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Summary. We present a new class of integration methods for differential
equations on manifolds, in the framework of Lie group actions. Canonical
coordinates of the second kind is used for representing the Lie group locally
by means of its corresponding Lie algebra. The coordinate map itself can, in
many cases, be computed inexpensively, but the approach also involves the
inversion of its differential, a task that can be challenging. To succeed, it is
necessary to consider carefully how to choose a basis for the Lie algebra, and
the ordering of the basis is important as well. For semisimple Lie algebras,
one may take advantage of the root space decomposition to provide a basis
with desirable properties. The problem of ordering leads us to introduce the
concept of an admissible ordered basis (AOB). The existence of an AOB is
established for some of the most important Lie algebras. The computational
cost analysis shows that the approach may lead to more efficient solvers for
ODEs on manifolds than those based on canonical coordinates of the first
kind presented by Munthe-Kaas. Numerical experiments verify the derived
properties of the new methods.

Mathematics Subject Classification (199&5L05

1 Introduction

The adaptation of Runge—Kutta methods to homogeneous manifolds pro-
posed by Munthe-Kaas in [11] is based on canonical coordinates of the first
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kind. The methods use a Lie algebra action and a Lie group action on a man-
ifold, the two actions being related through the exponential mapping from
the Lie algebra to the Lie group. There is also a variety of other methods
which are based on this mapping, for instance those by Crouch and Gross-
man [4,13], and the ones by Zanna [17]. Even if one, in most applications
of these methods, assumes that the Lie algebra is of finite dimension, it may
still be a challenging computational task to evaluate the exponential map
for an arbitrary member of the algebra. If, for instance, the Lie algebra is
realized by means of x n matrices, one can use general purpose software
for computing the matrix exponential, but typically the cost will theiChe
floating point operations wherg can be fairly large, say 20-30. A possible
remedy for this is to replaaexp by a map that approximates the exponential
mapping, but which is cheaper to compute. For certain Lie algebras, one can
use the Cayley transform, which under the circumstances above, still costs
Cn?3 flops, but wher&” can be made much smaller. Another problem is that
alternative maps may be hard to find. Certain negative results for specific
Lie algebras support this observation. A typical one concerns the special
linear algebra!((V) of trace-free endomorphisms of a linear sp&ceand

its corresponding Lie groupL (V') of automorphisms o¥” with unit deter-
minant. Itis proved in [7] that if a functio¥, analytic at), mapss((V) into
SL(V), dim(V) > 2, and satisfieg(0) = ¥'(0) = 1, then¥ = exp. In a
recent paper by Celledoni and Iserles [2] the authors propose to approximate
the exponential map by means of splitting techniques. Suppose we need to
exponentiater € g C gl(V) and leta = ) a; with eacha; € g. It was
observed that if the rank of eaah(as an endomorphism &f) is small, then

its exponential can be computed at low cost. Moreover, their compositions
can be computed inexpensively as well.

In this work, we shall consider a fixed basis, gay. . . , e4, for the Lie
algebrag, and for the corresponding Lie grodp we shall use canonical
coordinates of the second kind. This means that in some neighbothood
of 0 in g, we define the map

QDvv:U—->G, v= Zviei — exp(vieg) - exp(vees) - - - exp(vgeq)-
(2

In some parts of the exposition, it would have cost us little extra effort to
replace the functioaxp in (1) by an arbitrary smooth map frobh C gto G,
but to maintain a convenient notation, we shall use the exponential mapping
in what follows. We note that the approach with canonical coordinates of
the second kind has recently been used by Celledoni and Iserles [3] for
approximating the matrix exponential.

