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Summary. Stabilisation methods are often used to circumvent the difficul-
ties associated with the stability of mixed finite element methods. Stabili-
sation however also means an excessive amount of dissipation or the loss
of nice conservation properties. It would thus be desirable to reduce these
disadvantages to aminimum.Wepresent a general framework, not restricted
to mixed methods, that permits to introduce aminimalstabilising term and
hence aminimal perturbation with respect to the original problem. To do so,
we rely on the fact thatsome part of the problemis stable and should not
be modified. Sections 2 and 3 present the method in an abstract framework.
Section 4 and 5 present two classes of stabilisations for the inf-sup condi-
tion in mixed problems. We present many examples, most arising from the
discretisation of flow problems. Section 6 presents examples in which the
stabilising terms is introduced to cure coercivity problems.

Mathematics Subject Classification (1991):65N30

1 Introduction

This paper will be devoted primarily to the stabilisation of mixed finite
elementmethods.However,we shall introduceageneral settingwhichmight
be applied to other situations.
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Let us thus consider, to fix ideas, the standard problem: find(u, p) ∈
V ×Q such that,{

a(u, v) + b(v, p) = 〈f, v〉 ∀v ∈ V,
b(u, q) = 〈g, q〉 ∀q ∈ Q,(1.1)

wheref andg are given elements inV ′ andQ′ respectively. Throughout
all the paper, we shall always assume thatV andQ are Hilbert spaces and
thata( , ) andb( , ) are continuous bilinear forms onV × V andV × Q
respectively. Let thenB denote the linear operator defined by

〈Bv, q〉Q′×Q = b(v, q) ∀v ∈ V, ∀q ∈ Q.(1.2)

The kernel ofB,

kerB = {v0 ∈ V | b(v0, q) = 0 ∀q ∈ Q}(1.3)

will also play a fundamental role. For this problem, which has been the
object of intensive studies, the classical theory (e.g. [8,9]) states that one
gets a unique solution provided the following conditions hold:

– coercivity on the kernel ofB, that is

∃α0 > 0 s.t. a(v0, v0) ≥ α0‖v0‖2
V ∀v0 ∈ kerB,(1.4)

– inf-sup condition

∃ k0 > 0 s.t. sup
v /=0

b(v, q)
‖v‖V ≥ k0‖q‖Q ∀q ∈ Q.(1.5)

Let us introduce a discrete problem: find(uh, ph) ∈ Vh ×Qh, Vh ⊂ V ,
Qh ⊂ Q, such that:{

a(uh, vh) + b(vh, ph) = 〈f, vh〉 ∀vh ∈ Vh,
b(uh, qh) = 〈g, qh〉 ∀qh ∈ Qh.

(1.6)

The bilinear formb(·, ·) now defines a discrete operatorBh from Vh into
Q′
h and we must consider its kernel,

kerBh = {v0h ∈ V0 | b(v0h, qh) = 0 ∀qh ∈ Qh}.(1.7)

To get existence and uniqueness of the discrete problem, we must have
conditions corresponding to (1.4) and (1.5), that is,

∃αh > 0 s.t. a(v0h, v0h) ≥ αh‖v0h‖2
V ∀v0h ∈ kerBh(1.8)

∃ kh > 0 s.t. sup
vh∈Vh

b(vh, qh)
‖vh‖V ≥ kh‖qh‖Q.(1.9)
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To obtain error estimates, wemust also assume thestability conditions:

αh ≥ α̃0 > 0.(1.10)

kh ≥ k̃0 > 0.(1.11)

Problems may arise with both of these conditions. For (1.8) and (1.10)
the trouble is thatkerBh is not, in general, a subspace ofkerB, so that (1.8)
is not a consequence of (1.4) (unless coercivity hold for the whole spaceV .)

In the same way, an improper choice of the spacesVh andQh can lead
to kh vanishing to 0 withh in (1.9). In many instances, conditions (1.10)
and (1.11) impose contradictory requirements on the choice of the discrete
spacesVh andQh, and only quite special choices are admissible.

There are cases where these elaborate constructions are felt as inade-
quate. In some situations, for example, it happens that (1.1) is only a part of
a larger problem, for which the choice ofVh andQh is not really free, and
we are led to employ discrete spaces which are not suitable for (1.6).

Stabilisation methods, then, try to recover (1.8)-(1.11) through a modi-
fication of the variational formulation. This modification should obviously
preserve consistency. Ideally, it should be as small as possible, restoring
stability without introducing unwanted smoothing properties.

In this paper we shall describe a general framework for the study of
stability issues. We shall also present a general technique that yields many
examples of stabilised methods which can be analysed in this framework.
The basic idea of the technique is that, in several cases, the discretisation
at hand has some sort of “partial stability” (to fix ideas, we have a priori
bounds for a certainseminormof the solution, but not for the true norm.)
Our technique consists then, somehow, in adding theminimummodification
that allows to restore the full stability.

In the next section, we present and discuss the abstract framework in
which we are going to set our examples. In Sect. 3 we present, always at the
abstract level, a general stabilisation technique, with abstract stability theo-
rems and error estimates. A first class of applications, together with several
examples, will be discussed in Sect. 4, and a second class of applications,
with several other examples, will be the object of Sect. 5. Roughly speak-
ing, the two classes of applications will correspond to two different ways
of stabilising problems of type (1.1) when theinf-supcondition (1.9),(1.11)
does not hold: in the first class of stabilisations we assume that we have a
stability result for a pairVh − Qh, whereQh ⊂ Qh, while in the second
class we only assume a sort ofweak stabilitythat will be made precise later
on. Applications to problems where the ellipticity in the kernel (1.8), (1.10)
is needed are then considered in Sect. 6.
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Other important general results on stabilisations for this type of problems
can be found in [19,4,5,24] and the references therein. See also [9] for
additional references.

2 An abstract framework

We consider here a very general problem. LetW be a Hilbert space, letA
be inL(W,W ′) (the space of linear continuous operators fromW toW ′,)
and letF be inW ′. We want to findX ∈ W such that,

〈AX,Y 〉W ′×W = 〈F, Y 〉W ′×W ∀Y ∈ W.(2.1)

From now on, we shall always assume that

〈AY, Y 〉 ≥ 0 ∀Y ∈ W.(2.2)

The following result is an exercise in functional analysis, but, for the
convenience of the readers, we sketch a proof.

Proposition 2.1. If (2.2) holds, then the two following conditions are equiv-
alent:

i) A is an isomorphism fromW ontoW ′.
ii) ∃Φ ∈ L(W,W) and a positive real numberαΦ such that

〈AY,Φ(Y )〉W ′×W ≥ αΦ‖Y ‖2
W ∀Y ∈ W.(2.3)

Proof of Proposition 2.1.Let J be the Riesz’s operator fromW ′ toW. The
implication i) =⇒ ii) follows by takingΦ = JA. To prove the converse
implication we denote byId the identity operator inW, and we remark that,
if (2.2) holds, then for every positive real numberswe have, for allY ∈ W,

〈(sΦ+ Id)tAY, Y 〉W ′×W = 〈AY, (sΦ+ Id)Y 〉W ′×W ≥ s αΦ‖Y ‖2
W .

This easily implies that(sΦ+ Id)tA is an isomorphism fromW ontoW ′.
SincesΦ+ Id is an isomorphism fors small enough, theni) follows easily.

��
Remark 2.1.If (2.2) is not satisfied, we always havei) =⇒ ii) but the con-
verse is false. This can be seen by considering inL2(]0,+∞[) the mapping:{

(Au)(x) = u(x− 1) for x > 1
(Au)(x) = 0 for 0 < x ≤ 1

with Φu := Au. Clearlyii) is satisfied, buti) is not, asA is injective but not
surjective. For an operator that does not satisfy (2.2), we would need two
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conditions instead of (2.3), that is:∃Φ1 ∈ L(W,W), Φ2 ∈ L(W,W) such
that, for allY ∈ W,{ 〈AY,Φ1(Y )〉W ′×W ≥ α1‖Y ‖2

W ,
〈Φ2(Y ), AtY 〉W×W ′ ≥ α2‖Y ‖2

W ,
(2.4)

implying thatA is both injective and surjective. ��
Remark 2.2 (stability constant).It must be noted that the “ stability con-
stant” of Problem (2.1), that is the smallest constantC such that

‖X‖ ≤ C‖AX‖ ∀X ∈ W,

is not1/αΦ (see (2.3)) but rather‖Φ‖/αΦ. ��
As we are mostly interested in mixed problems, it might be worth show-

ing that this abstract formalism contains the usual theory for Problem (1.1).
Indeed, letW = V ×Q,X = (u, p), Y = (v, q), and define{ 〈AX,Y 〉 = a(u, v) + b(v, p) − b(u, q),

〈F, Y 〉 = 〈f, v〉V ′×V − 〈g, q〉Q′×Q.
(2.5)

In this context, it is clear that (2.1) is just another way of writing (1.1). We
suppose thata(u, u) ≥ 0 for anyu ∈ V , which clearly implies (2.2). We
now want to get (2.3) from (1.4) and (1.5). We thus consider, for any given
(u, p) ∈ V × Q, two auxiliary problems, which have a unique solution if
(1.4) and (1.5) hold:

– Find(u1, p1), solution of{
a(v, u1) − b(v, p1) = (u, v)V ∀v ∈ V,
b(u1, q) = 0 ∀q ∈ Q.(2.6)

