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Summary. We propose and prove a convergence of the semi-implicit finite
volume approximation scheme for the numerical solution of the modified
(in the sense of Cdit Lions, Morel and Coll) Perona—Malik nonlinear im-
age selective smoothing equation (caléedsotropic diffusionn the image
processing). The proof is based by a-priori estimates and Kolmogorov’'s
compactness theorem. The implementation aspects and computational re-
sults are discussed.
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1. Introduction

In this paper we study the convergence of the semi-implicit finite volume
scheme for the following nonlinear initial-boundary value problem

(1.1) Ou—V.(9(|[VGs xu])Vu) = f(ug —u) inQp =1 x £2,
1.2) Ou=0 onlxaf,
(1.3) u(0,-) =wup in 2,

where2 c Réisa rectangular domaid,= [0, 7] is a scaling interval, and

g is a decreasing functiog{0) = 1,0 < g(s) = 0
(1.4) for s — 0o, g(v/t) is smooth,
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(1.5) G, € C*(R?) is a smoothing kernel with G (z)dz =1
R4
andG,(z) — d, foroc — 0, 4, the Dirac measure at poimt

(1.6) f is a Lipschitz continuous, nondecreasing functift)) = 0,
(1.7) up € L*(92).

We assume that

(1.8) suppG,(z) C B,(0) (B,(0) is a ball centered at 0 with radidg

and by the ternVG,, * win (1.1) we mean| VG, (z — §)a(&, t)dE, where
R4

@ is an extension ofi given by periodic reflexion through the boundary of
2 in the regionf2, = 2 U,y Bo(z) and by0 in RY — (2,.

In the image processing, (1.1)—(1.3) arises in the nonlinear data filtra-
tion, edge detection and image enhancement and restoration [14], [5]. The
initial conditionu(z) represents the greylevel intensity function of the im-
age which we want to process. The solutign, =) of (1.1)—(1.3) represents
the family ofscaled(filtered, smoothed) versions af(z); t is understood
as an abstract parameter callzhle In general, the processing af) by
evolutionary PDE like (1.1) is callednage multiscale analysif, 2,11,

15] and, in a sense, it represents an embedding of the initial image to the so
callednonlinear scale spacén our case, (1.1)—(1.3) represent a slight mod-
ification of the well-known Perona—Malik equation called agtisotropic
diffusionin computer vision community. It selectively diffuses an image in
the regions where the signal is of constant mean in spite of those regions
where the signal changes its tendency. This diffusion process is governed
by the shape of the functignand its dependence &fu which is in a sense

an edge indicator [14]. We note that in original Perona—Malik formulation
Vu stands in the place &f G, xu in (1.1). However, if the produgt(s)s is
decreasing, the Perona—Malik equation can behave locally like the backward
heat equation, which is an ill-posed problem. So,dsrused in practice
(9(s) = 1/(1+5?), g(s) = e~*) both existence and uniqueness of a solution
cannot be obtained. One way how to preveal that mathematical disadvan-
tage has been proposed by @attions, Morel and Coll in [5]. They have
introduced the convolution with the Gaussian keriglinto the decision
process for the value of the diffusion coefficient. This slight modification
(for o small, the models are close and in a seVi§é, xu — Vu foro — 0)
allowed them to prove the existence and uniqueness of the weak solution
for the modified model and to keep all practical advantages of original for-
mulation. Moreover, the usage of tliaussian gradientnakes the process
more stable in the presence of noise. It has made expliesmoothing
included implicitly in numerical realizations of Perona—Malik equation, too.
Due to homogeneous Neumann boundary conditions the solution tends to



Semi-implicit finite volume scheme for solving nonlinear diffusion equations 563

a constant function with time evolution, providgd= 0. By means off
on the right—hand side of (1.1), the solutiars forced to be close tay,
which can weaken the influence of th®pping timel" . In [12], f(s) = s
is proposed.

Several approaches for the numerical solution of (1.1)—(1.3) have been
suggested and studied regarding stability of the schemes, convergence to
a weak solution of continuous problem and efficiency of implementations.
There are used finite difference approximations (see e.g. [16] as well as
methods based onfinite element technique allowing adaptivity by coarsening
of the discrete computational grid [8], [3]. The convergence of the semi-
implicit scheme combined with finite elements in space to the unique weak
solution of (1.1)—(1.3) has been proven in [8]. The finite difference schemes
for (1.1)—(1.3), explicit, semi-implicit or implicit, have been studied only
due to the stability properties on given spatial discrete grids [16].

In this paper we derive approximation scheme, corresponding to (1.1)—
(1.3), using the so called finite volume method [13], [6]. In finite volume
method, the discrete approximations are piecewise constant per control vol-
umes corresponding to pixel/voxel structure of the discrete image, so such
approach is the most natural in image processing. The nonlinearity of the
eqguation is treated from the previous discrete scale step, thus our scheme is
semi-implicit and leads to a solution of sparse linear systems in each dis-
crete scale step of the algorithm. That can be done in efficient way using
preconditioned iterative solvers. Moreover, the scheme allows to derive L
a-priori estimates for fully discrete solutions which force us to use Kol-
mogorov’s compactness theorem in order to prove the convergence of the
approximations to the unique weak solution of (1.1)—(1.3).

The organization of the paper is as follows. In Sect. 2 we present the
fully discrete semi-implicit finite volume scheme and in Sect. 3 we prove its
convergence to the unique weak solution of the problem. Finally, in Sect. 4
we discuss some computational results.

