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Summary. This paper concerns the study of a relaxation scheme forN×N
hyperbolic systemsof conservation laws. Inparticular,with thecompensated
compactness techniques, we prove a rigorous result of convergence of the
approximate solutions toward an entropy solution of the equilibrium system,
as the relaxation time and the mesh size tend to zero.
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1 Introduction

The aim of this paper is to prove a rigorous result of convergence for a
numerical scheme for the followingN ×N systems of conservation laws

ut + f(u)x = 0,

which is based on the well-known semilinear relaxation approximation of
the form {

ut + vx = 0
vt + a2ux = 1

ε (f(u) − v) .
(1.1)
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This kind of numerical schemes was firstly proposed in [5], where, in par-
ticular, the authors consider a first order upwind scheme and a second order
MUSCL scheme, together with a second order TVD Runge-Kutta splitting
scheme. The only rigorous prove of convergence of such schemes is done
in the scalar case, namely, when the equilibrium system is a scalar conser-
vation law, by proving the consistency and the monotonicity of the relaxing
scheme. Another rigorous proof of convergence for slightly different first
order and second order schemes can be found in [1], again in the scalar case.

The big advantage in considering this kind of schemes lies essentially on
thespecial semilinear structureof theapproximatingsystem,whichallows to
solve it numericallywithout introducingRiemann solvers. Indeed, due to the
presence of linear characteristic fields, the decomposition in characteristic
variables for system (1.1) is trivial and it is possible to apply standardupwind
schemes without solving Riemann problems, while the stiff relaxation term
can be handled by introducing appropriate implicit time discretization.

In this contest, we are able to prove the convergence of a first order,
upwind implicit relaxation scheme, when the limit is anN × N system,
which satisfies to certain conditions. More precisely, we restrict ourselves to
those equilibrium systems for which Serre in [11] proved that the relaxation
approximation given in (1.1) converges asε ↓ 0.

For other theoretical results concerning hyperbolic systems with relax-
ation, we mention the book of Whitham [13], where for the first time this
kind of models was taken into account, and the papers [8,2,6,7] in the
quasilinear case, and [3,10] for the semilinear2 × 2 case.

The remaining part of this paper is organized as follows. In the next sec-
tion we describe our numerical scheme and we prove its stability inL∞, by
using mainly the result of [11] concerning the existence of positively com-
pact invariant domains for systems of the form (1.1). Moreover, we prove
also the basicL2 estimates which are crucial in the control of the relaxation
process and hence in the proof of the convergence of our approximate so-
lution. In this point, we use the particular extension procedure considered
again in [11], which allows to build global strictly convex and dissipative
entropies for (1.1).

The last section is devoted to the proof of the convergence of the numer-
ical solution to (1.1) toward an entropy solution of the equilibrium system

ut + f(u)x = 0.(1.2)

To show this result, wewill use the compensated compactness techniques. In
particular, we will assume that (1.2) has enough entropy-entropy flux pairs
(η, q) (see, for instance, the systems considered in [4]) and we will prove
that the entropy production

ηt + qx
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lies in a relatively compact set of the spaceH−1
loc , as the relaxation timeε

and the mesh size of the approximate solutions tend to zero. Therefore, the
convergenceof our approximating sequencewill follows from thearguments
of [4].

We conclude this section by collecting the main properties of the system
(1.1) proved in [11].

Proposition 1.1 LetK be a convex characteristic set, namely, its boundary
∂K is stable under the differential∇f(u). Let us assume the following
subcharacteristic condition

a > max
u∈K

{ρ(∇f(u))}.(1.3)

Then the following properties hold:

1. The imagesK± of K under the applicationsh± : u �−→ u± 1
af(u) are

convex. Moreover, the mapsh± : K −→ K± are diffeomorphisms and

K =
1
2

(K+ + K−) .

2. The set

Da
K =

{
(u, v) : u+

1
a
v ∈ K+ andu− 1

a
v ∈ K−

}
is a positively invariant set for the system (1.1).