– Find(u2, p2), solution of{
a(v, u2) − b(v, p2) = 0 ∀v ∈ V,
b(u2, q) = (p, q)Q ∀q ∈ Q.(2.7)

We now setΦ({u, p}) := {(u1 + u2), (p1 + p2)} and we have:
〈A(X), Φ(X)〉 = a(u, u1 + u2) + b(u1 + u2, p) − b(u, p1 + p2)

= ‖u‖2
V + ‖p‖2

Q.
(2.8)

Remark 2.3.Problems (2.6) and (2.7) could, by linearity, be combined into
one. We preferred to make more explicit the separate control of‖u‖V and
‖p‖Q. ��
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Let us now turn to the discretisation of (2.1). For a given sequence of
subspacesWh of W (usually of finite dimension) we consider, for eachh,
the discrete problem: findXh ∈ Wh such that

〈AXh, Yh〉 = 〈F, Yh〉 ∀Yh ∈ Wh.(2.9)

In general, for an arbitrary choice ofWh, (2.9) will not be stable. In
particular, we cannot ensure that there exists a sequence of linear operators
Φh ∈ L(Wh,Wh), uniformly bounded inh, such that, for someα1 > 0
independent ofh,

〈AYh, Φh(Yh)〉 ≥ α1‖Yh‖2
W ∀Yh ∈ Wh.(2.10)

We however suppose that stability holds for some semi-norm[Yh]h on
Wh, that is we assume that we have two positive constantscΦ andαΦ and
an operatorΦh ∈ L(Wh,Wh) such that

‖Φh(Yh)‖ ≤ cΦ‖Yh‖ ∀Yh ∈ Wh,(2.11)

〈AYh, Φh(Yh)〉 ≥ αΦ[Yh]2h ∀Yh ∈ Wh,(2.12)

which we can loosely state as “ some part of the problem is stable”.
What we shall try to do in the sequel is then to modify problem (2.9) in

order to make it stable. We shall thus consider a stabilised problem of the
type

〈AXh +R(Xh), Yh〉 = 〈F, Yh〉 ∀Yh ∈ Wh,(2.13)

whereR(Xh) will be chosen in order to make (2.13) stable (in the sense of
condition (2.10)) whilepreserving consistency. The following section will
introduce a general mechanism for this construction.

Remark 2.4.In the case of themixed problem (1.1), assuming for simplicity
thata(·, ·) is V -elliptic, that is

∃α > 0 s.t. a(v, v) ≥ α‖v‖2
V ∀v ∈ V,(2.14)

we can always have (2.12) by using the following semi-norm

[Yh]2h = [(vh, qh)]2 := ‖vh‖2
V + [[qh]]2h(2.15)

where

[[qh]]h := sup
vh∈Vh

b(vh, qh)
‖vh‖V(2.16)

as it is shown in the following proposition.
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Proposition 2.2. LetA be of the form (2.5) and assume that (2.14) holds.
Then, for every choice of subspacesVh, Qh we can find a linear operator
Φh ∈ L(Wh,Wh) such that (2.11) and (2.12) hold, with

αΦ =
α

2
min (1,

1
‖a‖2 ),(2.17)

cΦ = 1 +
α‖b‖
‖a‖2 ,(2.18)

and the semi-norm defined in (2.15) and (2.16).

Proof of Proposition 2.2.For a givenYh = (vh, qh), let v∗
h ∈ Vh be such

that
b(v∗

h, qh)
‖v∗
h‖V

= sup
vh∈Vh

b(vh, qh)
‖vh‖V =: [[qh]]h(2.19)

and

‖v∗
h‖V = [[qh]]h.(2.20)

We now choose

Φh(Yh) = (vh − δv∗
h, qh),(2.21)

with δ ∈ R to be chosen later on. We have from (2.5) and (2.21):

〈AYh, Φh(Yh)〉 = a(vh, vh) − δa(vh, v∗
h)

+b(vh, qh) − b(vh, qh) + δb(v∗
h, qh)

≥ α‖vh‖2
V − δ‖a‖‖vh‖V ‖v∗

h‖V + δ[[qh]]h‖v∗
h‖V

= α‖vh‖2
V − δ‖a‖‖vh‖V [[qh]]h + δ[[qh]]2h

(2.22)

having used (2.14), (2.19), and, in the last step, (2.20). It is now clear that,
choosingδ = α/‖a‖2, (2.22) implies

〈AYh, Φh Yh)〉 ≥ α

2
‖vh‖2

V +
δ

2
[[qh]]2h(2.23)

having used2ab ≤ a2 + b2. Hence we have (2.12) with the constantαΦ
given by (2.17). On the other hand, (2.20) and the choice ofδ imply (2.11)
and (2.18) since

‖vh − δv∗
h‖ ≤ ‖vh‖ + δ‖v∗

h‖ = ‖vh‖ + δ[[qh]]h ≤ ‖vh‖ + δ‖B‖ ‖qh‖Q.

��
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3 Abstract stabilisation and error estimates

We still consider the abstract setting of the previous section and our goal
is to find approximate solutions of problem (2.1). We thus have a Hilbert
spaceW, and a sequence of approximation spacesWh. We suppose as in
(2.12) that we have a “ partial” stability result. More precisely, we make the
following hypothesis:

H.1 For every h there exists
i) a semi-norm[ · ]h onW,

ii) an operatorΦh ∈ L(Wh,Wh),
iii) a constantcΦ such that

‖Φh(Yh)‖ ≤ cΦ‖Yh‖ ∀Yh ∈ Wh.(3.1)

iv) a constantαΦ > 0 such that
〈AYh, Φh(Yh)〉 ≥ αΦ[Yh]2h ∀Yh ∈ Wh.(3.2)

��
We now want to modify the problem in order to stabilise it, and we

assume that we find a bilinear formR(Xh, Yh) onWh × Wh satisfying the
following hypotheses.

H.2 There exist a Hilbert spaceH, and, for everyh:
i) an operatorGh ∈ L(Wh,H),

ii) a constantcR > 0 such that
R(Xh, Yh) ≤ cR‖Xh‖ ‖Yh‖ ∀Xh, Yh ∈ Wh,(3.3)

iii) a constantαR > 0 such that
R(Yh, Yh) ≥ αR‖GhYh‖2

H ∀Yh ∈ Wh.(3.4)

H.3With the notation of assumption H.2, there exist two positive constants
γ2 andγ3 such that

[Yh]2h + γ2‖GhYh‖2
H ≥ γ3‖Yh‖2

W ∀Yh ∈ Wh.(3.5)

��
Remark 3.1.It is clear from (3.1) and (3.3) that, for everyYh ∈ Wh, we
have

R(Yh, Φh(Yh)) ≤ cRcΦ‖Yh‖2.

However, indicating bycRΦ the best possible constant such that

R(Yh, Φh(Yh)) ≤ cRΦ‖Yh‖2 ∀Yh ∈ Wh,(3.6)

it might be possible that, in particular cases,cRΦ is much smaller thancRcΦ.
Indeed, in some cases,cRΦ could even be zero. In the following estimates,
we shall therefore use the constantcRΦ instead of the (always pessimistic)
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cRcΦ. Moreover, in several cases, the following additional property H.4 will
hold. We shall see that, if this is the case, many technicalities could be
avoided. ��
H.4With the notation of assumptions H.1 and H.2 we have

R(Yh, Φh(Yh)) ≥ 0 ∀Yh ∈ Wh.(3.7)

��
We now consider, for some positive real numberr, the regularized op-

eratorÃ defined as

〈ÃXh, Yh〉 := 〈AXh, Yh〉 + rR(Xh, Yh) ∀Yh, Xh ∈ Wh,(3.8)

and the corresponding regularised problem

〈ÃXh, Yh〉 = 〈F, Yh〉 ∀Yh ∈ Wh.(3.9)

We begin by proving the following lemma.

Lemma 3.1. Assume that H.1, H.2 and H.4 hold. For every positive real
numbersr andγ let Ã be defined as in (3.8) and̃Φh be defined as

Φ̃h(Yh) := Yh + γΦh(Yh) ∀Yh ∈ Wh.(3.10)

Then we have, for allYh ∈ Wh,

〈ÃYh, Φ̃h(Yh)〉 ≥ min(αR, αΦ)(γ[Yh]2h + r‖Gh(Vh)‖2
H).(3.11)

Proof of Lemma 3.1.From definitions (3.8), (3.10), and assumptions (3.2),
(3.4), one immediately obtains for every positiveγ andr :

〈ÃYh, Φ̃h(Yh)〉 = 〈AYh, Φ̃h(Yh)〉 + rR(Yh, Φ̃h(Yh)
= 〈AYh, Yh + γΦh(Yh)〉 + rR(Yh, Yh + γΦh(Yh))
≥ αΦγ[Yh]2h + αRr‖Gh(Yh)‖2

H + rγR(Yh, Φh(Yh)),
(3.12)

and the result follows easily from (3.7). ��
It is clear that, if assumption H.3 is also verified, then (3.11) will give

a stability result of type (2.10), where the explicit value of the constantα1
can be easily deduced from the values of the other constants. On the other
hand, the estimate (3.11) will be used in the sequel also in cases when some
constant (r, mostly, and sometimesγ2) might depend onh, so that it is
convenient to leave it in its actual form.