The coordinate choice will together with the Lie algebra action on the
manifold M, serve to transform the differential system frdmhto a corre-
sponding system of ODEs in the Lie algelgraAn implementation of this
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transformation involves the computation of the inverse of the (trivialized)
tangent mapping o¥, denotedd¥, . This amounts to inverting & x d

linear system in each evaluation of the right hand side of the transformed
system, wherel = dim g. Thus, using general software for this purpose,
we must expect a complexity of ordg?. However, comparing with the
Munthe-Kaas approach for several of the most interesting Lie algebras, one
finds that the extra cost related to the inversion of the tangent mapping should
not have arithmetic complexity of higher order th&?. To overcome this
challenge, we have found that the Chevalley basis, known from the structure
theory of Lie algebras, can be used. This choice must be combined with a
certain ordering of the basis. We will start by considering how the differ-
ential equations can be transformed framto g, reviewing some results
from [11] and [5], in particular we will derive the expression fé¥, in-
volved in this transformation. Next, we consider a criterion on the ordering
of the Chevalley basis which allows us to cheaply invidri. We can then
study, in particular, the case wheris a semisimple Lie algebra ovér.

We also consider solvable Lie algebras, recalling that any Lie algebra can
be decomposed into the semidirect product of a semisimple subalggpra of
and the radical of, by the Levi decomposition [16, p. 224]. Finally, we will
present numerical examples which support our claims, and we will make
comparisons in terms of flops and accuracy of the derived methods with
those of Munthe-Kaas [11].

2 Lie group methods

Suppose that7 is a Lie group with Lie algebrg, and that both are acting
on the manifoldM throughA : G x M — M andX : g x M — M,
respectively. Furthermore, suppose that there is a coordinatg mgp-> G
such that the two actions are related through the equation

AMv,p) = A(¥(v),p), veEg peM.

The reader may keep in mind the particular case in whith= G, and A
acts byG on G through left multiplication, i.eA(g,h) = g - h.

Munthe-Kaas [11] introduces what he calls the generic presentation of
ODEs on manifolds in terms of the Lie algebra actihrHis assumption
is that the vector field”, which defines the differential equations df, is
related to amag : R x M — g such that

(2) y' = F(ty) = M(f(t.9)(y)-

Here )\, is a map fromg to the set of vector fields oM. Forv € gitis
defined as

_d
dt]g

A«(v)(p) A(tv, p).
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For our purposes, it is sufficient that(and thereby\,) is defined locally,
but the reader should consult both [11] and [5] for a more detailed discussion
of this setting.
The derivative of? atu is amap?,, : g — Ty(,)G. We will rather prefer
to work with the right trivialized map¥, : g — g, related to?), through

Lp/ = le(u) o d@u.

Here R, is the right translation ma@,(h) = h - g, g,h € G, andR; =
T.R, : g — T,G. An elementary modification of a theorem in [11], leads
to the following result.

Theorem 1 Let the circumstances be as described above. For any point
p € M, seth,(u) = A(u, p). Define the vector field : R x g — g relative
top e M as

Ft,u) = d@ (f(t A(u, p)))-
Then
Ap © f=Fol\,
where the composition applies to the second argumeaht of

Proof. The proof is almost an exact copy of the corresponding proofin [11]
but is included for completeness. We assume here that the Lie algébra
identified withT.G. The existence of alocal group actidn G x M — M
such thatA(®(v),p) = A(v,p) as presented above is crucial. We write

Ap(g) = Alg,p), fi(u) = f(t,u), fi(u) = f;(u), and compute

X, 0 fulw) = (4 0 2(w)) o fi(u)
= A0 Rly(, 0 ddy, 0 P, (fi 0 \p(u))
= A, 0 Ry, © fr 0 Mp(u).

For anyu,v € g we have

So finally we compute

Fo)\p() (ftoA ))( )
— Ao Rl (0 M) = Ny i
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An implication of this theorem is that one can replace the differential
system onM by the equation/ = f(¢,u) on g, and the solution of the
original equationy’ = F'(t, y) is obtained simply ag(t) = A,(u(t)). One
needs to be concerned with finding efficient methods for computing the
action\,(u) = A(¥(u), p) as well as the inverse tangent mépy;, ! (v) for
arbitraryu, v € g.

