenfunction of the
multidimensional algebraically integrable Schrödinger operatorL, which in our case
has the form

L = −1+
∑
α∈A

mα(mα + 1)(α, α)

(α, x)2
(1)

(see [4,5]).
WhenA is a Coxeter configuration, i.e.A consists of the reflection hyperplanes for

some finite reflection groupW with W -invariant multiplicities, then the corresponding
operatorL is the Hamiltonian of the generalised quantum Calogero–Moser problem (see
Olshanetsky and Perelomov [6]) with special integer-valued parameters. The existence
of the BA function in this case was proved in [5] with the help of Heckman’s result [7].

At that time it was believed that the Coxeter case is the only one whenψ exists, but
it turned out not to be the case. The first non-Coxeter examples have been found by the
authors in [8] (see also [9]).

According to the general procedure proposed by Berest and Veselov in [10] this led to
new examples of the hyperbolic equations satisfying Huygens’ Principle in Hadamard’s
sense. Motivated by these results Berest and Lutsenko started the investigation of the case
when the potential depends on two coordinates only and found other new examples of
the huygensian equations [11]. Later Berest proved [12] that they have actually found all
such equations under the assumption that the potential is homogeneous of degree(−2).
Since a generic Berest–Lutsenko potential could not be described by the construction
[4], we were motivated to revise it.

In Sect. 1 we give such a revised definition of the BA function, which can be derived
from the corresponding Schrödinger equation and therefore covers all possible cases.
It is remarkable that an effective way exists to check for a given configuration whether
a BA function exists or not. Namely, as we prove in Sects. 2 and 3, the following
overdetermined system of algebraic equations is a necessary and sufficient condition for
the existence of the Baker–Akhiezer function:∑

β∈A
β 6=α

mβ(mβ + 1)(β, β)(α, β)2j−1

(β, x)2j+1 ≡ 0 on the hyperplane(α, x) = 0 (2)

for eachα ∈ A andj = 1,2, . . . , mα.
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They are equivalent to the vanishing of the firstmα odd terms in the Laurent expansion
of the corresponding potential

u(x) =
∑
α∈A

mα(mα + 1)(α, α)

(α, x)2
(3)

at the hyperplane(α, x) = 0. A similar characterisation of the rational finite-gap poten-
tials in one dimension has been first proposed in the famous paper [13] by Airault, McK-
ean and Moser, who introduced the term “locus” in this situation. We will also use this
terminology, calling Eqs. (2) as well as its general affine version (see below)locus equa-
tions. Duistermaat and Grünbaum [14] discovered the interpretation of such equations
as a trivial monodromy condition for the corresponding one-dimensional Schrödinger
equation in the complex domain. We give a similar interpretation for our locus equations
(2) in Sect. 2.

However to describe all the configurations, satisfying the locus equations (2) (the
locus configurations) seems to be a very difficult problem. At the moment it is solved
only in dimension 2, where the answer is given by the Berest–Lutsenko construction.
In dimensionn > 2 all known examples of the locus configurations are the Coxeter
configurations and their special “deformations” [8,9]. In Sect. 4 we present all the results
known in this direction so far.

The generalisation of our construction to the affine configurations of the hyperplanes
is discussed in Sect. 5. The potentialu and the locus equations in that case have the form:

u(x) =
K∑
i=1

mi(mi + 1)(αi, αi)

((αi, x)+ ci)2
, (4)

∑
j 6=i

mj (mj + 1)(αj , αj )(αi, αj )2s−1

((αj , x)+ cj )2s+1 ≡ 0 (5)

identically on the hyperplane(αi, x)+ ci = 0 for all i = 1, . . . , K ands = 1, . . . , mi .
Unfortunately, so far little is known about the affine locus configurations, which are
not linear, i.e. with not all the hyperplanes passing through one point. Apart from the
one-dimensional case investigated in [13,15], there are only some reducible examples
discovered by Berest andWinternitz [16]. In fact, we show that the classification problem
for the affine locus configurations can be reduced to the linear case (2) by the isotropic
projectivisation procedure.

In the last section we discuss the relations of our BA functionψ and locus configu-
rations to Huygens’ Principle. The main result says that for any locus configuration in
dimensionn the corresponding hyperbolic equation

(2N+1 + u(x1, . . . , xn))φ = 0 (6)

satisfies Huygens’Principle for large enough oddN . Conversely, we show that if Eq. (6)
satisfies Huygens’ Principle and all Hadamard’s coefficients are rational functions, then
u(x) has a form (4) for some locus configuration.

We conjecture that this construction gives all huygensian equations of the form
(2N+1 + u(x1, . . . , xn))φ = 0. In the casen = 1 it is a well-known result by Stell-
macher and Lagnese [17]. Whenn = 2 andu is homogeneous this follows from Berest’s
theorem [12]. The proof of the general case would lead to the solution of the famous
Hadamard problem in the class (6).
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1. Rational Baker–Akhiezer Function Related to a Configuration of Hyperplanes

Let A be a finite set of noncollinear vectorsα = (α1, . . . , αn) ∈ Cn with multiplicities
mα ∈ N. We will assume that(α, α) = ∑n

i=1 α
2
i 6= 0.

Definition. A functionψ(k, x), k, x ∈ Cn will be called Baker–Akhiezer function
(BA function), if the following two conditions are fulfilled:

1) ψ(k, x) has the form

ψ(k, x) = P(k, x)

A(k)
e(k,x), (7)

whereA(k) = ∏
α∈A (k, α)mα , P(k, x) is a polynomial ink with the highest term

A(k);
2) for all α ∈ A ,

∂α(ψ(k, x)(k, α)
mα ) = ∂3

α(ψ(k, x)(k, α)
mα )

= . . . = ∂2mα−1
α (ψ(k, x)(k, α)mα ) ≡ 0

(8)

on the hyperplane5α: (k, α) = 0, where∂α = (α, ∂
∂k
) is the normal derivative for

this hyperplane.

Notice that (7) means thatψ is a rational function ofk with the prescribed poles
along the hyperplanes5α, α ∈ A and with the asymptotic behaviour at infinity:

ψ = (1 + o(1)) e(k,x)

whenk → ∞ along the rays outside the singularities (cf. [1]).
First of all, in the same way as in [4,5] one can prove the following

Theorem 1.1. If the Baker–Akhiezer functionψ exists then it is unique and satisfies the
algebraically integrable Schrödinger equation

Lψ = −k2ψ, (9)

where

L = −1+
∑
α∈A

mα(mα + 1)(α, α)

(α, x)2
. (10)

Algebraic integrability of the operator (10) means thatL is a part of a rich (supercomplete)
commutative ring of partial differential operators (see [5] for precise definitions). This
ring is described by the following theorem.

Theorem 1.2. LetRA be the ring of polynomialsf (k) satisfying the following proper-
ties:

∂αf (k) = ∂3
αf (k) = . . . = ∂2mα−1

α f (k) ≡ 0 (11)

on the hyperplane(α, k) = 0 for anyα ∈ A.
If the Baker–Akhiezer functionψ(k, x) exists then for any polynomialf (k) ∈ RA

there exists some differential operatorLf (x,
∂
∂x
) such that

Lfψ(k, x) = f (k)ψ(k, x).

All such operators form a commutative ring isomorphic to the ringRA. The Schrödinger
operator (10) corresponds tof (k) = −k2.
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We give the proof of these statements in a more general affine situation in Sect. 5.
We should note that there exists the following explicit formula forLf (due toYu. Be-

rest [18]).

Theorem 1.3. The commuting partial differential operatorsLf for f ∈ RA are given
by the formula

Lf = cN(adL)
N [f̂ (x)], (12)

wherecN = (−1)N/2NN !,N = degf , f̂ is the operator of multiplication byf (x), and
(adL)

N means theN th iteration of the standardad-procedure,adAB = AB − BA.

The proof follows from the results of the next section (see Corollary 2.5).
We should note that originally in [4] another axiomatics for theψ-function was

proposed. A functionφ(k, x) of the form

φ(k, x) = P(k, x)e(k,x) (13)

was considered, whereP(k, x), as in (7), is a polynomial ink with the highest term
A(k), with the property

∂α(φ(k, x)) = ∂3
α(φ(k, x)) = . . . = ∂2mα−1

α (φ(k, x)) ≡ 0 (14)

at the hyperplane5α.
Comparing (13), (14) with (7), (8) we see that the difference between these two

axiomatics is due to the additional factor
∏
β 6=α (k, β)mβ . In the Coxeter situation

considered in [4] (see Sect. 4 below) this factor is not essential because of its symmetry.
It turns out that this minor change makes the axiomatics less restrictive and leads to

a richer class of the integrable Schrödinger operators. We will prove (see Corollary 2.7)
that if there existsφ satisfying the conditions (13), (14) then there exists also the BA
functionψ with the properties (7), (8) and in that caseψ = φ

A(k)
. The converse is not

true: there are configurations for whichψ does exist butφ does not (see the Remark 2
after the proof of Theorem 4.4).

2. Monodromy and BA Functions

LetL = −1+u(x)be a Schrödinger operator with a meromorphic potentialu(x)having
a pole along the hyperplane5α : (α, x) = 0, which is assumed to be non-isotropic:
(α, α) 6= 0.

We are looking for a formal solutionφ of the Schrödinger equationLφ = λφ in the
form

φ(x) =
∑
s≥0

φ(α)s (α, x)µ+s , (15)

for someµ, where the coefficientsφ(α)s = φ
(α)
s (x⊥) are some analytic functions on the

hyperplane5α, x⊥ is an orthogonal projection ofx onto5α, φ(α)0 6= 0.
Let’s suppose that the equationLφ = λφ has a solution of the form (15) with some

µ < 0. Then substitution into the equation gives immediately that the potentialu(x)
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must have a second order pole along5α: the Laurent expansion in the normal direction
α has the form

u(x) =
∑
k≥−2

c
(α)
k (α, x)k (16)

with c(α)−2 = µ(µ− 1)(α, α).

Moreover, we obtain the following recurrent relations for the coefficientsφ
(α)
s :

(α, α)(µ(µ− 1)− (µ+ s)(µ+ s − 1))φs = (1̃+ λ)φs−2 −
s−2∑
i=−1

ciφs−i−2, (17)

(s = 1,2, . . . ), where1̃ is the Laplacian1 restricted to the hyperplane5α and we
omitted all the indicesα in the coefficients.

If 2µ /∈ Z we can determine allφs from (17) and obtain the solution (15) starting
from an arbitrary function φ0 (the same procedure gives also another solution with
µ′ = −1 − µ).