2. The finite volume scheme

Let 7, be a mesh of?2. The elements of;, are the so called control vol-
umes. For every paifp, q) € 7',% with p # ¢, we denote their common
interface bye,,, i.€. e,, = p N g which is supposed to be included in
a hyperplane oR? not intersecting eithep or ¢. Let m (epq) denote the
measure ofe,,, andn,, the unit vector normal te,, oriented fromp

to ¢. We denote by¢ the set of pairs of adjacent control volumes, de-
fined by = {(p,q) € 77.p # ¢, m(epq) # 0}. We also use the nota-
tion N(p) = {q¢, (p, q) € £}. We assume that there exists family of points
(p)per,, xp € p for everyp € 7, such that for everyp,q) € &,
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Tq—Tp

e = M- Leto (p) denote the diameter of the control volumen (p)
the measure iiR?, of the control volume, dp its boundary and let

h = max (p).

PETH

We denote byl,, = |z, — z,| the Euclidean distance betweep andz,
and byz,, a point ofe,, intersecting the segmem},z,. Finally we define

Tpq = m((lzq)-
Now, we are ready to write th@emi-implicit finite volume schemefor
solving regularized Perona-Malik problem (1.1)-(1.3):

Let0 =ty < t; < .. <tn,.. = 1 denote the time discretization with
tn = tn_1 + k, wherek is the time step. Fon = 0, ..., Nipax — 1 we look
foruptt, p € 7, satisfying

=n+1 _ =n

U u,
%m (p) — Z gZ&”(ﬂh,k)qu (ﬂg—i-l _ ﬂ;z—l-l)
gEN(p)
(2.1) +f (Ug - ﬂ;‘) m (p)
starting with
1
2.2 ﬂoz/u x)dzx, p € T,
( ) D m(p) , 0 ( ) p h
where
(2.3) 9pd" (@nk) = g (|VGo * Up g (Tpg, tn))

andy, j, is an extension of the piecewise constant functipp defined as
follows

Nmax
(2.4) Ui (T,8) = D ) WX {wep) X{tni<t<tn}
n=0 peTy
. : 1if Alistrue Lo .
with the functiony 4, = 0 elsewhere The extension is realized by pe-

riodic reflexion through the boundary @? in the region{2, and by0 in
RY — (2,.

Remark 2.1The functionu,, &, constructed using discrete values given by
the scheme (2.1), is considered as the approximation of the solution of (1.1)-
(1.3) and its convergence to a weak solution of (1.1)-(1.3),as0,k — 0,

will be studied in Sect. 3.
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Remark 2.2The scheme (2.1) is deduced from initial-boundary value prob-
lem (1.1)-(1.3) after integration of (1.1) overc 7, and overit,, t,+1]:

tnt1 tnt1 tn+t1

//&gudxdt // (IVGgxu|)Vu. ﬁdxdtJr/ /f ug—u)dxdt
tn (9])

(2 5)

and taking into account the homogeneous Neumann boundary conditions
(1.2).

Remark 2.3The gradient of the convolution term {2.1), i.e

N 0 -
VGg * U (Tpg, tn) = (8954 (Go * tp,k (Tpq, tn))) )
) i=1,...,d

wherex; are space variables, is computed using the convolution derivative
property

0 ~ 0G4
87:62‘ (Go * U,k (qu’ tn)) = o,

* ah,k (l'pq, tn) .

Then we have

0G 0G
o, * Up j; (Tpg, tn) =

(Xpg — 8)Unk (5,tn) ds

R4 8SCZ
o [0Gs
(2.6) = ZUT %(qu — s)ds
and thus
(2.7) VG *tng (Tpg tn Z”/VG (Tpg —

where the sum is evaluated on control volumes 7, and on control vol-
umes contained in the reflexion of through boundary of? which are
arroundz,,. Hereby, the sum is restricted to control volumes intersecting
B, (xp4), the ball centered at,,, with radiusc.

Theorem 2.1. (Existence and uniqueness of the discrete solutioithere
exists unique solutiony, ;. given by the scheme (2.1).

Proof. We can prove the existence and uniqueness,gfonce we prove it
for eachag, p € 1,0 < n < Npax. We use an induction argument for that
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purpose. Firsﬁg is given for eactp € 7. Next, we suppose that), p € 7,
is known. By(2.1) we have, for eachp € 7, that

+ Z gpq (Un)T, nH Z 9pg* (U k) Pqu
geN(p q€N(p)
mpP)_n — —n
2.8) = k(:)up +f (ug — up) m (p) .
let us define

P = card ()

and functionx : 7, — NN [1, P] which numbers each volumgi.e.p —
a(p). Then we can constru®”=>-matrix A = (A;j), , coming from
(2.8) for which

Aa(p)a(p) = 7+ > 95 @h ) Togs

geN(p)
Aa(l’)a(q) _gpq (Uh k)qu , q¢& N (p)
and otherwise

Az’j = 0.

Let R7-vectorT" " correspond to the discrete solution, i.e.

@M) i =

and sefR?-vectorF"" to

(F”‘“)a(m = mlip)ug +f (@ —a)m(p).