We now suppose that a differential equation on the maniidéle given
inthe form (2), and that we are solving, according to Theorem 1, the equation

(3) u' = d¥(f(t, Mu, p)))

by a classical integration method in some neighborhoogd ef M. The

most popular integration methods can be divided into two classes, the linear
multi-step methods and the one-step methods, first and foremost represented
by the Runge—Kutta methods. Also, recently the general linear methods
have increased their popularity, and offer a third alternative. The fact that
the coordinate chart centeredyabnly yields a local representation 6f
implies that one generally needs to switch charts throughout the integration,
this amounts to alteringin (3). In the case of multi-step methods, this may
cause some difficulty, since they carry approximations to the solution and
its derivative in several points, and they all have to be transferred to the
new coordinate chart whenever a switch is taking place. There are several
possibilities in handling this, and we refer to [6] for details. With Runge—
Kutta methods the situation is simpler, one can change coordinate chart in
each step without problems. All numerical results presented in Sect. 6 will
be based on the use of Runge—Kutta methods. The algorithm we obtain is,
apart from the coordinate map, the same as the one presented by Munthe-
Kaasin[11]. Let(a;;), 1 <i,j < s, be the elements of the Butcher matrix,
and let(b;), 1 < i < s, be the weights. These coefficients can be taken
from any classical Runge—Kutta method, no special requirements need to
be imposed.

Algorithm 2
Yo :=p
fori=1,2,...,s ~
u; = h ijl a; jk;
Ifi = f(hCz,)\(uz;yO))
ki := dw, ' (k;)

end .
v:i=nh Z;’:l bjk‘j
Y1 := A(v, %)

wherep, yo, y1 € M, u;, ki, ki, v € g.
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If the coefficients(a; ;) come from an explicit Runge—Kutta method,
i.e.a;; = 0, i < j, then the above algorithm is explicit. In principle, the
algorithm may also be used when the coefficients come from an implicit
Runge—Kutta method, but the resulting computational costs may then be
high.

_ Asopposed to the methods in [11], the cost of computing the correction
k; = dw,'(k;) does not depend on the order of the Runge—Kutta method,
see Tables 1-3 for details regarding the classical Lie algebras. Itis difficult to
make precise comparisons between the cost of computing the corrections in
the above methods and the Munthe-Kaas methods, because the latter make
use of Lie brackets as part of the correction, whose computational cost may
be hard to quantify. However, an upper bound for cost of computing the
commutator between twe x n matrices i2n?3 additions an®n? multipli-
cations, thus eveanecommutator computed in this way is far more costly
than the computation efi¥; ! as proposed for the classical Lie algebras

— D, discussed in Sect. 4.

Still, we believe that the major difference between the cost of the Munthe-
Kaas methods and those presented here, lies in computing the coordinate
map as a part of the action To perform a comparison, one again needs
to make certain assumptions. Suppose that a matrix representation is used
for the elements of the Lie group/Lie algebra, and that the coordinate maps
are realized as the matrix exponential (composition of matrix exponentials,
respectively). Assume furthermore that we use the matrix representations
discussed for the Lie algebras — D,. Then the cost of computing the map
(1) is for each case approximately »n? additions andl - »? multiplica-
tions. In comparison, our experience with the MATLAB functiexpm for
computing the corresponding map for canonical coordinates of the first kind
is typically a total ofC - n3 additions and multiplications. The constafit
depends on the size of the matrix elements, but in our experience it usually
lies in the rang&0-30.

3 Preliminaries

We now assume thdt is given by (1), introduce the basis, . . . , e, for g,
and compute, fot, = uie; + - - - + ugeq andv = vieg + - - - + vgeq,

d

d@u(l}) = % . R/kp(u)—l o W(u + tv)
d -1
=% exp((ug + tvr)er) - - - exp((ug + tvg)eq) ¥ (u)
t=0
d

(4) = vi1€1 + Z V; Ad euler * Ad eWi—1€i—1 (62)

1=2
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Here, for anyy € G, the operatoAd , : g — g is defined as
Adg=L'joR 1,

whereL, : h— g-handR, : h — h - g. In (4) and throughout this paper,
we will omit the symbok in compositions whenever it is convenient, thus
composition of operators will be signified by juxtaposition.