In the applications thatweare going to examine in the following sections,
assumption H.4 will always be satisfied. However, for completeness, we
present the following result, that can be used for the cases in which (3.7)
does not hold.
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Lemma 3.2. Assume that H.1, H.2 and H.3 hold, and letÃ and Φ̃h be
defined as in (3.8) and (3.10), respectively. Set now

r0 :=
αΦγ3

2cRΦ
and γ0 :=

αRγ3

2γ2cRΦ
(3.13)

(or +∞ whencRΦ = 0.) Then, for allγ ≤ γ0 and for all r ≤ r0 we have

〈ÃYh, Φ̃h(Yh)〉 ≥ 1
2
min(αR, αΦ)

×(γ[Yh]2h + r‖Gh(Vh)‖2
H) ∀Yh ∈ Wh.(3.14)

Proof of Lemma 3.2.We restart as in (3.12), but using now (3.6) and as-
sumption H.3:

〈ÃYh, Φ̃h(Yh)〉 = 〈AYh, Φ̃h(Yh)〉 + rR(Yh, Φ̃h(Yh)
≥ αΦγ[Yh]2h + αRr‖Gh(Yh)‖2

H − rγcRΦ‖Yh‖2.
(3.15)

Using (3.5), the right-hand side of (3.15) is bounded below by

(αΦγ − rγcRΦ/γ3)[Yh]2h + (αRr − rγγ2cRΦ/γ3)‖Gh(Yh)‖2
H(3.16)

If we choose nowr ≤ r0 andγ ≤ γ0 then (3.14) follows immediately from
(3.15), (3.16) and (3.13). ��

Lemmata 3.1 and 3.2 will ensure stability for a wide class of stabilis-
ing procedures. We now consider the problem of error estimates. As we
introduced sufficient conditions to ensure stability, the question will be to
check consistency, and in particular the effect on consistency of the extra
stabilising terms.

In order to retain a certain amount of generality, we shall make now some
stability assumptions, that, in different particular cases, can be proved by
means of the stability lemmata seen before. However, as we shall see, this
part of Sect. 3 is presented in a way that makes it logically independent from
the previous one. We make therefore the following assumptions.

H.5 We have:
i) a continuous problem

〈AX,Y 〉 = 〈F, Y 〉 ∀Y ∈ W,(3.17)

that we assume to have a unique solution,
ii) a sequence of stabilised discrete problems

〈ÃXh, Yh〉 = 〈F, Yh〉 ∀Yh ∈ Wh(3.18)

whereÃ is still defined as in (3.8) for somer > 0,
iii) two constants̃cΦ and α̃Φ, and an operator̃Φh ∈ L(Wh,Wh) such

that
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‖Φ̃h(Yh)‖ ≤ c̃Φ‖Yh‖ ∀Yh ∈ Wh,(3.19)

and
〈ÃYh, Φ̃h(Yh)〉 ≥ α̃Φ‖Yh‖2 ∀Yh ∈ Wh.(3.20)

We have then the following error bound.

Lemma 3.3. Assume that (3.19) and (3.20) hold, and letX andXh be the
solutions of (3.17) and (3.18) respectively. For everyXI ∈ Wh we set

R(XI) := sup
Yh∈Wh

R(XI , Yh)
‖Yh‖ ,(3.21)

and we have
α̃Φ
c̃Φ

‖XI −Xh‖ ≤ ‖A‖ ‖X −XI‖ + rR(XI).(3.22)

Proof of Lemma 3.3.SetδX = XI −Xh, andỸh = Φ̃h(δX). From (3.19)
we immediately have

‖Ỹh‖ ≤ c̃Φ ‖δX‖.(3.23)

On the other hand, using (3.20) and (3.8), adding and subtractingX, then
using (3.17)-(3.18), and finally (3.21) we obtain:

α̃Φ ‖δX‖2 ≤ 〈ÃδX, Ỹh〉 = 〈A(δX), Ỹh〉 + rR(δX, Ỹh)
= 〈A(XI −X), Ỹh〉 + 〈AX, Ỹh〉 − 〈ÃXh, Ỹh〉 + rR(XI , Ỹh)
= 〈A(XI −X), Ỹh〉 + rR(XI , Ỹh)
≤ ‖Ỹh‖ (‖A‖ ‖XI −X‖ + rR(XI))

(3.24)

and (3.22) follows immediately using (3.23). ��
Remark 3.2.In several applications,R will be chosen of the form

R(Xh, Yh) = (GhXh, GhYh)H(3.25)

whereGh is the operator appearing in H.2. Moreover, the operatorGh will
haveakernel, sayWh (which ingeneralwill beasubspaceof the “ part ofWh

controlled byA, before stabilisation”.) In these cases, for everyXh ∈ Wh,
the second term in the right hand side of (3.22) can be estimated by

R(XI , Yh)
‖Yh‖ =

R(XI −Xh, Yh)
‖Yh‖

≤ cR‖XI −Xh‖ ≤ cR(‖XI −X‖ + ‖X −Xh‖),
(3.26)

so that, from (3.22) we have, in this case

α̃Φ
c̃Φ

‖XI −Xh‖
≤ ‖A‖ ‖X −XI‖ + r cR(‖XI −X‖ + ‖X −Xh‖).(3.27)

Clearly the choice (3.25) satisfies (3.4) withαR = 1. ��
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Remark 3.3.It is clear that, if all the constants appearing inH.1,H.2 andH.3
are independent ofh, we can chooser andγ in Lemma3.2 to be independent
of h as well. Hence the assumption H.5 will also be satisfied withc̃Φ and
α̃Φ independent ofh, and the combination of H.3, Lemma 3.2, and Lemma
3.3 (plus the obvious triangle inequality) will yield

‖X −Xh‖ ≤ C

(
inf

Yh∈Wh

‖X − Yh‖ + inf
Y h∈Wh

‖X − Y h‖
)
.(3.28)

with a constantC independent ofh. If assumption H.4 holds as well, the
choice ofr can be done arbitrarily, for instancer = 1. ��

A certain number of applications can be analysed with the instruments
thatwehavedeveloppedso far, as indicated in theprevious remark.However,
there are cases in which it is convenient to use anr depending onh. In such
cases, the previous analysis has to be readjusted, starting again from Lemma
3.1 and Lemma 3.2. In particular, we cannot expect to have a stability result
of the type (3.20), but only the weaker one that comes from Lemma 3.1.
Hence we have to modify H.5 as follows.

H.6 We retain assumptions i) and ii) of H.5, and we change iii) into:
iii bis) there exist two constants̃cΦ andα∗

Φ, independent ofh andr, and
a sequence of linear operators̃Φh ∈ L(Wh,Wh) such that (3.19)
holds together with

〈ÃYh, Φ̃h(Yh)〉
≥ α∗

Φ

(
[Yh]2h + r‖Gh(Yh)‖2

H
) ∀Yh ∈ Wh.(3.29)

��
It is clear that the above assumption will be satisfied by every stabilising

method that satisfies the assumptions of Lemma 3.1 or the ones of Lemma
3.2, as it can be seen from (3.11) and (3.14). In this case we can prove the
following more sophisticated and more useful error bound.

Lemma 3.4. LetX andXh be the solutions of (3.17) and (3.18) respec-
tively. Assume that H.3 and H.6 hold. Then, for everyXI ∈ Wh we have

[XI −Xh]2h + r‖Gh(XI −Xh)‖2
H

≤
(
c̃Φ
α∗
Φ

)2 4(r + γ2)
rγ3

(‖A‖2‖XI −X‖2 + r2(R(XI))2
)
,

(3.30)

whereR(XI) is still defined as in (3.21).
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Proof of Lemma 3.4.We setδX = XI − Xh. Arguing as in the proof of
Lemma 3.3 we get, from (3.29), (3.8), (3.17), and (3.18)

α∗
Φ([δX]2h + r‖GhδX‖2) ≤ 〈Ã(δX), Φ̃(δX)〉

≤ c̃Φ(‖A‖ ‖XI −X‖ + rR(XI))‖δX‖),(3.31)

and using (3.5) we immediately obtain

[δX]2h + r‖GhδX‖2 ≤
≤ c̃Φ
α∗
Φ

(‖A‖ ‖XI −X‖ + rR(XI))

×(([δX]2h + γ2‖GhδX‖2)/γ3)1/2

≤ c̃Φ
(γ3)1/2α∗

Φ

(‖A‖ ‖XI −X‖ + rR(XI))

×([δX]h + (γ2)1/2‖GhδX‖).

(3.32)

Then we apply the inequalityab ≤ 4
3
a2 +

1
3
b2 four times to the right-hand

side, move four terms to the left and multiply the resulting equation by 3 to
get (3.30). ��

Remark 3.4.In applications, as we shall see, (3.30) will often be used with
anr depending onh, while the other constants are independent ofh. Still,
we shall find cases in which the constantγ2 in (3.5) can also be chosen to
be dependent onh, and of the same order of magnitude ofr. In these latter
cases, (3.30) will provide an estimate of the type:

[δX]2h + r‖Gh(δX)‖2
H ≤ C

(|XI −X‖2 + r2(R(XI))2
)
,(3.33)

with C independent ofh, which, in its turn, can become

[δX]2h + r‖Gh(δX)‖2
H

≤ C
(
(1 + r2)‖XI −X‖2 + r2‖X −XI)‖2) ,(3.34)

using the bound (3.26) forR. More generally, if there exists a constantκ
independent ofh such thatr ≥ κγ2, then we can apply H.3 to the left-hand
side of (3.30) obtainig

min (1, κ) ‖δX‖2

≤
(
c̃Φ
α∗
Φ

)2 4(1 + 1/κ)
γ2

3

(‖A‖2‖XI −X‖2 + r2(R(XI))2
)
.