Using these definitions we can rewrite (2.8) into linear system in the matrix
form

Since the matrixA is symmetric and strictly diagonally dominant, there

exists uniqueR® vector "' satisfying (2.9) which in turn implies the
existence and uniquenessﬂ;f“,p € Th.
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Definition 2.2. A weak solution of the regularized Perona-Malik problem
(1.1)-(1.3) is a function, € L? (0, T; H' (12)) satisfying the identity

(2.10) //uajtd;rdt—l—/ o(z)p(x,0)dr —

T T
//g VG, *u\)Vchpdxdt+//f ug — u)p (z,t) dedt =0
0 0 N

forall ¢ € &, where the function space

b = pe L2(0,T; H(2)), %‘f
(2.11)

and (H' (£2))" denotes the dual space Hf' (£2) .

Remark 2.4In [5] Catte, Lions, Morel and Coll proved that there exists
unique solution of (1.1)-(1.3) (witki = 0) in the distributional sense which

is also the classical solution of the problem at the same time. Their result
can be simply adopted for Lipschitz continuous right hand gid&€o get
existence they used Schauder’s fixed point theorem with iterations in en-
tire parabolic equation. In the next section, we will find such solution in a
computationally natural and efficient way using semi-implicit finite volume
scheme.

€ L0, T; HY(2)), 0(.,T) = 0}

3. Convergence of the scheme to the weak solution
3.1. L2(£2) - a priori estimates
Lemma 3.1. The schemé2.1) leads to the following estimates:

There exists a positive constaritsuch that

. — 0\ 2

| n <

(), max ¥ (@) m(p) < C
e (mom)

dpq

m(epg) < C
n=0 (p,q)e€
J\/vmanx_1 1 2
@iy 5 ¥ (G —w) mp) <C
n= PETH
hold for everyk sufficiently small with a constaidt which does not depend
onh, k.
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Proof. Let us considen such thad) < n < Npyax. We multiply the scheme
(2.1) by w1k to obtain

(@t =) wytm(p)=k 3 [gpg" @nk)Tpq (T — ) wp™]
q€N(p)
TRf (@ — ) T m (p).
(3.1)
Using the propertya —b)a = 3a® — 1b? + 1 (a —b)? on the left hand
side of(3.1) and after summing OVQJ’G Th We have that

3 @) ) - 5 Y (@) mi)

pETh pETh
+ = Z —n+1 —n m(p)
PGTh
=k D0 D Lo @) T () T
PEThEN (p)
(3.2) + k Z I ( u — Uy, "'Hm(p)
PETh
Sincegpy (Uni)Ipg = 9qp (Un k) Typ We can rearrange the summation of

the first term of the right hand side (8.2) to obtain

(3.3) S (65 @) Tye (@t —antyart!] =

PETh geN(p)

= —% Z [qu (Uhk) Tpq (U™ —ﬂ?“)z} .

(p.g)€E

Applying (3.3) in (3.2) and after summing over = 0,...,m — 1 < Ny,
we have

D CARTORED BB BICARE AR

pETH n=0 peTy

T3 Zk Z {gpq k)T (“ZH_ﬂZH)ﬂ

n=0 (p,q)e€

=@ Zkau—u )y m ().

PETH n=0 peET
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Then we use Young’s inequality and the Lipschitz continuity @by K >
0 we denote the Lipschitz constant ffin the right hand side to obtain

%Z(ﬂg +Zk2fu—u ”+1m(p)<

PETH n=0 peET,

;(up fzkz

n=0 pem,

<

N

5 3 MTIRTTEES 3O Bt

n=0 peETh n=0 peET,

Sinceug € L? (12) , there exist€’; > 0 such that

(3.4) = Z ) < Ch,

PGTh

and one can show that there exists a positive constastich that

LS @ ne) + 15 S @ - m) e

PETH n=0 pETy

m—1

(3.5) —i% Z k Z {gpq (p k) Tpq (H;LH _ﬁgﬂ)?}

n=0 (p,q)e€

m
§C1+CQZ/€Z (ﬂp) m
n=0 peET
Now, we can apply the discrete Gronwall lemma to state the r@yoltthe
lemma, i.e. there exists a positive constaptsuch that

(3.6) 3" (@) m(p) < Csforall 0<m < Nyax

DPETH

hold for everyk sufficiently small where the constafiy does not depend
onh, k. We get also

qu g)ﬂ(&tn)

<5 [ 15Golapg — € )!2d£+§f (&, tn)[2de < Cy
R4 R4

(3.7) ‘8%1 o * Up k(Tpg, tn d¢ <

PETH

+Cy [ (€, t)?dE < Cy +Cy Y (@)’ m(p) < Cs
2
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It comes from (3.7) thatV G, * i, i (2pg, tn)| < oo, Which in turn implies
that there exists a positive constansuch that

(38) gpq (uh k) >a > 0.

Using(3.8) and(3.6) in (3.5) , one can deduce assertiqiiy and(iii) of the
lemma.

3.2. Space and time translate estimates

In order to show relative compactnessiifi (Qr) of (wny), , Vverifying

(2.1) - (2.4), we need to establish the estimates of differences in space and
in time for the set of discrete solutions.

Lemma 3.2. (Space translate estimatefor all vectoré € R?, there exists
a positive constant’ such that

(3.9 / (e (& + E.8) — T () dxdt < C J€] ([€] + 20)
2:x(0,T)

wheref2s = {z € 2,[x,x +¢] € 2}.

Proof. Let¢ € RY be a given vector. For alp, ¢) € £, we denote by,
the following valuet,,, = 1§ .n,. For allz € 2, we denote by (z, p, q)
the function defined as follows

epg:» p @ndg; andép, > 0

1 if the segmentz, x + £] intersects
0 otherwise.