Proposition 1.2 Let K be a convex characteristic set and assume the sub-
characteristic condition (1.3) holds. Moreover, let(η, q) : K −→ R

2 be an
entropy-entropy flux pair for the equilibrium system (1.2). Then there exists
an unique entropy-entropy flux pair(E,Q) : Da

K −→ R
2 which coincides

with (η, q) along the equilibrium curve{(u, v) : v = f(u)}. In particular,
the pair(E,Q) is defined by

E(u, v) = e+

(
u+

1
a
v

)
+ e−

(
u− 1

a
v

)
;

Q(u, v) = ae+

(
u+

1
a
v

)
− ae−

(
u− 1

a
v

)
,

for any (u, v) ∈ Da
K and the functionse± are uniquely defined onK± by

the following relations

e+(h+(u)) =
1
2

(
η(u) +

1
a
q(u)

)
e−(h−(u)) =

1
2

(
η(u) − 1

a
q(u)

)
,

for anyu ∈ K. Moreover,
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• if η is convex and nonnegative, thenE is convex, nonnegative anddissi-
pative, namely

∇vE(u, v) · (f(u) − v) ≤ 0, for any(u, v) ∈ Da
K;

• if ∇2η > 0 onK, then there exists a constantα > 0 such that

∇vE(u, v) · (f(u) − v) ≤ −α‖f(u) − v‖2, for any(u, v) ∈ Da
K

and e± are strictly convex functions onK± (in particular, E(u, v) is
strictly convex onDa

K).

2 A priori estimates for the relaxation scheme

In this section we prove some a priori estimates which are the starting point
to investigate the relaxation approximation of theN×N equilibrium system
(1.2). More precisely, we will prove the stability inL∞ of our numerical
solution of the semilinear system (1.1), together with theL2 control of the
relaxation term1

ε (f(u) − v), uniformly with respect to the relaxation time
ε and the mesh sizes.

Let us consider the following one-step conservative scheme for the sys-
tem (1.1)


1
k

[
un+1

j − un
j

]
+ 1

h

[
vn
j+ 1

2
− vn

j− 1
2

]
= 0

1
k

[
vn+1
j − vn

j

]
+ a2

h

[
un

j+ 1
2

− un
j− 1

2

]
= 1

ε

[
f(un+1

j ) − vn+1
j

]
.

(2.1)

This scheme is obtained with a discretization of (1.1) in both the space and
time variables and it is implicit in the source term, since, in general, it is
possible to establish better stability properties for such kind of schemes
without, in particular, mutual hypotheses on the relaxation parameterε and
the time and space mesh sizesk andh. Due to the semilinear structure of
the relaxation system (1.1) and due to the particular structure of its entropy-
entropy flux pair established in Proposition 1.2, it is convenient to introduce
the following characteristic variables

w = u+
1
a
v z = u− 1

a
v.

Therefore, the scheme (2.1) can be rewritten in the following way


1
k

[
wn+1

j − wn
j

]
+ a

h

[
wn

j+ 1
2

− wn
j− 1

2

]
= 1

aε

[
f(un+1

j ) − vn+1
j

]
1
k

[
zn+1
j − zn

j

]
− a

h

[
zn
j+ 1

2
− zn

j− 1
2

]
= − 1

aε

[
f(un+1

j ) − vn+1
j

]
.

(2.2)
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Thepoint valueswn
j± 1

2
andzn

j± 1
2
aredefinedbya (first order) upwind scheme

as follows

wn
j+ 1

2
= wn

j zn
j+ 1

2
= zn

j+1

wn
j− 1

2
= wn

j−1 zn
j− 1

2
= zn

j .

Hence our upwind scheme in the Riemann variables is given by
1
k

[
wn+1

j − wn
j

]
+ a

h

[
wn

j − wn
j−1

]
= 1

aε

[
f(un+1

j ) − vn+1
j

]
1
k

[
zn+1
j − zn

j

]
− a

h

[
zn
j+1 − zn

j

]
= − 1

aε

[
f(un+1

j ) − vn+1
j

]
.