Let(ey,... ,eq) be anordered basis for a Lie algelgrand let(eq, . . . ,
e4) be the dual basis far*, i.e.c;(e;) = 6;5, 1 < 4,5 < d. For any linear
operatorA : g — g, we denote byd* : g* — g* the transpose, such that
forany¢ € g* andv € g,

(A%¢)(v) = ¢(Av).
Foreachk =0, ... ,d, we define the subspaces

Vi = span{ey, ... ,ex}, V¢ = span{egi1,... €4},

where we takdp = Vi = {0}, andV; = V§ = g. We also define the
projectorPy : g — V¢ by

d d
Pk : E Vi€ — E vj€j,
i=1 j=k+1

and we letP, andP; equal the identity and zero operatorgmespectively.
For eachu = ) u;e; € g, we define the linear operatofs] cuier : g — g
by

X(Te“kek :I—P/g+Ade“k5kP]g, k‘:l, ,d.
Definition 1 We shall say that the ordered badisi, ... ,¢;) is an ad-
missible ordered basi®\OB) if, for eachu = ) uje; € g and for each
i=1,...,d—1,we have

(5) Ad eui€el * Ad euieif)i — ﬁeulel et ﬁeuieiPi.

SinCGPZ‘_1<€Z‘) =e,t=1,...,d—1, andXd\euiei(ej) = ¢€j, 7 <1,
we obtain

Proposition 1 If the basis(eq, .. . , e4) is an AOB, it holds that

dg/u = Kaeu1€1 cee Kaeud_led_l, forall v € g.
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This result serves as a motivation for the above definition of an AOB. Each
of the operatord\d quxer., k = 1,... ,d — 1, are invertible whenever =

> u;e; belongs to a sufficiently small neighborhoodlof g, in which case

we have

—1

AU = Ad i reas - Ad prer -
Suppose that the ordered basis can be chosen such that fordsome,

Vi is an abelian subalgebra gf Then the restriction oAd cuiei, i > d.,
to V; is the identity operator oy and it follows tha@eui«zi, 1> dy,
is the identity operator on all gf. Thus, for an AOB with this property, we
have

4 -1 —-1
(6) dLT/u == Ad e”d* €dy * " Ad evlel -

Considering Definition 1 it may seem difficult to find an AOB for a Lie
algebray, or even to verify whether a given ordered basis is an AOB. For this
reason we give the following tool for determining an AOB for an arbitrary
Lie algebrag.

Theorem 3 Let (e, ... ,e4) be an ordered basis fog and suppose that
for all pairs of integers(i, m) such thatl < m < ¢ < d — 1 and for all
u =), ue; € g, either

PrAdfuiesem = 0,
or
[em,en] =0, m<n<i.

Then(ey,... ,eq) is an AOB forg.

Proof. We use the shorthand notatioty = Ad juje; andﬁj = Kd\eujej,
and set); = I — P;. Thus,A; = A; + (I — A;)Q;, and we compute, for
anyw € g,

+ Z A\l tee A\j_l(I - Aj)QjAj—i-l tee Al.PzU)

r—1
Zr = Zgl"'gj—l(I_Aj)QjAj—ﬁ—l"'ATPry 1§T‘§Z—1
J=1
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We wish to prove, by induction of that Z; vanishes on all of;, for each
1 < i < d— 1, under the assumptions of the theorem. This holds trivially
fori = 1. Suppose that for some> 1, Z,. =0, 1 < r <i— 1. Then set

d
A Pw = Z €m(A7;.PZ‘U))6m,
m=1

so that

Z A Pw ZAI J 1 I A; )Q] j+1 Ai_lem.

o
i1 4
We now split the outer sum into two parls ~ + > . In the latter sum,

m=1 m=1i
we may replace,, by P,_;e,, and discard the last term of the inner sum,
j =1—1,sinceQ;_1e, = 0, m > i. Thus we can invoke the induction
hypothesisZ; 1 = 0, and conclude that

Zw— Z&m APw ZAl ] 1 I A)Q] j+1 Aiflem.

Let1 < m’ < i — 1 be any integer such that, (A; P,w) # 0 for some
w € g, orequivalentlyP; Afe,,,, # 0. The assumptiofe,,,/, e,] = 0, m’' <
n < i— 1, implies thatA,e,,, = e, so if we split the inner sum in two
pieces form = m’, we get

”MI
N
D>
;5
E
:L
>
3

+ZA1 A (I — A)Qjem.

