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Summary. This paper concerns the study of a relaxation schem¥ forV
hyperbolic systems of conservation laws. In particular, with the compensated
compactness techniques, we prove a rigorous result of convergence of the
approximate solutions toward an entropy solution of the equilibrium system,
as the relaxation time and the mesh size tend to zero.
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1 Introduction

The aim of this paper is to prove a rigorous result of convergence for a
numerical scheme for the followiny x N systems of conservation laws

Ut +f(u)iﬂ = 07

which is based on the well-known semilinear relaxation approximation of
the form

1.1 Ue + vz =0
(1) {thraqu:i(f(u)v).
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This kind of numerical schemes was firstly proposed in [5], where, in par-
ticular, the authors consider a first order upwind scheme and a second order
MUSCL scheme, together with a second order TVD Runge-Kutta splitting
scheme. The only rigorous prove of convergence of such schemes is done
in the scalar case, nhamely, when the equilibrium system is a scalar conser-
vation law, by proving the consistency and the monotonicity of the relaxing
scheme. Another rigorous proof of convergence for slightly different first
order and second order schemes can be found in [1], again in the scalar case.

The big advantage in considering this kind of schemes lies essentially on
the special semilinear structure of the approximating system, which allows to
solve it numerically without introducing Riemann solvers. Indeed, due to the
presence of linear characteristic fields, the decomposition in characteristic
variables for system (1.1) is trivial and it is possible to apply standard upwind
schemes without solving Riemann problems, while the stiff relaxation term
can be handled by introducing appropriate implicit time discretization.

In this contest, we are able to prove the convergence of a first order,
upwind implicit relaxation scheme, when the limit is &h x N system,
which satisfies to certain conditions. More precisely, we restrict ourselves to
those equilibrium systems for which Serre in [11] proved that the relaxation
approximation given in (1.1) convergesas 0.

For other theoretical results concerning hyperbolic systems with relax-
ation, we mention the book of Whitham [13], where for the first time this
kind of models was taken into account, and the papers [8,2,6,7] in the
guasilinear case, and [3,10] for the semilin2as 2 case.

The remaining part of this paper is organized as follows. In the next sec-
tion we describe our numerical scheme and we prove its stabilityinby
using mainly the result of [11] concerning the existence of positively com-
pact invariant domains for systems of the form (1.1). Moreover, we prove
also the basi¢? estimates which are crucial in the control of the relaxation
process and hence in the proof of the convergence of our approximate so-
lution. In this point, we use the particular extension procedure considered
again in [11], which allows to build global strictly convex and dissipative
entropies for (1.1).

The last section is devoted to the proof of the convergence of the numer-
ical solution to (1.1) toward an entropy solution of the equilibrium system

To show this result, we will use the compensated compactness techniques. In
particular, we will assume that (1.2) has enough entropy-entropy flux pairs
(n,q) (see, for instance, the systems considered in [4]) and we will prove
that the entropy production

nt+Qac
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lies in a relatively compact set of the spalig’!, as the relaxation time
and the mesh size of the approximate solutions tend to zero. Therefore, the
convergence of our approximating sequence will follows from the arguments
of [4].

We conclude this section by collecting the main properties of the system
(1.1) proved in [11].

Proposition 1.1 Let X be a convex characteristic set, namely, its boundary
OK is stable under the differentidV f(u). Let us assume the following
subcharacteristic condition

(1.3) a > max{p(Vf(u))}.

Then the following properties hold:

1. The image& . of K under the applicationg : u — u + %f(u) are
convex. Moreover, the maps : K — K. are diffeomorphisms and

1

2. The set

Dy = {(u,v):u+lv€lC+ andu—lvelC}
a a

is a positively invariant set for the system (1.1).