In the one-dimensional case this is a classical way (going back to Frobenius, see e.g.
[27]) to construct the basis of solutions of the corresponding equation

−ϕ′′ + u(x)ϕ = λϕ (18)

in the vicinity of its regular singular point. In the case when Eq. (18) has no monodromy
in the complex domain, i.e. all the solutions are single-valued, we have that

1) µ must be an integer:µ = −m, m ∈ Z+,
2) the first 2m+ 1 equations from (17) must be compatible.

In case this is true foreachenergy levelλ we will say that the Schrödinger operator has
trivial monodromy.

In the multidimensional case there exists a generalisation of Frobenius’s theory for
the partial differential equations with regular singularities in the complex domain (see
[28]). For the Schrödinger equation with a singularity along a hypersurface the regularity
condition means that the potential has at most a second order pole.

The considerations above motivate the following

Definition. We say that a Schrödinger operatorL = −1 + u(x) with meromorphic
potentialu(x)with a second order pole along the hyperplane5α : (α, x) = 0 has local
trivial monodromy around this hyperplane if

1) the Laurent coefficientc(α)−2 in the expansion (16) has the formc(α)−2 = mα(mα +
1)(α, α) for somemα ∈ Z+,

2) the system (17) withµ = −mα is compatible for any functionφ0 and for allλ ∈ C.

Theorem 2.1. L has local trivial monodromy around5α if and only if the coefficients
of the normal Laurent expansion of the potentialu(x) near5α

u(x) =
∑
s≥−2

c(α)s (α, x)s

satisfy the following conditions:c−2 = mα(mα + 1)(α, α) for somemα ∈ Z+, and

c
(α)
−1 = c

(α)
1 = c

(α)
3 = . . . = c

(α)
2mα−1 ≡ 0 on5α. (19)
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In that case the Laurent expansions of the corresponding eigenfunctionsφ (15) satisfy
the conditions

φ
(α)
1 = φ

(α)
3 = . . . = φ

(α)
2mα−1 ≡ 0 on5α. (20)

Proof. The proof is similar to the one-dimensional case considered by J.Duistermaat
and A.Grünbaum [14]. Let’s demonstrate the idea in the simplest case whenmα = 1.
After substituting (15) into the Schrödinger equation, we deduce thatµ = 2 and derive
the following recurrent relations forφ(α)k :

(−2 + c−2)φ0 = 0
2φ1 + c−1φ0 = 0
2φ2 + (−1̃− λ)φ0 + c0φ0 + c−1φ1 = 0
0φ3 + (−1̃− λ)φ1 + c1φ0 + c0φ1 + c−1φ2 = 0
. . .

, (21)

where1̃ is the Laplacian1 restricted to the hyperplane5 (we omitted all the subindices
α in these formulas and assumed that(α, α) = 1). These relations allow one to find all
the coefficients uniquely exceptφ0 (which is an arbitrary function) andφ3, provided
the first four equations are consistent. From the first equation it follows thatc−2 = 2.
Expressingφ1 andφ2 from the second and the third equations and substituting them into
the fourth one we arrive at the relation

(−1̃− λ)(−1

2
c−1φ0)− 1

2
c−1(−1̃− λ)φ0 + (c1 − c0c−1 + 1

4
c3−1)φ0 = 0,

which should be valid for allφ0 andλ.Vanishing of the leading term inλgivesc−1φ0 ≡ 0,
i.e. c−1 ≡ 0. The relation reduces after that toc1φ0 = 0, thusc1 ≡ 0. Notice that the
second equation impliesφ1 ≡ 0 sincec−1 ≡ 0. This completes the proof in the case
whenmα = 1. In the general case one should use induction arguments (see [14], p. 196).
ut
Remark.One can consider a more general case, whenu(x) has a singularity along an
arbitrary hypersurfaceϕ(x) = 0. However, analysis of the corresponding relations (21)
shows that the hypersurface has to be a hyperplane (cf. [19]).

Now let’s consider a Schrödinger operator (1)L, corresponding to some Baker –Akhiezer
functionψ . We claim that such an operator has local trivial monodromy around all the
singular hyperplanes. To prove this one can consider for a givenλ the(n−1)-dimensional
family of the solutions of the Schrödinger equation

(L− λ)ϕ = 0

of the formϕ = ψ(k, x) with k2 = −λ. They have proper pole behaviour near the
hyperplane(α, x) = 0. Unfortunately,ψ(α)0 depends onk and is not an arbitrary function
on the hyperplane, so we have to present additional arguments. We’ll prove a slightly
more general result, which we will use also in Sect. 6.

Theorem 2.2. Let the Schrödinger operatorL = −1 + u(x) have an eigenfunction
ψ(k, x),

Lψ = −k2ψ

of the formψ = P(k, x)e(k,x), whereP is a finite sum of some functions which are
homogeneous ink and meromorphic inx. Then the singularities ofu(x) are second
order poles located on a union of non-isotropic hyperplanes andL has local trivial
monodromy around these hyperplanes.
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Proof. The fact that singularities ofu(x)must be located on the hyperplanes was proved
byYu.Yu. Berest andA. P.Veselov in [20] under the assumption thatP is a polynomial in
k, but their proof works also in the case whenP is a finite sum of functions homogeneous
in k. The fact that these hyperplanes must be non-isotropic follows from the zero-residue
lemma of the same paper [20] (see also [19]).

Let’s now prove that the conditions (19) are satisfied. After a proper choice of or-
thonormal basis we may assume that the hyperplane under consideration has the equation
x1 = 0, and let’s consider the Laurent expansion for the functionψ(k, x):

ψ(k, x) = x−m
1

+∞∑
i=0

ψi(k, x2, . . . , xn)x
i
1. (22)

Let’s prove first thatm has to be positive. LetP 0 be the highest homogeneous term of
P , then from the Schrödinger equation we have

∑
ki∂/∂xiP

0 = 0. SoP 0(k, x + kt) is
constant whilet varies, hence ifP 0 vanishes on the hyperplanex1 = 0, then it vanishes
identically. Thus,P 0 and thereforeψ can not be zero at the hyperplane, som in (22)
must be positive.

Substituting (22) into the Schrödinger equation immediately gives thatc−2 = m(m+
1) and leads to the following recurrence relations:

(m(m+ 1)− (j + 2 −m)(j + 1 −m))ψj+2 = (1̃− k2)ψj −
j∑

i=−1

ciψj−i , (23)

(j = −1,0,1,2, . . . ), 1̃ = ∂2

∂x2
2 + . . .+ ∂2

∂xn2 . To prove (19) let’s suppose thatc−1 =
c1 = . . . = c2p−3 = 0, but c2p−1 6= 0 for somep < m + 1. Consideringj =
−1,1,3, . . . ,2p − 3, it is easy to see thatψ1 = ψ3 = . . . = ψ2p−1 = 0. From the

form of the functionψ it follows thatψj = Pj (k, x2, . . . , xn)e
(k̃,x̃), wherePj is a finite

sum of homogeneous functions ink, k̃ = (k2, . . . , kn), x̃ = (x2, . . . , xn). LetP 0
j be the

highest homogeneous term ofPj . By induction one can prove thatP 0
2j = (−1)j k2j

1 P
0
0 aj

andP 0
2j−1 = (−1)j−pk2(j−p−1)

1 P 0
0 c2p−1bj , where the constantaj > 0 andb1 = b2 =

. . . = bp = 0 (by assumption) andbj > 0 form ≥ j ≥ p+1. Indeed, forP 0
2j it follows

easily from the relations (23). ForP 0
2j−1 one can use induction arguments similar to [14]

(Prop. 3.3, p. 196).
Now let’s consider Eq. (23) with the resonance valuej = 2m− 1:

0 = (1̃− k2)ψ2m−1 −
2m−1∑
i=−1

ciψ2m−1−i .

Since this holds identically for allk the highest homogeneous term should vanish. Simple
calculation shows that this term is equal to

−(P 0
2m−1k

2
1 + P 0

2m−2pc2p−1) = (−1)m−p+1k
2(m−p)
1 P 0

0 (bm + am)c2p−1.

Sincebm+am > 0 andP 0
0 6= 0 it vanishes only ifc2p−1 = 0. This completes the proof.

ut
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It is remarkable that the BA function turns out to be symmetric with respect tok and
x. For Coxeter configurations this property has been established in [5].

Theorem 2.3. The Baker–Akhiezer functionψ(k, x) is symmetric with respect tox and
k: ψ(k, x) = ψ(x, k).

Proof. The idea is to show thatψ(x, k) is also the BA function and then to use the
uniqueness (Theorem 1.1). Let’s prove thatA(x)P (k,x)

A(k)
is a polynomial inx with the

highest termA(x), whereA(x) andP(k, x) are the same as in (7). For that let us
consider conditions (8) forψ(k, x). They give a linear system for the coefficients of
the polynomialP with the coefficients, which are polynomial in(α, x), α ∈ A. Since
this system has a unique solution, the coefficients ofP are rational inx. Let’ denote by
Pj (k, x) the homogeneous term ofP(k,x)

A(k)
of degree−j in k. In terms ofPj (k, x) one

can rewrite Eq. (9) in the following recurrent way:

LPj (k, x) = 2
n∑
i=1

ki
∂

∂xi
Pj+1, P0(k, x) = 1.

From this it follows by induction that all the singularities ofψ(k, x) in x belong to our
configuration of the hyperplanes(α, x) = 0.Analyzing Laurent expansions foru(x) and
ψ(k, x) on these hyperplanes we conclude thatψ(k, x) has a pole of ordermα along the
hyperplanes(α, x) = 0. All that means thatA(x)P (k, x) is a polynomial inx. But from
the uniqueness of the BA-function it follows easily thatPj (k, x) is also homogeneous in
x with the same degree−j . Hence the highest term inx of the polynomialA(x)P (k, x) is
equal toA(x)A(k). Thusψ(x, k) = A(x)+...

A(x)
e(k,x). Properties of the Laurent expansions

in x follow immediately from Theorems 2.1, 2.2. So we have all the conditions for
ψ(x, k) to be a BA function. The theorem is proved.ut
Corollary 2.4. The Baker–Akhiezer functionψ satisfies the following bispectral prob-
lem

L(x,
∂

∂x
)ψ(k, x) = −k2ψ(k, x), L(k,

∂

∂k
)ψ(k, x) = −x2ψ(k, x), (24)

whereL is the Schrödinger operator (10).

Now we are able to prove Theorem 1.3.

Corollary 2.5. The Baker–Akhiezer functionψ is an eigenfunction of the operator (12)
for anyf ∈ RA.