(3.35)
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In other applications,rwill depend onh butγ2 will not. In these cases (3.30)
will provide (for r “small”) an estimate of the type

[δX]2h + r‖Gh(δX)‖2
H

≤ C

(
1
r
‖XI −X‖2 + r‖X −XI)‖2

)
,(3.36)

that will then become

[δX]2h + r‖GhδX‖2 ≤ C

(
1
r
hs1 + rhs2

)
,

by usual interpolation estimates with, in general,s1 ≥ s2 ≥ 0. Then by
takingr = hs we get

[δX]2h + h
s‖GhδX‖2 ≤ C

(
hs1−s + hs2+s)

with the optimal choice given bys = (s1 − s2)/2. ��

4 A first class of applications

We shall start by considering a framework which is still abstract but deals
with a subclass of problems (with similar features) containing many of the
applications that will be discussed later on.

Suppose that we are in the context of mixedmethods as in (1.1), and that
we want to stabilise an inf-sup condition (1.5). Then we have

〈AXh, Yh〉 = a(uh, vh) + b(vh, ph) − b(uh, qh).(4.1)

We want to work on a choice of spacesVh ×Qh for which we do not have
stability, and we are aiming at using stabilised problems of the form{

a(uh, vh) + b(vh, ph) − b(uh, qh) + rR((uh, ph), (vh, qh))
= 〈f, vh〉 − 〈g, qh〉 ∀vh ∈ Vh, ∀qh ∈ Qh.

(4.2)

for a suitable choice ofR. This section will be dedicated to the stabilisation
of problems of type (1.1) that satisfy the following assumptions.

A.0 The bilinear formsa( , ) andb( , ) are continuous onV × V and
V × Q respectively. Moreovera( , ) is V -elliptic (see (2.14)) and
b( , ) satisfies the inf-sup condition (1.5) inV ×Q.

A.1 There exists a subspaceQh ⊂ Qh such that inVh×Qh the problem
is stable, that is

∃ k > 0 s.t. sup
vh∈Vh

b(vh, qh)
‖vh‖V ≥ k ‖qh‖Q ∀qh ∈ Qh.(4.3)

��
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We note, incidentally, that theV -ellipticity assumption ona( , ) is not
really relevant and only serves to simplify the presentation. Under the as-
sumption A1 it is possible to explicitly buildΦh and a semi-norm[[·]]h to
apply our results, as we shall see in the follofing lemma.

Lemma 4.1. Assumptions A.0 and A.1 imply H.1.

Proof of Lemma 4.1.As we have stability inVh×Qh, we can solve, for any
ph ∈ Qh, the problem: finduh = uh(ph) ∈ Vh andφh = φh(ph) ∈ Qh
such that {

a(vh, uh) − b(vh, φh) = 0 ∀vh ∈ Vh,
b(uh, q̄h) = (ph, q̄h)Q = (p̄h, q̄h)Q ∀q̄h ∈ Qh.

(4.4)

wherep̄h = P (ph) = projection ofph ontoQh. We define now

Φh((uh, ph)) := (uh + αuh(ph), ph + αφh(ph))(4.5)

using, for instance, the sameα as in (2.14). From (4.5) and (4.4) we have

a(uh, uh + αuh) + b(uh + αuh, ph) − b(uh, ph + αφh)

= a(uh, uh) + α[a(uh, uh) − b(uh, φh)] + αb(uh, φh))
≥ α(‖uh‖2 + ‖p̄h‖2).

(4.6)

We then have that hypothesis H.1 is satisfied with the choice (4.5) for
Φh and the seminorm

[(v, q)]h := ‖v‖2
V + ‖Pq‖2

Q.(4.7)

��
We note in particular that, if A.0 and A.1 hold then the constantscΦ, αΦ

in H.1 will be independent ofh. On the other hand, hypotheses H.2 and H.3
will be easily fullfilled, with constants independent ofh, if we take

Gh((vh, qh)) = qh − Pqh(4.8)

with H = Q, and, as in (3.25),

R((uh, ph), (vh, qh)) =
(
ph − Pph, qh − Pqh

)
Q
.(4.9)

It is however clear that the class of possible stabilisations is much wider, as
shown in the following Lemma.
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Lemma 4.2. Letsh be a linear operator fromQh into itself, satisfying
sh(q̄h) = 0 ∀q̄h ∈ Qh,
‖sh(qh)‖2

Q ≥ αS‖qh − Pqh‖2
Q ∀qh ∈ Qh,

‖sh(qh)‖Q ≤ cS‖qh‖Q ∀qh ∈ Qh,
(4.10)

with constantsαS andcS independent ofh. We take nowH = Q and

Gh((vh, qh)) := sh(qh),(4.11)

R((uh, ph), (vh, qh)) := (sh(ph), sh(qh))Q.(4.12)

If assumptions A.0 and A.1 hold, then H.2 and H.3 will also hold, with
constants independent ofh. Moreover, ifΦh is defined as in (4.5), then H.4
will also hold. Finally, H.5 will hold withΦ̃h defined as in Lemma 3.1.

Proof of Lemma 4.2.It is clear that (3.4) follows from (4.12) and (4.11) with
αR = 1. It is also clear that (3.3) holds with constantcR = c2S . Similarly
(3.5) follows, with constantsγ2 andγ3 independent ofh, from (4.7) and
(4.10)-(4.12). Finally, from (4.5) and (4.10)-(4.12) we have

R((vh, qh), Φh(vh, qh)) = (sh(qh), sh(qh + αφh(qh)))Q
= ‖sh(qh)‖2

Q + α(s(qh), s(φh(qh)))Q = ‖sh(qh)‖2
Q ≥ 0.

(4.13)

The validity of H.5 follows then directly from Lemma 3.1. ��
We can now conclude with a general error estimate for this type of

stabilisations.

Theorem 4.1. Assume that A.0 and A.1 hold, and let(u, p) be the solution
of Problem (1.1). Assume that in (4.2)R is defined through (4.11) and (4.12)
using ansh that satisfies (4.10). Then for every positiver Problem (4.2) has
a unique solution(uh, ph), and there exist a consantC, independent ofh,
such that, for every(uI , pI) ∈ Vh ×Qh and for everyqh ∈ Qh we have

‖uI − uh‖2
V + ‖P (pI − ph)‖2

Q + r‖(Id− P )(pI − ph)‖2
Q

≤ C (
1 + r
r

)
(
‖u− uI‖2

V + ‖p− pI‖2
Q + r2‖pI − qh‖

)
.

(4.14)

Proof of Theorem 4.1.Under the above assumptions, we can immediately
apply Lemma 3.4, that in our case gives, for every(uI , pI) ∈ Vh ×Qh,

‖uI − uh‖2
V + ‖P (pI − ph)‖2

Q + r‖(Id− P )(pI − ph)‖2
Q

≤ C (
1 + r
r

)
(
‖u− uI‖2

V + ‖p− pI‖2
Q + r2(R((uI , pI))2

)(4.15)
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with a constantC independent ofh. Using then (4.10)-(4.12) we have, for
everyqh ∈ Qh

R((uI , pI)) = sup
qh

(sh(pI), sh(qh))Q
‖qh‖Q

= sup
qh

(sh(pI − qh), sh(qh))Q
‖qh‖Q ≤ c2S‖pI − qh‖Q,(4.16)

which inserted in (4.15) gives the result. ��
It is clear that traditional bounds for the error between the continuous so-

lution and the discrete solution can be obtained from (4.14) by a suitable use
of the triangle inequality, as we are going to do in the following corollaries.
However, as we shall see, it will be convenient to split them in two cases:
one in whichr is bounded from below by a positive constant independent
of h (but we allow it to be arbitrarily large), and the other in whichr is
bounded from above by a positive constant independent ofh (but we allow
it to go to zero forh going to zero). In order to simplify the exposition, we
introduce first the following notation: given a Hilbert spaceW , an element
w ∈ W and a subspaceWh ⊂ W we set:

E(w,Wh) := inf
wh∈Wh

‖w − wh‖W .(4.17)

The following notation will also be convenient: forp ∈ Q, forQh ⊂ Qh ⊂
Q and r a positive real number, we set:

(4.18)

Er(p,Qh, Qh) :=
(

inf
qh∈Qh

inf
q̄h∈Q̄h

(‖p− qh‖2
Q + r2‖qh − q̄h‖2

Q

))1/2

.

We have then the following two corollaries, whose proof follows imme-
diately from Theorem 4.1.

Corollary 4.1. In the same hypotheses of Theorem 4.1, assume that there
exists anr0 independent ofh such thatr ≥ r0. The there exist a constant
C, independent ofr andh, such that

‖u− uh‖2
V + ‖p− ph‖2

Q + r‖ph − Pph‖2
Q

≤ C (
1 + r
r

)
(
E2(u, Vh) + E2

r (p,Qh, Qh)
)
.