For anyt € (0,7T) there exists: € N such that{n — 1)k < ¢ < nk. Then
for almost allz € £2; we can see that

Un i (40 —Tn g (2,0) =W o —Tney = >, B (2,p,q) (W — 1)
(p.a)e€

(3.10)

wherep (z) is the volumep € 7, wherez € p . We introduce the term
V/&pedpg N (3.10) by multiplying and dividing by it the right hand side.
Using the Cauchy-Schwartz inequality we obtain

(3.11) (g (z + &, 1) — T (2,1)* <

=n _ )2
Z E (x,p,q) Epgdpg Z E(x,p,q (uq up) .
( Epatlpg

p,q)€E (pg)e€
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Using the fact thagydpg = &7pqdpg = é—l (z4 — ) , we have that

(3.12) Z E (2, p,q) &pqdpg = 1€ ( Tp(a+€) — (I))'

(pa)€E

In order to bound the difference between the two volume center points in
the right hand side of3.12) , we add and subtraet+ ¢ to obtain

|Zp(ete) = Tp@)| = [ (@pre) = (@ +€)) = (2p@) —2) +€| <

< |a:p(x+g> — (@ + O]+ |2pa) — 2| + €] < 2h + ¢
since(zx + &) € p(x + &) andz € p (z) . This result implies that
(3.13) > E(2,p,q) {qdpg < 20+ 1]
(p.9)e€

Now, we integrate the relatidi3.11) on {2 x (0, 7") and us€3.13) to obtain

/ (Tnp (x+&t) —TUng (z, t))2 dxdt

.Q£ X (O,T)

Nmax

(3.14) < (2h+[¢]) Zkz qum /E:Bp, ) dx

n=0 (p,q)€€

sincewy, , is piecewise constant for each mter‘(aVc, (n+1)k). By the
geometrical argument given in [7], we have that

/E (z,p,q) dz < m(epq) [§]Epq

2

and applying this result ifi3.14) we obtain

/ (Tn (x4 &, t) —up (, t))2 dxdt

.Q{ X (O,T)

Inax

2
(8.15) < (2h+¢]) [¢] Z k Z q ) m (€pq) -

=0 (pq)e€ @pa

Finally, using the discrete a priori estimgig of Lemma 3.1 we end the
proof.
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Lemma 3.3. (Time translate estimate)There exists a positive constatit
such that
/ (i (.t + ) — T ()% dadt < Cis
2x(0,T—s)
forall s € (0,7).

Proof. Let s € (0,7) be a given number. Let us define the following
functions of timet

A) = [ e o, + ) = T (0.0 dat,
2

t t+s
ng = [k‘“ andn;;s = { A —‘7

where[.| means the upper integer part of positive real number. Singe
is piecewise constant function we have that

Aty =Y (@ —ap) m (p)
PETH
which can be written as
(3.16) A(t) = Z (@ — @) Z (@™ —a) m(p).
PETH t<nk<t+s

We use the approximation scheifl) in (3.16) to have

A= ) kZ( U — ) X

t<nk<t+s PEThH

x Z l9ps" (Tnk) (“g+l_“3+1)}>+

gEN(p)

+ > kY (@ =) f (@) — ) m(p))

t<nk<t+s PpPETH

which after rearranging of the sum concerning the control volume variable
leads to the relation

A=Y 5% (— o ) x

t<nk<t+s (p,q)€E
on (— —n—+1 -—n—+1
XGpa" (@nk) Tpg (g™ — ") ) +

(3.17) + Y kY (@ =) f (@) - ay) m(p))

t<nk<t+s PpETH
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Applying Young's inequality in terms of the previous expresion and using
the relation! (a + b)* < a®+ b yield

(318) AW < JA) + S A(0) + §Aalt) + As(t)

where

(3.19) A= Y kS T (@ —u)®,

t<nk<t+s (p,q)eg

(320) A= Y kY Ty (@ —mer)?,

t<nk<t+s (p q)EE

@2 Aat)= 30k 3 (o ) Ty (77 - )

t<nk<t+s (p,q)€€

(3.22) As(t) = > kY ((mpr —mp) f (u —uy) m(p)) .

t<nk<t+s PEThH

Now, we integraté3.18) according to the time variable to obtain

~
.
~
&
~

—S

Ay (t)dt +

o\
=
N

&
IA
N | =
o\
i
o
=
&
+
N =

S S

Tf
(3.23) Ag(t)dt + / As(t)dt.
0

+
AN

o\"ﬂ o\

Next step is to give a bound for each term on the right hand sig@.28).
We begin withA, term.

T—s T—s

/Ao(t)dt:/ S kY T (@ —u)dt=
0 0

t<nk<t+s (p,q)€€

T—
_ 2
= / k Tpq (Ugt - “Zt) Z X{t<nk<t+s}dt-
0 (p,q)e€ neN

Itis clear that

(3.24) X{t<nk<t+s} = X{nk—s<t<nk}-
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Then we splitthe integration ovéd, T — s) into a sum of time step intervals
to have that
T ]Vmax_1
/AO t)dt < Zkz o (T — 1)
nt=0 (p,g9)€E
(nt+1)k
X / Z X{nk—s<t§nk}dt
neN

nek

sincen; depends on and the integrated function is positive. But we have
that

nt+1 (nt—i-l
@25 7= [ 3 xwsczandt =Y [ it
nek neN neN nik

and if we change the variable to=t — nk + s, we have that

(ne+1)k—nk+s
(3.26) J=> / X{0<w<sydw = s
nEN o k-nk+s
Then it yields that
Nimax

(3.27) /Ao Bdt<s > k> Ty (@t —ap)’.

nt=0 (p,q)€

Applying the estimatéii) of Lemma 3.1in(3.27) gives

(3.28) / Ap(t)dt < Cs.

