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Summary. Stabilisation methods are often used to circumvent the difficul-
ties associated with the stability of mixed finite element methods. Stabili-
sation however also means an excessive amount of dissipation or the loss
of nice conservation properties. It would thus be desirable to reduce these
disadvantages to a minimum. We present a general framework, not restricted
to mixed methods, that permits to introducenaimal stabilising term and
hence a minimal perturbation with respect to the original problem. To do so,
we rely on the fact thasome part of the problens stable and should not

be modified. Sections 2 and 3 present the method in an abstract framework.
Section 4 and 5 present two classes of stabilisations for the inf-sup condi-
tion in mixed problems. We present many examples, most arising from the
discretisation of flow problems. Section 6 presents examples in which the
stabilising terms is introduced to cure coercivity problems.

Mathematics Subject Classification (199&5N30

1 Introduction

This paper will be devoted primarily to the stabilisation of mixed finite
element methods. However, we shall introduce a general setting which might
be applied to other situations.

Correspondence tavl. Fortin
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Let us thus consider, to fix ideas, the standard problem: (fingd) <
V x @ such that,

a(u,v) + b(v,p) = (f,v) Vv € V,
(-4 Lot = to8 vgeQ,

where f andg are given elements iiv’ and @’ respectively. Throughout
all the paper, we shall always assume thiaand( are Hilbert spaces and
thata(, ) andb(, ) are continuous bilinear forms dn x V andV x @
respectively. Let the®? denote the linear operator defined by

1.2) (Bv,q)grvg =b(v,q) Vv eV, VgeQ.
The kernel ofB,
(1.3) ker B = {vg € V| b(vg,q) =0 Vq € Q}

will also play a fundamental role. For this problem, which has been the
object of intensive studies, the classical theory (e.g. [8,9]) states that one
gets a unique solution provided the following conditions hold:

— coercivity on the kernel oB, that is
(1.4)  Fag>0s.t. alve,vo) > aollvoll¥ Vg € ker B,

— inf-sup condition

b
(1.5) Jko > 0s.t. sup (v, q)
vzo llvllv

Let us introduce a discrete problem: fitwd,, py) € Vi, x Qpn, Vi, C V,
Q@ C Q, such that:

{a(uhavh) + b(vn, pr) = (f, vn) You € Vp,
b(un, qn) = (9, qn) Yan € Q.

> kolldlle  Vae@.

(1.6)

The bilinear formb(-, -) now defines a discrete operatBy, from V}, into
@), and we must consider its kernel,

(1.7) ker By, = {von € Vo | b(von,qn) =0 Van € Qn}.

To get existence and uniqueness of the discrete problem, we must have
conditions corresponding to (1.4) and (1.5), that is,

(1.8) Jap > 0s.t. alvop,von) > ah||v0h|]%/ Yvon € ker By,

(1.9) Tk > 050, sup LU n)

> knllgnllq-
oneVi |nllv



A minimal stabilisation procedure for mixed finite element methods 459
To obtain error estimates, we must also assumsttidality conditions:

(1.10) ap > ao > 0.

(1.11) Ky, > ko > 0.

Problems may arise with both of these conditions. For (1.8) and (1.10)
the trouble is thaker By, is not, in general, a subspacekef B, so that (1.8)
is not a consequence of (1.4) (unless coercivity hold for the whole §pace

In the same way, an improper choice of the spdg¢eand();, can lead
to kj, vanishing to 0 withk in (1.9). In many instances, conditions (1.10)
and (1.11) impose contradictory requirements on the choice of the discrete
spaced}, and@)y,, and only quite special choices are admissible.

There are cases where these elaborate constructions are felt as inade-
gquate. In some situations, for example, it happens that (1.1) is only a part of
a larger problem, for which the choice Bf and@), is not really free, and
we are led to employ discrete spaces which are not suitable for (1.6).

Stabilisation methods, then, try to recover (1.8)-(1.11) through a modi-
fication of the variational formulation. This modification should obviously
preserve consistency. Ideally, it should be as small as possible, restoring
stability without introducing unwanted smoothing properties.

In this paper we shall describe a general framework for the study of
stability issues. We shall also present a general technique that yields many
examples of stabilised methods which can be analysed in this framework.
The basic idea of the technique is that, in several cases, the discretisation
at hand has some sort of “partial stability” (to fix ideas, we have a priori
bounds for a certaiseminormof the solution, but not for the true norm.)
Our technique consists then, somehow, in adding the minimum modification
that allows to restore the full stability.

In the next section, we present and discuss the abstract framework in
which we are going to set our examples. In Sect. 3 we present, always at the
abstract level, a general stabilisation technique, with abstract stability theo-
rems and error estimates. A first class of applications, together with several
examples, will be discussed in Sect. 4, and a second class of applications,
with several other examples, will be the object of Sect. 5. Roughly speak-
ing, the two classes of applications will correspond to two different ways
of stabilising problems of type (1.1) when timé-supcondition (1.9),(1.11)
does not hold: in the first class of stabilisations we assume that we have a
stability result for a pail}, — Q;,, whereQ,, C Qy,, while in the second
class we only assume a sortveéak stabilitythat will be made precise later
on. Applications to problems where the ellipticity in the kernel (1.8), (1.10)
is needed are then considered in Sect. 6.



460 F. Brezzi, M. Fortin

Other important general results on stabilisations for this type of problems
can be found in [19,4,5,24] and the references therein. See also [9] for
additional references.

2 An abstract framework

We consider here a very general problem. Vete a Hilbert space, let
be inL(W, W') (the space of linear continuous operators fidinto V’,)
and letF be inW’. We want to findX € W such that,

(2.1) (AX,Y)wrsow = (F,Y)wrsw VY €W
From now on, we shall always assume that
(2.2) (AY)Y) >0 YY € W.

The following result is an exercise in functional analysis, but, for the
convenience of the readers, we sketch a proof.

Proposition 2.1. If (2.2) holds, then the two following conditions are equiv-
alent:

i) Ais anisomorphism fromV ontoV’.
i) 3¢ € LOV, W) and a positive real numbets such that

(2.3) (AY, 0(Y Vs > as||Y |3y VY € W.

Proof of Proposition 2.1Let J be the Riesz’s operator fromV’ to W. The
implicationi) = i) follows by taking® = JA. To prove the converse
implication we denote byd the identity operator iV, and we remark that,
if (2.2) holds, then for every positive real numbBewxe have, forall” € W,

(5@ + ) AY, Y by = (AY, (58 + Id)Y by = s oY [y

This easily implies thats® + Id)' A is an isomorphism frorrV ontoV’.
Sinces® + Id is an isomorphism fog small enough, thei) follows easily.
O

Remark 2.1.If (2.2) is not satisfied, we always have—> ii) but the con-
verse is false. This can be seen by consideringifj0, +oc[) the mapping:

(Au)(xz) =u(z —1) forz > 1
{(Au)(m):0f0r0<x§ 1

with @u := Aw. Clearlyii) is satisfied, but) is not, asA is injective but not
surjective. For an operator that does not satisfy (2.2), we would need two
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conditions instead of (2.3), that 8®; € LW, W), P2 € LW, W) such
that, for ally” € W,

2.4 { (AY, &1V )hwoow = aa[Y [y,
(P2(Y), AY ) > aa|[Y 13y,
implying thatA is both injective and surjective. O

Remark 2.2 (stability constantlt. must be noted that the “ stability con-
stant” of Problem (2.1), that is the smallest constarduich that

| X|| < C||AX]] VX e W,
is notl/ag (see (2.3)) but rathdf®|| /ag. 0

As we are mostly interested in mixed problems, it might be worth show-
ing that this abstract formalism contains the usual theory for Problem (1.1).
Indeed, letV =V x Q, X = (u,p), Y = (v, q), and define

{ (AX,Y) = a(u,v) + b(v,p) — b(u, q),
<F7 Y> = <f> U>V’XV - <gv q>Q’><Q

In this context, it is clear that (2.1) is just another way of writing (1.1). We
suppose that(u,u) > 0 for anyu € V, which clearly implies (2.2). We
now want to get (2.3) from (1.4) and (1.5). We thus consider, for any given