(2.3)

Moreover, in the original variables, we get the following relations

un
j+ 1

2
=

1
2
(
un

j + un
j+1

)− 1
2a
(
vn
j+1 − vn

j

)
vn
j+ 1

2
=

1
2
(
vn
j + vn

j+1
)− a

2
(
un

j+1 − un
j

)
un

j− 1
2

=
1
2
(
un

j−1 + un
j

)− 1
2a
(
vn
j − vn

j−1
)

vn
j− 1

2
=

1
2
(
vn
j−1 + vn

j

)− a

2
(
un

j − un
j−1

)
,

and the scheme (2.1) becomes

1
k

[
un+1

j − un
j

]
+ 1

2h

[
vn
j+1 − vn

j−1

]
− a

2h

[
un

j+1 − 2un
j + un

j−1

]
= 0

1
k

[
vn+1
j − vn

j

]
+ a2

2h

[
un

j+1 − un
j−1

]
− a

2h

[
vn
j+1 − 2vn

j + vn
j−1

]
= 1

ε

[
f(un+1

j ) − vn+1
j

]
.

(2.4)

As usual, the first time stepsu0
j andv

0
j (and, equivalently,w0

j andz0
j ) are

defined as the mean values of the initial conditionu0(x) andv0(x) over the
j-th cell Ij =

[
xj− 1

2
, xj+ 1

2

]

u0
j =

1
h

∫
Ij

u0(x)dx v0
j =

1
h

∫
Ij

v0(x)dx

w0
j =

1
h

∫
Ij

w0(x)dx = u0
j +

1
a
v0
j z0

j =
1
h

∫
Ij

z0(x)dx = u0
j − 1

a
v0
j .

(2.5)

Moreover, we will assume the classical CFL condition for the schemes (2.3)
and (2.4), namely

aλ = a
k

h
≤ 1.(2.6)
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In the following lemma we establish theL∞ stability for the schemes (2.3)
and (2.4).

Lemma 2.1 LetK be a convex characteristic set and assume(u0, v0) ∈ Da
K

(for instance,u0 ∈ K andv0 = f(u0)). Moreover, assume the subcharac-
teristic condition (1.3) and the CFL condition (2.6) hold. Then

(un
j , v

n
j ) ∈ Da

K, for anyn, j.(2.7)

Proof. Due to the definition ofDa
K, in order to prove (2.7), it suffices to

prove

wn
j ∈ K+ andzn

j ∈ K− for anyn, j.

From (2.5) and from the convexity ofK±, it followsw0
j ∈ K+ andz0

j ∈ K−
for anyj. Moreover, let us assume by induction

wn
j ∈ K+ andzn

j ∈ K− for anyj.

Thus, Proposition 1.1 yieldsun
j ∈ K for anyj. Hence, from the first line of

(2.4) we get

un+1
j =

(
1 − ak

h

)
un

j +
ak

h

[
1
2

(
un

j+1 − 1
a
vn
j+1 + un

j−1 +
1
a
vn
j−1

)]
.

(2.8)

Now,

1
2

(
un

j+1 − 1
a
vn
j+1 + un

j−1 +
1
a
vn
j−1

)
=

1
2
(
zn
j+1 + wn

j−1
) ∈ 1

2
(K− + K+) = K,

by using again Proposition 1.1. Therefore, from (2.8), the induction assump-
tion, the convexity ofK and the CFL condition (2.6), it follows

un+1
j ∈ K.(2.9)

With the aid of the functionh± defined in Proposition 1.1, we can rewrite
the right-hand-side of (2.3) as follows

1
aε

[
f(un+1

j ) − vn+1
j

]
=

1
ε
h+(un+1

j ) − 1
ε
wn+1

j

− 1
aε

[
f(un+1

j ) − vn+1
j

]
=

1
ε
h−(un+1

j ) − 1
ε
zn+1
j .
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Thus, (2.3) yields

wn+1
j =

(
1 +

k

ε

)−1 [(
1 − ak

h

)
wn

j +
ak

h
wn

j−i +
k

ε
h+(un+1

j )
]

zn+1
j =

(
1 +

k

ε

)−1 [(
1 − ak

h

)
zn
j +

ak

h
zn
j+i +

k

ε
h−(un+1

j )
]
.