Similarly, only changing, into n.s, one can show that
T—s

(3.29) / Ay (t)dt < Cs.

Using the definition3.21) we have that

/A2 /Zk Z i (i) ? x

neN (p, q Eg

X Tpg (@ ZH UZH) X{t<nk<t+s}dt-
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Sincet varies over(0, 7" — s) , we can restrict the summation only o=
0, ..., Nmax — 1 and applying(3.24) we have

T—s
(3.30) / As(t)dt <
0
Niax—1 T—s
Z k Z g (1)) qu (g™ — H;LH)Q X {nk—s<t<nk}dl.
(p.q)€€ 0
However, one can show that for all< n < N,.x — 1 holds

(3.31) / X{nk—s<t<nk}dt = min (T' — s,nk) — max (0,nk — s) < s.

Applying the estimat¢ii) of Lemma 3.1 and3.31) in (3.30) yield

T—
(3.32) Ay(t)dt < Cs.
/

For the termAj3(¢t) we use the assumptions fgrstated in (1.6). Using
Young's inequality and the relatioh (a — b)*> < a?+ % in the Definition
(3.22) we have

Ag(t) < Z k Z ( nt+s

t<nk<t+s PETH

(3.33) +2 () + (f () —ug))2>m(p).

Ag(t) <2 Z k Z ( m+s (ﬂZt)2+

t<nk<t+s PETH
(3.39) + (Ka0)? + (K ) ) m (p) .

Now we integrate it ove(0, 7' — s) in order to obtain

(3.35) / A3(t)dt < 2By + 2By + 2K ;B3 + 2K By
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whereB;, i =1, ..., 4, correspond to

(3.36) / kY (ape) mp)dt,

t<nk<t+s PpPETH

S
&

&
Il
o\’lﬂ o\"‘] O Y~

(3.37) By

Z k Z (Hgt)2m(p) dt,

t<nk<t+s DPETH

»

(3.38) SR> @) mp)at,
t<nk<t+s PETh
(3.39) By = kY (@) mp)dt

t<nk<t+s DpPETH
We use the same argument as in the estimat&,0f) to state that

(ne4+s+1)k
Iﬂdx

Bi< Y kZ ') / > Xfnk—s<t<nkydt.

ni+s=0 peET) ey sk neN

The identitieq3.25), (3.26) and the estimat@) of Lemma 3.1 imply that
(3.40) B, <CTs

and, similarly,
(3.41) By < CTs.

In order to give an upper bound &f;, one can use the estimatgs4) and
(3.24) to have

Nmax_ 1 T—s

(3.42) CIETED S (U=
n=0 0

which together with(3.31) implies that
(343) B3 < ClTS.
In order to estimate the last terBy, we use that

Nmax 1 Tis

e Bi< Y kY (5 m®) [ iy

PETH 0
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which together with the estima(g§ of Lemma 3.1 and3.31) leads to

(3.45) B, < CTs.

Thus, using3.40), (3.41), (3.43) and(3.45 , we can deduce that
T—s

(3.46) / As(t)dt < 2T (20 + K7 (Cy + C)) s.
0

Finally, applying(3.28) , (3.29), (3.32) and(3.46) in (3.23) we have proved
the lemma.

Let us define the set
Eext = {k, such that there exisise 1,, K C IpN O},
and let
Uy, = u, Wherep € 1,, K C Op N OL2.
The following lemma represents the so caliete inequality given in [6]:

Lemma 3.4. Let {2 be an open bounded polygonal connected subget of
Let7 (up 1) be defined byy (uy ;) = u. a.e. for the(d — 1) —Lebesgue
measure ork € E.,¢. Then there exists positivé, depending only orf2,
such that

17 @) 200y < C (gl , + 10kl 2 o)

where

1
_ (g —p)” 2
il = D y; m(epq) | -
( Pq

P,q)EE

Lemma 3.5. (Convergence ofij, ;) There exists, € L? (Qr) such that
for some subsequencewf

Upf, —> U in L? (QT)
ash,k — 0.
Proof. From the estimat@) of Lemma 3.1. we have thfti, k|| .2 (g, < C
and we have proved the time and space translate estimates given in Lem-

mas 3.2 and 3.3. In order to use Kolmogorov’s compactness criterion [4],
Theorem 1V.25), it will be sufficient to prove that

(3.47) K = / (Tn g, (x+ &, 1) — T (2,1) dadt < CIE].
2x(0,T)
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In fact, we can write

Ung (z+&,t) —Upp (v,1) =

Z E (z,p,q) (u) —uy) + Z X ([z,z + & Nk)ay

(p.g)e€ kEEext

and thus
(Tnp (x + &, t) —Tpp (z,1)° <

an — )2
<2( > E(x,nq)épqdpq) ( > E(z,p,9) (uqdp))
( (

p,q)€E p,q)€E pard

+2 ) x(zz+Enk) @)