(u,p) € V x @, two auxiliary problems, which have a unique solution if
(1.4) and (1.5) hold:

— Find(u1,p1), solution of
a(v,ur) —b(v,p1) = (u,v)y Yv €V,
{b(UbQ):O Vg € Q.
— Find (ug, p2), solution of
a(v,ug) —b(v,p2) =0Vv €V,
{b(Uz, 9)=mae  VeeQ.
We now setb({u, p}) := {(u1 + u2), (p1 + p2)} and we have:

(2.5)

(2.6)

2.7)

(A(X),2(X)) = a(u,ur + uz) + b(ur + uz,p) — b(u,p1 + p2)

(2.8)
= [Jull$ + [IplI?,-

Remark 2.3.Problems (2.6) and (2.7) could, by linearity, be combined into
one. We preferred to make more explicit the separate contrgk[pf and

Iplle- O
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Let us now turn to the discretisation of (2.1). For a given sequence of
subspacedV;, of W (usually of finite dimension) we consider, for each
the discrete problem: find’;, € W, such that

(2.9) (AXp, Yi) = (F\Ys) VY, € W

In general, for an arbitrary choice &%}, (2.9) will not be stable. In
particular, we cannot ensure that there exists a sequence of linear operators
&y, € LWy, Wy,), uniformly bounded im:, such that, for some; > 0
independent of,

(2.10) (AYy, @1(Yn)) > a1Vl VY, € W,

We however suppose that stability holds for some semi-rafi}, on
W, that is we assume that we have two positive constanendag and
an operatoby, € L(Wy, Wp,) such that

(2.11) ||¢h(Yh)|| < C@HYhH VY;, € Wy,

(212) <AYh,@h(Yh)> > aqs[yh];% vY; € Wy,

which we can loosely state as “ some part of the problem is stable”.

What we shall try to do in the sequel is then to modify problem (2.9) in
order to make it stable. We shall thus consider a stabilised problem of the
type
(2.13) <AXh + R(Xh),yh> = <F, Yh> VY, € Wh,

whereR(X},) will be chosen in order to make (2.13) stable (in the sense of
condition (2.10)) whilgoreserving consistencyThe following section will
introduce a general mechanism for this construction.

Remark 2.4.In the case of the mixed problem (1.1), assuming for simplicity
thata(-, -) is V-elliptic, that is

(2.14) Ja>0st. alv,v) > alv|} Yv eV,

we can always have (2.12) by using the following semi-norm

(2.15) Yali = (v, an)) = llonll + [an];
where
(2.16) lan]n == sup bvn, an)

vREVY ||Uh||v

as it is shown in the following proposition.
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Proposition 2.2. Let A be of the form (2.5) and assume that (2.14) holds.
Then, for every choice of subspadés @), we can find a linear operator
&y, € L(Wh, Wy,) such that (2.11) and (2.12) hold, with

(0}

(2.17) ap = 5 min (1, =),

"a H2

al|b]
lalf?”

(2.18) cg =1+
and the semi-norm defined in (2.15) and (2.16).

Proof of Proposition 2.2For a givenY;, = (v, qn), letv; € Vj, be such
that

(2.19) blohan) _ gy Boman) _ g g
lpllv wevi llonllv

and

(2.20) [onllv = lan]n-

We now choose

(2.21) ®p(Yn) = (vn — v, qn),

with § € R to be chosen later on. We have from (2.5) and (2.21):

(AYy, @p(Yh)) = a(vn, vp) — da(vn, vy)

+b(vh, qn) — b(vn, qn) + 6b(v}, qn)
> allonlly, = dllallllonllv[lvillv + Slan]nllvpllv
= allvnlly = dllallllonllv [gnln + olanl};

(2.22)

having used (2.14), (2.19), and, in the last step, (2.20). It is now clear that,
choosings = o/||al|?, (2.22) implies

« )
(2.23) (AYj, @1 Yi)) = < llualli + 5[[%]]%

having usedab < a? + b%. Hence we have (2.12) with the constant
given by (2.17). On the other hand, (2.20) and the choickiwiply (2.11)
and (2.18) since

[on = dvpll < llonll + 8llvgll = llonll + 8lgnln < llvnll + 61 B] llgnlle-

O
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3 Abstract stabilisation and error estimates

We still consider the abstract setting of the previous section and our goal
is to find approximate solutions of problem (2.1). We thus have a Hilbert
spacelV, and a sequence of approximation spadés We suppose as in
(2.12) that we have a “ partial” stability result. More precisely, we make the
following hypothesis:

H.1 For every h there exists
i) asemi-norni- |, onW,
ii) an operator®;, € LWy, Wh),
iii) a constantcg such that

(3.1) ||¢h(yh)” < CquYhH VY}L € Wh.
iv) aconstanitxg > 0 such that
(3.2) (AY),, D1,(Y2)) > as[Yh]7 VY, € W,

O

We now want to modify the problem in order to stabilise it, and we
assume that we find a bilinear forR( X}, Y, ) on W, x W}, satisfying the
following hypotheses.

H.2 There exist a Hilbert spack, and, for every:
i) an operatorGy, € LW, H),
i) a constantcg > 0 such that
(3.3)  R(Xp, Ya) < crl Xnll Y]l VXh, Yo € W,

iii) aconstantar > 0 such that
(3.4) R(Y3n,Y2) > arllGrYall3,  YYn € Wi,

H.3 With the notation of assumption H.2, there exist two positive constants
~9 and~s such that

(3.5) Y]z + 2l GrYall3 = vl Yallly VY € Wh.
O

Remark 3.1.1t is clear from (3.1) and (3.3) that, for evely, € W, we
have
R(Yn, @1 (Yn)) < crea||Yall*.

However, indicating by:rs the best possible constant such that
(3.6) R(Yi, Pn(Y3)) < cra||Yal? VY, € Wy,

it might be possible that, in particular casesg is much smaller thaogcg.
Indeed, in some caseszg could even be zero. In the following estimates,
we shall therefore use the constapt; instead of the (always pessimistic)
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crcg. Moreover, in several cases, the following additional property H.4 will
hold. We shall see that, if this is the case, many technicalities could be
avoided. O

H.4 With the notation of assumptions H.1 and H.2 we have
(37) R(Yh,@h(Yh)) >0 VY, € Wy,

O

We now consider, for some positive real numbgthe regularized op-
eratorA defined as

(3.8) (AX},,Y}) := (AX},,V3) +rR(Xp,Ys) VY, Xp € Wh,
and the corresponding regularised problem

(3.9) (AX),,Y3) = (F\Y;) VYY), € W),

We begin by proving the following lemma.

Lemma 3.1. Assume that H.1, H.2 and H.4 hold. For every positive real
numbers- and~y let A be defined as in (3.8) anBl, be defined as

(3.10) 5h(Yh) =Y, + ’y@h(Yh) VY, € Wh,.
Then we have, for alt}, € W,
(3.11) (AY), P4(Vh)) = min(ag, aa) (VY2 + rlGa (Vi) 3,)-

Proof of Lemma 3.1From definitions (3.8), (3.10), and assumptions (3.2),
(3.4), one immediately obtains for every positivandr :

(AYy, B3 (Yn)) = (AVh, @4(Y2)) + rR(Ys, B4 (V3)

(B12) = (AY,,Y), +7vP1(Y2)) + rR(Yn, Y + vPn(Yh))
> agy[Yal} + arrl|Gr(Ya) |3, + rYR(Yn, Br(Yr)),
and the result follows easily from (3.7). O

It is clear that, if assumption H.3 is also verified, then (3.11) will give
a stability result of type (2.10), where the explicit value of the constant
can be easily deduced from the values of the other constants. On the other
hand, the estimate (3.11) will be used in the sequel also in cases when some
constant £, mostly, and sometimes,) might depend orh, so that it is
convenient to leave it in its actual form.