Proof. Due to Theorem 1.2 and to the symmetry ofψ for any f ∈ RA there exists
a differential operatorA(k, ∂

∂k
) such thatA(k, ∂

∂k
)ψ = f (x)ψ . On the other hand,

L(x, ∂
∂x
)ψ = −k2ψ . Now we can use the identity (1.8) from [14] which states in that

case that
(adL)r(f̂ )[ψ] = (−adk̂2)r (A)[ψ]

for all r ∈ Z+. For r = N = ordA = degf the differential operator(−adk̂2)r (A) in
the right-hand side has zero order and is, in fact, the operator of multiplication bycf (k)

with c = (−2)NN !. This means thatψ is an eigenfunction of the operator(adL)r(f̂ )
with the eigenvaluecf (k). This proves the Theorem 1.3.ut
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Now let’s explain why the existence ofφ with the properties (13), (14) (our old
axiomatics, see Sect. 1) implies the existence of the BA functionψ . This follows from
the following general statement, showing that the new axiomatics is in some sense the
most general one.

Let A be any set of noncollinear vectors,L = −1 + u(x) be a corresponding
Schrödinger operator,A(k) = ∏

α∈A(α, k)mα . Consider the functionsϕ of the form

ϕ(k, x) = P(k, x)

A(k)A(x)
e(k,x), (25)

P is some polynomial ink andx: P = A(k)A(x)+ . . . , where dots mean the terms of
lower order both ink and inx.

Theorem 2.6. If the Schrödinger equationLϕ = −k2ϕ has a solutionϕ of the form
(25) thenϕ(k, x) has to be BA function.

Proof. The proof now is almost evident. Theorems 2.1 and 2.2 provide conditions (8)
for ϕ in the x-variable, and it has the required form (7) inx. Hence,ϕ(x, k) is a BA
function and according to Theorem 2.3ϕ(x, k) = ϕ(k, x). ut
Corollary 2.7. If a functionφ satisfies conditions (13)–(14) thenψ = A−1(k)φ is the
Baker–Akhiezer function (7)–(8).

Proof. As it follows from the results of the papers [4,5], the functionφ must be an
eigenfunction of the same equation (9). Then the arguments we used in the proof of
theorem 2.3 show thatϕ = A−1(k)φ satisfies the conditions of theorem 2.6 and therefore
is the Baker–Akhiezer function.ut

3. Locus Equations and the Existence of the BA Function

Let A, as in Sect. 1, be a finite set of non-collinear vectorsα ∈ Cn with given multiplic-
itiesmα ∈ Z+, A be the corresponding configurations of hyperplanes(α, k) = 0 in Cn

andL = −1+ u(x) be the Schrödinger operator with the potential

u(x) =
∑
α∈A

mα(mα + 1)(α, α)

(α, x)2
. (26)

Theorems 2.1 and 2.2 from the previous section imply that if the BA function for the
configurationA exists then in the normal Laurent expansions (16) of the potentialu(x),
the first odd termsc(α)2j−1 (j = 1, . . . , mα) should vanish identically on the hyperplane
(α, x) = 0. More explicitly, these conditions have the form of the following highly
overdetermined algebraic system:∑

β∈A
β 6=α

mβ(mβ + 1)(β, β)(α, β)2j−1

(β, x)2j+1 ≡ 0 on the hyperplane(α, x) = 0 (27)

for j = 1,2, . . . , mα.
We will call Eqs. (27)locus equations, following Airault, McKean and Moser [13],

who used this terminology in the one-dimensional case. The configurationsA which
satisfy the locus equations we will calllocus configurations.

The remarkable fact is that the locus equations (27) are not only necessary, but are
also sufficient for the existence of the BA function. We will give the proof following the
paper [21].
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Theorem 3.1. For any locus configurationA the BA functionψ(k, x) does exist and
can be given by the following Berest’s formula:

ψ(k, x) = [(−2)MM!A(k)]−1(L+ k2)M [
∏
α∈A

(α, x)mαexp(k, x)], (28)

whereM = ∑
α∈Amα, A(k) = ∏

α∈A(α, k)mα .

Proof. Let’s consider the linear spaceV which consists of the functionsφ(x), x ∈ Cn,
with the following analytic properties:

1) φ(x)
∏
α∈A(α, x)mα is holomorphic inCn;

2) for eachα ∈ A the Laurent expansion (15) forφ should not contain the terms of
order−mα + 2j − 1 (j = 1, . . . , mα), i.e. the conditions (20) hold.

The basic observation is the following

Lemma. The spaceV defined above is invariant under the Schrödinger operator with
the potential (26) provided that the locus conditions (27) are fulfilled.

It follows easily from the imposed conditions on the Laurent expansions in theα-
direction foru(x) andφ ∈ V .

Now let’s define the functionsϕi (i = 0,1, . . . ) in the following way:

ϕ0 =
∏
α∈A

(α, x)mαexp(k, x)

and

ϕi+1 = (L+ k2)ϕi . (29)

It’s obvious thatϕ0 belongs toV , hence by the lemmaϕi also belongs toV . From the
definition of these functions and the property 1 ofV it is clear thatϕi can be presented in
the formϕi = Ri(k, x)exp(k, x), whereRi = Qi

∏
α∈A(α, x)−mα for some polynomial

Qi(k, x). From (29) it follows that the degrees of the polynomialsQi in x decrease:
degQi+1 < degQi . Therefore, for someN ϕN 6= 0 butϕN+1 = (L+k2)ϕN = 0. Thus,
φ = ϕN is an eigenfunction for the Schrödinger operatorL. Let’s prove thatN in fact
equalsM = ∑

α∈Amα. If we denote byR0
i the highest homogeneous terms ofRi in x,

we see from (29) that

R0
i+1 = −2

n∑
j=1

kj ∂/∂xj

(
R0
i

)
.

From this we obtain immediately that fori = M = ∑
α∈Amα,

R0
M = (−2)MM!

∏
α∈A

(α, k)mα . (30)

From this we conclude that fori > M Ri (which is polynomial ink) will be of negative
degree inx. Thus, it cannot be an eigenfunction for the Schrödinger operatorL because
of the following lemma due to F.A.Berezin [22].

Lemma. If a quasipolynomialψ in k ψ = P(k, x)exp(k, x) satisfies the Schrödinger
equation(−1+ u(x))ψ = −k2ψ , then the highest term ink of the polynomialP must
be polynomial inx.
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This contradiction proves that the last non-zero function in the sequence (29) is
ϕM . Moreover, sinceϕM belongs to the spaceV we obtain using (30) thatψ(k, x) =
(R0

M)
−1ϕM satisfies axiomatics (7),(8) inx as well as ink according to Theorem 2.3.

So, we proved thatψ(k, x) defined by formula (28) is the BA function associated to a
configurationA. ut
Remark.The remarkable formula (28) forψ was discovered by Yu. Berest ([18]), who
proved that ifψ does exist then it should have the form (28).

4. Analysis of the Locus Equations and Locus Configurations

The next step would be to classify all the solutions of the locus equations (locus con-
figurations). Unfortunately, this problem seems to be very difficult. In this section we
present some results in this direction and all the known examples.

4.1. Coxeter systems.The most natural examples of the locus configurations are given
by the mirrors of the Coxeter groups. Recall that a Coxeter groupW is by definition a
finite group generated by some orthogonal reflectionssα(x) = x − 2(α,x)

(α,α)
α with respect

to hyperplanes inRn (see [23]). If we consider all the reflections from the Coxeter group
W , then the setA of the corresponding hyperplanes(α, x) = 0 will be invariant under
the action ofW . The configurationA of these hyperplanes with arbitraryW -invariant
multiplicities mα ∈ Z+ gives an example of locus configuration. This fact follows
immediately from the symmetry of the corresponding potentialu(x)with respect to any
reflectionsα, α ∈ A.

In this case the Schrödinger operatorL is the quantum Hamiltonian of the generalised
Calogero – Moser system (see [24,6]). The existence of the BA function for the root
system of typeAn with mα = 1 was proved in [4], where some explicit formula forψ
has been found. This was done for the general Coxeter system in [5], using Heckman’s
formula [7] for the so-called shift operators in terms of the Dunkl operators [25]. Notice
that our approach gives a new proof of this result.

Remark.In principle, one may try to extend these examples to the complex case, by
considering a finite group generated by orthogonal reflections in complex Euclidean
space. However, it is known (see e.g. [26]) that all such groups are nothing but the
complexified Coxeter groups.

4.2. Deformed root systems.The first non-Coxeter locus configurationAn(m) was in-
troduced in [8]. It consists of the following vectors inRn+1: ei − ej with multiplicity m
(1 ≤ i < j ≤ n) andei − √

men+1 with multiplicity 1 (i = 1, . . . , n). Notice that for
m = 1 we have the root systemAn. We can allow the parameterm to be negative simply
by considering the vectorsei − ej with the multiplicity −1 − m in that case (then, of
course, we will have a complex configuration inCn+1).

The Corresponding Schrödinger operator has the form:

L = −1+
n∑
i<j

2m(m+ 1)

(xi − xj )2
+

n∑
i=1

2(m+ 1)

(xi − √
mxn+1)2

. (31)
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In the simplest nontrivial casen = 2 we have the following configuration (see Fig. 1).
The next example is related to the root system ofCn-type. Let’s consider the following
set of vectors inRn+1:

Cn+1(m, l) =


ei ± ej with multiplicity k
2ei with multiplicity m
2
√
ken+1 with multiplicity l

ei ± √
ken+1 with multiplicity 1

,

wherel andmare integer parameters such thatk = 2m+1
2l+1 ∈ Z, 1 ≤ i < j ≤ n. In the case

of theC2(m, l)-system the parametersm, l can be arbitrary integers; the corresponding
quantum problem was considered in [8,9]. The corresponding configuration has the form
shown in Fig. 2.
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Forn > 1 the corresponding Schrödinger operator has the form:

L = −1n+1 +
n∑
i<j

4k(k + 1)(x2
i + x2

j )

(x2
i − x2

j )
2

+
n∑
i=1

m(m+ 1)

x2
i

+

(32)

l(l + 1)

x2
n+1

+
n∑
i=1

4(k + 1)(x2
i + kx2

n+1)

(x2
i − kx2

n+1)
2

,

wherek = 2m+1
2l+1 . In the casel = m the systemCn+1(m, l) coincides with the classical

root systemCn+1 (or Dn+1 for l = m = 0). Again, as for theAn(m) system, the
parametersk, l,mmay be negative; in that case the corresponding multiplicities in (4.2)
should be−1 − k, −1 −m or −1 − l respectively.

The simplest way to check the validity of the locus equations for these configurations
is to use the following important property of system (27):

Theorem 4.1. A configurationA satisfies the locus equations (27) if and only if each
two-dimensional subsystem ofA gives a locus configuration. In other words, for each
two-dimensional planeπ ⊂ Cn the vectorsα ∈ A∩π with their multiplicitiesmα must
satisfy the locus equations.

Remark.Notice the analogy with the similar property of the Coxeter and root systems.