Iiegezt

Using the same technique as in the proof of Lemma 3.2 one obtains that

Nmax

K<@hrle)elC+2Y k[ 3 x(low+enn) @) ded

n=0 0 KEEext

from where

Nmax

K <Q@h+[E)IElC+21El Yk Y (@) m(x)

n=0 KkKEEext
which in turn gives

Nmax

K < @h+1e) 10+ 2160 > k1T @)l 200 -
n=0

Now, using Lemma 3.4 we have

Nmax

K < (2h+ED1EIC+2C Il D k ([l r, + il ao) )
n=0

Then, the a-priori estimates of Lemma 3.1 give us that there eXists0
such that (3.47) holds true. Themn, ;. is relatively compact inL? (Qr) .
This implies that there is a subsequencé:pf. converging to a limit in

L?(Qr).
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3.3. Convergence of the discrete solution to the weak solution

In this section we consider the subsequemnge ;.. of @, i that converges
to v whenh,,, k,, — 0 (see Lemma 3.5). Next step is to prove thas

the weak solution of (1.1)-(1.3). For the sake of simplicity, we still call this
subsequencey, ;.. First let us define the set of functions

v ={peC? (2x[0,T]),Vo. W =00n302 x (0,T),¢(.,T) =0}

which is dense in the sétdefined in (2.11).

Let ¢ € ¥ be given. In order to have a discrete analogy of the weak
solution identity (2.10), we multiply the scher(@1) by ¢ (a:p, n) k. Then
we sum the resulting identity over alle 7, andn = 0, ..., Nypax — 1. It
yields

Nrnax -1

kY ) o b m ()

n=0 PETH

deX
(3.48)= Z kZSO(xpv n) 2 904 (Tnk) Tpg (ﬂl'}“—ﬂ?“)}
PETH a€N(p)
Nmax 1
X kT el n) | (T = ;) m (p).

Next we make a discrete integration by part of each term of the relation
(3.48) in order to approach the weak solution form. Then we transfom the
term on the left hand side by rearranging the summation ayeée., by
putting the time difference i instead of inu. We also take into account
the fact thatp (x,,, 7') = 0 for all p € 75,. We obtain

Nmax_]- 471-‘(-1 _ 4’77/)

Sy @) m)

n=0 PETH

Nmax T 7tn o T ,tn_
(349) _ _ Z kZ—nQO P ];0( p 1)m<p)
n=1 PETH
= U (zp,0)m (p).
PETH

For the first term of the right hand side (8.48) , we gather the sum over
p € 7, and overg € N (p) to have

A]\/vrnax_1

Do kD eloptn) Y (o5 @) Tog (! — )]

n=0  pem q€N(p)
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Nmax

D) Z k Z 9pq* (Unk) (HZH_H;;H)X

n=0  (pg)€€
(3.50) (% (qu, th) — @ (xpa tn))

sincegpy” (Un k) Tpg = gap (Un.i) Tgp- Then we can write the scheme in its
discrete weak form analogous to the idenfizy10), i.e.

In ax

Z sznso (Tps tn kg@(a:p, n—1) )+ S W (2, 0) i (p) —

PETH PETH
dex
5 Z k Z 9pq" (@n,k) Tpg (g i ﬁgﬂ)x
(p,g)€E
(3.51) X (¢ (xq, tn) — @ (mzn tn))
+ Z chp Tp, tn u—up)m(p):().
PETH

In the sequel, we prove the convergence of each ter(8.6f) to its con-
tinuous analogy i2.10) for all test functionsy € .
Lemma 3.6. We have that

Nimax ( ’ 0
x Tp,ln—
ZkZ*"SO pa ];0 P> 1 _>//uaf thdﬂ?dt
0

GT]—L

ash,k — Oforall p € ¥.

Proof. Let ¢ € ¥ be given. Then we define the difference of discrete and
continuous terms of lemma by

Nm"xx
Z Z [ $p>tn _90($patnfl)>m(p) -
n=1 peTh
/ /u (x,t) da:dt]
tn—1 p
We add and substragf, / (z,t) dzdt in the summation to obtain

tn—1 P

(3.52) |Ty| < NZZ" / /( %‘f@,t)) dzdt| +

n=1 pETy
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T
+ //(uhk—u)&p(:r,t)dxdt .
T
0 N

To estimate the first term of the right hand side(8f52) we apply the
Cauchy-Schwartz inequality in order to sepaf@feand to have its discrete
L? (Qr) norm. Then using the fact that

dyp dyp

sincep € C*! (2 x [0,T]), we can deduce that this term tendsitas

h,k — 0. From Lemma 3.5, which gives a strong convergemgg, to  in

L? (Qr), we have the same assertion also for the second term on the right
hand side of (3.52). Thus we proved th&t| — 0 whenh, k — 0.

Lemma 3.7. For a givenu, and for @) as defined i2.2) we have that
S b (s 0)m (p) [ wa(z) o (2,0 do
DPETH 0

ash,k — Oforall p € W.

Proof. Using (2.2) we have that

> @ (s 0)m () ~ [ o (2) ¢ (2.0) do =

PETH

o}
=3 [0 - pr.0)wo () da
p

PETH
Sincep € C*! (2 x [0,T]) , there exists a positive constahk, such that
¢ (2p, 0) — ¢ (2,0)| < hM>

and one can deduce the assertion of the lemma.