Inthe applications that we are going to examine in the following sections,
assumption H.4 will always be satisfied. However, for completeness, we
present the following result, that can be used for the cases in which (3.7)
does not hold.
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Lemma 3.2. Assume that H.1, H.2 and H.3 hold, and létand ¢, be
defined as in (3.8) and (3.10), respectively. Set now

. ORY3
0=
2v2CRre

(3.13) ro = Qo3

= and
2cRre

(or +00 whencgrg = 0.) Then, for ally < ~y and for allr < ro we have

-~ o~ 1 .
(AY},, @ (Yy)) > imln(aR,O@)
(3.14) X (VYali + rlGh(Vi)l13,) VY5 € Wi,

Proof of Lemma 3.2We restart as in (3.12), but using now (3.6) and as-
sumption H.3:

(AYs,, D1(Y3)) = (AY, @4(Y2)) + 7R(Yi, Bp(Y3)

(3.15) ; ! .
> agy([Yaly + arrl|Gh(Yn)ll3, — rycrel|Yall*.

Using (3.5), the right-hand side of (3.15) is bounded below by

(3.16)(aoy — rycra/V3) [Yali + (arr — ryy2cre/¥3) |G (Ya) I3,

If we choose now < rg andy < v then (3.14) follows immediately from
(3.15), (3.16) and (3.13). 0

Lemmata 3.1 and 3.2 will ensure stability for a wide class of stabilis-
ing procedures. We now consider the problem of error estimates. As we
introduced sufficient conditions to ensure stability, the question will be to
check consistency, and in particular the effect on consistency of the extra
stabilising terms.

In order to retain a certain amount of generality, we shall make now some

stability assumptions, that, in different particular cases, can be proved by

means of the stability lemmata seen before. However, as we shall see, this
part of Sect. 3is presented in a way that makes it logically independent from

the previous one. We make therefore the following assumptions.

H.5 We have:
i) a continuous problem
(3.17) (AX,Y)=(F)Y) VY eWw,

that we assume to have a unique solution,
i) a sequence of stabilised discrete problems
(3.18) (AXp, Yy) = (F)Y) VY, €Wy

whereA is still defined as in (3.8) for some> 0,
iif) two constantscs and ag, and an operato?;, € L(W, W) such
that
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(3.19) 120 (Vi) || < CallYall VY5 € W,
and L
(320) <AYh,@h(Yh)> > &quYth VY, € W

We have then the following error bound.

Lemma 3.3. Assume that (3.19) and (3.20) hold, and}etand X, be the
solutions of (3.17) and (3.18) respectively. For ev&rye W), we set

R(X1,Y
(3.22) R(Xy):= sup R(X1, Yh)
YLEW), ||YhH

)

and we have

«
(3.22) ,CfHXz — Xl < A [IX — X1]| + 7R(X7).

Proof of Lemma 3.35eté X = X; — X;, andY), = 5h(5X). From (3.19)
we immediately have N

(3.23) 1Yall < <o [|6X]|-

On the other hand, using (3.20) and (3.8), adding and subtra&tjrthen
using (3.17)-(3.18), and finally (3.21) we obtain:

ag ||6X 2 < (A6X,Y3) = (A(6X), Ys) + rR(6X, Y})
(3.24) (A(XT - X), 5:/h> + (AX, 17h>~— (AXp, Yn) + rR(X;, 3)
= (A(X] = X),Yp) + rR(X1,Yy)

< Vall (JAI X7 = X || +rR(X1))
and (3.22) follows immediately using (3.23). O
Remark 3.2.In several applicationgd will be chosen of the form
(3.25) R(Xn, Yn) = (GrnXn, GrYn)u

whereG}, is the operator appearing in H.2. Moreover, the oper&ypwill
have a kernel, say;, (whichin general will be a subspace of the “ parvuf
controlled byA, before stabilisation”.) In these cases, for ev&ry € W),
the second term in the right hand side of (3.22) can be estimated by

R(X1,Yn)  R(X1—Xn,Ya)

(3.26) Ial V2|l _
< erl| X1 — Xl < cr(l| X7 — X[ + [|X = X)),

so that, from (3.22) we have, in this case

Qg
— || X7 — Xl
cop

3.27) < |ANIX = Xr]| +rer(1X7 = X[+ [|X = X))
Clearly the choice (3.25) satisfies (3.4) withh = 1. O
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Remark 3.3.Itis clear that, if all the constants appearinginH.1, H.2and H.3
are independent éf, we can chooseandy in Lemma 3.2 to be independent
of h as well. Hence the assumption H.5 will also be satisfied witland

ag independent of,, and the combination of H.3, Lemma 3.2, and Lemma
3.3 (plus the obvious triangle inequality) will yield

@28) X Xl < € inf X = Vill+ _int X - T4]).
YneWs YLEW

with a constantC independent of.. If assumption H.4 holds as well, the
choice ofr can be done arbitrarily, for instance= 1. O

A certain number of applications can be analysed with the instruments
thatwe have developped sofar, as indicated in the previous remark. However,
there are cases in which it is convenient to use dapending or. In such
cases, the previous analysis has to be readjusted, starting again from Lemma
3.1 and Lemma 3.2. In particular, we cannot expect to have a stability result
of the type (3.20), but only the weaker one that comes from Lemma 3.1.
Hence we have to modify H.5 as follows.

H.6 We retain assumptions i) and ii) of H.5, and we change iii) into:
iii bis) there exist two constants and o, independent ok andr, and

a sequence of linear operatods, € £(W,, W,,) such that (3.19)
holds together with

(AYp, &1 (Yn))
(3:29) > g (Yalh +rlIGr(Ya)ll3)  ¥Yi € W

O

Itis clear that the above assumption will be satisfied by every stabilising
method that satisfies the assumptions of Lemma 3.1 or the ones of Lemma
3.2, as it can be seen from (3.11) and (3.14). In this case we can prove the
following more sophisticated and more useful error bound.

Lemma 3.4. Let X and X}, be the solutions of (3.17) and (3.18) respec-
tively. Assume that H.3 and H.6 hold. Then, for ev&ryc W), we have

(X1 — Xp]7 +7l|Gu(X1 — X3) |13,

3.30 Zo \ 2 A(r
(339 _ <¢> 4(;:2)(HAH?HXI—XH2+7°2<72<Xf>>2)v

— *
Qg

whereR (X) is still defined as in (3.21).
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Proof of Lemma 3.4We setd X = X; — X,. Arguing as in the proof of
Lemma 3.3 we get, from (3.29), (3.8), (3.17), and (3.18)

a3 ([OXT} + rllGRoX|?) < (A(5X), B(6X))

3.3
B30 Al X1 — X + R [6X ).

and using (3.5) we immediately obtain

[5X]2 +7||GroX|? <

< o L (AINIXT = X+ rR(Xr))

(3.32) «((6 X2+ 72/|GraX |[|?) /73)

< (,Y)?;*GA\ I1X7 — X|| +rR(X7))

< ([6X]n + (72)Y?|Gro X ).

, . 4 1 : .
Then we apply the inequalityb < §a2 + §b2 four times to the right-hand

side, move four terms to the left and multiply the resulting equation by 3 to
get (3.30). O

Remark 3.4.In applications, as we shall see, (3.30) will often be used with
anr depending ork, while the other constants are independent.dstill,

we shall find cases in which the constagtin (3.5) can also be chosen to
be dependent oh, and of the same order of magnituderofn these latter
cases, (3.30) will provide an estimate of the type:

(3:33) [6XT; + rl|Ga(6X) |3 < C (|1X7 = X|* + r*(R(X1))) ,
with C' independent ok, which, in its turn, can become

[0X]3 + r[|Gh(6X)]5,
(3.34) <C(A+r)|Xr = X|P+r*X - XD|P),

using the bound (3.26) foR. More generally, if there exists a constant
independent of. such that > k-, then we can apply H.3 to the left-hand
side of (3.30) obtainig

min (1, &) ||6.X|?