Sinceun+1
j ∈ K for any j, by definition we haveh±(un+1

j ) ∈ K± for
anyj. Hence, the above relation, together with the CFL condition (2.6), the
convexity ofK± and the induction assumption, implies

(wn+1
j , zn+1

j ) ∈ K+ × K−,

which concludes the proof. ��

We conclude the section by proving a discreteL2
loc bound for the relax-

ation term1
ε (f(u) − v). To perform this task, we will reduce ourselves to

the case of a scheme verifying the following stronger CFL condition

aλ =
ak

h
= 1.(2.10)

This restriction will allows us to get an extra control of the relaxation term,
besides the usualL2 control, which can be proved even under the weaker
condition (2.6), which is necessary to carry out our argument in the study
of the entropy production.

Lemma 2.2 Let K be a convex characteristic set and assume(u0, v0) ∈
Da

K. Moreover, assume the subcharacteristic condition (1.3) and the CFL
condition (2.10) hold. Finally, let(η, q) be aC2 strictly convex entropy-
entropy flux pair of the relaxed system (1.2) withη ≥ 0. Then, for anyN ,
H,

hk

ε

N−1∑
n=0

H∑
j=−H

‖f(un+1
j ) − vn+1

j ‖2 +
hk2

ε2

N−1∑
n=0

H∑
j=−H

‖f(un+1
j )

− vn+1
j ‖2 ≤ C,(2.11)

where the positive constantC depends only onT = Nk,L = Hh andDa
K,

and it is independent fromε, k andh.

Proof. Let (E(u, v), Q(u, v)) be the extension of(η(u), q(u)) given by
Proposition 1.2 and let us denote withEn

j the value of the functionE in the
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point (un
j , v

n
j ). Then

1
k

[
En+1

j − En
j

]
+

1
h

[
Qn

j+ 1
2

−Qn
j− 1

2

]
=

1
k

[
e+(wn+1

j ) + e−(zn+1
j ) − e+(wn

j ) − e−(zn
j )
]

+
a

h

[
e+(wn

j ) − e−(zn
j+1) − (

e+(wn
j−1) − e−(zn

j )
)]

=
1
k

[
e+(wn+1

j ) − e+(wn
j−1)

]
+

1
k

[
e−(zn+1

j ) − e−(zn
j+1)

]
=

1
aε

[
∇e+(wn+1

j ) ·
(
f(un+1

j ) − vn+1
j

)
−∇e−(zn+1

j ) ·
(
f(un+1

j ) − vn+1
j

)]
− k

2a2ε2
∇2(e+(w̃) + e−(z̃))

×
[
f(un+1

j ) − vn+1
j ; f(un+1

j ) − vn+1
j

]
,(2.12)

where with∇2F [ξ; ξ]we denote the quadratic form inξ associated with the
hessianmatrix ofF . In (2.12) we used the CFL condition (2.10), the upwind
reconstruction for the point values of the fluxQ and the following relations,
which come from (2.3) with the particular choice induced by (2.10)

wn+1
j − wn

j−1 = −(zn+1
j − zn

j+1) =
k

aε

[
f(un+1

j ) − vn+1
j

]
.

Sinceη is strictly convex, Proposition 1.2 yields

1
aε

[
∇e+(wn+1

j ) ·
(
f(un+1

j ) − vn+1
j

)
−∇e−(zn+1

j ) ·
(
f(un+1

j ) − vn+1
j

)]
=

1
ε
∇vE(un+1

j , vn+1
j ) ·

(
f(un+1

j ) − vn+1
j

)
≤ −α

ε
‖f(un+1

j ) − vn+1
j ‖2(2.13)

and

k

2a2ε2
∇2(e+(w̃) + e−(z̃))

[
f(un+1

j ) − vn+1
j ; f(un+1

j ) − vn+1
j

]
≥ β

k

ε2
‖f(un+1

j ) − vn+1
j ‖2,(2.14)
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for some constantsα andβ independent fromε, k andh. By using (2.13)
and (2.14) in (2.12) we get