(4.19)

Corollary 4.2. In the same hypotheses of Theorem 4.1, assume that there
exists anr0 independent ofh such thatr ≤ r0. The there exist a constant
C, independent ofr andh, such that

‖u− uh‖2
V + ‖P (p− ph)‖2

Q + r‖(p− ph) − P (p− ph)‖2
Q

≤ C (
1 + r
r

)
(
E2(u, Vh) + E2

r (p,Qh, Qh)
)
,

(4.20)
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Remark 4.1.As we have said, the result of Corollary 4.1 applies as well to
the cases in whichr is very large. In these cases, we remark that in (4.18)
we can obviously chooseqh ∈ Qh, so thatEr(p,Qh, Qh) ≤ E(p,Qh) and
then from (4.19) we easily obtain

‖u− uh‖2
V + ‖p− ph‖2

Q ≤ C
(
(E2(u, Vh) + E2(p,Qh)

)
,(4.21)

as we could have obtained directly from Lemma 3.3. In fact forr large the
method is equivalent to penalising theunstable partofQh to actually obtain
a solution inQh. Thetheoreticalinterest of this choice seems questionable,
as we could use directly a discretisation withVh andQh, that would be
stable and provide essentially the same error bound. In practice however
this choice could still be interesting for various reasons. For instance the
choice ofQh might be dictated by other equations that have to be solved
toghether with (1.1), or by some optimistic hope of an improvement in the
constants, providing better results for a fixedh.

Remark 4.2.In fact the most interesting case is covered by Corollary 4.2,
and corresponds to use anr that goes to zero whenh goes to zero, in the
spirit of Remark 3.4. This becomes specially interesting whenE(p,Qh) is
of a lower order thanE(u, Vh). In this case, we can add and subtractp in
the expression ofEr(p,Qh, Qh) to obtain

(4.22)

‖p− qh‖2
Q + r2‖qh − q̄h‖2

Q ≤ (1 + 2r2)‖p− qh‖2
Q + 2r2‖p− q̄h‖2

Q

and then (4.20) easily becomes

‖u− uh‖2
V + ‖P (p− ph)‖2

Q + r‖(p− ph) − P (p− ph)‖2
Q

≤ C

(
1
r
(E2(u, Vh) + E2(p,Qh)) + rE2(p,Qh)

)
.

(4.23)

WhenQh provides a worse accuracy (with respect toVh andQh,) so that the
termE2(p,Qh) is bigger than the termE2(u, Vh) + E2(p,Qh), a smallr
can, somehow, compensate the difference (see Remark 3.4). Notice that, in
this case, the theory can be applied withQh = {0} (pure penaltymethods.)

��

Example 4.1 Stabilisation of theQ1 − P0 element

The first case that we consider has been studied by Sylvester [23] for
the Stokes problem. The goal is the stabilisation of the classical bilinear
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velocity–constant pressure (Q1–P0) approximation which notoriously suf-
fers from stability problems ([21,9,18]). We thus consider the Stokes prob-
lem

(4.24){∫
Ω ε(u) : ε(v) dx − ∫

Ω p divv dx =
∫
Ω f · v dx ∀v ∈ (H1

0 (Ω))2∫
Ω q divu dx = 0 ∀q ∈ L2

0(Ω),

whereL2
0(Ω) is the set of square integrable functions with null average.

Let Th be a partition ofΩ into rectangles (we restrict ourselves to this
simplified setting, instead of the general isoparametric case, for the sake of
a lighter presentation.) We now take forVh the space of piecewise bilinear
continuous functions, and forQh the space of piecewise constants:

(4.25){
Vh = {vh ∈ (H1

0 (Ω))2 | vh|K = a+ bx+ cy + dxy, ∀K ∈ Th}
Qh = {qh ∈ L2

0(Ω) | qh|K = constant, ∀K ∈ Th} .

On a rectangular mesh, it is well known that this approximation suffers
from thecheckerboard spurious modeonph: the kernel of the discrete gra-
dient (in the space of piecewise constants) is two-dimensional and contains
besides the expected global constants (which do not belong toQh) a second
mode alternating values in a checkerboard pattern.

There also exist other unstablemodeswhich emanate from local checker-
board patterns ([20]). Indeed, let us splitTh into 2 × 2 macroelements and
on a macroelementM

-1

B

-1+1

+1
A

D C

Fig. 4.1. Macroelement
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let us define

CBM =


1 on A,
−1 on B,
−1 on C,
1 on D

(4.26)

and
CBh =

{
qh | qh|M = αCBM ∀M

}
.(4.27)

It is easily seen (cfr. e.g.[21]) that, definingQ to be the orthogonal com-
plement ofCBh inQh, the pairVh×Qh gives a stable approximation which
is equivalent (from the point view of degrees of freedom) to theQ2 − P1
piecewise quadratic–piecewise linear approximation. The above theory pro-
vides different possibilities for stabilising: we can take

R = R1(ph, qh) =
(
ph − Pph, qh − Pqh

)
(4.28)

which corresponds to (4.9), or set, in each2 × 2 macroelement,sh(qh) =
qA + qB − qC − qD, and then use

R = R2(ph, qh) = (sh(ph), sh(qh))(4.29)

which clearly satisfies (4.10). As we have seen in the previous section, both
choices can be used with arbitrarily larger. It is clear that, forr large,
the use of these stabilisations is equivalent to penalising the checkerboard
mode and that the result is essentially the same as if one had used the stable
approximationVh ×Qh.

In Sylvester [23], one also uses

R(qh, qh) = ((qB − qA)2 + (qC − qA)2 + (qD − qB)2 + (qD − qC)2) .

For r large, this amounts to take

Qh = {qh| qh = constant onM} ,
that is the space of piecewise constants onmacroelements, which is actually
an “overstabilisation”.

Remark 4.3.An identical situation is met if we consider a triangular grid
Th which has been obtained from a coarser one, sayT̃h, by splitting as usual
each triangle into four identical ones. Taking the space of piecewise linear
continuous vectors onTh for velocities and piecewise constants onT̃h for
pressureswe clearly have a stable pair. As above, this can be used to stabilise
aP1−P0 approximation oñTh, which by itself would be highly unstable.

��
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Example 4.2 Taylor-Hood approximation for Stokes

Another widely employed approximation for the Stokes problem is the Tay-
lor -HoodP2−P1 elementwhichuses, on triangles, a continuousapproxima-
tion for pressure of degreeoneand a continuous approximation for velocity
of degreetwo. This is apparently a drawback for many users who prefer
the simplicity of theP2 − P2 equal-order interpolation. One could eventu-
ally think of using stabilisation as follows. Suppose that we use a piecewise
quadratic approximation for the pressure.

Let us consider an edge at the interface of two triangles.LetA andB be
the endpoints of this edge andC its midpoint. We can define

sh(qh) = q(A) − 2q(C) + q(B)

and
R((vh, qh), (vh, qh)) = Σedges(sh(qh))2 .

Introducing this termwith a larger obviously forcesqh to become linear
on the edge, thus reducing the approximation to the Taylor-Hood approxi-
mation. It is easily seen that the theory applies and that, forr large, we get
the usualO(h2) error estimates. We could also employ for both variables
a piecewise linear approximation on macro-elements obtained by subdivid-
ing each triangle into four subtriangles. One can then use the same trick,
forcing the pressure to be linear on each macro-element, obtaining in the
limit the popular variant often called theP1 − isoP2 approximation, with
the usualO(h) error estimate.Wewill not develop further, as this procedure
(for obtainingP1− isoP2 as a limit of a penalty method onP1−P1) has
never been implemented to our knowledge.

Example 4.3 Penalty methods

We still consider the Stokes problem (4.24), and we employ forVh × Qh
the unstable choice,Vh =

{
vh ∈ (H1

0 (Ω))2 | vh|K ∈ P2(K), ∀K ∈ Th
}

Qh =
{
qh ∈ L2

0 | qh|K ∈ P1(K), ∀K ∈ Th
}
.

(4.30)

Note that (4.30) is a discontinuous pressure approximation as we impose
no continuity requirement onQh at interfaces.This not a stable choice and
the classical procedures to make it stable are

1. Use a largerVh. The Crouzeix-Raviart element [13] is built along this
option by adding cubic bubble functions toVh .
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2. Use a smallerQh. Taking as previouslyQh as the space of piecewise
constant pressures yields a stable approximation, at the price of a loss of
accuracy: thisP2 −P0 approximation is onlyO(h) instead of theO(h2)
that one expects from the choice ofVh.

Stabilisation opens another avenue. The coupleVh × Qh is stable and we
can define, as in Example 4.1,R(ph, qh) =

(
ph − Pph, qh − Pqh

)
. The

Stokes problem (4.24) becomes

(4.31){∫
Ω ε(uh) : ε(vh) dx − ∫

Ω ph divvh dx =
∫
Ω f · vh dx ∀vh ∈ Vh∫

Ω qh divuh dx + r
(
ph − Pph, qh − Pqh

)
= 0 ∀qh ∈ Qh.