O () D agp X1+ R ROG)).
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In other applications; will depend o but~, will not. In these cases (3.30)
will provide (for r “small”) an estimate of the type
X5 + I GR(6X) 1%
1 _
(3.36) <0 (F1 = XI 4 rlx = XD
that will then become
1

X2 +r|GroxX|?> < C (rhsl + rh52> :
by usual interpolation estimates with, in general,> s, > 0. Then by
takingr = h* we get

OXT; + 7| GRoX | < C (W7 + h2+)

with the optimal choice given by = (s; — s2)/2. 0

4 Afirst class of applications

We shall start by considering a framework which is still abstract but deals
with a subclass of problems (with similar features) containing many of the
applications that will be discussed later on.

Suppose that we are in the context of mixed methods as in (1.1), and that
we want to stabilise an inf-sup condition (1.5). Then we have

(4.1) (AXh, Yn) = a(un, vn) + b(vn, pr) — b(un, qn)-

We want to work on a choice of spaces x @, for which we do not have
stability, and we are aiming at using stabilised problems of the form
a‘(ufh Uh) + b(vhvph) - b(uha Qh) + TR((uhvph)v (Uhv Qh))

= (f,vn) —(g,qn) Yvn € Vi, Yan € Qp.

for a suitable choice aR. This section will be dedicated to the stabilisation
of problems of type (1.1) that satisfy the following assumptions.

(4.2) {

A.0  The bilinear formsu(, ) andb(, ) are continuous o’V x V and
V x @ respectively. Moreovei( , ) is V-elliptic (see (2.14)) and
b(, ) satisfies the inf-sup condition (1.5) ¥ x Q.

A.l1  There exists a subspag, C Qj such thatinl, x Q,, the problem
is stable, that is

_ b(vr. @ _ _
(4.3) 3k > 0s.t.  sup blvn, 3n) > klgnllo Vg, € Q-
v €EV) ||UhHV
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We note, incidentally, that th&-ellipticity assumption or( , ) is not
really relevant and only serves to simplify the presentation. Under the as-
sumption Al it is possible to explicitly build, and a semi-nornj-], to
apply our results, as we shall see in the follofing lemma.

Lemma 4.1. Assumptions A.0 and A.1 imply H.1.

Proof of Lemma 4.1As we have stability ir/}, x @h, we can solve, for any

pn € Qp, the problem: findz;, = @y, (pn) € Vi, andey, = é,(pn) € Q)
such that

(4.4) a(vp, un) — b(vp, ¢p,) =0 Yoy, € Vi,
' b(Un; Gn) = (Ph> @)@ = (Phs Gn)Q Yan € Q-

wherep;, = P(py) = projection ofp;, ontoQ,,. We define now

(4.5) @y, ((un,pn)) == (un + atin(pn), pr + @by (pr))

using, for instance, the sameas in (2.14). From (4.5) and (4.4) we have

a(up, up + owp) + b(up, + atin, pr) — b(up, pr + ady,)
(4.6) = a(up, up) + afalup, up) — blup, ¢p)] + ab(Tn, ¢p))
> a|Jupl* + [|pnll?)-

We then have that hypothesis H.1 is satisfied with the choice (4.5) for
@;, and the seminorm

4.7) [0, @) == 0|} + |[Pal3,

O

We note in particular that, if A.0O and A.1 hold then the constapisvs
in H.1 will be independent ai. On the other hand, hypotheses H.2 and H.3
will be easily fullfilled, with constants independent/afif we take

(4.8) Gr((vns qn)) = an — Pan
with H = @, and, as in (3.25),
(4.9) R((un, pn), (vn:an)) = (Ph — Ppr.an — Pan), -

It is however clear that the class of possible stabilisations is much wider, as
shown in the following Lemma.
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Lemma 4.2. Let sy, be a linear operator frond);, into itself, satisfying

sn(qn) =0 N Yan € Qp,
(4.10) Isn(gn)lg > asllan — Panllyy  Yan € Qn,
[snlan)llq < esllanllo Van € Qn,
with constantsys andcg independent ok. We take now{ = Q and
(4.11) Gh((vn, qn)) :== sn(an),
(4.12) R((un, pn)s (Vs qn)) = (sn(pn), sn(an))q-

If assumptions A.0 and A.1 hold, then H.2 and H.3 will also hold, with
constants independent bf Moreover, if¢, is defined as in (4.5), then H.4
will also hold. Finally, H.5 will hold withd;, defined as in Lemma 3.1.

Proof of Lemma 4.2t is clear that (3.4) follows from (4.12) and (4.11) with
ar = 1. Itis also clear that (3.3) holds with constant = c%. Similarly
(3.5) follows, with constants. and~s independent of:, from (4.7) and
(4.10)-(4.12). Finally, from (4.5) and (4.10)-(4.12) we have

(4.13) R((vn, qn); Pr(vn, qn)) = (ih(CIh)a sn(an + ady(an)))q
T = lsa(an)l1d + a(s(an), s(n(an))q = llsnlan)l1d > 0.

The validity of H.5 follows then directly from Lemma 3.1. O

We can now conclude with a general error estimate for this type of
stabilisations.

Theorem 4.1. Assume that A.0 and A.1 hold, and (et p) be the solution
of Problem (1.1). Assume that in (4 2)s defined through (4.11) and (4.12)
using ans;, that satisfies (4.10). Then for every positiieroblem (4.2) has
a unique solutior(uy, p), and there exist a consant, independent of,
such that, for everyu;,pr) € Vi, x Qy and for everyg;, € Q,, we have

lur — unll + [P(pr — pr)llg + 7ll(Id = P)(pr — pn) |3

(4.14) 147 _
< C(—) (I = urlfy + o = prlly + 2llpr = @ll)

Proof of Theorem 4.1Under the above assumptions, we can immediately
apply Lemma 3.4, that in our case gives, for every, pr) € Vi, x Qn,
lur = wnll§ + 1 P(pr — pu)lIg + 7ll(Id — P)(pr — pa)ll?)

4.15
) < o ) (=l + I = ol + PR urn) )
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with a constanC' independent of. Using then (4.10)-(4.12) we have, for
everyg, € Q,,
(sn(pr) snlan))q

R((ur,pr)) = sup

an lanllq
Sh\P1 — qp), Sh(qn _
(4.16) — sup 4224 1), 5(00))g < &llpr — @ullo,
an lanllq
which inserted in (4.15) gives the result. O

Itis clear that traditional bounds for the error between the continuous so-
lution and the discrete solution can be obtained from (4.14) by a suitable use
of the triangle inequality, as we are going to do in the following corollaries.
However, as we shall see, it will be convenient to split them in two cases:
one in whichr is bounded from below by a positive constant independent
of h (but we allow it to be arbitrarily large), and the other in whiclis
bounded from above by a positive constant independeht(bfit we allow
it to go to zero forh going to zero). In order to simplify the exposition, we
introduce first the following notation: given a Hilbert spdég an element
w € W and a subspadéd’;, C W we set:

(4.17) E(w,Wp) = inf |[Jw—wp|w.

wp WY,
The following notation will also be convenient: fpre Q, for Q, € Q, C
Q@ and r a positive real number, we set:

(4.18)

1/2
E.(p,Qn, Q) = inf inf —qull? + 12 — gnll? ) .
Q@)= (int ot (I = anlly + 2l - )

We have then the following two corollaries, whose proof follows imme-
diately from Theorem 4.1.

Corollary 4.1. In the same hypotheses of Theorem 4.1, assume that there
exists anrg independent of such thatr > ry. The there exist a constant
C, independent of andh, such that

lu —unll3 + lIp _ph||2Q +7llpn — th”é
(4.19) 1+7r, ) —
< C(T) (E (uvvh)+Er(p7 Qhth)) .