Proposition 1.2 Let K be a convex characteristic set and assume the sub-
characteristic condition (1.3) holds. Moreover, let ¢) : K — R? be an
entropy-entropy flux pair for the equilibrium system (1.2). Then there exists
an unique entropy-entropy flux paie, Q) : D¢ — R? which coincides
with (n, ¢) along the equilibrium curvé(u,v) : v = f(u)}. In particular,

the pair (E, Q) is defined by

E(u,v) = e (U+ iv) +e_ (u — iv) ;
Q(u,v) = aey <u + iv> —ae_ <u — clzv> ,

for any (u,v) € Dg and the functiong. are uniquely defined o+ by
the following relations

1

ex(hew) = () + 2aw)) e (o) = 5 () = Law).

for anyu € K. Moreover,
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o if nis convex and nonnegative, théhs convex, nonnegative awliksi-
pative namely

VoE(u,v) - (f(u) —v) <0, forany(u,v) € Dg;
e if V2 > 0 on C, then there exists a constamt> 0 such that
VoE(u,v) - (f(u) = v) < —a| f(u) = v|?, forany(u,v) € Di

and e are strictly convex functions okiy (in particular, E(u,v) is
strictly convex onDg.).

2 A priori estimates for the relaxation scheme

In this section we prove some a priori estimates which are the starting point
to investigate the relaxation approximation of fiiex NV equilibrium system
(1.2). More precisely, we will prove the stability ib> of our numerical
solution of the semilinear system (1.1), together with fRecontrol of the
relaxation termi— (f(u) — v), uniformly with respect to the relaxation time
¢ and the mesh sizes.

Let us consider the following one-step conservative scheme for the sys-
tem (1.1)

(2.1)
1|,n+l _ ,n 1{,m _ ,n _
k |:'LL] uj:| + h |:/U]+% 'Uj_%] 0
1|, n+l _  n a? |, n 1 n+ly _ n+l
X {vj vj} + % {uﬂ% ujié] =2 [f(uj )|

This scheme is obtained with a discretization of (1.1) in both the space and
time variables and it is implicit in the source term, since, in general, it is
possible to establish better stability properties for such kind of schemes
without, in particular, mutual hypotheses on the relaxation parameted

the time and space mesh siZzeandh. Due to the semilinear structure of
the relaxation system (1.1) and due to the particular structure of its entropy-
entropy flux pair established in Proposition 1.2, it is convenient to introduce

the following characteristic variables
1
w=1u-+—-v Z=u— —0.
a a

Therefore, the scheme (2.1) can be rewritten in the following way
(2.2)

J J

1 n+1 n a n n _ 1 n+1 n+1
E{w- —w-}%—ﬁ[w. —w" }— {f(u ) — vl }
1| n+l n a | n n — _ 1 n+ly _  n+tl
k [Zj a zj} ~ R [ZJ‘Jrl L] T e [f(uj )= } ’
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The pomtvaluew" 1 andz" ! are defined by a (first order) upwind scheme

as follows
n n n
]+2 J i+ Jt+l
wr% =w;_y zj = zj.

Hence our upwind scheme in the Riemann variables is given by

1 n+l . n a no__ ,m _ 1 n+1ly _  n+l
(23) |9 w]} Th [wj wj,l} = e [fujT) =]
' 1 +1 _ 1 +1 +1
Llatt— o] = 8 [ — 2] = - & [FGg) — o7

Moreover, in the original variables, we get the following relations

UT'Lé:Q( 1+v)

and the scheme (2.1) becomes

)
; [“?H - “n} +3n [v?-‘rl - ”?—1}
—ap |Wity — 2uf =0
@4 i .
E [Uj _”'} + 25 [U’j—i—l Ui
_1 +1 +1
| g o -2 | = L) - o

As usual, the first time stepg) andv} (and, equivalently,) and2?) are
defined as the mean values of the initial conditigfx:) andvy(x) over the

jthoel ;= [a; 1.0,
(2.5)
uO—l uo(x)dz Uo—l/v()dx
iT ] 1, 0 J TR I 0
1 1 1 1
0_ _ .0 0 0 _ =0 0
w; = h/f wo(z)dr = uj + Pt z; = h/[ z20(x)de = =Y

J J
Moreover, we will assume the classical CFL condition for the schemes (2.3)
and (2.4), namely

o

2. =a-—- <1.
(2.6) a ap <
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In the following lemma we establish tHe® stability for the schemes (2.3)
and (2.4).

Lemma 2.1 Let/C be a convex characteristic setand assumgvg) € Dg
(for instanceuy € K andvy = f(up)). Moreover, assume the subcharac-
teristic condition (1.3) and the CFL condition (2.6) hold. Then

(2.7) (uj,v}) € Dg, foranyn,j.