1
k

[
En+1

j − En
j

]
+
a

h

[
e+(wn

j ) − e−(zn
j+1) − (

e+(wn
j−1) − e−(zn

j )
)]

≤ −α

ε
‖f(un+1

j ) − vn+1
j ‖2 − β

k

ε2
‖f(un+1

j ) − vn+1
j ‖2,(2.15)

where the constantsα andβ are independent fromε, k andh. At this point,
we sum in (2.15) inj andn to obtain

k

ε

N−1∑
n=0

H∑
j=−H

‖f(un+1
j ) − vn+1

j ‖2 +
k2

ε2

N−1∑
n=0

H∑
j=−H

‖f(un+1
j ) − vn+1

j ‖2

≤C (Da
K)

{
−ak

h

N−1∑
n=0

[
e+(wn

H)−e+(wn
−H−1)−e−(zn

H+1)+e−(zn
−H)

]
+

H∑
j=−H

E0
j

 ,(2.16)

because ofE ≥ 0. TheL∞ stability of the relaxation scheme implies

k

h

∣∣∣∣∣
N−1∑
n=0

[
e+(wn

H) − e+(wn
−H−1) − e−(zn

H+1) + e−(zn
−H)

]∣∣∣∣∣
≤ 1
h
C (Da

K, T = Nk) ,(2.17)

while the Jensen inequality and the convexity ofe± yields

H∑
j=−H

E0
j =

H∑
j=−H

[
e+

(
1
h

∫
Ij

w0(x)dx

)
+ e−

(
1
h

∫
Ij

z0(x)dx

)]

≤ 1
h

H∑
j=−H

∫
Ij

[e+(w0(x)) + e−(z0(x))] dx

=
1
h

∫ L

−L
E(u0(x), v0(x))dx ≤ 1

h
C (Da

K, L) .(2.18)

Finally, using (2.17) and (2.18) in (2.16) we obtain (2.11). ��
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nk

(n+1)k

xj-1/2
x
j+1/2

znjzε,k = wj
n

we,k =

Fig. 1. Reconstruction of the approximate solution

3 The convergence of the numerical solution

In this section we prove the convergence of our approximate solution, based
on the numerical scheme (2.4) with the CFL condition (2.10). Therefore we
will take advantage of the results of Lemma 2.1 and Lemma 2.2 to control
the relaxation process and to show that the entropy productionηt + qx for
the equilibrium system (1.2) belongs to a compact set ofH−1

loc . Then we will
conclude, thanks to the compensated compactness techniques [4,11].

Given the discrete valuesun
j andvn

j (or, equivalently,wn
j andzn

j ), we
reconstruct a piecewise approximate solution(uε,k, vε,k) in such a way that
the characteristic variablesw and z are constant along the characteristic
directionsx− at andx+ at respectively, in any strip of the form(n, (n+
1)k) × R. Therefore, the approximate solution verifies the homogeneous
system associated to (1.2) in any strip(n, (n + 1)k) × R. More precisely,
we define the approximating sequence as follows (see also Fig. 1)

wε,k ≡ wn
j for t ∈ (nk, (n+ 1)k) andxj− 1

2
− at < x < xj+ 1

2
− at

zε,k ≡ zn
j for t ∈ (nk, (n+ 1)k) andxj− 1

2
+ at < x < xj+ 1

2
+ at.

It is clear fromFigure 1 the big advantagewe take in considering theCFL
condition (2.10), namely1a = k

h , in order to perform our reconstruction: the
slope of the characteristic lines is equal to the ratio of the mesh sizes.

Remark 3.1From the condition (2.11) of Lemma 2.2 we have the following
uniform control for the approximating sequence(uε,k, vε,k)

1
ε

∫ T

0

∫ L

−L
|f(uε,k) − vε,k|2dxdt+

k

ε2

∫ T

0

∫ L

−L
|f(uε,k)

− vε,k|2dxdt ≤ C (Da
K, T, L) ,(3.1)

for anyT , L. In particular,

f(uε,k) − vε,k −→ 0, in L2
loc,

asε ↓ 0, uniformly in k. ��
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Now we can prove the convergence of the approximate numerical solution
we have constructed.