Corollary 4.2. In the same hypotheses of Theorem 4.1, assume that there
exists anrg independent of such thatr < ry. The there exist a constant
C, independent of and i, such that

[ —wunll§, + [P0 = pu)lI5 +rl(p = pr) — P(p — 1) 15

4.20 T =
( )<c(1+ ) (E?(u, Vi) + E2(p, Qn. Qp)) »

r
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Remark 4.1.As we have said, the result of Corollary 4.1 applies as well to
the cases in which is very large. In these cases, we remark that in (4.18)
we can obviously choosg, € @}, so thatE,.(p, Qn, Q;,) < E(p,Q,,) and
then from (4.19) we easily obtain

4.2) |lu —wpl¥ + lp — palld < C ((B*(u, Vi) + E*(p. Qp))

as we could have obtained directly from Lemma 3.3. In fact-flarge the
method is equivalent to penalising thiestable parbf @, to actually obtain

a solution inQ,,. Thetheoreticalinterest of this choice seems questionable,
as we could use directly a discretisation with and Q},, that would be
stable and provide essentially the same error bound. In practice however
this choice could still be interesting for various reasons. For instance the
choice of@;, might be dictated by other equations that have to be solved
toghether with (1.1), or by some optimistic hope of an improvement in the
constants, providing better results for a fixed

Remark 4.2.In fact the most interesting case is covered by Corollary 4.2,
and corresponds to use arthat goes to zero whel goes to zero, in the
spirit of Remark 3.4. This becomes specially interesting whén Q,) is

of a lower order tharE(u, V4,). In this case, we can add and subtradah

the expression of,.(p, Qx, Q;,) to obtain

(4.22)
Ip = anllg + 7 llan — @nlld < (1+27)Ip — aullg + 27 |lp — @nll?)

and then (4.20) easily becomes

lu —upll§, + [P0 — pu) G + (0 — pn) — Plp — pi) I3,
H <o (LE )+ B + .00

WhenQ),, provides a worse accuracy (with respecktaand@y,,) so that the
term £%(p, Q,,) is bigger than the tern?(u, V) + E?(p, Qy), a smallr
can, somehow, compensate the difference (see Remark 3.4). Notice that, in
this case, the theory can be applied with = {0} (pure penaltynethods.)
O

Example 4.1 Stabilisation of th@, — P, element

The first case that we consider has been studied by Sylvester [23] for
the Stokes problem. The goal is the stabilisation of the classical bilinear
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velocity—constant pressuré(—F,) approximation which notoriously suf-
fers from stability problems ([21,9, 18]). We thus consider the Stokes prob-
lem

(4.24)
{fQ e(u) : e(v) dx — fﬁpdivydx = fﬂi-QdXVQ € (H(%(Q))2
Joadivudx =0 Vg € L2(0),

whereL3(£2) is the set of square integrable functions with null average.

Let 7, be a partition off2 into rectangles (we restrict ourselves to this
simplified setting, instead of the general isoparametric case, for the sake of
a lighter presentation.) We now take figy the space of piecewise bilinear
continuous functions, and f@p,, the space of piecewise constants:

(4.25)
Vi = {u), € (Hg(2))? | v e = a + bx + cy + dwy, VK € Ty}
Qn={aqn € L§(92) | qn| i = constant, VK € Tp} .

On a rectangular mesh, it is well known that this approximation suffers
from thecheckerboard spurious mode p;,: the kernel of the discrete gra-
dient (in the space of piecewise constants) is two-dimensional and contains
besides the expected global constants (which do not belopg)ta second
mode alternating values in a checkerboard pattern.

There also exist other unstable modes which emanate from local checker-
board patterns ([20]). Indeed, let us sflitinto 2 x 2 macroelements and
on a macroelement/

+1 -1

Fig. 4.1. Macroelement
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let us define
lon A,
—1lon B,
(4.26) CBu =1 _lonc.
lon D
and
(4.27) CB), = {qh | gnjar = aCBy VM} .

It is easily seen (cfr. e.g.[21]) that, definiayto be the orthogonal com-
plement ofC By, in Q,, the pairV, x Q,, gives a stable approximation which
is equivalent (from the point view of degrees of freedom) todhe— P;
piecewise quadratic—piecewise linear approximation. The above theory pro-
vides different possibilities for stabilising: we can take

(4.28) R = Ri(ph:qn) = (pn — Ppn,an — Pan)

which corresponds to (4.9), or set, in each 2 macroelements,(qp,) =
qa +qB — qc — qp, and then use

(4.29) R = Ro(pn,qn) = (sn(pn), sn(an))

which clearly satisfies (4.10). As we have seen in the previous section, both
choices can be used with arbitrarily largelt is clear that, forr large,
the use of these stabilisations is equivalent to penalising the checkerboard
mode and that the result is essentially the same as if one had used the stable
approximationV, x Qy,.

In Sylvester [23], one also uses

R(qn,qn) = ((gB — qa)* + (ac — q4)* + (a0 — qB)* + (a0 — qc)?) -
Forr large, this amounts to take
Q;, = {qn| gn = constant on M},

that is the space of piecewise constants on macroelements, which is actually
an “overstabilisation”.

Remark 4.3.An identical situation is met if we consider a triangular grid
T which has been obtained from a coarser one,7~$aipy splitting as usual
each triangle into four identical ones. Taking the space of piecewise linear
continuous vectors off, for velocities and piecewise constants Bnfor
pressures we clearly have a stable pair. As above, this can be used to stabilise
a P1 — P0 approximation o}, which by itself would be highly unstable.

O
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Example 4.2 Taylor-Hood approximation for Stokes

Another widely employed approximation for the Stokes problem is the Tay-
lor-Hood P, — P, elementwhich uses, on triangles, a continuous approxima-
tion for pressure of degrameand a continuous approximation for velocity

of degreetwo. This is apparently a drawback for many users who prefer
the simplicity of theP, — P, equal-order interpolation. One could eventu-
ally think of using stabilisation as follows. Suppose that we use a piecewise
guadratic approximation for the pressure.

Let us consider an edge at the interface of two trianglesdLatd B be
the endpoints of this edge addits midpoint. We can define

sn(qn) = q(A) —2q(C) +q(B)

and
R(<Qh7 Qh)7 (Q}p Qh)) = Zedges(sh(Qh))Q .

Introducing this term with a largeobviously forceg, to become linear
on the edge, thus reducing the approximation to the Taylor-Hood approxi-
mation. It is easily seen that the theory applies and that; farge, we get
the usualO(h?) error estimates. We could also employ for both variables
a piecewise linear approximation on macro-elements obtained by subdivid-
ing each triangle into four subtriangles. One can then use the same trick,
forcing the pressure to be linear on each macro-element, obtaining in the
limit the popular variant often called thel — isoP2 approximation, with
the usuaD (k) error estimate. We will not develop further, as this procedure
(for obtainingP1 — isoP2 as a limit of a penalty method a1l — P1) has
never been implemented to our knowledge.

Example 4.3 Penalty methods

We still consider the Stokes problem (4.24), and we employfok Q,
the unstable choice,

Vi = {u, € (HY(2)| vy € PoK), VK € n}

(4.30) )
Qn={amn € L3| an € Pi(K), VK €T,
Note that (4.30) is a discontinuous pressure approximation as we impose
no continuity requirement o@;, at interfaces.This not a stable choice and
the classical procedures to make it stable are

1. Use a largel},. The Crouzeix-Raviart element [13] is built along this
option by adding cubic bubble functionsq .
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2. Use a smalle@);,. Taking as previously), as the space of piecewise
constant pressures yields a stable approximation, at the price of a loss of
accuracy: this?, — Py approximation is only) (k) instead of the) (h?)
that one expects from the choicedf.

Stabilisation opens another avenue. The coﬁ@lei@h is stable and we
can define, as in Example 4.B(p;, q1) = (pr — Pph,qn — Pgn). The
Stokes problem (4.24) becomes

(4.31)
Jo€e(uy) : €(vy,) dx — [ pp divey, dx = [, f - vy, dx Vo, €V},
[ an divyy, dx +r (py — Ppp,an — Pan) =0 Yan € Qn.