Proof. Let us denote bŷβ the orthogonal projection of a vectorβ onto the hyperplane
(α, x) = 0, then(β̂, x) ≡ (β, x) on this hyperplane. Letπ denote the two-dimensional
plane spanned byα andγ 6= α. Then the subsum of (27) overβ ∈ π becomes pro-
portional to(γ̂ , x)−2j−1 restricted to the hyperplane(α, x) = 0. All these subsums for
different two-dimensional hyperplanes are independent, so we come to the following
equivalent form of (27): for any two-dimensional planeπ ∈ Cn and for eachα ∈ A∩π
andj = 1, . . . , mα,∑

β∈A∩π
β 6=α

mβ(mβ + 1)(β, β)(α, β)2j−1(β, x)−2j−1 ≡ 0 for (α, x) = 0. (33)

That gives the statement of the theorem.ut
If we analyse the configurationsAn(m) andCn+1(m, l) from this point of view, we

will have in each two-dimensional plane either a usual root system or one of their defor-
mationsA2(m) andC2(m, l). For these two cases the locus equations can be checked
by direct calculation.

One can see that our configurationsAn(m) andCn+1(m, l) have one common feature:
they are obtained from Coxeter configurations by adding a special orbit of the Coxeter
group with multiplicity 1 (a sort of “one-orbit deformation” of a Coxeter configuration).
The following result demonstrates that such a property is not accidental: the hyperplanes
with large multiplicities always form a Coxeter subsystem.

Definition. Let’s say that the hyperplane5β ∈ A has a large multiplicitymβ if in each
two-dimensional plane containing the vectorβ there are no more thanmβ + 1 vectors
fromA (without taking into account the multiplicities).
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Theorem 4.2. The setB ⊂ A of all hyperplanes with large multiplicities forms a
Coxeter configuration and all other hyperplanes and their multiplicities are invariant
under the action of this Coxeter group.

Proof. We shall prove that for each5β ∈ B the corresponding reflectionsβ preserves
the setA together with multiplicities. This implies, in particular, thatsβ(B) ⊂ B. To
prove the invariance ofA undersβ let’s consider as in Theorem 4.1 an arbitrary two-
dimensional planeπ , which containsβ, and the corresponding two-dimensional locus
equation (33):∑

γ∈A∩π
γ 6=β

mγ (mγ + 1)(γ, γ )(β, γ )2j−1(γ, x)−2j−1|(β,x)=0 ≡ 0,

wherej = 1, . . . , mβ . Now we look at these equations for fixed genericx as a linear
system for unknownszγ = mγ (mγ + 1)(γ, γ )(β, γ )(γ, x)−3 of the form

∑
γ 6=β

zγ

(
(β, γ )2

(γ, x)2

)j−1

|(β,x)=0 ≡ 0, j = 1, . . . , mβ. (34)

We need the following elementary lemma:

Lemma. If three unit vectorsβ, γ, γ ′ belong to some two-dimensional subspace inCn

and

(β, γ )2

(γ, x)2
= (β, γ ′)2

(γ ′, x)2

for all x such that(β, x) = 0 then eitherγ = ±γ ′ or sβ(γ ) = ±γ ′.

Let’s regroup the terms in (34) into the groups corresponding to different values of
(β,γ )2

(γ,x)2
. From the properties of the Vandermond determinant we easily conclude that the

sum ofzγ in each group should vanish. On the other hand, using the lemma we see that
there are only two terms in each group, and they correspond to the pairs of vectorsγ, γ ′
with sβ(γ ) = ±γ ′. Finally, we arrive at the conditionzγ + zγ ′ |(β,x)=0 = 0, which gives
mγ (mγ + 1) = mγ ′(mγ ′ + 1), i.e.mγ = mγ ′ . ut
Remark.The Schrödinger operators (31), (32) remain integrable in a usual (Liouville)
sense for the general (non-integer) values of the parametersm, l: there exists at least
n = dimV independent commuting operatorsL1 = L,L2, . . . , Ln. Indeed, for the
An(m) case (m is integer) it’s easy to check that the polynomialsps = ks1 + ks2 + . . .+
ksn+m

s−2
2 ksn+1 (s = 1,2, . . . ) satisfy the conditions (11) and, according to Theorem 1.2,

there exist differential operatorsLs with the highest symbolsps such thatLsψ = psψ

and therefore[Ls, Lt ] = 0. Since the coefficients of these operators depend on
√
m in a

rational way, (see the explicit formula (12)) one can define such operators for generalm.
Fors = 2 one has the Schrödinger operator (31), and otherLs give its quantum integrals.
In the case of theCn+1(m, l)-system similar arguments prove the integrability of the
Schrödinger operator (32) for the generall, m, and the commuting quantum integrals
Ls have the symbolsps = k2s

1 + . . .+ k2s
n + qs−1k2s

n+1 (q = 2m+1
2l+1 , s = 1,2, . . . ).
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4.3. Locus configurations on the plane.Yu. Berest and I. Lutsenko [11] in the context
of Huygens’ Principle have introduced the following family of the real potentialsu on
the real plane. In polar coordinates they have the form

u(r, ϕ) = − 2

r2

∂2

∂ϕ2 logW [χ1(ϕ), . . . , χM(ϕ)], (35)

where

χj (ϕ) = cos(kjϕ + θj ), kM > . . . > k1 > 0,

kj ∈ N, θj ∈ R

andW [χ1, . . . , χM ] is the Wronskian ofχ1, . . . , χM .
One can consider the natural complexification of the Berest–Lutsenko family in the

following way. The set of all non-isotropic lines inC2 is isomorphic to the cylinder
C∗ ' CP 1\{0,∞} and can be parametrised by a complex parameterϕ(modπ),

x cosϕ + y sinϕ = 0.

Any configuration corresponds to a finite number of points inC∗: ϕ1, . . . , ϕN with
multiplicitiesm1, . . . , mN . The corresponding potential has the form

u = 1

r2

N∑
j=1

mj(mj + 1)

sin2(ϕ − ϕj )
, (36)

wherer2 = x2 + y2 ∈ C\{0} andϕ(modπ) = arctany
x
. The complex Berest–Lutsenko

potentials given by formula (35) with thecomplexparametersθj , have the form (36)
with ϕj being the roots of the trigonometric polynomialW [ϕ]; their multiplicities are

known to have a “triangular” form
mj (mj+1)

2 (see [13]).

Theorem 4.3. All the locus configurations on the plane are determined by the complex
Berest–Lutsenko formula (35).

Proof. First of all the locus equations (27) in this case are equivalent to the following

one-dimensional locus equations (cf. [13]) for the potentialv(ϕ) = ∑N
j=1

mj (mj+1)
sin2(ϕ−ϕj ) :(

d

dϕ

)2s−1
∑
j 6=i

mj (mj + 1)

sin2(ϕ − ϕj )

∣∣∣∣∣∣
ϕ=ϕi

= 0 (i = 1, . . . , N, s = 1,2, , . . . , mi).

Now we can use the result from [21], which says that in its turn this is equivalent to the
existence of the differential operatorD with π -periodic coefficients, intertwining the
operatorL = − d2

dϕ2 + v(ϕ) with L0 = − d2

dϕ2 :

L ◦D = D ◦ L0. (37)

The idea of the proof is close to the one demonstrated in the proof of Theorem 3.1, and
we shall not reproduce it here.

So, the only remaining thing to prove is that relation (37) implies thatL can be
obtained fromL0 by classical Darboux transformations. Let’s assume thatD has the
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minimal order among all the intertwiners ofL andL0 and consider its kernel:V =
KerD. As it follows from (37)V is invariant underL0: if Df = 0 thenD(L0f ) =
LDf = 0. Due toπ -periodicity of the coefficients ofD,KerD is also invariant under
the shiftT : f (ϕ) → f (ϕ + π).

We would like to show that the spectrum ofL0|V is simple and has the form
(k2

1, k
2
2, . . . , k

2
M), where 0< k1 < k2 < . . . < kM are some integers. Suppose that there

exists an eigenfunctionf ∈ V with the eigenvalueλ 6= k2, k ∈ Z. SinceL0 commutes
with T , we can assume thatf is a Bloch eigenfunction:{L0f = λf

Tf = µf
.

If λ 6= k2, f has to be a pure exponent:f = Ce
√−λϕ or f = Ce−

√−λϕ . SinceDf = 0
the operatorD can be factorised as

D = D̃ ◦ F, F = d

dϕ
− f ′

f
,

whereD̃ is aπ -periodic differential operator of order one less thanD (see e.g. [27]).
Whenf = Ce±

√−λϕ we haveF = d
dϕ

±√−λ andL◦D̃◦F = D̃◦F ◦L0 = D̃◦L0◦F .

ThusL ◦ D̃ = D̃ ◦ L0, soD̃ is also an intertwiner with order one less than the order of
D.

Thus the spectrum ofL0|V consists only of the squares of integers:λ = k2, k ∈ Z.
The same arguments show thatλ 6= 0. So we have only to prove that the spectrum
is simple. First of all there could be only one eigenfunction, corresponding to a given
λ = k2. Indeed, otherwiseKerD contains the wholeKer(L0 − λ) and thereforeD
can be factorised asD = D1 ◦ (L0 − λ) with D1 being another intertwiner of less
order. Suppose thatL0 has a Jordan block withλ = k2. Consider the Jordan basis
f0, f1, . . . : (L0−λ)f0 = 0, (L0−λ)f1 = f0, . . . . Sincef0 can not be a pure exponent
(see above),f0 = A cos(kϕ + θ0), thenf1 = Aϕ

2k sin(kϕ + θ0)+ B cos(kϕ + θ1). Now
from the invariance ofKerD under the shiftT we conclude thatAπ2k sin(kϕ + θ0) also
belongs toKerD. Together withf0 the last function generatesKer(L0 − λ), which
leads to factorisationD = D1 ◦ (L0 − λ) and reducibility ofD.

Thus we have proven thatKerD is generated by the functionsχ1, . . . , χn of the form
χj = cos(kjϕ + θj ). The general formula (see e.g. [29]) from the theory of Darboux

transformations says thatu = −2 d2

dϕ2 logW [χ1, . . . , χn]. The theorem is proven.ut

We should mention that although the formula (35) is explicit, it is not so easy to
extract the geometric information about the locus configurations. For example, it is not
clear how to prove the following theorem using this formula.

It is very easy to show that all two-line locus configurations consist of two perpen-
dicular lines with arbitrary multiplicities. Let’s consider the first non-trivial case of three
lines (α, x) = 0, (β, x) = 0 and(γ, x) = 0, x ∈ C2 with arbitrary multiplicities
mα,mβ,mγ ∈ Z+, and ask when they form a locus configuration. Modulo the natural
rotational equivalence we have the following classification.