Theorem 3.2 Let K be a convex characteristic set and assume(u0, v0) ∈
Da

K. Assume the subcharacteristic condition (1.3) and the CFL condition
(2.10) hold and assume the relaxed system (1.2) is endowed with aC2 strictly
convex entropy-entropy flux pair(η∗, q∗) with η∗ ≥ 0. Finally, assume that
the only probability measures with support inK satisfying the Tartar identity
[12] for any entropy-entropy flux pair are Dirac masses. Then, extracting if
necessary a subsequence,

uε,k −→ u in Lp
loc asε, k ↓ 0, for anyp < +∞(3.2)

andu is a weak entropy solution of the equilibrium system

ut + f(u)x = 0.(3.3)

Proof. Due to our hypothesis on the Tartar identity, in order to prove (3.2),
we have to show that the entropy production verifies

η(uε,k)t + q(uε,k)x ∈ compH−1
loc ,(3.4)

for any entropy-entropy flux pair of (3.3) and

η(uε,k)t + q(uε,k)x ≤ 0,(3.5)

if, in addition,η is convex. Indeed, theL∞ stability established in Lemma
2.1 implies, extracting if necessary a subsequence, the following weak con-
vergence

uε,k ∗
⇀ u in L∞.

Once we have proved (3.4), applying the div-curl lemma [12], we obtain the
commutative relation of Tartar for any entropy-entropy flux pair and hence
the strong convergence ofuε,k towardu, because, from our hypothesis, we
can say that the Young measure associated with this sequence reduces to a
Dirac mass. Therefore, in view of theL2

loc convergence off(uε,k) − vε,k

toward zero established in Remark 3.1, we have in particular thatu is a
weak solution of (3.3) and, by passing into the limit in (3.5), we recover the
entropy inequality for this solution.

Let (η, q) be an entropy-entropy flux pair for (3.3) and let(E,Q) be its
extension. Therefore, proceeding as in [2,6,7,11]

η(uε,k)t + q(uε,k)x =
(
E(uε,k, f(uε,k)) − E(uε,k, vε,k)

)
t

+
(
Q(uε,k, f(uε,k)) −Q(uε,k, vε,k)

)
x

+E(uε,k, vε,k)t +Q(uε,k, vε,k)x

= Jε,k
1 + Jε,k

2 + Jε,k
3 .(3.6)
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FromRemark 3.1, we know thatJε,k
1 andJε,k

2 tend to zero inH−1
loc , asε ↓ 0,

uniformly ink. Therefore it remains to control theentropyproduction related
to the extended entropy-entropy flux pair(E,Q). We will prove that this
production is bounded in the space of measuresM (and it is nonnegative
if η is convex) and we will conclude applying the Murat lemma [9]. In any
strip of the form(nk, (n + 1)k) × R, since our approximating solutions
have discontinuities which travel with characteristic speedsa and−a, the
entropy productionE(uε,k, vε,k)t +Q(uε,k, vε,k)x is zero. More precisely,
in any strip of this form, we have

(∂t + a∂x)wε,k = 0 (∂t − a∂x) zε,k = 0,

which yields the following relations

(∂t + a∂x) e+(wε,k) = 0 (∂t − a∂x) e−(zε,k) = 0,

for any(t, x) ∈ (nk, (n+1)k)×R, namelyE(uε,k, vε,k)t+Q(uε,k, vε,k)x =
0 for any(t, x) ∈ (nk, (n+ 1)k) × R. Therefore the entropy production is
due uniquely to the concentrations along the horizontal linesnk. Hence, for
any test functionΦ, we have

E(Φ) =
∫ ∫

(EΦt +QΦx) dxdt =
∑

n

∫ (n+1)k

nk

∫
(EΦt +QΦx) dxdt

=
∑

n

∫
Φ(tn+1, x)

(
E(uε,k(tn+1 − 0, x), vε,k(tn+1 − 0, x))