This can also be written, after a few algebraic manipulations, as
Jo €(uy) : e(vy,) dx — [, By, divey, dx+
1
(4.32) . [, divu,dive,dx = [, f - vy, dx Vo, € Vj,
Jo @ divy, dx =0 Vg, € Qp,

wherep,, now lies in@,,. This can be read as an augmented Lagrangian
formulation for the constraint div, = 0. It can also be seen that, folarge,
(4.32) reduces to the standdrd— P, approximation, as the “penalty” term
(containigl /r) becomes negligible.

We can now apply the general results. For a fixed value ofe get an
O(h) convergence rate as the consistency term

R -P
R i sup (pr,qn) - (pr DI, qh)

an HQhH qn HQhH
is obviouly onlyO(h). However if we now employ the technique of Remark
4.2, takingr = O(h) in (4.23) yields arO(h*/?) estimate for velocities in
H' and for the elementwise mean value of the pressufé jrs it has been
pointed out in [7].

One can also see that, takidg, = {0}, we obtain apure penalty
method. In this case our analysis provides the following result: if the space
V,, yields anO(h*) approximation, taking: = O(h*/?) we obtain glob-
ally an O(h*/?) error estimate on velocities, regardless of the choice of
approximation foiQy,.

5 A second class of applications

We consider now another general situation in which our abstract framework
can be applied. We go back to a problem of the form (4.1) and we still
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make the assumption that:, -) is elliptic onV. On the other hand, instead
of assuming that we know a stable approximatignx @, we make the
following hypotheses.

A.2 i) there exists a Hilbert spac& withV ¢ H = H' c V' and a
functionw : R™ — R™T such that

(5.1) w(h)thHV < th”Ha Yoy, € Vp,.

i) if B*: Q — V'isthe linear operator associated with the bilinear
formb(v, ¢), we have
(5.2) BY(Qn) c H

i) there exists a linear operatof from V' into 1}, and two positive
constantsr andc;y, independent of, such that

(5.3)
[1(v) —vllg < ow(h)|lv]lv, and [I(v)|lv <cillvlly Yo e V.

O

As an example, let us say that this assumption is verified when the pres-
sure of Stokes problem is discretised by a space of continuous finite ele-
ments. Let us recall that from Proposition 2.2 we have a priori stability in
the semi-norm

(5.4) [(vn, gn)]is = llonllsr + [an]i,
with t
(5-5) [[qh]]h := sup M = su M

o Nonllv o lonllv

We then have that assumption H.1 holds in our case, for the seminorm (5.4),
with constants independentofMoreover it is obvious from (5.1) and (5.2)
that we have

(5.6) lan]n = w(h)|| Py, B'anllu

wherePy, is the projection operator, iff, ontoV,, C V C H.
The stability in the semi-norm (5.4) therefore implies also the stability
in
(5.7) [(vh, qn)17 = llonll* + w?(h) || Py, Btqn |3
and H.1 will hold, with constants independentigffor the seminorm (5.7)

as well. In agreement with the general procedure developed in Sect. 3, we
can now take{ = H with G1,((vh, gn)) = B'qn — Py, B'qy, and define:

(5.8) R((un,pn), (vn,qn)) = (B'pn — Py, B'p, B'an — Py, B'an) ; -
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Itis clear that H.2 will hold with constants independentoMoreover it is
easy to see, checking the expressio#pfn (2.21), that it leaves the second
component invariant. Then from (5.8) we easily have that H.4 holds. We
are left with H.3 which will be proved in the next two propositions using
essentially the so-called Véntth’s trick [25].

Lemma 5.1. Assume that A.0 and A.2 hold. Then

b(vy,
CI[[Qh]]h = Cy sup ( i Qh)
oneVi Ivnllv
(5.9)

whereky is the inf-sup constant appearing in (1.8)¢4) is given in (5.1),
ando, ¢y are given in (5.3).

> kollgllq — crow(h)||B*anll e Yan € Qn,

Proof of Lemma 5.1We have from the inf-sup condition (1.5), and (5.3)

bosa) (U@ a) | b~ 1(),a)
Follanlle < sup =10 S‘ip< v T Tely )
I | (- 10).B@)n
5100 P T Tollv
< ars o) , o= 1)l B @l
ol 5 Tollv

< CI[[Qh]]h +ow(h)|B'arlle Van € Q.

We can now easily get the following result.

Lemma 5.2. Under the assumptions A.0 and A.2 there exists a conktant
independent of, such that

(5.11) [gn]? + w2 (h)||Ba, — Py, B'anll} > Ellanl?y  Yan € Qn.
Proof of Lemma 5.2ndeed, from (5.6) one easily obtains
(5.12)

lanls + > (W B'an — Py, B'anll3; > 0* (W) B'anllFrs Van € Qn,
and from (5.9)
(5.13) 2cilanliy = kdllanllgy — 20w ()| B anllF; -

Then (5.11) is obtained by summing (5.13) and (5.13) with appropriate
constants. O

Lemma 5.2 implies that H.3 holds, with the above choiceg fg§y and
G, with a constant;; independent ofi, and withy, = w?(h). In a sense,
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we have a stability result thats¢rongerthan necessary. However, if we look
atthe statement of Lemma 3.4, itis clear that a smatiffers the possibility

of using a smalt without “paying the price”. This is indeed what happens
in the following convergence theorem.

Theorem 5.1. Assume that A.2 holds, and [et, p) be the solution of Prob-
lem (1.1). Assume that in (4.2 is defined through (5.8). Then for every
positiver Problem (4.2) has a unique solutidny,, p,) and there exists a
constantC, independent ot andr, such that:

(5.14)
lu = unllf + lIp = pull}y
w?(h) +r
< C (7) (Ez(uv Vh) + (1 + TQ)EQ(pa Qh) + TzEz(Btpa Vh))

with the notation introduced in (4.17).

Proof of Theorem 5.1The proof follows directly from Lemma 3.1, Lemma
3.4 the definition ofk given in (5.8) and a few triangle inequalities. O

In certain cases, as we are going to see in the sequel, it might be more
convenient to consider another subspig®f H and change the definition
of R (5.8) into

(5.15)R((un, pn), (vn, qn)) = (Btph — Py B'py, B'qn — thBtQh)H

This will be allowed, and it will still give optimal error estimates, provided
that we have the following inequality.

A.3 With the notation of aAssumption A.2, there exists a positive constant
G, independent of, such that

(5.16) || Py, B'ar|* + || B'qn — Pf/hBtQhHQ > B|Btan]* Van € Qp.
O

Indeed, proceeding as in Lemma 5.2, and using (5.6) inequality (5.16)
will imply

(5.17) [an]i; + w* (W) B*an — Py, B'anllFr = kllanlly, Yan € Qn-
We summarise the above discussion in the following theorem.

Theorem 5.2. Assume that A.2 and A.3 hold, and (et p) be the solution
of Problem (1.1). Assume that in (4.B)is defined through (5.15). Then
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for every positive: Problem (4.2) has a unique solutidn;, py,) and there
exists a constant’ independent of and h such that:

[ = un|[ + lp = pallgy + 71 B*(p — pn) — Py, B*(p — 1) 13

2
h -
< C (M) <E2(u7 Vh) + (1 + 7a2)‘E2(p7 Qh) 4 7“2E2(Btp, Vh))
(5.18)
with the notation introduced in (4.17).