Theorem 4.4. All the three line locus configurations are listed below:

1) the CoxeterA2 configuration with multiplicities(m,m,m);



550 O. A. Chalykh, M. V. Feigin, A. P. Veselov

2) the deformedA2(m) configuration (31) with multiplicities(1,1, m) whenm is posi-
tive and(1,1,−m− 1) whenm is negative;

3) the three line complex Berest–Lutsenko configurations, which can be parametrised
in this case as:

α = (1, a), β = (1, b), γ = (0,1) : a2 − ab + b2 + 1 = 0,

with multiplicities(1,1,1).

Proof. Let A be an arbitrary three line locus configuration. Let us consider the first
case whenA has at least two lines with multiplicities greater than 1. Then Theorem 4.2
states thatA has to be a CoxeterA2-system. Now let us suppose that there is only one
vectorγ = (0,1) with multiplicity m > 1. Theorem 4.2 states that other two vectors
have to be symmetric with respect to the vectorγ , so we may fix the normalisation
α = (1, λ), β = (1,−λ). The locus equation (27) forα has the form:

2(1 + λ2)(1 − λ2)

(x − λy)3
+ m(m+ 1)λ

y3 = 0 if x + λy = 0.

From that it immediately follows thatλ can take only the following values:λ =
± 1√

2m+1
,± i√

2m+1
, and it is easy to check thatA is equivalent to the systemA2(m)

or A2(−m − 1). The last case we have to consider is the case when all three vectors
α = (1, a), β = (1, b), γ = (0,1) have multiplicity 1. The locus equation (27) for the
vectorγ takes the form

2a(a2 + 1)

(x + ay)3
+ 2b(b2 + 1)

(x + by)3
= 0 if y = 0

or
(a + b)(a2 + b2 − ab + 1) = 0.

The locus equations (27) corresponding toα andβ can be written as follows:{
(1 + a2)(1 + ab)+ b(a − b)3 = 0
(1 + b2)(1 + ab)+ a(b − a)3 = 0

.

In the casea + b = 0 this system of equations is fulfilled if and only ifa4 = 1
9, which

implies thatA is either the Coxeter systemA2 or the deformed systemA2(−2). In the
casea2 + b2 − ab+1 = 0 the above system holds automatically without any additional
restrictions. Thus, the theorem is proven.ut
Remark 1.We should mention that some of the configurations 3) contain an isotropic
line (a = ±i, b = 0 or a = 0, b = ±i) and therefore actually reduce to the two-line
configurations. Notice also that whena = i/

√
3 = −bwe have aA2(−2) configuration.

Remark 2.It can be checked that for the configurations 3) from Theorem 4.4 the function
φ with the properties (13–14) doesn’t exist. This demonstrates that the converse for the
statement of Corollary 2.7 is not true.

Notice that from this result it follows that the locus ofn lines is non-empty only for
the special sets of multiplicities. Moreover, if the locus configuration is real then the set
of multiplicities determines it uniquely up to rotation due to the following result.
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Theorem 4.5. There exists no more than one locus configuration inR2 with a given
cyclically ordered set of multiplicities.

Proof. Let A = {α1, . . . , αN } be such a configuration for a given set of multiplicities
{m1, . . . , mN }, and let us fix the normalisationαi = (− sinϕi, cosϕi), 0 ≤ ϕ1 < ϕ2 <

. . . < ϕN < π . Considering the locus equations, we have, in particular, that

N∑
j=1
j 6=i

mj (mj + 1) cos(ϕj − ϕi)

sin3(ϕj − ϕi)
= 0 for i = 1, . . . , N.

Let’s now introduce the function

U(ϕ1, . . . , ϕN) =
∑
i<j

mi(mi + 1)mj (mj + 1)

sin2(ϕi − ϕj )
.

We conclude that if8 = (ϕ1, . . . , ϕN) defines a locus configuration then necessarily

∂

∂ϕi
U(ϕ1, . . . , ϕN) = 0.

FunctionU being a sum of convex functions is a convex function in the domain 0≤ ϕ1 <

ϕ2 < . . . < π . Suppose it has one more extremum in the point8̃ = (ϕ̃1, . . . , ϕ̃N ). Then
U(ϕ1, . . . , ϕN) should be a constant along the segment8 + (8̃ −8)t, 0 ≤ t ≤ 1, as

well as each function
mi(mi+1)mj (mj+1)

sin2(ϕi−ϕj ) . From that it follows that̃ϕi = ϕi +ϕ0 for some

constantϕ0 for all i. This means that system{αi} is defined uniquely up to a rotation.
ut
Corollary 4.6. If all the multiplicities are equal then the only real configuration on the
plane is Coxeter, i.e. dihedral.

The consideration of all two-dimensional subsystems implies the following more general
result.

Corollary 4.7. Any real locus configurations inRn with equal multiplicities must be
Coxeter.

5. Affine Locus

In this section we present some results concerning the case when the singular set of the
potentialu(x) of the Schrödinger operator is an affine configurationS of hyperplanes.
So, we consider a Schrödinger operatorL = −1+ u(x) with rational potential having
second order poles along some non-isotropic hyperplanes inCn. Let (αs, x) + cs = 0
(s = 1, . . . , K) be the equations of these hyperplanes. We will suppose also that the
potentialu(x) decays at infinity, i.e.u(x) → 0 while x → ∞ along the rays outside
singularities.

Impose now the condition thatL has local trivial monodromy around its singularities.
Then Theorem 2.1 from Sect. 2 allows us to reformulate this condition as some algebraic
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conditions on the arrangementS of the singular hyperplanes(αj , x)+ cj = 0. First of
all, it follows that the potentialu(x) must be of the form

u(x) =
K∑
j=1

mj(mj + 1)(αj , αj )

((αj , x)+ cj )2
(38)

for some integersm1, . . . , mK . Then conditions (19) imply that the Schrödinger operator
with the potential of the form (38) has local trivial monodromy around its singularities
if and only if the following relations are satisfied:

∑
j 6=i

mj (mj + 1)(αj , αj )(αi, αj )2s−1

((αj , x)+ cj )2s+1 ≡ 0 (39)

identically on the hyperplane(αi, x)+ ci = 0 for all i = 1, . . . , K ands = 1, . . . , mi .
We will call the relations (39)locus equations. The equations (27) from Sect. 3 are

their particular case, when all the hyperplanes pass through the origin. Sometimes we
will refer to (39) and (27) as to affine and linear cases respectively.

As it follows from Sect. 2, the locus equations (39) are necessary for the existence of
a certain eigenfunction of the corresponding Schrödinger operatorL (see Theorem 2.2).
As well as in the linear case (Sect. 3) Eqs. (39) are sufficient for this. The following
result has been proven in [21].

Theorem 5.1. LetL = −1+ u(x) be a Schrödinger operator with the potential of the
form (38) which satisfies the affine locus equations (39). ThenL has an eigenfunctionφ
of the formφ(k, x) = P(k, x)exp(k, x), whereP is a polynomial ink, Lφ = −k2φ.

This eigenfunction (up to a normalization factor ) is given by Berest’s formula anal-
ogous to (28):

ψ(k, x) = [(−2)MM!C(k)]−1(L+ k2)M [
K∏
j=1

(
(αj , x)+ cj

)mj exp(k, x)], (40)

whereM = ∑K
j=1mj andC(k) = ∏K

j=1(αj , k)
mj . The normalization is chosen in such

a way thatψ(k, x) = (1 + o(1))exp(k, x) ask → ∞.
We start the analysis of the affine locus equations and their solutions (locus configu-

rations) from the one-dimensional case.

5.1. One-dimensional case.In this case we have a configuration ofK pointsz1, . . . , zK
with multiplicitiesm1, . . . , mK on the complex plane and the potential

u(z) =
K∑
j=1

mj(mj + 1)

(z− zj )2
.

The locus equations in this case (formj = 1) have been introduced in the paper by
Airault, McKean and Moser [13]. Duistermaat and Grünbaum [14] obtained them for
the general multiplicities and proved that they are equivalent to the existence of the
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differential operatorD with rational coefficients, intertwiningL = − d2

dz2 + u(z) and

L0 = − d2

dz2 :
L ◦D = D ◦ L0.

All such operatorsL are the results of the classical Darboux transformations applied to
L0, so the potentialu(z) can be given in this case in terms of the Wronskians by the
well-known explicit formula:

u(z) = −2
d2

dz2 logW [χ1, . . . , χm],
where the polynomialsχ1, . . . , χm are defined by the recurrent relationsχ ′′

1 = 0, χ ′′
2 =

χ1, . . . , χ
′′
m = χm−1 (see Burchnall–Chaundy [32], Adler–Moser [15]). The Wronskian

is a polynomialPm(z, c1, . . . , cm) with the coefficients depending on the additional
integration constantsc1, . . . , cm (see [15] for the details).

Thus, the locus in the one-dimensional case is a union of the rational algebraic
varieties of the dimensionsm = 1,2,3, . . . , parametrised byc1, . . . , cm, and the locus
configurations are simply the roots of the corresponding Schur polynomialsPm(z, c1,
. . . , cm). The solutionψ of the corresponding Schrödinger equation−ψ ′′ + u(z)ψ =
−λ2ψ has the form

ψ =
(

1 +
m∑
i=1

ai(z)λ
−i
)
eλz. (41)

This is a degenerate rational case of the hyperelliptic BA function, corresponding to a
general finite-gap operator [2]. These rational BA functionsψ (41) are characterized by
the following properties in the spectral parameter (cf. [33]). Letξ1, . . . , ξm be arbitrary
parameters,ψs be the Laurent coefficients ofψ atλ = 0:ψ = ∑+∞

s=−m λsψs(z). Impose
the followingm linear conditions on the coefficientsψ−m, . . . , ψm−1:

ψm−1 +
m∑
s=1

ξsψm−2s = 0

ψm−3 +
m−1∑
s=1

ξsψm−2s−2 = 0

ψm−5 +
m−2∑
s=1

ξsψm−2s−4 = 0

. . .

ψ−m+1 + ξ1ψ−m = 0

. (42)

They are equivalent to a non-degenerate system form unknown functionsai(z) and
determineψ of the form (41) uniquely. The usual arguments [1,33] show that such a
function satisfies the Schrödinger equation−ψ ′′ + u(z)ψ = −λ2ψ with the rational
potential

u(z) = 2a′
1(z). (43)

Notice that for givenξ1, . . . , ξm the system (42) determines am-dimensional linear sub-
spaceV (ξ1, . . . , ξm) in C2m and therefore corresponds to a point of the Grassmannian
Gr(m,2m). It is more convenient to identify the system of conditions (42) with a point
of some infinite-dimensional GrassmannianGr(2)0 (see [33] for the details). Namely,
let’s consider the linear spaceC[[λ]] of formal series inλ, and letW be a subspace of
C[[λ]] with the following properties:
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1) λmC[λ] ⊂ W ⊂ λ−mC[λ], whereC[λ] is the space of polynomials and both inclu-
sions have the same codimensionm;

2) λ2W ⊂ W .