This can also be written, after a few algebraic manipulations, as
∫
Ω ε(uh) : ε(vh) dx − ∫

Ω ph divvh dx+
1
r

∫
Ω divuhdivvhdx =

∫
Ω f · vh dx ∀vh ∈ Vh∫

Ω qh divuh dx = 0 ∀qh ∈ Qh,
(4.32)

whereph now lies inQh. This can be read as an augmented Lagrangian
formulation for the constraint divuh = 0. It can also be seen that, forr large,
(4.32) reduces to the standardP2 −P0 approximation, as the “penalty” term
(containig1/r) becomes negligible.

We can now apply the general results. For a fixed value ofr, we get an
O(h) convergence rate as the consistency term

R := sup
qh

R(pI , qh)
‖qh‖ = sup

qh

(pI − PpI , qh)
‖qh‖

is obviouly onlyO(h). However if we now employ the technique of Remark
4.2, takingr = O(h) in (4.23) yields anO(h3/2) estimate for velocities in
H1 and for the elementwise mean value of the pressure inL2, as it has been
pointed out in [7].

One can also see that, takingQh = {0}, we obtain apure penalty
method. In this case our analysis provides the following result: if the space
Vh yields anO(hk) approximation, takingr = O(hk/2) we obtain glob-
ally anO(hk/2) error estimate on velocities, regardless of the choice of
approximation forQh.

5 A second class of applications

We consider now another general situation in which our abstract framework
can be applied. We go back to a problem of the form (4.1) and we still
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make the assumption thata(·, ·) is elliptic onV . On the other hand, instead
of assuming that we know a stable approximationVh × Qh, we make the
following hypotheses.

A.2 i) there exists a Hilbert spaceH with V ⊂ H ≡ H ′ ⊂ V ′ and a
functionω : R

+ −→ R
+ such that

ω(h)‖vh‖V ≤ ‖vh‖H , ∀vh ∈ Vh.(5.1)

ii) if Bt : Q −→ V ′ is the linear operator associated with the bilinear
form b(v, q), we have

Bt(Qh) ⊂ H(5.2)

iii) there exists a linear operatorI from V into Vh and two positive
constantsσ andcI , independent ofh, such that

(5.3)

‖I(v) − v‖H ≤ σω(h)‖v‖V , and ‖I(v)‖V ≤ cI‖v‖V ∀v ∈ V.
��

As an example, let us say that this assumption is verified when the pres-
sure of Stokes problem is discretised by a space of continuous finite ele-
ments. Let us recall that from Proposition 2.2 we have a priori stability in
the semi-norm

[(vh, qh)]2h = ‖vh‖2
V + [[qh]]2h(5.4)

with

[[qh]]h := sup
vh

b(vh, qh)
‖vh‖V = sup

vh

(vh, Btqh)H
‖vh‖V .(5.5)

We then have that assumption H.1 holds in our case, for the seminorm (5.4),
with constants independent ofh. Moreover it is obvious from (5.1) and (5.2)
that we have

[[qh]]h ≥ ω(h)‖PVh
Btqh‖H(5.6)

wherePVh
is the projection operator, inH, ontoVh ⊂ V ⊂ H.

The stability in the semi-norm (5.4) therefore implies also the stability
in

[(vh, qh)]2∗ = ‖vh‖2 + ω2(h)‖PVh
Btqh‖2

H .(5.7)

and H.1 will hold, with constants independent ofh, for the seminorm (5.7)
as well. In agreement with the general procedure developed in Sect. 3, we
can now takeH = H with Gh((vh, qh)) = Btqh − PVh

Btqh, and define:

R((uh, ph), (vh, qh)) =
(
Btph − PVh

Btph, B
tqh − PVh

Btqh
)
H
.(5.8)
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It is clear that H.2 will hold with constants independent ofh. Moreover it is
easy to see, checking the expression ofΦh in (2.21), that it leaves the second
component invariant. Then from (5.8) we easily have that H.4 holds. We
are left with H.3 which will be proved in the next two propositions using
essentially the so-called Verfürth’s trick [25].

Lemma 5.1. Assume that A.0 and A.2 hold. Then

cI [[qh]]h := cI sup
vh∈Vh

b(vh, qh)
‖vh‖V ≥ k0‖q‖Q − cIσω(h)‖Btqh‖H ∀qh ∈ Qh,

(5.9)
wherek0 is the inf-sup constant appearing in (1.5),ω(h) is given in (5.1),
andσ, cI are given in (5.3).

Proof of Lemma 5.1.We have from the inf-sup condition (1.5), and (5.3)

k0‖qh‖Q ≤ sup
v

b(v, qh)
‖v‖V = sup

v

(
b(I(v), qh)

‖v‖V +
b(v − I(v), qh)

‖v‖V

)
≤ cI sup

v

b(I(v), qh)
‖I(v)‖V + sup

v

(v − I(v), Bt(qh))H
‖v‖V

≤ cI sup
vh

b(vh, qh)
‖vh‖V + sup

v

‖v − I(v)‖H‖Bt(qh)‖H
‖v‖V

≤ cI [[qh]]h + σω(h)‖Btqh‖H ∀qh ∈ Qh.

(5.10)

��
We can now easily get the following result.

Lemma 5.2. Under the assumptions A.0 and A.2 there exists a constantk̃,
independent ofh, such that

[[qh]]2h + ω
2(h)‖Btqh − PVh

Btqh‖2
H ≥ k̃‖qh‖2

Q ∀qh ∈ Qh.(5.11)

Proof of Lemma 5.2.Indeed, from (5.6) one easily obtains

(5.12)

[[qh]]2h + ω
2(h)‖Btqh − PVh

Btqh‖2
H ≥ ω2(h)‖Btqh‖2

H , ∀qh ∈ Qh,
and from (5.9)

2c2I [[qh]]
2
h ≥ k2

0‖qh‖2
Q − 2σ2ω2(h)‖Btqh‖2

H .(5.13)

Then (5.11) is obtained by summing (5.13) and (5.13) with appropriate
constants. ��

Lemma 5.2 implies that H.3 holds, with the above choices for[ · ]h and
Gh, with a constantγ3 independent ofh, and withγ2 = ω2(h). In a sense,
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we have a stability result that isstrongerthan necessary. However, if we look
at the statement of Lemma 3.4, it is clear that a smallγ2 offers the possibility
of using a smallr without “paying the price”. This is indeed what happens
in the following convergence theorem.

Theorem 5.1. Assume that A.2 holds, and let(u, p) be the solution of Prob-
lem (1.1). Assume that in (4.2)R is defined through (5.8). Then for every
positiver Problem (4.2) has a unique solution(uh, ph) and there exists a
constantC, independent ofh andr, such that:

(5.14)
‖u− uh‖2

V + ‖p− ph‖2
Q

≤ C (
ω2(h) + r

r
)
(
E2(u, Vh) + (1 + r2)E2(p,Qh) + r2E2(Btp, Vh)

)
with the notation introduced in (4.17).

Proof of Theorem 5.1.The proof follows directly from Lemma 3.1, Lemma
3.4 the definition ofR given in (5.8) and a few triangle inequalities. ��
In certain cases, as we are going to see in the sequel, it might be more
convenient to consider another subspaceṼh ofH and change the definition
of R (5.8) into

R((uh, ph), (vh, qh)) =
(
Btph − P

Ṽh
Btph, B

tqh − P
Ṽh
Btqh

)
H
.(5.15)

This will be allowed, and it will still give optimal error estimates, provided
that we have the following inequality.

A.3 With the notation of aAssumption A.2, there exists a positive constant
β̃, independent ofh, such that

‖PVh
Btqh‖2 + ‖Btqh − P

Ṽh
Btqh‖2 ≥ β̃ ‖Btqh‖2 ∀qh ∈ Qh.(5.16)

��
Indeed, proceeding as in Lemma 5.2, and using (5.6) inequality (5.16)

will imply

[[qh]]2h + ω
2(h)‖Btqh − P

Ṽh
Btqh‖2

H ≥ k̃‖qh‖2
Q ∀qh ∈ Qh.(5.17)

We summarise the above discussion in the following theorem.

Theorem 5.2. Assume that A.2 and A.3 hold, and let(u, p) be the solution
of Problem (1.1). Assume that in (4.2)R is defined through (5.15). Then
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for every positiver Problem (4.2) has a unique solution(uh, ph) and there
exists a constantC independent ofr andh such that:

‖u− uh‖2
V + ‖p− ph‖2

Q + r‖Bt(p− ph) − P
Ṽh
Bt(p− ph)‖2

Q

≤ C (
ω2(h) + r

r
)
(
E2(u, Vh) + (1 + r2)E2(p,Qh) + r2E2(Btp, Ṽh)

)
(5.18)
with the notation introduced in (4.17).

Proof of Theorem 5.2.Theproof follows thesame linesas theoneofTheorem
5.1. ��

Example 5.1

We consider again Stokes problem as described in Example 4.1. However
we now consider a piecewise linear approximation for bothVh andQh, a
so-called equal interpolation case. On ageneralmesh, it is not possible, to
our knowledge, to build (as in the previous section) a subspaceQh yielding
a stable approximation. We can however apply in a straightforward way the
previous results withH = (L2(Ω))2. We have hereω2(h) = 0(h2). We
can also write the bilinear formb(·, ·) in two ways,

b(vh, qh) = −
∫
Ω

div vh qhdx = +
∫
Ω
vh · ∇qhdx.(5.19)

The stabilised Stokes problem now reads{
a(uh, vh) + (vh,∇ ph) = (f, vh) ∀vh ∈ Vh,
(uh,∇ qn) − r(∇ ph − PVh

∇ ph,∇ qh) = (g, qh) ∀qh ∈ Qh,
(5.20)
wherewealso introducedapossible right-hand sideg in the secondequation.
The projection operator is not local and it is more convenient to write (5.20)
in the form

a(un, vh) + (vh,∇ ph) = (f, vh) ∀vh ∈ Vh,
(ûh,∇ qh) = r(∇ ph,∇ qh) + (g, qh) ∀qh ∈ Qh,
(ûh, vh)H = (uh, vh)H + (∇ ph, vh)H ∀vh ∈ Vh,

(5.21)

where stability is seen to have been gained at the expense of a larger, non
symmetric linear system. In practice, this can be solved by some iterative
process.