Proof of Theorem 5.2 he proof follows the same lines as the one of Theorem
5.1 O

Example 5.1

We consider again Stokes problem as described in Example 4.1. However
we now consider a piecewise linear approximation for bgtrand @, a
so-called equal interpolation case. Ogemeralmesh, it is not possible, to

our knowledge, to build (as in the previous section) a subs@gogelding

a stable approximation. We can however apply in a straightforward way the
previous results witld = (L2(§2))2. We have heres?(h) = 0(h?). We

can also write the bilinear for-, -) in two ways,

(5.19)  b(vp,qn) = —/ div vy, gpdx = +/ vy, - Vapdx.
2 9}
The stabilised Stokes problem now reads

a(up,vy) + (p, VY pr) = (f,v,) Yy, € Vi,

(wp, Y gn) = (N pn — Py, Y.ou, Y qn) = (9,an)  Van € Qn,
(5.20)
where we also introduced a possible right-hand gidehe second equation.
The projection operator is not local and it is more convenient to write (5.20)
in the form

a(ﬂnvyh) + (Qhazph) = (ia Qh) \V/Qh € th
(5.21) § @, Y an) =r(Non, Y an)+(9,qn)  Yan € Qn,
(Up,vp)m = (up, vp)H + (¥ Dhovp) e Vv, € Vi,

where stability is seen to have been gained at the expense of a larger, non
symmetric linear system. In practice, this can be solved by some iterative
process.

To study convergence, we consider the estimate (5.14). It is clear that
some potential trouble might lie in the last term of this inequality, that in
our case i3||V p — Py, V p||%. Indeed, the spadeg, is made of functions
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vanishing on the boundary, whik p does not. This induces a bad approx-
imation near the boundary and it is easy to see that the term at héxid s
for p regular enough. To get the correct order of convergence, we are thus
led to user = O(h), which still is going to ensure convergence, as it will
giver > ciw?(h) asymptotically.

It must be recalled that the more classical stabilised problem (Brezzi-
Pitkarantd ])

(5.22) {awh,vh) + WY pn) = (f,u)  Yon € Vi,
. (ﬂhazpha)‘f‘T(th’th) =0 Yan € On,

requiresr = 0(h?) in order to get the right order of approximation. This is
also clear from our estimate if we takg, = 0. Atthe first sight, one might
think that stabilising with- = O(h?) is somehow better than usirg(h),

as the consistency error becomes smaller. However, numerical experiments
show that the scheme (5.22) with= § h? suffers from minor instabilities
(oscillations of the pressure variable near to the boundary) whierioo
small, while for a largeb a boundary layer will appear (corresponding to

a Neumann boundary conditio®p/0n = 0.) The same is true for the
scheme (5.20) if we take= ¢ h. On the other hand, very good results have
been observed experimentally by Habashi et alii [6] if, insteagh@f one

uses the projectioﬂ’?h on the spac&h in which boundary conditions are
ignored. In particular, this choice eliminates the boundary layer effect, and
allows to take a much bigger(for instancer = 1) in order to suppress the
oscillations. Itis clear that with this choice we could recover the right order
of convergence in the right-hand side of (5.14). We are then in the situation
of Theorem 5.2, and we have to prove that inequality (5.16) of Assuption
A3 holds. A result of this type is claimed in [12]. Since the proof there is
rather complicated and might require some minor fixing, for convenience of
the reader we report here another proof, limited to the case k=1. The proof
follows, in essence, similar lines (macroelements, continuous dependence
of the constant on the shape of the macroelement and so on) of the original
one in [12], but has a simpler presentation.

Proposition 5.1. Let@), andV}, be the space of piecewise linear pressures
and velocities as above, and gt be the space of piecewise linear contin-
uous vectors off;, (without boundary conditions.) There exists a constant
B* > 0, independent oh, such that, for every;,, € @ and for every
w;, € Vp, there exists @2 e V;, verifying

(5.23) lohll < [IVqnll
and
(5.24) (W, Var) + | Van — wy|? > 8| Van|?

where scalar products and norms are allid(£2).
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Proof of Proposition 5.1Let us consider first a macroelemehit made

by the collection of triangles having one vert&xof 7, in common. Split
gn = qo + qe, Wheregq is such thaW ¢o has zero mean value i andgy is
linear onK (henceVg, = constant ink.) Itis clear thatVqo, Vq/) k = 0.

We take now?, piecewise linear, continuous, vanishing on the boundary of
K and having valua/6V ¢, at the internal verteX. An easy computation
shows that:

(5.25) lohllo.xc = [ Vaello.x
and

2
(5.26) (v), Var )k = \/; IV gel[5 -

On the other handy gy belongs to a space (piecewise constant vectors on
K, with continuous tangential components, and zero meak pwhose
intersection with piecewise linear continuous vectorgois reduced to the
zero vector. As we are in finite dimension, there exists a positive constant
0 such that, for every¥ gy and for everyw;,

(5.27) IVg0 — wy|I* > 6k [V aol[5, -
As V¢, is clearly continuous and piecewise linear, (5.27) easily implies that

IVan — wy|1* = [|[Vao + Ve — wy,[|?

(5.28) .
= Vg0 — @p|1? > 6k IV q0lI3 &

and a simple scaling argument shows immediately dats independent
of thesizeof K (notice that (5.28) hold®r everyw,.)
Finally we explicitly point out that

(5.29) (v9, Vao)x / Vqodz =0,

whereP is the only vertex internal té&. From (5.26)-(5.29) one then gets
that, for everyy;, and for everyw,,, thereis a), piecewise linear, continuous,
and vanishing on the boundary &f, such that (5.25) holds and

(5.30) (v9, Van)k + | Van — w2 & > Br | Vanl3 k.

for some positive constagl, independent of, andw;,. The result (5.23),
(5.24) follows then easily from (5.30) by typical instruments (continuity of
Ok, splitting of 2 into macroelements such that each triangle belongs at
most to three different macroelements, and so on.) O

With the aid of Proposition 5.1 we can now prove Assumption A.3.
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Proposition 5.2. LetQpn, Vi and I7h be as in Proposition 5.1. Then there
exists a constant > 0 such that

(5:31) [Py, Vol + [Van — Py, Yaul* > BIVanll*  Van € Qn
where all the norms are ih.2.

Proof of Proposition 5.2We start by observing that, for ever§ andg;, we
have

(), Yan) = (), Py, Yan) < [0l | Py, Vaull
(5.32) 3* 1

< SRR + 5 1A P

where the last inequality clearly holds for every positiife but we shall
use it for the value of$* given in (5.24). For every;, we take now) as
given by Proposition 5.1, and using (5.23) we have

1
23*
that, inserted in (5.24) withy;, = thth gives

633) (Ve <2 Vel + 5 1Py Yail

1
23*
and (5.31) follows immediately. O

We can then apply Theorem 5.2, and see that; forO(1), the stabilised
Stokes problem:

(534 IV anll* + 55 1P Y anll* + [ Van — P, Yanll* > B8 [ Zanl*,

(5.35)
a(ﬂhagh) + (Qh)yph) = (i’yh) \V/Qh, € th
(wn: Y an) =r(Nph — Py, N pn. N an) = (9.qn)  Van € Qn,

is stable and optimally convergent when we take piecewise linear continuous

velocities and pressure, and figy the space of piecewise linear continuous
vectors without boundary conditions. O

Example 5.2
Let us consider a “ mixed formulation” of the Dirichet problem.

(5.36) { (0,7)+ (1, V. ¥) =0 Vr € ¥,

(.Y @)= (f,0) Voeu,
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having takenY = (L?(02))? = H = X', ¥ = H}(2). At the continuous
level, this is nothing but a somewhat bizarre way of writing the standard
formulation

(5.37) /va-VLpdx:/Qfgodx Vo eWw.

This equivalence however does not hold in general for discretised prob-
lems, unles¥;, andX’;, are chosen in such a way that the space of gradients
of ¥, is contained in¥,. Let us consider, as an example, a case in which
this condition is violated: the so-called equal-order interpolation. We take

Uy, = {¢n € Hy(2) | oni € Pe(K)? VK € Ty}

(5.38) {Zh _ {Ih c (Hl(Q))2 ‘ Thk c (Pk<K))2 VK € 771}

and we look for €;,, ¢p) in X}, x ¥, such that:

{(%Th) + (T, Y Yp) =0 V1, € Xy,
(01, YV on) = (fron)  Von €.