We will suppose that the numberm = m(W) in 1) cannot be reduced. The set of all such
subspaces form = 0,1,2, . . . we will denote asGr(2)0 following [33].

It is easy to see that the subspace ofC[[λ]] consisting of all Laurent seriesψ =∑+∞
s=−m λsψs which satisfy the conditions (42) represent nothing but a general point of

Gr
(2)
0 . In these notations the one-dimensional BA function corresponding toW is the

unique elementψW of the form (41), such that its Laurent expansion atλ = 0 belongs
toW for eachz. We will denote byuW the corresponding potential (43).

These considerations suggest the following extension of the axiomatics (7-8) of the
multidimensional BA function.

5.2. Equipped configurations and BA functions.Let A be again a finite set of non-
collinear vectors inCn.We will prescribe to each vectorα ∈ A a subspaceW(α) ∈ Gr(2)0 ,
and denote the corresponding integerm(W(α)) asmα. We will call the corresponding
set of hyperplanes5α : (α, k) = 0 with the prescribed subspacesW(α) the equipped
configurationA.

Definition. For a given equipped configurationA the functionψ(k, x) is called the
Baker–Akhiezer function if it satisfies the following two conditions:

1) ψ has the form

ψ = P(k, x)

A(k)
e(k,x), (44)

whereA(k) = ∏
α∈A(α, k)mα , P is a polynomial ink with the highest termA(k);

2) for eachα ∈ A the Laurent expansion ofψ in k in theα-direction calculated at any
point of the hyperplane5α must belong toW(α).

Here by the Laurent expansion of a meromorphic functionF(k) in theα-direction at a
pointk0 we mean the Laurent expansion of the functionf (λ) = F(k0 + λα) atλ = 0.

If for each subspaceW(α) the corresponding parametersξ in (42) are zeros, our
definition reduces to the definition of the BA function from Sect. 1. Now we will prove
the analogues of Theorems 1.1, 1.2 for a general equipped configuration.

Theorem 5.2. If for a given equipped configurationA there exists a BA functionψ then
it is unique and satisfies the Schrödinger equation(

−1+
∑
α∈A

(α, α)uα((α, x))

)
ψ = −k2ψ, (45)

whereuα(z) = uW(α)(z) are the one-dimensional potentials, corresponding to the sub-
spacesW(α).
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Theorem 5.3. LetR be the ring of polynomialsf (k) with the following properties: for
eachα ∈ A and any pointk0 ∈ 5α the polynomialfα,k0(λ) = f (k0 + λα) preserves
the spaceW(α): fα,k0W

(α) ⊂ W(α).
If the Baker–Akhiezer functionψ(k, x) exists then for any polynomialf (k) ∈ R

there exists some differential operatorLf (x,
∂
∂x
) such that

Lfψ(k, x) = f (k)ψ(k, x).

All such operators form a commutative ring isomorphic to the ringR. The Schrödinger
operator (45) corresponds tof (k) = −k2.

The proofs of the theorems above follow in a standard way (cf. [4]) from the following
two lemmas.

Lemma 1. If some functionψ of the form (44) (without the restrictions on the highest
term of the polynomialP ) satisfies conditions 2 from the definition of the BA function
then the highest term inP must be divisible byA(k) = ∏

α∈A(α, k)mα .

Lemma 2. The BA function corresponding to an equipped configurationA has the
following asymptotic behaviour at infinity:

ψ(k, x) = exp(k, x)

(
1 +

∑
α∈A

a
(α)
1 ((α, x))

(α, α)

(α, k)
+ o(k−1)

)
,

wherea(α)1 (z) are the first coefficients in the corresponding functions (41)ψα = ψW(α)

ando(k−1) means the rational function of k with degree less than−1.

To prove the lemmas, let’s expandψ in Laurent series in(α, k) on the hyperplane
(α, k) = 0. For convenience we may suppose that(α, α) = 1 and choose the orthonormal
basis ink such that(α, k) = k1, the other coordinatesk2, . . . , kn we shall denote bỹk.
Then up to the non-essential factorexp(k2x2 + . . . + knxn) ψ-function (44) takes the
form:

ψ̃(k, x) = ex1k1
∑

s≥−mα
ks1as(k̃, x), (46)

and the Laurent coefficientsas are rational functions of̃k with possible singularities at
zeros of homogeneous polynomialÃ(k̃) = k−m

1 A(k)|k1=0. Since the sum
∑
s≥−mα k

s
1as

is the Laurent expansion forP(k,x)
A(k)

, the degrees iñk of its coefficientsas decrease at

s → ∞ (by definition, degp
q

= degp−degq). Now we restrict our attention to the terms

ks1as with the maximal degree ofas in k̃. From the remark above it follows that we have
a finite number of such terms, and if we extract the highest homogeneous part ink̃ in
each term, we obtain the following finite expression:

ψ̃0(k1, x) = ex1k1
∑

s≥−mα
ks1a

0
s (k̃, x), (47)

wherea0
s is the highest term inas and all thea0

s have the same degree ink̃. It is clear
now that constructed in that waỹψ0 must obey the same restrictions (42). This implies,
in particular, that the sum (47) contains at least one term withs ≥ 0. The outcome is
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that if we expandP(k, x) in the series ink1, P = ∑
j≥0 k

j
1pj (k̃), and then extract from

this sum the terms with the maximal degree ink̃, the result must contain at least one
term withj ≥ mα. Now let’s presentP as a sum of componentsP = P0 + P1 + . . . ,
homogeneous ink1, . . . , kn and suppose that the highest termP0 is not divisible bykmα1 .
In this case some other termPi must containkmα1 , but its degree iñk is clearly less than
the degree of the term coming fromP0. This contradiction proves Lemma 1.

Moreover, in the extreme case whenP0 has the formP0 = k
mα
1 Q0 withQ0|k1=0 6= 0,

the reducedψ-function (47) up to a factor coincides with the one-dimensional BA
function (41)ψ(k1, x1). It’s easy to see that this factor is simplyQ0|k1=0.

In particular, this implies that the second homogeneous termP1 in P(k, x) for the
BA functionψ satisfies the following condition:[

k
1−mα
1 P1

]
k1=0

= a1(x1)
[
k
−mα
1 P0

]
k1=0

,

wherea1 is the first coefficient in the corresponding one-dimensional BA function (41).
We obtained this formula under the assumption that(α, α) = 1, in general it looks as
follows: [

(α, k)1−mαP1

]
(α,k)=0

= (α, α)a1((α, x))
[
(α, k)−mαP0

]
(α,k)=0. (48)

Taking into account the restrictions (48) for all the hyperplanes(α, k) = 0, we obtain
that if P0 = A(k) = ∏

α∈A(α, k)mα , then

P1 = A(k)
∑
α∈A

a
(α)
1 ((α, x))

(α, α)

(α, k)
, (49)

which proves Lemma 2.
Let’s consider now for a given equipped configurationA the corresponding Schrö-

dinger operator (45). It is clear that the potential has the form (38). The corresponding
affine configuration of the hyperplanesS we will call dualto the equipped configuration
A. Suppose that the corresponding BA function does exist, then from Theorem 2.2 we
conclude that the Schrödinger operator (45) has local trivial monodromy and hence
satisfies the locus equations (39). In other words, the dual configurationS must be a
locus configuration. We believe that the converse is true, that is,eachlocus configuration
appears in such way for appropriate BA function. Part 2 of Theorem 5.6 below shows that
each locus configuration is dual to some equipped configuration. So, the only problem is
to check that for the function defined by the formula (40) Properties 2 from the definition
of the BA function hold. Unfortunately, we couldn’t find a proof for this. We can only
remark that for all known affine locus configurations it is true.

5.3. Geometry of affine locus.First of all, it is easy to check that the following operations
preserve the locus equations and therefore allow to produce the locus configurations:

1) motions of the complex Euclidean spaceCn;
2) extensions of the configurations inCn to Cm, m > n, induced by an orthogonal

projectionCm → Cn;
3) union of two configurations which are orthogonal to each other.
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At the moment all known examples of the affine locus configurations can be constructed
using these operations from one-dimensional affine and multidimensional linear locus
configurations.

In particular, this is true for the configurations, corresponding to the operators intro-
duced byYu. Berest and P.Winternitz [16]. Analysis of these examples, however, reveals
one more geometric way to produce the locus configurations.

Let S be any affine configuration of hyperplanes inCn. Let’s imbedCn in Cn+2 in
the following way:x = (x1, . . . , xn) → (x1, . . . , xn,1,0). For any hyperplane5 in
Cn let’s define the hyperplanẽ5 in Cn+2 as a linear span of5 ⊂ Cn ⊂ Cn+2 and the
isotropic vectore = (0, . . . ,0,1, i). If (α, x)+ c = 0 is the equation of5 in Cn then
the corresponding equation of̃5 will be (α, x)+ c(xn+1 + ixn+2) = 0.

The corresponding configuratioñS in Cn+2 we will call isotropic projectivisation
of S.

Theorem 5.4. The isotropic projectivisation of an affine locus configurationS in Cn

is a linear locus configuratioñS in Cn+2.

Proof. We shall check the first of the locus equations forS̃, the others can be checked in
the same way. So, we need to prove that on a hyperplane(αs, x)+cs(xn+1+ ixn+2) = 0
the following identity holds:∑

j 6=s

mj (mj + 1)(α̃j , α̃j )(α̃s, α̃j )

((αj , x)+ cj (xn+1 + ixn+2))3
≡ 0,

whereα̃j denotes the normal vector of the hyperplane5̃j ⊂ Cn+2. If 5̃j ⊂ Cn has
the the normal vectorαj = (α1

j , . . . , α
n
j ), thenα̃j is the vector(α1

j , . . . , α
n
j , cj , icj ).

From that we immediately see that(α̃j , α̃j ) = (αj , αj ) and(α̃s, α̃j ) = (αs, αj ). Now
sinceλ = xn+1 + ixn+2 6= 0 almost everywhere on the hyperplane(αs, x)+ cs(xn+1 +
ixn+2) = 0 we come to the identity∑

j 6=s

mj (mj + 1)(αj , αj )(αs, αj )

((αj , x)+ cjλ)3
≡ 0

for (αs, x)+ csλ = 0. But this identity after rescalingx → λx takes the form∑
j 6=s

mj (mj + 1)(αj , αj )(αs, αj )

((αj , x)+ cj )3
≡ 0 for (αs, x)+ cs = 0,

which is exactly the first locus equation for the configurationS. ut
Example.LetS be a direct sum of three-point one-dimensional configurations with the
corresponding potential

u(x1, . . . , xn) =
n∑
i=1

6x4
i − 12τixi
(x3
i + τi)2

.