Proof. Due to the definition ofD¥., in order to prove (2.7), it suffices to
prove

wj € K4 andz} € K foranyn, j.

From (2.5) and from the convexity &f.., it follows v € K andz) € K_
for any j. Moreover, let us assume by induction

wj € Ky andz} € K foranyj.

Thus, Proposition 1.1 yields; € K for any;. Hence, from the first line of
(2.4) we get

2.8)
il ak\ , ak |1 [ , 1, n 1,
'LLJ =11- W UJ + ? 5 Uj+1 — Evj+1 + U‘jfl + arUj,1 .

Now,
1 1 1
3 <“?+1 — Ui U a“?1>
1 1
=3 (71 + i) € 5 (K- +Ky) =K,

by using again Proposition 1.1. Therefore, from (2.8), the induction assump-
tion, the convexity ofC and the CFL condition (2.6), it follows

(2.9) e K.

With the aid of the functiorh+ defined in Proposition 1.1, we can rewrite
the right-hand-side of (2.3) as follows

1 1 1
2 [+ = = e ) = S
11, . 1 1
-— [f(uj+1) - U;H] = Sho(ufth) = =
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Thus, (2.3) yields

E\ L ak ak k
n+1 __ v v ik n+1
! —(1%) [<1 h) P ur s T >]
. K\ 7! ak\ ,  ak koo
zj+1:<1+6) [(1—h>z+h Zi + h( +1)].

Sinceu™™ e K for any j, by definition we haveh. (u") € K. for
anyj. Hence, the above relation, together with the CFL condition (2.6), the
convexity of 1 and the induction assumption, implies

(Wit 2 e Ky x Ko,

which concludes the proof. O

We conclude the section by proving a discrée, bound for the relax-
ation term%(f(u) — v). To perform this task, we will reduce ourselves to
the case of a scheme verifying the following stronger CFL condition

(2.10) ah= 2 1.

This restriction will allows us to get an extra control of the relaxation term,
besides the usudl® control, which can be proved even under the weaker
condition (2.6), which is necessary to carry out our argument in the study
of the entropy production.

Lemma 2.2 Let K be a convex characteristic set and assufg vy) €

D¢. Moreover, assume the subcharacteristic condition (1.3) and the CFL
condition (2.10) hold. Finally, letn, ¢) be aC? strictly convex entropy-
entropy flux pair of the relaxed system (1.2) wijtk> 0. Then, for anyN,

H,

N—-1 H N—-1
hk hk?
=D @) =P+ Z [P
n=0 j=—H n=0 j=—H
(2.11) — v;?+1||2 <C,

where the positive consta@tdepends only oft = Nk, L = Hh and Dy,
and it is independent from, k£ andh.

Proof. Let (E(u,v),Q(u,v)) be the extension ofn(u),q(u)) given by
Proposition 1.2 and let us denote wittj the value of the functiod in the
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point (u?,v7). Then

HEAE E?] +%[ -]

% ,_.?v\r—*b\a?v\r—l

|
<
Cb
3
+
=
~—
YoumnN
~h
S
+
=
~—
—+
—
N—
| S

—T’ZEZW(@(@) te (?)

(2.12) X [f(u;?+1) o vjn—&-l; f(u;L'H) _ ’U;L—H} ’

where withV2F[¢; €] we denote the quadratic form§rassociated with the
hessian matrix of’. In (2.12) we used the CFL condition (2.10), the upwind
reconstruction for the point values of the fl@xand the following relations,
which come from (2.3) with the particular choice induced by (2.10)

1 1 1 1
Wit —wp g = (& =) = = [fagt) - o

Sincen is strictly convex, Proposition 1.2 yields
£ Vet (gt - o)

—Ve_ ( n+1) (f(U?+1) _ ,U;L+1> :|

—V wE(u n+1, ;1+1) . (f(u?+1) _ Uml)

(2.13) Hf( AR

and

k ~
52 VA ex (@) + e () £ ™) = o ) — v

k’ n n
(2.14) Zﬁ?||f(uj+1) _UjJrlHQa
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for some constants and independent froms, £ andh. By using (2.13)
and (2.14) in (2.12) we get