This is not stable. Indeed one easily checks that we have

(5.39)

b(ty,
(5.40) sup W) g S 1Po Y ol
Tp HIhH
instead of
(5.41) lenln > 1IN onlla,

which would ensure stability from Poindss inequality. Applying our pro-
cedure (with, clearlyy = X and@Q = ¥,) we consider the stabilised
problem,

(5.42)
{ (wazh) + (Ihaz 77bh) - 07 Vzh S Eh
(on, YV on) +r(N p — P, N 9, ¥V on) = (f, on) Yon € ¥y,

Theorem 5.1 applies directly and we can get a convergence proof to the
correct order inkh. Notice that in this case there are no troubles with the
boundary conditions, as we have themdoand not onY’.

Remark 5.1.The stabilised formulation (5.42) can be read as a convex com-
bination of the standard discrete formulation

(5.43) /vwh-whdx—/ fonds Von € U
(] (4

and the mixed formulation (5.36). Indeét:, V ¢y, = oy,. O
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Remark 5.2.Although we have followed the same general framework, there
is a fundamental difference between Example 5.1 and Example 5.2 (beside
the role of boundary conditions.) Indeed in this last case we WaveX' =

H so that the constani(h) = 1, while in Example 5.1 we had to employ

the equivalence of norms in finite dimensional spaces. O

Example 5.3

We discuss now a “viscoelastic "problem. We consider a variant of Stokes
problem, as a model problem for situations appearing in the finite element
approximation of some viscoelastic flow problems. This example was, in
fact, the first instance where the stabilisation technique developed in this
paper was introduced. We refer to [14] and [15] for a more detailed presen-
tation.
We takeV = (H}(2))?,Q = L*(2) andX = (L?(£2))?2, the space of
symmetric square-integrable tensors, and we lookdfop, o) € V xQ x X
such that:
0,7)+(G(a),7) =n(z.e(w) + (F(u),7) VzeXx,
(5.44) (div
= (f,v) Vv e V.
Here,n is a constant depending on the viscosity, and the functiinsand
F(-) are representing rather complex terms which may vary from a model
to another and can include Lie derivatives in convected models. They can
be left undefined for our present purpose.
We now consider the discrete problem,
(5.45)
(0,.7,) +(G(g,).1,) =n(z, . e(w,)) + (F(uy),7,) VI, € Xh,
(div up,qn) =0 Vau € Qn,
(g,:€(vp)) + (pn, div vy) = (f,vp) Vuy, € Vi,
whereV,,, Q andX, are finite element subspaceslof Q and Y, respec-
tively. Let us reduce this temporarily to a simple Stokes problem:
(ghﬂgh) =" (£h7g(gh>) vgh € Zh)
(5.46) (div up, qn) =0 Vgu € Qn,
(g, €n)) + (P, divvy) = (f,vp) Vo, € Vi

The first equation can now be read as:

(5.47) a, = Py, (eluy,))
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and we can understand why we may have a stability problefya& (u;,))

is not strong enough to contra), through a Korn's inequality, unless;, is

rich enough ([16]). Following the general procedure, we thus write, instead
of (5.45), a stabilised form

(5.48)
(¢, z,) +(Glg,).1,) =n(z, (w)) + (Flu),z,) VI,
(div up,qn) =0 Vap,

(g, €(vp)) + r(e(wy) — P, (€(up)), €(vp))
+(Pn, div vy) = (f,vp) Yoy,

Applying the theory is again straightforward. In fact this is very close to the
previous example but is much more relevant in applications, as it strongly
widens the range of possible approximations of (5.44). Indeed, we may now
use any reasonable approximation #gy, the only constraint being to get

the right order of precision. The price to pay is that the projection operator
is most often not local, and that it has to be considered as an extra equation
in the problem, which can also be written as

(5.49)
(g,.7,) +(G(g,).7,) =n(z, . e(w)) + (Fuy),z,) VI,,
(div up,qn) =0 Yy,
(g,.€(vp)) +r(e(w,) — g, €(vy)) + (pn, div vy,) = (f,vp,) Yoy,
g, = Pz, (e(up)).

We refer to [14] for details about implementation and numerical results.

6 Coercivity on the kernel of B

In all previous examples, we have used stabilisation to ensure an inf-sup
condition. In many problems, e.g., plate problems, coercivity of the bilinear
forma(-, ) is an equally important issue and we can apply the same general
framework to get stability when needed. Let us then suppose that, in problem
(1.1), we have a bilinear form dri x V that is coercive only oker B. Itis

then natural to suppose that one has

(6.1) a(v,v) + || Bvl* > oIy, Vv e V.

The problem arises because, in genédt@al B, is not a subset dfer B
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Let us introduce then, instead of (1.6), a stabilised discrete problem: find
(un,pn) € Vi x Qn, Vi, C V, Q) C Q, such that

{a(uhﬂm) + b(vp, pr) + r(Buy, — Brup, Boy)g = (f,vn) Yoy, € Vi,
b(un,qn) = (9, qn) Y, € Qp.
(6.2)

Itis then obvious that we now have coercivity on the kerndbpfHere
again we have employed the strategy of adding the minimum amount of
stabilisation. In fact the stabilising term vanishe&df B;, C ker B. We
also notice that the stabilising term is in fact symmetric,Ba®y, is the
projection of Buy, on @,. As to error estimation, it is easy to obtain, using
Lemma 3.3, the following result.

Proposition 6.1. Let(u, p) be the solution of (1.6) and:, py,) the solution
of the stabilised problem (6.2), with anndependent of. Then there exists
a constant’, independent of, such that:
(6.3)

lun = ulli + llpn = plig < C (B*(u, Vi) + E*(p, Q) + E*(Bu, Qn))

always with the notation (4.17). O

Tofix ideas, let us consider a simple mixed formulation for the Dirichlet’s
problem: findu € V = H(div, £2) andp € Q = L?(2) solution of

(6.4) {WW+@JWM=Q Yoev

(divu,q) = (9,q) Yq€Q.

Here we haveB = div and this is a simple example in which the bilinear
forma(-,-) is coercive only on

ker B = {Qo| Vg € H(dZ’U, Q)? dwyo = 0} '

Except for very special constructions (see e.g. [9] and the references therein)
of the space¥}, andQ)y, the discrete kernéler B;, = ker Py, div is not a
subset oker B. Thisisis the case, for instance, if one uses the Mini element
of [3] to build V}, and@)y,. Let us recall it briefly: let7;, be a triangulation

of {2 and let, for everyK € Ty, bx be the cubic bubble i defined by

br = M A2A3. We set:

(6.5)
W:{%HQG@WAQWﬁNHUQ+mwm2VKEE}
Qn = {Qh | gn € CO(2), qnic € PI(K) VK € Th}.
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It is classical that this approximation satisfies an inf-sup condition (in fact
a stronger one than what we need here.)
To get a stabilised problem, we write

6.6)
{ (up,vp,) + (pr, divwy,) + r(divyy, — Pg, divuy,, dive,) =0 Vo,
(divuy, qn) = (9,qn)  Van-

The projection operator is not, in general, local, and must be considered at
the expenses of an extra equation. However it is easy to see that our general
theory applies, and that the error estimate (6.3) yields the right order for the
spaces at hand. In the particular case above, we can elimfhat&vy,, as

the second equation of (6.6) states in fact tRat divy;,, = FPg, g. We can

thus replace (6.6) by:

(6.7)
(up,vp) + (ph, divwy,) + r(dive, — Py, g, divey) =0 Vv, € Vj,
(divuy,,qn) = (9,qn) Yan € Qn

This is very similar to the satbilisation introduced in [10].

This way of modifying the equations to bypass the coercivity problem
proved to be fruitful also in the context of the approximation of Mindlin—
Reissner plates ([1]) and shell problems ([22, 2]).

7 Conclusions

The various examples presented clearly show that the abstract theory de-
veloped here provides a unified framework for a wide class of applications,
establishing links between apparently unrelated techniques. The theory also
provides a general way of choosing the value of the stabilising parameter
with respect to the mesh size and permits to obtain in some cases sharper
error bounds.
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