Using the definition ofZ, we apply the Green formula to obtain

(3.53)/g(\VGU xu|)VuVpdr = —/div (9(|VGy x u|)Vy) udz,
9] n

which will be used in the sequel for the convergence proof.
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Lemma 3.8. We have that

Nmax_l

Z k Z 9pa" (@n ) Tpq (wg ™ — ™) %

(p.g)e€

T
X (@ (xq,tn) — @ (Tp,tn)) — //dz'v (9(IVGy * u|) V) udzdt
0 N

ash,k — Oforall p € ¥.

Proof. We consider that

Nmax

Z k Z 9o (Tn k) (u;”“l—HZH)(ga(a:q,tn)—go(mp,tn))

(p.g)e€

T
//dw 9(|IVGy xu|) V) udzdt = ZR
0

)

whereR;,i = 1, ..., 5 comes from the splitting of the left hand side difference
into several parts adding and substracting some extra terms and which will
be defined and estimated in the sequel. First, we define

Nmax

(354) Rl Z k Z n+1 n+1) gpq (uhk‘)R m(ep‘I)
(p.a)e€

whereR}, represents the difference between discrete and continuous normal
derivative evaluated ofx,q, ), i.e.

n xz atn - x )tn
@55) g, = (Pt L) gy ),
Pq

Sincep € C%! (£2x [0,T]), one can show that there exists a constant
M3 > 0 such that

(3.56) |Rp,| < hMs .
Then, using (1.4) we have

Nmax—1
(3.57) \R1|<h— Z kY gttt =gt m(ep) -

(p.a)€E
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We multiply and divide the right hand side of (3.57) b¥d,, and apply
Cauchy-Schwartz inequality to obtain

Hl ax

M.
|R1]§h73 Z k Z pq n+1 —n+1) %

(pa)€E

N :
(3.58) ( E kY dpgm epq) :

(pa)e€
It comes from geometrical arguments that there exists a positive constant
M, such that

(3.59) D" dpgm (epq) < My |02
(p,g)€€

The estimat€ii) of Lemma 3.1 combined witfB.59) implies that

1
2
and one can conclude that
(3.60) |R1| — 0 ash,k — 0.

Next, we set

Nmax 1 tn+ 1

(3.61)R; = Z > (@t —aptt) ggt (n ) / / Ry, dadt

n=0 " (p,g)e& tn €ng

where
(3.62) qu = (Vo (Tpg, tn) — Vo (z,1)) npq -

Thanks to the regularity af, one can show that for any < e,, holds
Ry, | < (h+ k) Ms

with a positive constand/; depending only orp. We apply this result to
replaceR in (3.61) and by the same argument as in estimating of the term
R; we derlve that

(3.63) |Ro| — 0 ash, k — 0.

Now, we denote

(3.64) G, = g(IVGy * tnk (Tpg, tn) |) — 9(IVGo * tn g (2,1) |)
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and define the third term

Nmax 1 tn+1
(3.65) R3— Z > (- "+1)//Gngnpqudt.

n=0(p,q)€€ tn €pq

To prove the convergence 8 to 0, first we bound~}, . For that purpose, we
use the fact thaj is Lipschitz continuous. Lek, be the Lipschitz constant
of g, i.e., for any positive real numbe¢s and(, hold

(3.66) 19 (C1) —g(G) | < LglG — G-

Then we have
|Gral < Ly | VG x g (g, tn) | = VG i (2,1) ||
and one can use the triangular inequality for the Euclidean norm to obtain
|G| < Lg VG 5 lip g (€pgs tn) — VG * lip i (,1)] .

Using the form of the convolution as given (8.7) and ag € (t,,tn+1) ,
one can show that for any € e,, holds

G;q‘ ngZ{“g‘/VGU (%q_s)_VGa(fL‘—S”dS

where the sum is evaluated only on control volumesr;, andr in reflexion
of 3, through the boundary d? intersectingB,, (x,,), the ball centered at
xpq With radiuse.

Thanks to the hypotheses @#,, which is in C>°(R9), the Cauchy-
Schwarz inequality and the estimgieof Lemma 3.1 we obtain

|Gn,| < hMg

with a positive constant/s. SinceV is a continuous function,

S =sup |Vy| < oo, we have that
T

M S Nmax 1
[Rs| < h== Z DD A E O
(p,a)e€
which together with Cauchy-Schwarz inequality and (3.59) leads to the

desired result
(3.67) |R3| — 0 ash,k — 0.

Let the fourth term be given as

Nmax—1
1 ~ —n —n
(3.68) Ri= ooy (@t —aprtt
n=0 (p,q)e€
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tn+l
/ ((IVGy % iini]) — g(IV G * ul)) Viprpgdad
tn epq

The Lipschitz continuity ofy and the triangular inequality for Euclidean
norm give that

(8:69)[9(IVGo * unil) = 9(IVGo * ul)| < Ly [VGo * (unx — u)|

Using Cauchy-Schwartz inequality in the convolution terrt@r69) and the
definition of extension lead to the following result

9(IVGo i k]) — 9(IVGo + ul)] <

1

2 G-
(3.70) <C </Rd VG, (2 — )| d8> g =l p2gp -

SinceG, is C*°, andG, has a compact support, one can show that there
exists a constant/; > 0 such that

1

(/R VG, (@ — s)|2ds)2 < M.

Then, we use the same technique as for the estimafig tf see that there
exists a positive constait/g such that

(3.71) |Ra| < Ms ([T, — ull 2,

and sinceiy, i, converges ta strongly inL? (Qr) , we deduce that
(3.72) |R4| — 0ash,k — 0.