The first sum vanishes by the induction hypothesjs, | = 0, sincee,,,y =
P,y _1e,y. Inthe second sum we note that since m’, Qe = ey, and
(I — Aj)eny = 0sincele;, e,y ] = 0. This concludes the proof.

When the basis can be chosen suchihat is nilpotent for many of the
basis elements;, it is useful to recall the relatioAd .«;¢; = exp(ad u]e])
and we can rephrase Theorem 3 as follows

Corollary 1 Let (ey,... ,eq) be an ordered basis fag and suppose that
foralll <m<i<d-1,keN, either

P; (adk) em =0,
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or
[em,en] =0, m<n<i.

Then(ey,... ,eq) is an AOB forg.

4 The semisimple case

In this section we consider semisimple Lie algebras dveMost of the
tools we use are valid for any algebraically closed field. We will use, without
proofs, several well known results from the structure theory of semisimple
Lie algebras, the reader may consult the texts [10, 16, 8] for details and
proofs, and also [1] which gives a good introduction without too many
details.

We start by recalling that for any Lie algebra, théling form is de-
fined as the bilinear formz(u,v) = Tr(ad, o ad,), for u,v € g. A Lie
algebra is semisimple if and only if is nondegenerate. Every semisimple
Lie algebra contains semisimple elementsq g is semisimple ifad ;. is
diagonalizable). A subalgebfgis toral if all its elements are semisimple.
Moreover, ifh is not properly contained in any other toral subalgebra, it is
called amaximal toral subalgebr@TS). For semisimple Lie algebras, an
MTS always exists. A toral subalgebra gfs abelian, and the eigenspace
of eachad j,, h € b, equals all ofy. Thus, the operatoesl ;,, h € b, form a
commuting family of linear transformations gfand are thereforsimulta-
neously diagonalizablén other words, there exists a full set of eigenvectors
shared by alhd 1, h € . For each such eigenvectere g, there is an ele-
menta in the dual space™ of h such thafh, x] = a(h)x for eachh € . In
particular, the O-functional correspondgtoc g : [h,z] =0V h € b}, the
centralizer offy in g. It can be proved thdt equals its centralizer ig. The
a # 0inh* defined as above are callembts, we denote by the set of roots.
For eachw € h*, we letg, = {z € g : [h,2] = a(h)x, V h € h}, and we
can thus write down theot space decompositiar Cartan decomposition
of g as a direct sum

g=bho H Ja-

acP

The reader should note that the element®addre not generally linearly
independent iy*. For future use we defing = & U {0}.

We summarize some properties of the roots, the proofs can be found in
[10] and [8].
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Theorem 4

a. Eachg,, a € @, is one-dimensional.

b. If x € g, thenad . is nilpotent.

c. Forarbitraryo, 8 € h*, we havég,, gg] C go+ 3. Moreover, ii, 5, a+
B € @, then[ga, 9] = ga+s-

d acd = —acd.

e. The restriction of the Killing form tf is nondegenerate.

A choice of basis fog known as th€Chevalleybasis is obtained by choosing
one basis vector for each subspggealong with a particular basis fdy.

The existence of baseis significant for our further use of roots. A subset
Aof @is abase if

1. A= (ay,...,q)is abasis ofy*.
2. Each rooty € @ can be written as

4
o = E Qg
1=1

with integer coefficients; that are all nonnegative or nonpositive.

Abase exists for any system of roots. The above properties of a base, together
with d. of Theorem 4, allow us to spli into two disjoint subsetsh™ and
¢~ of the same cardinalityp = ¢+ U &~. The positive root$™ are those
which can be written as a nonnegative linear combination of the elements
of A.