Then after the isotropic projectivisation we obtain the locus configuration with the po-
tential of the form (cf. [16]):

ũ(x1, . . . , xn+2) =
n∑
j=1

6x4
j − 12τj (xn+1 + ixn+2)

3xj

(x3
j + τj (xn+1 + ixn+2)3)2

.
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In order to obtain a more general Berest–Winternitz’s potential [16]

ũ(x1, . . . , xn+2) =
n∑
j=1

6x4
j − 12τj (xn+1 + ixn+2 + cj )

3xj

(x3
j + τj (xn+1 + ixn+2 + cj )3)2

we should shift the pairwise-orthogonal triples of hyperplanes

xj + τ
1
3
j (xn+1 + ixn+2) = 0 (j = 1, . . . , n)

by cj in xn+1.

Remark.The BA function in this example can be obtained easily using the following
general remark. Ifψi = Ri(k, x)exp(k, x) (i = 1,2) are given by the formula (40) for
two orthogonal locus configurationsS1 andS2 then the functionψ = R1R2exp(k, x)

will correspond to the locus configurationS = S1
⋃

S2. This is clear from the
structure of formula (40).

Thus, iterating such geometric procedures one can construct many new affine locus
configurations. However, all of them are degenerate in the following sense. LetV (S)

be the linear space of the normals to all the hyperplanes inS. We callS degenerateif
the restriction of the complex Euclidean form onV (S) is degenerate.

For a degenerate affine configuration one can define the followingisotropic reduction
procedure, which is inverse to the isotropic projectivisation.

Let K be the kernel of the restriction of the Euclidean form ontoV (S). Consider
the orthogonal complementV ⊥ of V in Cn and choose a subspaceL such that

V + V ⊥ = K ⊕ L.

By an isotropic reductionof the degenerate configurationS we shall mean the config-
urationS ∩ {a + L}, where{a + L} is a shift ofL by a generic vectora ∈ Cn.

Theorem 5.5. An isotropic reduction of a degenerate locus configuration is a non-
degenerate locus configuration.

The proof is similar to the case of isotropic projectivisation.
These results may be interpreted in two ways. First, we can say that any affine

locus configuration is a result of the isotropic reduction of some (degenerate) linear
configuration. So, the classification problem for affine locus configurations reduces to
the linear case. On the other hand, as we have shown, to classify all locus configurations it
is sufficient to consider non-degenerate configurations only. Moreover, we can consider
irreducible configurations only, i.e. exclude the unions of orthogonal subconfigurations.
At the moment all the known non-degenerate irreducible locus configurations are linear
or one-dimensional. It may well be the only possible examples.

The following general result clarifies the geometrical structure of affine locus con-
figurations.

Theorem 5.6. Any affine locus configurationS has the following properties:

1) for each pointx0 ∈ Cn the subsetSx0 ⊆ S of the hyperplanes passing throughx0
form a linear locus configuration;

2) for each hyperplane5 ∈ S the subsetS(5) ⊆ S of the hyperplanes parallel to
5 forms an extended one-dimensional locus configuration.
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Conversely, any affine configuration with properties (1), (2) belongs to the locus.

Proof. (1) Let’s consider the locus equations for some hyperplane5i : (αi, x)+ci = 0
passing throughx0:

∑
j 6=i

mj (mj + 1)(αj , αj )(αi, αj )2s−1

((αj , x)+ cj )2s+1 ≡ 0 for x ∈ 5i, (50)

s = 1, . . . , mi .
Now takex = x0+y, thenx ∈ 5i iff (αi, y) = 0 and we have the following relation:

∑
j :x0∈5j
j 6=i

mj (mj+1)(αj , αj )(αi, αj )2s−1

(αj , y)2s+1 +
∑

k:x0/∈5k

mk(mk+1)(αk, αk)(αi, αk)2s−1

((αk, x0)+ck+(αk, y))2s+1 ≡0

for all y such that(αi, y) = 0. Since the second sum is regular aty = 0, the first sum
should vanish on the hyperplane(αi, y) = 0. Thus, we obtain a linear locus equation
for the configurationSx0.

(2) To prove the second property, let’s divide all the hyperplanes which are non-parallel
to 5 into the subgroups in the following way:5′ and5′′ belong to the same group
if and only if their intersection is contained in5. Then in each group the sum of the
corresponding terms in (50) should vanish due to the property (1). The remaining terms
are exactly the locus equation for the set of parallel planesS(5).

The converse statement now is clear.ut
We conclude this section by some negative results about locus configurations inRn.

Theorem 5.7. For any locus configuration in the real plane there exists a point all the
lines pass through.

Proof. First we note that parallel lines cannot appear in locus configurations inR2.
Indeed, the subset of parallel lines according to the previous theorem must give a real
solution for the one-dimensional locus equations, which is impossible.

Now let’s fix some terminology: by vertices we will mean the intersection points for
the lines from the configuration and by a ray – any ray from the configuration with the
origin at some vertex (some rays may contain other vertices). Let’s choose an orientation
on the plane. This allows us to determine the oriented angleϕ(l1, l2) between the ordered
pair of raysl1, l2, which varies from−π to π . We need the following property of the
locus configurations inR2:

Lemma. For each rayl1 from the locus configuration inR2 there exists another rayl2
with the same vertex and acute angle betweenl1 andl2:

0< ϕ(l1, l2) ≤ π

2
.

Similarly, there exists a rayl3 with the same vertex such that−π
2 ≤ ϕ(l1, l3) < 0.

Proof of the lemma follows from the linear locus equations (27) for the lines passing
through a given vertex: it’s clear that the sign of each term in it depends only on the sign
of the cotangent of the oriented angle betweenα andβ.
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Lemma. Let l1 and l2 be chosen as in the previous lemma. Then ifl1 contains another
vertex of the configuration, the same is true forl2.

The proof follows from simple geometrical considerations.
Let’s consider now any vertex and all the rays of our configuration outgoing from

this vertex. As it easily follows from the lemmas we have only two possibilities:

1) there are no other vertices on these rays or
2) there is at least one more vertex on each ray.

Since we have a finite number of vertices, we obtain immediately that our configuration
has only one vertex. The Theorem is proven.ut

The same is probably true inRn but at the moment we can prove this only in the
special case when all the multiplicities are equal.

Theorem 5.8. Any affine locus configuration inRn with equal multiplicities is a linear
Coxeter configuration.

Proof. It’s sufficient to prove that the configuration must be symmetric with respect
to each of its hyperplanes. Since parallel hyperplanes cannot appear in a real locus
configuration, the statement follows from Theorem 5.6 and Corollary 4.7.ut

6. Locus Configurations and Huygens’ Principle

Let us consider a linear hyperbolic equation

Lϕ(x) = 0, L = 2N+1 + u(x), (51)

where2N+1 is the D’Alembert operator,2N+1 = ∂2

∂x2
0

− ∂2

∂x2
1

− . . .− ∂2

∂x2
N

.

We say after J.Hadamard [30] that it satisfiesHuygens’ Principle(HP) if its funda-
mental solution is located on the characteristic conoid, i.e. this solution vanishes in the
conoid’s complement.

Hadamard found some criterion for HP to be satisfied in terms of the so-called Ha-
damard coefficientsUν(x, ξ). They are uniquely determined by the following system of
equations:

N∑
i=0

(xi − ξi)
∂Uν

∂xi
+ νUν = −1

2
L(Uν−1) (52)

and the conditions thatU0(x, ξ) ≡ 1 andUν(x, ξ)are regular atx = ξ .These coefficients
are symmetric with respect tox andξ :Uν(x, ξ) = Uν(ξ, x) (for the details see the book
[31]).

Hadamard proved that Eq. (51) satisfies Huygens’ Principle if and only ifN is odd
andUν |0 = 0 for ν ≥ N−1

2 , where0 = {(x, ξ) : (x0 − ξ0)
2 −∑N

i=1(xi − ξi)
2 = 0}

is the characteristic conoid. For the case when the potentialu (and, as a corollary, all
Hadamard’s coefficientsUν) does not depend on at least one of the coordinates (say,x0),
Hadamard’s criterion is equivalent to the conditionUN−1

2
≡ 0.
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We consider Hadamard’s problem of the description of all huygensian equations of
the form:

(2N+1 + u(x1, . . . , xN))ϕ = 0. (53)

In fact, in our case for any locus configuration inCn the corresponding potential will
depend only on the firstn coordinates :u = u(x1, . . . , xn), n ≤ N .

It turns out that huygensian equations of the form (53) are closely related to the locus
configurations. For the linear locus configuration inCn the corresponding potential

u(x) =
∑
α∈A

mα(mα + 1)(α, α)

(α, x)2
. (54)

is homogeneous of degree –2.

Theorem 6.1. For any real potentialu(x1, . . . , xn) related to a linear locus configura-
tion the hyperbolic equation (53) satisfies HP ifN is odd andN ≥ 2

∑
α∈Amα + 3. In

that case the fundamental solution can be expressed via the BA function.
Conversely, if the hyperbolic equation (53) with homogeneous potentialu(x): u(λx)

= λ−2u(x) satisfies HP and all the Hadamard’s coefficients are rational functions, then
the potentialu(x) must have the form (54) for some linear locus configuration.

Proof. The proof of the first statement repeats the arguments of the paper [10], where
this result has been proven in the Coxeter case. It is based on the following relation
between the BA function and Hadamard’s coefficients. If we have the Baker–Akhiezer
functionψ of the form (7), we can present it in the form

ψ(ξ, x) = (U0(ξ, x)+ U1(ξ, x)+ . . .+ UM(ξ, x))e
(ξ,x), (55)

whereU0 = 1, Uν(x, ξ) is homogeneous of degree−ν in ξ , M = degA(k) =∑
α∈Amα. Sinceψ is symmetric inξ andx (Theorem 2.3),Uν has the same degree in

x. From the Schrödinger equation (9) forψ ,Lψ = −ξ2ψ ,L = −1+u(x), we obtain:

−2
n∑
i=1

ξi
∂

∂xi
Uν + L[Uν−1] = 0 (ν = 1, . . . ,M + 1 withUM+1 = 0).

SinceUν are homogeneous inx this implies the relations (52), soUν coincide with
Hadamard’s coefficients. Now sinceUM+1 = 0 Hadamard’s criterion guarantees HP if
N ≥ 2M+3. Notice that it gives also the explicit formula for the Hadamard’s coefficients
and the fundamental solution for (51) (see [10] for the details).