To study convergence, we consider the estimate (5.14). It is clear that
some potential trouble might lie in the last term of this inequality, that in
our case isr‖∇ p− PVh

∇ p‖2
H . Indeed, the spaceVh is made of functions
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vanishing on the boundary, while∇ p does not. This induces a bad approx-
imation near the boundary and it is easy to see that the term at hand isO(h)
for p regular enough. To get the correct order of convergence, we are thus
led to user = O(h), which still is going to ensure convergence, as it will
give r ≥ c1ω

2(h) asymptotically.
It must be recalled that the more classical stabilised problem (Brezzi-

Pitkäranta[ ]){
a(uh, vh) + (vh,∇ ph) = (f, vh) ∀vh ∈ Vh,
(uh,∇ ph, ) + r(∇ ph,∇ qh) = 0 ∀qh ∈ Qh,

(5.22)

requiresr = 0(h2) in order to get the right order of approximation. This is
also clear from our estimate if we takePVh

≡ 0. At the first sight, onemight
think that stabilising withr = O(h2) is somehow better than usingO(h),
as the consistency error becomes smaller. However, numerical experiments
show that the scheme (5.22) withr = δ h2 suffers from minor instabilities
(oscillations of the pressure variable near to the boundary) whenδ is too
small, while for a largerδ a boundary layer will appear (corresponding to
a Neumann boundary conditionr∂p/∂n = 0.) The same is true for the
scheme (5.20) if we taker = δ h. On the other hand, very good results have
been observed experimentally by Habashi et alii [6] if, instead ofPVh

, one
uses the projectionP

Ṽh
on the spacẽVh in which boundary conditions are

ignored. In particular, this choice eliminates the boundary layer effect, and
allows to take a much biggerr (for instancer = 1) in order to suppress the
oscillations. It is clear that with this choice we could recover the right order
of convergence in the right-hand side of (5.14). We are then in the situation
of Theorem 5.2, and we have to prove that inequality (5.16) of Assuption
A3 holds. A result of this type is claimed in [12]. Since the proof there is
rather complicated andmight require someminor fixing, for convenience of
the reader we report here another proof, limited to the case k=1. The proof
follows, in essence, similar lines (macroelements, continuous dependence
of the constant on the shape of the macroelement and so on) of the original
one in [12], but has a simpler presentation.

Proposition 5.1. LetQh andVh be the space of piecewise linear pressures
and velocities as above, and letṼh be the space of piecewise linear contin-
uous vectors onTh (without boundary conditions.) There exists a constant
β∗ > 0, independent ofh, such that, for everyqh ∈ Qh and for every
wh ∈ Ṽh, there exists av0

h ∈ Vh verifying

‖v0
h‖ ≤ ‖∇qh‖(5.23)

and
(v0
h,∇qh) + ‖∇qh − wh‖2 ≥ β∗‖∇qh‖2(5.24)

where scalar products and norms are all inL2(Ω).



484 F. Brezzi, M. Fortin

Proof of Proposition 5.1.Let us consider first a macroelementK made
by the collection of triangles having one vertexP of Th in common. Split
qh = q0 + q�, whereq0 is such that∇q0 has zero mean value inK andq� is
linear onK (hence∇q� = constant inK.) It is clear that(∇q0,∇q�)K = 0.
We take nowv0

h, piecewise linear, continuous, vanishing on the boundary of
K and having value

√
6∇q� at the internal vertexP . An easy computation

shows that:

‖v0
h‖0,K = ‖∇q�‖0,K(5.25)

and

(v0
h,∇q�)K =

√
2
3

‖∇q�‖2
0,K .(5.26)

On the other hand,∇q0 belongs to a space (piecewise constant vectors on
K, with continuous tangential components, and zero mean onK) whose
intersection with piecewise linear continuous vectors onK is reduced to the
zero vector. As we are in finite dimension, there exists a positive constant
δK such that, for every∇q0 and for everywh

‖∇q0 − wh‖2 ≥ δK‖∇q0‖2
0,K .(5.27)

As∇q� is clearly continuous and piecewise linear, (5.27) easily implies that
‖∇qh − wh‖2 = ‖∇q0 + ∇q� − wh‖2

= ‖∇q0 − w̃h‖2 ≥ δK‖∇q0‖2
0,K ,

(5.28)

and a simple scaling argument shows immediately thatδK is independent
of thesizeofK (notice that (5.28) holdsfor everywh.)

Finally we explicitly point out that

(v0
h,∇q0)K =

v0
h(P )
3

∫
K

∇q0dx = 0,(5.29)

whereP is the only vertex internal toK. From (5.26)-(5.29) one then gets
that, for everyqh and for everywh, there is av

0
h, piecewise linear, continuous,

and vanishing on the boundary ofK, such that (5.25) holds and

(v0
h,∇qh)K + ‖∇qh − wh‖2

0,K ≥ βK‖∇qh‖2
0,K ,(5.30)

for some positive constantβK independent ofqh andwh. The result (5.23),
(5.24) follows then easily from (5.30) by typical instruments (continuity of
βK , splitting ofΩ into macroelements such that each triangle belongs at
most to three different macroelements, and so on.) ��

With the aid of Proposition 5.1 we can now prove Assumption A.3.
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Proposition 5.2. LetQh, Vh and Ṽh be as in Proposition 5.1. Then there
exists a constant̃β > 0 such that

‖PVh
∇qh‖2 + ‖∇qh − P

Ṽh
∇qh‖2 ≥ β̃ ‖∇qh‖2 ∀qh ∈ Qh(5.31)

where all the norms are inL2.

Proof of Proposition 5.2.We start by observing that, for everyv0
h andqh we

have
(v0
h,∇qh) = (v0

h, PVh
∇qh) ≤ ‖v0

h‖ ‖PVh
∇qh‖

≤ β∗

2
‖v0
h‖2 +

1
2β∗ ‖PVh

∇qh‖2(5.32)

where the last inequality clearly holds for every positiveβ∗, but we shall
use it for the value ofβ∗ given in (5.24). For everyqh we take nowv0

h as
given by Proposition 5.1, and using (5.23) we have

(v0
h,∇qh) ≤ β∗

2
‖∇qh‖2 +

1
2β∗ ‖PVh

∇qh‖2,(5.33)

that, inserted in (5.24) withwh = P
Ṽh

∇qh gives

β∗

2
‖∇qh‖2 +

1
2β∗ ‖PVh

∇qh‖2 +‖∇qh−P
Ṽh

∇qh‖2 ≥ β∗ ‖∇qh‖2,(5.34)

and (5.31) follows immediately. ��
Wecan then apply Theorem5.2, and see that, forr = O(1), the stabilised

Stokes problem:

(5.35){
a(uh, vh) + (vh,∇ ph) = (f, vh) ∀vh ∈ Vh,
(uh,∇ qn) − r(∇ ph − P

Ṽh
∇ ph,∇ qh) = (g, qh) ∀qh ∈ Qh,

is stable andoptimally convergentwhenwe take piecewise linear continuous
velocities and pressure, and forṼh the space of piecewise linear continuous
vectors without boundary conditions. ��

Example 5.2

Let us consider a “mixed formulation” of the Dirichet problem.{
(σ, τ) + (τ ,∇ ψ) = 0 ∀τ ∈ Σ,
(τ ,∇ ϕ) = (f, ϕ) ∀ϕ ∈ Ψ,(5.36)
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having takenΣ = (L2(Ω))2 = H = Σ′, Ψ = H1
0 (Ω). At the continuous

level, this is nothing but a somewhat bizarre way of writing the standard
formulation ∫

Ω
∇ ψ · ∇ ϕ dx =

∫
Ω
f ϕdx ∀ϕ ∈ Ψ.(5.37)

This equivalence however does not hold in general for discretised prob-
lems, unlessΨh andΣh are chosen in such a way that the space of gradients
of Ψh is contained inΣh. Let us consider, as an example, a case in which
this condition is violated: the so-called equal-order interpolation. We take{

Ψh = {ϕh ∈ H1
0 (Ω) | ϕh|K ∈ Pk(K)2 ∀K ∈ Th}

Σh = {τh ∈ (H1(Ω))2 | τh|K ∈ (Pk(K))2 ∀K ∈ Th}(5.38)

and we look for (τh, ϕh) in Σh × Ψh such that:{
(σh, τh) + (τh,∇ ψh) = 0 ∀τh ∈ Σh,
(σh,∇ ϕh) = (f, ϕh) ∀ϕh ∈ Ψh.