L = ] e ) — () — (er (wfy) — e ()]
(215) <L) — o - B ) —

where the constantsandg are independent from k£ andh. At this point,
we sum in (2.15) iy andn to obtain

2N1

N—
Z n+1) n+1”2 Z Z Hf n+1 n—i—lHZ
2

H n=0 j=—H

(2.16)  +

m\?r

e

e
2
L

et (why) —es+ (wy_y) —e—(2f 1) +e—(2"p)]

0
IXE
_H }

because ofr > 0. The L stability of the relaxation scheme implies

ﬂ
o)

M=

N-1

D [en(wih) —exn(wly_y) —e— (i) +e-(22y)]
n=0

k

h
1

(2.17) < C(DE.T = Nk),

while the Jensen inequality and the convexityofyields

Z E;-) = Z [e+ (fll /[ wo(x)dx> +e_ (;L /[ zg(x)d:n>]

j=—H j=—H
1 H
<5 ¥ [, fevtuwnte) + e-Goten)as
L
218) = 2/L Euo(x), vo(x))da < %c (DE-, L)

Finally, using (2.17) and (2.18) in (2.16) we obtain (2.11). O
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N P (n+ 1)k
K
£¥= %n wek = VYn s
~ < ~
N N ~
~ ~ N /
X172 L) nk

Fig. 1. Reconstruction of the approximate solution

3 The convergence of the numerical solution

In this section we prove the convergence of our approximate solution, based

on the numerical scheme (2.4) with the CFL condition (2.10). Therefore we

will take advantage of the results of Lemma 2.1 and Lemma 2.2 to control

the relaxation process and to show that the entropy produgtieng,. for

the equilibrium system (1.2) belongs to a compact séflgj. Then we will

conclude, thanks to the compensated compactness techniques [4,11].
Given the discrete values; andv} (or, equivalentlyw; andz7), we

reconstruct a piecewise approximate solution*, v**) in such a way that

the characteristic variablas and z are constant along the characteristic
directionse — at andz + at respectively, in any strip of the forim, (n +

1)k) x R. Therefore, the approximate solution verifies the homogeneous
system associated to (1.2) in any stfip (n + 1)k) x R. More precisely,

we define the approximating sequence as follows (see also Fig. 1)

wF = wi fort € (nk,(n+1)k) andz; 1 —at <z <z

2

1fat

k —
7% =z fort € (nk, (n+1)k) andz; tat <w<wp1+at.

1
2

Itis clear from Figure 1 the big advantage we take in considering the CFL
condition (2.10), namel% , in order to perform our reconstruction: the
slope of the characteristic Ilnes is equal to the ratio of the mesh sizes.

Remark 3.1From the condition (2.11) of Lemma 2.2 we have the following
uniform control for the approximating sequeneé*, v>*)

i/OT/LL f(us®y — ook da:dt—i—/ /

(3.1) — 5% 2dedt < C (D&, T, L),
foranyT, L. In particular,
Jut) -

ase | 0, uniformly in k. O

k0, inL,,
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Now we can prove the convergence of the approximate numerical solution
we have constructed.

Theorem 3.2 Let K be a convex characteristic set and assumeg vo) €

Dg. Assume the subcharacteristic condition (1.3) and the CFL condition
(2.10) hold and assume the relaxed system (1.2) is endowed@#tbtaictly
convex entropy-entropy flux pdin*, ¢*) with n* > 0. Finally, assume that
the only probability measures with supportirsatisfying the Tartar identity
[12] for any entropy-entropy flux pair are Dirac masses. Then, extracting if
necessary a subsequence,

(3.2) uF — win LP ase, k|0, foranyp < +oo
andu is a weak entropy solution of the equilibrium system
(3.3) ut + f(u)y = 0.