Conversely, from the chain (52) for Hadamard’s coefficientsUν(x, ξ) for the homo-
geneous potentialu it follows thatUν are also homogeneous inx (and, therefore, in
ξ ):

Uν(λx, ξ) = λ−νUν(x, ξ) = Uν(x, λξ).

This can be proven by the same calculation as in Lemma 1 from [12], where the case
n = 2 was considered. Let’s now consider the functionψ defined by the formula (55).
Then, from the Hadamard chain (52) and homogeneity ofUν it follows in the same way
as above thatψ satisfies the Schrödinger equation

(−1N + u(x))ψ = −ξ2ψ.
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Notice that the potentialu(x) must be rational since all Hadamard’s coefficients are
supposed to be rational. This follows from the first equation of the Hadamard’s chain
(52). Now using Theorems 2.1 and 2.2 and the fact thatu(x) is homogeneous of degree
(–2) we conclude thatu(x) has the form (54) for some locus configuration.ut
Remark.In the case whenn = 2, i.e.u = u(x1, x2), a stronger result (namely, without
the assumption that Hadamard’s coefficients are rational) follows from the results byYu.
Berest and I. Lutsenko [11,12].

Now let’s consider an arbitrary (affine) locus configurationS such that the corre-
sponding potentialu(x) given by the formula (38) is real for realx. This is equivalent
to the conditionS = S̄, whereS̄ is a natural complex conjugation of a configu-
ration S. The following result generalises Theorem 6.1 for the general (affine) locus
configurations.

Theorem 6.2. For any affine locus configurationS ⊂ Cn with S = S̄ the corre-
sponding hyperbolic equation (53) satisfies Huygens’ Principle ifN is odd and large
enough:N ≥ 2M + 3,M = ∑K

j=1mj .
Conversely, if Eq. (53) satisfies Huygens’ Principle and all Hadamard’s coefficients

are rational functions, then the potentialu(x) must be of the form (38) for some affine
locus configuration.

Proof. The first part of this theorem can be derived from Theorem 5.1 and the results
by Yu. Berest [34] (see also [19]). We would like, however, to present here another,
more illuminating proof. It is based on a different idea which will help us to prove the
second part also. The idea is to reduce the affine case to the linear one using the isotropic
projectivisation procedure.

The main observation is encapsulated in the following lemma. LetUν(x, ξ) (ν =
0,1, . . . ) be some analytic functions of 2n variables

x = (x1, . . . , xn), ξ = (ξ1, . . . , ξn)

which satisfy Eqs. (52) with some potentialu(x). Let’s define now the new functions
depending oñx = (x1, . . . , xn, xn+1, xn+2) andξ̃ = (ξ1, . . . , ξn, ξn+1, ξn+2):

Ũν(x̃, ξ̃ ) = (xn+1 + ixn+2)
−ν(ξn+1 + iξn+2)

−νUν(
x

xn+1 + ixn+2
,

ξ

ξn+1 + iξn+2
)

(56)

and

ũ(x̃) = (xn+1 + ixn+2)
−2u(

x

xn+1 + ixn+2
). (57)

Lemma. The relations (52) forUν(x, ξ) andu(x) are equivalent to the similar relations
in x̃, ξ̃ for Ũν(x̃, ξ̃ ) andũ(x̃) defined by the formulas (56) and (57).

The proof is straightforward.
Now suppose that we have the real potentialu(x) related to some affine locus con-

figurationS = S̄ ⊂ Cn. Then the potential̃u(x̃) defined by (57) corresponds to some
locus configuratioñS ⊂ Cn+2 which is exactly the result of the isotropic projectivisa-
tion defined in the previous section (see Theorem 5.4). Thus, according to Theorem 3.1
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the corresponding Schrödinger operatorL̃ = −1n+2 + ũ(x̃) in Cn+2 has the BA func-
tion ψ̃(ξ̃ , x̃) which is given by the formula (28). Therefore,̃ψ can be presented in the
form analogous to (55),

ψ̃(ξ̃ , x̃) = (Ũ0(ξ̃ , x̃)+ Ũ1(ξ̃ , x̃)+ . . .+ ŨM(ξ̃ , x̃))e
(ξ̃ ,x̃), (58)

whereŨ0 = 1 and the components̃Uν(x̃, ξ̃ ) are homogeneous of degree−ν in ξ̃ and
x̃, non-singular for̃x = ξ̃ and satisfy the relations (52) iñx, ξ̃ with the potential̃u(x̃).
Now let’s consider their restriction forxn+1 + ixn+2 = ξn+1 + iξn+2 = 1,

Uν(x, ξ) = Ũν(x̃, ξ̃ )| xn+1+ixn+2=1
ξn+1+iξn+2=1

. (59)

We claim that formula (59) determines Hadamard’s coefficients for the initial potential
u(x).

First of all, let’s notice that this formula really determines some functions ofx, ξ

only. This can be derived directly from the formula (28). Indeed, it’s easy to see from
the inductive procedure (29) that the pre-exponent in the BA function (28) is a linear
combination of the "monomial" terms

∏
α∈A(α, x)pα (α, k)qα with some integerspα, qα.

Thus,xn+1, xn+2, ξn+1, ξn+2 will enter in ψ̃ only as combinationsxn+1 + ixn+2 and
ξn+1 + iξn+2. This means that the coefficientsUν defined by (59) indeed do not depend
onxn+1, xn+2, ξn+1, ξn+2. As a corollary of the homogeneity of̃Uν in x̃ andξ̃ we may
invert formula (59) and obtain that̃Uν are related toUν by the formula (56). Now using
the lemma we get Eqs. (52) forUν . It is clear then from (59) thatU0 = 1 andUν are non-
singular whenx = ξ . The last remark is that the procedure (59) gives us the real-valued
functionsUν of x, ξ ∈ Rn in the case when the initial potentialu(x) is real,S = S̄.

So, for any affine locus configuration we constructed Hadamard’s coefficientsUν
for the corresponding hyperbolic equation (53), andUM+1 = 0. Applying Hadamard’s
criterion, we obtain the first part of the theorem.

To prove the inverse statement, we suppose that the hyperbolic equation (53) is
huygensian and has rational Hadamard’s coefficientsUν with UM+1 = 0. In that case
we can define the homogeneous functionsŨν(x̃, ξ̃ ) by the formula (56).According to the
lemma, they obey Eqs. (52) with the homogeneous potential (57). Then in the same way
as in Theorem 6.1, we conclude that the function (58) satisfies the Schrödinger equation
L̃ψ̃ = −ξ2ψ with L̃ = −1n+2 + ũ(x̃). Now using Theorem 2.2 in the same way
as in Theorem 6.1 we deduce that the potentialũ(x̃) must correspond to some (linear)
locus configuratioñS of non-isotropic hyperplanes inCn+2. But in that case the initial
potentialu(x) (see the formula (57)) will correspond to the isotropic reductionS of S̃
which should satisfy the locus equations due to Theorem 5.5. The theorem is proven.ut
Remark.We have assumed that the potentialu of the hyperbolic equation does not
depend onx0, but essentially we have used only the fact that the sequence of Hadamard’s
coefficients terminates at some stepM. Actually all the results of this section can be
generalised formally for any equation of the form (51) (even with the complex potential),
which possesses the last property. In that case the singularities of the potential should
satisfy the locus equations inCN,1 with the complex Euclidean structure defined by the
metrics diag(−1,1, . . . ,1).

We conjecture that any hyperbolic equation(2N+1 + u(x))ϕ = 0 with terminating
sequence of Hadamard’s coefficients has a rational potentialu(x) which corresponds
to some locus configuration inCN,1. We have proved this under the assumption that
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the Hadamard’s coefficients are rational. The proof of this conjecture would lead to the
solution of the famous Hadamard problem in the class (53). Until now this problem is
solved only whenu depends on one of the coordinates (K. Stellmacher, J. Lagnese [17])
and whenu is homogeneous and depends on two of the coordinates (Yu. Berest [12]).

7. Some Other Relations and Generalisations

7.1. The Baker–Akhiezer functionψ(k, x) related to an equipped configuration has the
following remarkable property: it satisfies a system of differential equations not only in
x but also ink–variables. The corresponding bispectral property of the one-dimensional
BA function has been observed in the fundamental paper by Duistermaat and Grünbaum
[14].

Let ψ(k, x) be a BA function related to some equipped configurationA, S be the
corresponding dual configuration of the poles of the potentialu(x) given by (38).

Let R be the ring of polynomials defined in Theorem 5.3. Define also the dual ring
S as the ring of all polynomialsq(x) in x, satisfying the relations(

αs,
∂

∂x

)2j−1

[q(x)] |(αs ,x)+cs=0 ≡ 0

for all j = 1,2, . . . , ms and for all the hyperplanes of the configurationS.

Theorem 7.1. For anyp(k) ∈ R andq(x) ∈ S there exist the differential operators
Lp(x, ∂/∂x) andMq(k, ∂/∂k) such that the BA functionψ(k, x) satisfies the following
bispectral problem: {

Lp(x, ∂/∂x)ψ(k, x) = p(k)ψ(k, x)

Mq(k, ∂/∂k)ψ(k, x) = q(x)ψ(k, x)
. (60)

The existence of the operatorLp(x, ∂/∂x) is claimed in Theorem 5.3. The existence
of Mq(k, ∂/∂k) follows from the characterisation ofψ by its analytic properties inx.
Namely, one can show that the BA functionψ(k, x) is the unique function of the form

ψ = B(x)+ . . .

B(x)
e(k,x),

whereB(x) = ∏N
s=1((αs, x)+cs)ms and the dots denote the polynomial inx of a smaller

degree, such that the following conditions are fulfilled:(
αs,

∂

∂x

)2j−1 [
((αs, x)+ cs)

msψ
] |(αs ,x)+cs=0 ≡ 0

for eachj = 1,2, . . . , ms ands = 1, . . . , N . The fact that the BA function satisfies
these conditions follows from the Schrödinger equation (45) and Theorem 2.2.

7.2. A similar approach can be developed for the trigonometric versions of our Schrö-
dinger operators (1). As well as in the rational case discussed in the present paper, the
axiomatics of [4] has to be amended in order to cover the most general case. We in-
tend to discuss such axiomatics in a separate paper. The corresponding locus conditions
have been described in [21]. The bispectral property for the corresponding BA func-
tions results in difference operators in the spectral parameter, which can be viewed as
deformations of the rational Ruijsenaars and Macdonald operators (see [35]).
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7.3 The most of the results of this paper can be generalised to the case when the potential
u(x) of the Schrödinger operator is a matrix-valued function. The locus equations for
that case in dimension 1 have been described in [36]. The multidimensional case is
considered in [37].
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