The last term is defined by

T
(3.73) Rs = //div (9(|VGo * u|)V) (u —up ) d.
0

The form of the first term 0of3.73) is slightly different from its equivalent
in (3.68) but it can be justified by the fact that

/div (g(IVGgy *u|)Vo)TUp i (z,t) dx
N

(3.74) = Z H;H'l /div (9(IVGy * u|) Vo) dx

PETH J



586 K. Mikula, N. Ramarosy

by the definition ofu, ;. and by the value of which belongs to the interval
[tn, tn+1] - Applying the Green formula i63.74) implies that

Zu"“/dw (IVGy xu|) V) dz

PETH P
= Z ﬂ;”rl Z /g(]VGU s« u|) Vi npgde.
PETH gEN(p) epg

Sinceg(V Gy * ul)Vignyg = —g(|V Gy  ul)Vipng,, we finally obtain

/ div (g(|V Gy ) Vo) T (2, 1) da

1
(3.75) = —3 Z (U’;H — HZ'H) /g(|VGU s« ul)Vonpde.
(p7Q)ES epq

By the hypotheseg, (\[) € C* (R'1), and convolution property state that
VG, xu € C* (R?) sinceG, € C* (R). Thendiv (¢(|VGo * u|) Vi) €
L* (Qr) and it comes from strong convergenceigf;, to u that

(3.76) |Rs5| — 0 ash,k — 0.

Finally, according t¢3.60) , (3.63), (3.67), (3.72) and(3.76) ,we can con-
clude that

Nlnax 1

Z k Z 9pq" (Unk) PQ( ﬂgﬂ)x

(p9)€€

T
X (@ (zq,tn) — @ (Tp,tn)) = //div (9(IVGy * u|) V) udzdt
0 2

in L? (Qr) . This ends the proof of Lemma.

Lemma 3.9. We have that

Z kZ(p (p, tn u —up)m(p) —>//f(u0—u)<,0(a:,t)d:1:dt
n=0 PETH 0 N

ash,k — Oforall p € V.
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Proof. The difference between the sequence and its desired limit can be
written as

Nmax

Z kzsoxp, u _up)m(p)

n=0 PETH

_//f(uo—u)go(:r,t)d:ﬁdt:Nl—|—N2
0

where
Z ng (xp, tn / / u —uy) — f(up —u)] dadt,
n=0 peETy

(3.77)

@8 Na= > 3 [ [fw-wlelpts) - (0] ot

n=0 peTy in P

Our purpose is to prove that these two quantities teridatsh, & — 0. Due
to the Lipschitz continuity off we have

Nomax—1 tnt1
N <Kp > mep,tn)y//\(ug—uo)—(ug—u)ydmt
n=0 peETH tn P

(3.79)
and applying Cauchy-Schwartz inequality and the relaéoin — b)2
a? + b% we obtain

Ninax—1 3
(3.80) Ni < Ky ( Yo kY e ta)l m(P)>

n=0 PETH

A 2
// ((ﬂhk (x,0) — u0)2 + (ﬁh,k _ u)2> dadt
0 N

from where we have
(3.81) |N1| — 0 ash,k — 0.

Thanks to the regularity op, one can show the existence of a positive
constantMy such that

‘Sp(xmtn) - Sp(xvt)‘ < (h+ k) MQ'
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Then it comes that

|N2| < (h + k‘) MgKf / |U0 — u|d:cdt
Qr

which in turn implies that
(3.82) |N2| — 0 ash, k — 0.

Thus the lemma is proved.

Theorem 3.10. (Convergence to the weak solutionYhe sequencey, j,
converges strongly i (Qr) to the unique weak solution defined in
(2.10) ash,k — 0.

Proof. Using Lemma 3.5 and Lemma 3.2, we know from [6] that the lumit

of the sequenc@y, ;. is in spacel.?(0, T; H'(£2)). Then we can use Green’s
theorem in the result of Lemma 3.8 and together with Lemmas 3.6 - 3.9 we
can deduce that satisfies the weak identity for all test functions ¥. But

¥ is dense iP which implies the convergence result. The uniqueness of the
weak solution is given in [5] (see Remark 2.4) and so not only subsequence
but the sequence, ;, itself converges ta.

4. Numerical experiments

In this section we present numerical experiments obtained by the scheme

(2.1). We have choosen
1

9(s) = 1+ Ks?
with a constanf > 0 and the convolution is realized with kernel

1 _l=I?
Go‘(x) = 26‘1‘2_"2,

where the constai is choosen so th&t,, has unitmass. In order to compute
the diffusion coefficienty;," (s x) in (2.1) we use concept described in

Remark 2.3. The termg VG, (zp, — s) ds in (2.7) are computed using

computer algebra systeTm e.g. Mathematica. For any givirey can be
precomputed in advance. The sparse linear systems corresponding to (2.1)
can be solved by any efficient linear solver.

In Fig. 1 we present embedding of the initial image (noisy corrupted
four-petal shape, 256 x 256 pixels) into the so cafiedlinear scale space
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Fig. 2.

given by (1.1)-(1.3). We present the initial image and its processing in the

scalest = 10k, 20k, 30k, 40k, 50k. We see the simplification (denoising)

of the image together with preserving of important edges in the sequence
of discrete scale steps. In Fig. 2, the scanned image (coat-of-arms from a
book with not paper nor colours of good quality) is processed. We present
scanned original (left) and processed image (right) after 40 discrete scale
steps. In both experiments= h , o = % K = 20 andh is a pixel size.
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