− E(uε,k(tn+1 + 0, x), vε,k(tn+1 + 0, x))
)
dx,

with the notationtn = nk. Our particular choice for the reconstruction of
the piecewise approximate solutions (Fig. 1) yields

E(uε,k(tn+1 − 0, x), vε,k(tn+1 − 0, x)) = e+(wn
j−1) + e−(zn

j+1)

E(uε,k(tn+1 + 0, x), vε,k(tn+1 + 0, x)) = e+(wn+1
j ) + e−(zn+1

j ),

for anyx ∈ Ij . Thus, proceeding as in the proof of Lemma 2.2, it follows

E(Φ) =
∑

n

∑
j

∫
Ij

(
e+(wn

j−1) − e+(wn+1
j ) + e−(zn

j+1) − e−(zn+1
j )

)
× Φ(tn+1, x)dx

=
∑

n

∑
j

∫
Ij

{ k2

2a2ε2
∇2(e+(w̃) + e−(z̃))

×
[
f(un+1

j ) − vn+1
j ; f(un+1

j ) − vn+1
j

]
−K

ε
∇vE(un+1

j , vn+1
j ) ·

(
f(un+1

j ) − vn+1
j

)}
Φ(tn+1, x)dx.(3.7)
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From Proposition 1.2, we get∇vE(u, f(u)) = 0 and in particular
‖∇vE(u, v)‖ ≤ C‖f(u) − v‖ for any (u, v) ∈ Da

K. Therefore, (2.11)
and (3.7) imply

|E(Φ)| ≤ C (Da
K) ‖Φ‖C0

×
N−1∑
n=0

H∑
j=−H

(
hk

ε
‖f(un+1

j ) − vn+1
j ‖2 +

hk2

ε2
‖f(un+1

j ) − vn+1
j ‖2

)
≤ C (Da

K, L, T ) ‖Φ‖C0

that is, the boundedness ofE in the space of measuresM. Therefore, we
have proved the strong convergence of the sequenceuε,k toward a weak
solutionu of the equilibrium system (3.3). Moreover, ifη is convex, in view
of Proposition 1.2, from (3.7) we get

E(Φ) ≥ 0,

for anyΦ ≥ 0. Hence, by passing into the limit in (3.6), we recover the
entropy inequality for the limit functionu. ��
Remark 3.3From the proof of Theorem 3.2, it follows also the convergence
of the numerical solutionuε,k of (1.1) toward a numerical solutionuk of
(1.2), lettingε ↓ 0 and keepingk fixed. Due to the CFL condition (2.10),
uk is a solution of the Lax-Friedrichs scheme for (1.2), which is the limit,
asε ↓ 0, of our relaxation scheme [5]. ��

References

1. D. Aregba-Driollet, N. Natalini: Convergence of Relaxation Schemes for Conservation
Laws. Appl. Anal.61(1-2) 163–193 (1996)

2. G.-Q. Chen, C.D. Levermore, T.-P. Liu: Hyperbolic conservation laws with stiff relax-
ation terms and entropy. Conn. Pure Appl. Math.47787–830 (1994)

3. J.F. Collet, M. Rascle: Convergence of the relaxation approximation to a scalar nonlin-
ear hyperbolic equation arising in chromatography. Z. Angew. Math Phys47400–409
(1996)

4. R.J. DiPerna: Convergence of approximate solutions to conservation laws. Arch.
Rational Mech. Anal.8227–70 (1983)

5. S. Jin, Z. Xin: The relaxation schemes for systems of conservation laws in arbitrary
space dimensions. Conn. Pure Appl. Math.48235–276 (1995)

6. C. Lattanzio, P. Marcati: The Zero Relaxation Limit for the Hydrodynamic Whitham
Traffic Flow Model. J. Differential Equations141150–178 (1997)

7. C. Lattanzio, P. Marcati: The Zero Relaxation Limit for2 × 2 Hyperbolic Systems.
Nonlinear Anal.38375–389 (1999)

8. T.-P. Liu: Hyperbolic conservation laws with relaxation. Conn. Math. Phys.108153–
175 (1987)
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