Proof. Due to our hypothesis on the Tartar identity, in order to prove (3.2),
we have to show that the entropy production verifies

(3.4) (u=F); + q(u™F), € compH,,.,
for any entropy-entropy flux pair of (3.3) and
(3.5) () + q(u™*), <0,

if, in addition,n is convex. Indeed, thé> stability established in Lemma
2.1 implies, extracting if necessary a subsequence, the following weak con-
vergence

utF Sy in L.
Once we have proved (3.4), applying the div-curl lemma [12], we obtain the
commutative relation of Tartar for any entropy-entropy flux pair and hence
the strong convergence of* towardu, because, from our hypothesis, we
can say that the Young measure associated with this sequence reduces to a
Dirac mass. Therefore, in view of the?, . convergence of (us*) — vk
toward zero established in Remark 3.1, we have in particularu¢thata
weak solution of (3.3) and, by passing into the limit in (3.5), we recover the
entropy inequality for this solution.

Let (1, ¢) be an entropy-entropy flux pair for (3.3) and (éf, Q) be its
extension. Therefore, proceeding as in [2,6,7,11]

M)+ (), = (B, fuh) = B, o)),
+ (Q(ua,k’ f(ua,k:)) o Q(ue,k,va,k))x

+E(ua,k’ 7}£7k)t + Q(ua,k7 ,Uak)z
(3.6) = Jok L R gk,
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From Remark 3.1, we know thaf* and.J5™* tend to zero i}, ase | 0,
uniformly in k. Therefore it remains to control the entropy production related
to the extended entropy-entropy flux péit, ). We will prove that this
production is bounded in the space of measuv¢gand it is nonnegative

if n is convex) and we will conclude applying the Murat lemma [9]. In any
strip of the form(nk, (n + 1)k) x R, since our approximating solutions
have discontinuities which travel with characteristic speedsd —a, the
entropy productior® (u®*, v**); + Q(u®*, v**), is zero. More precisely,

in any strip of this form, we have

(0 + ady) w™* =0 (0 — ady) 2% =0,
which yields the following relations
(0 + ady) e (W) =0 (8 — ady) e_(25%) =0,

forany(t, z) € (nk, (n+1)k) xR, namelyE (us*, v¥F ), +Q(u*, vo*), =

0 forany(t,z) € (nk, (n + 1)k) x R. Therefore the entropy production is
due uniquely to the concentrations along the horizontal lirie$dence, for
any test functior®, we have

(nt1)k
= //(E¢t+Qq§m)d:vdt: ;/m /(E@JrQ@m)dwdt
= Z/@(tn+17$) <E(u5’k( w1 = 0,2), v (g1 — 0, 2))

— B (i1 +0,2), 0" (b1 +0,2))) de,

with the notationt,, = nk. Our particular choice for the reconstruction of
the piecewise approximate solutions (Fig. 1) yields

B(u*(tni1 = 0,2), 07 (tpi1 — 0,2)) = eq (w]_y) + e (2]41)
BE(u*(tni1 +0,2), 07F (tp1 + 0,2)) = e (w ”“) +e (251,
foranyz € I;. Thus, proceeding as in the proof of Lemma 2.2, it follows

=2 [ (st —enlt e () — e (57)

X D(tpt1,x)dz
2
-5 [ {gm Ve @ +eG)

x |:f(u;L+1) _ Un+1; f(u;wrl) _ U;L+1:|

@7 VB ) ()~ o) bt )
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From Proposition 1.2, we geV,E(u, f(u)) = 0 and in particular
|VoE(u,v)|| < Cf(u) — v| for any (u,v) € Dg. Therefore, (2.11)
and (3.7) imply

E(@)] < C (D) 1@l ey

XZZ( 1) = o117+ B ) - )

n=0 j=—H
< C(DICvLﬂT) HQ5H00

that is, the boundedness &fin the space of measurggl. Therefore, we
have proved the strong convergence of the sequeféeoward a weak
solutionu of the equilibrium system (3.3). Moreoveryijfis convex, in view
of Proposition 1.2, from (3.7) we get

£(®) =0,

for any® > 0. Hence, by passing into the limit in (3.6), we recover the
entropy inequality for the limit functiom. O

Remark 3.3From the proof of Theorem 3.2, it follows also the convergence
of the numerical solutiom** of (1.1) toward a numerical solutiom* of
(1.2), lettinge | 0 and keeping: fixed. Due to the CFL condition (2.10),
u* is a solution of the Lax-Friedrichs scheme for (1.2), which is the limit,
ase | 0, of our relaxation scheme [5]. a
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