(5.39)

This is not stable. Indeed one easily checks that we have

sup
τh

b(τh, ϕh)
‖τh‖

=: [[ϕh]]h ≥ ‖PΣh
∇ ϕh‖H(5.40)

instead of
[[ϕh]]h ≥ ‖∇ ϕh‖H ,(5.41)

which would ensure stability from Poincaré’s inequality. Applying our pro-
cedure (with, clearly,V = Σ andQ = Ψ ,) we consider the stabilised
problem,

(5.42){
(σh, τh) + (τh,∇ ψh) = 0, ∀τh ∈ Σh
(σh,∇ ϕh) + r(∇ ψh − PΣh

∇ ψh,∇ ϕh) = (f, ϕh) ∀ϕh ∈ Ψh.
Theorem 5.1 applies directly and we can get a convergence proof to the
correct order inh. Notice that in this case there are no troubles with the
boundary conditions, as we have them onΨ and not onΣ.

Remark 5.1.The stabilised formulation (5.42) can be read as a convex com-
bination of the standard discrete formulation∫

Ω
∇ ψh · ∇ ϕh dx =

∫
Ω
f ϕh dx ∀ϕh ∈ Ψh.(5.43)

and the mixed formulation (5.36). IndeedPΣh
∇ ψh = σh. ��
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Remark 5.2.Althoughwehave followed the samegeneral framework, there
is a fundamental difference between Example 5.1 and Example 5.2 (beside
the role of boundary conditions.) Indeed in this last case we haveV = Σ =
H so that the constantω(h) = 1, while in Example 5.1 we had to employ
the equivalence of norms in finite dimensional spaces. ��

Example 5.3

We discuss now a “viscoelastic ”problem. We consider a variant of Stokes
problem, as a model problem for situations appearing in the finite element
approximation of some viscoelastic flow problems. This example was, in
fact, the first instance where the stabilisation technique developed in this
paper was introduced. We refer to [14] and [15] for a more detailed presen-
tation.

We takeV = (H1
0 (Ω))2, Q = L2(Ω) andΣ = (L2(Ω))2s, the space of

symmetric square-integrable tensors, andwe look for(u, p, σ) ∈ V ×Q×Σ
such that:

(σ, τ) + (G(σ), τ) = η (τ , ε(u)) + (F (u), τ) ∀τ ∈ Σ,
(div u, q) = 0 ∀q ∈ Q,
(σ, ε(v)) + (p, div v) = (f, v) ∀v ∈ V.

(5.44)

Here,η is a constant depending on the viscosity, and the functionsG(·) and
F (·) are representing rather complex terms which may vary from a model
to another and can include Lie derivatives in convected models. They can
be left undefined for our present purpose.
We now consider the discrete problem,

(5.45)
(σ
h
, τ
h
) + (G(σ

h
), τ

h
) = η (τ

h
, ε(uh)) + (F (uh), τh) ∀τ

h
∈ Σh,

(div uh, qh) = 0 ∀qh ∈ Qh,
(σ
h
, ε(vh)) + (ph, div vh) = (f, vh) ∀vh ∈ Vh,

whereVh,Qh andΣh are finite element subspaces ofV ,Q andΣ, respec-
tively. Let us reduce this temporarily to a simple Stokes problem:

(σ
h
, τ
h
) = η (τ

h
, ε(uh)) ∀τ

h
∈ Σh,

(div uh, qh) = 0 ∀qh ∈ Qh,
(σ
h
, ε(vh)) + (ph, div vh) = (f, vh) ∀vh ∈ Vh.

(5.46)

The first equation can now be read as:

σ
h
= PΣh

(ε(uh))(5.47)
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andwe can understandwhywemay have a stability problem, asPΣh
(ε(uh))

is not strong enough to controluh through a Korn’s inequality, unlessΣh is
rich enough ([16]). Following the general procedure, we thus write, instead
of (5.45), a stabilised form

(5.48)
(σ
h
, τ
h
) + (G(σ

h
), τ

h
) = η (τ

h
, ε(uh)) + (F (uh), τh) ∀τ

h
,

(div uh, qh) = 0 ∀qh,
(σ
h
, ε(vh)) + r(ε(uh) − PΣh

(ε(uh)), ε(vh))
+(ph, div vh) = (f, vh) ∀vh.

Applying the theory is again straightforward. In fact this is very close to the
previous example but is much more relevant in applications, as it strongly
widens the range of possible approximations of (5.44). Indeed, wemay now
use any reasonable approximation forΣh, the only constraint being to get
the right order of precision. The price to pay is that the projection operator
is most often not local, and that it has to be considered as an extra equation
in the problem, which can also be written as

(5.49)
(σ
h
, τ
h
) + (G(σ

h
), τ

h
) = η (τ

h
, ε(uh)) + (F (uh), τh) ∀τ

h
,

(div uh, qh) = 0 ∀qh,
(σ
h
, ε(vh)) + r(ε(uh) − σ̃

h
, ε(vh)) + (ph, div vh) = (f, vh)∀vh,

σ̃
h
= PΣh

(ε(uh)).

We refer to [14] for details about implementation and numerical results.

6 Coercivity on the kernel ofB

In all previous examples, we have used stabilisation to ensure an inf-sup
condition. In many problems, e.g., plate problems, coercivity of the bilinear
forma(·, ·) is an equally important issue and we can apply the same general
framework to get stability when needed. Let us then suppose that, in problem
(1.1), we have a bilinear form onV ×V that is coercive only onkerB. It is
then natural to suppose that one has

a(v, v) + ‖Bv‖2 ≥ ‖v‖2
V ∀v ∈ V.(6.1)

The problem arises because, in general,kerBh is not a subset ofkerB
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Let us introduce then, instead of (1.6), a stabilised discrete problem: find
(uh, ph) ∈ Vh ×Qh, Vh ⊂ V ,Qh ⊂ Q, such that,{
a(uh, vh) + b(vh, ph) + r(Buh −Bhuh, Bvh)Q = (f, vh) ∀vh ∈ Vh,
b(uh, qh) = (g, qh) ∀qh ∈ Qh.

(6.2)

It is then obvious that we now have coercivity on the kernel ofBh. Here
again we have employed the strategy of adding the minimum amount of
stabilisation. In fact the stabilising term vanishes ifkerBh ⊂ kerB. We
also notice that the stabilising term is in fact symmetric, asBhvh is the
projection ofBvh onQh. As to error estimation, it is easy to obtain, using
Lemma 3.3, the following result.

Proposition 6.1. Let(u, p) be the solution of (1.6) and(uh, ph) the solution
of the stabilised problem (6.2), with anr independent ofh. Then there exists
a constantC, independent ofh, such that:

(6.3)

‖uh − u‖2
V + ‖ph − p‖2

Q ≤ C
(
E2(u, Vh) + E2(p,Qh) + E2(Bu,Qh)

)
always with the notation (4.17). ��

Tofix ideas, let us consider a simplemixed formulation for theDirichlet’s
problem: findu ∈ V = H(div,Ω) andp ∈ Q = L2(Ω) solution of{

(u, v) + (p, div v) = 0, ∀v ∈ V
(div u, q) = (g, q) ∀q ∈ Q.(6.4)

Here we haveB = div and this is a simple example in which the bilinear
form a(·, ·) is coercive only on

kerB = {v0 | v0 ∈ H(div,Ω), div v0 = 0} .
Except for very special constructions (see e.g. [9] and the references therein)
of the spacesVh andQh, the discrete kernelkerBh = kerPQh

div is not a
subset ofkerB. This is is the case, for instance, if one uses theMini element
of [3] to build Vh andQh. Let us recall it briefly: letTh be a triangulation
of Ω and let, for everyK ∈ Th, bK be the cubic bubble inK defined by
bK = λ1λ2λ3. We set:

(6.5)Vh =
{
vh | vh ∈ C0(Ω), vh|K ∈ (P1(K) + αKbK)2 ∀K ∈ Th

}
Qh =

{
qh | qh ∈ C0(Ω), qh|K ∈ P1(K) ∀K ∈ Th

}
.
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It is classical that this approximation satisfies an inf-sup condition (in fact
a stronger one than what we need here.)

To get a stabilised problem, we write

(6.6){
(uh, vh) + (ph, div vh) + r(divuh − PQh

divuh, divvh) = 0 ∀vh
(div uh, qh) = (g, qh) ∀qh.

The projection operator is not, in general, local, and must be considered at
the expenses of an extra equation. However it is easy to see that our general
theory applies, and that the error estimate (6.3) yields the right order for the
spaces at hand. In the particular case above, we can eliminatePQh

divuh as
the second equation of (6.6) states in fact thatPQh

divuh = PQh
g. We can

thus replace (6.6) by:

(6.7)
(uh, vh) + (ph, div vh) + r(divuh − PQh

g, divvH) = 0 ∀vh ∈ Vh
(div uh, qh) = (g, qh) ∀qh ∈ Qh

This is very similar to the satbilisation introduced in [10].
This way of modifying the equations to bypass the coercivity problem

proved to be fruitful also in the context of the approximation of Mindlin–
Reissner plates ([1]) and shell problems ([22,2]).

7 Conclusions

The various examples presented clearly show that the abstract theory de-
veloped here provides a unified framework for a wide class of applications,
establishing links between apparently unrelated techniques. The theory also
provides a general way of choosing the value of the stabilising parameter
with respect to the mesh size and permits to obtain in some cases sharper
error bounds.
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