The fact that the Killing form is nondegenerate lpgives us a way to
identify h andb* in a unique way. We may associatec h* with ¢, € b
if ¢(h) = k(tg,h) for all h € b. In this way, we also obtain a bilinear
form onbh*, defined for anyy, 3 € h* as(«, B) = k(ta,tg). Given a base
A = (aq,...,ay) this identification determines a basis fprwe take it to
be the sethq,, ... , hqa,)

2tq,
F(ta ;)
We may now express any basis fipito be used in the AOB as a linear
combination of the:,,. The choice which is optimal with respect to com-
putational cost may depend on the Lie algebra, we may in each case use

Proposition 2 below to search for an optimal basisifdfirst, with a given
base for a semisimple Lie algebra, the numbers

(7) hozi =

2(0[1', Oé])
(v, vj)
are called the Cartan numbers. It can be shown that they are all integers, and

C = (Ci;); j—; € 2" is called the Cartan matrix. It turns out that, up to

;o 1<i,j<{,

Cij = (ai,qj) =
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isomorphismsC determines the Lie algebra completely. The structure of
Lie algebras in terms of their root systems is of course studied extensively
in the literature to which we refer for more details. However, we just remark
here that the number of possible root systems are limited, and in the sequel
we shall study the most important of them. Before we proceed to this point,
we shall prove some general results which will be useful later.

Proposition 2 Let3 = 3>¢_, r;a; € @ and let0 # e € gg. Then, for any
basis element,,; under the above identification, we have

1
ad eg(ha]-) = — Z nCmeg.
=1

Proof. We compute

We are now in a position to characterize an AOB in terms of the root system.

Theorem 5 Let {f1,...,84.}, di = d — ¢, be the set of rootg for a

semisimple Lie algebrg. Suppose that a Chevalley basis is ordered as
(RPN TN S PR 1)

whereeg, € gg,, and(h1, ... , hy) is a basis foty. Such an ordered basis is

an AOB if

kBi + Bs = Bm, m<i<s<dikeN
(8 = Bm+B.gd, m<n<i-l.
Proof. We may check that the conditions in Corollary 1 are satisfied. We

use the convention; := eg,, 1 < i < d,, andeg,4; := h;, 1 < j <4,
whenever it is convenient. Fey € b, ad ’ga = 0forall k € N, so the first
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condition of the corollary applies for atk < i. Next, suppose that < gg,
for some root3;. We compute for arbitraryw € g, k € N, andm < i

d d«
em(adf Pw) = Y ey(w)em(adlies) = > es(w)em(adles).
s=i+1 s=t+1

The last equality results from the fact that whenever- d., we have
es € b, and thude;, e;] € g, andad ’;ies = 0 for k£ > 1. From propertyc.

in Theorem 4 we conclude that the only cases in whick- ad e, # 0
are wheny := kj3; + 8, € . If v = 0, thenv € b, thuse,,,(v) = 0. In fact,
we obtain a nonzero term in the above sum if and only if there ig arnth

1 < s < dy such thats,, = kG; + Bs € &. In other words, this condition
corresponds precisely tB;* (ad ’g)* em # 0. In such a case, we need to
impose the condition that,,,, e,] = 0, m < n < 4, and this means that
B+ Bn €8, m < n < i.

Note that since alty, ... , ey, aread -nilpotent, it suffices to check that
(8) holds for integers < k < k., wherek, is the smallest integer such that
ad B+l = 0.

Proposition 3 If an AOB (e, ... ,eq) for g is ordered as above, and if
ei € gs,, Bi € P, then

’L’

whereadg? =0 for m > k..

Proof. Note that with the ordering above] # P, ad? P, = ad ¥+"P;. Now

_ R ok
Adeuiei == I_Pz due [ 72
(I = P)) + exp(ad u,c,) kz o

By direct computation we get the required result.

Inthe discussion that follows, we shall always assumethat (o, . . . ,
ay) is a base, and we define the elementg;gfof h* as

j
Bij=> ak 1<i<j<lL
k=i
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4.1 The Lie algebrad,

This Lie algebra is commonly represented as the set of trace free complex
(¢ +1) x (¢ + 1) matrices and is denoted(¢ + 1,C). The MTS is the
¢-dimensional subalgebra of diagonal matrices. The set of positive roots is
[16, p. 296]

{Bij, 1 <i<j</t}
It is obtained from the Cartan matrix

2 -1
-1 2-1
Ca, = SRV
-1 2-1
-1 2

Letting e, be therth canonical unit vector it©‘*!, we find thatgg, ; is
spanned byaie;fﬂ, 1 <14 < j < 4. For the negative roots 3; ;, we have
ejie; € g-p,,- Finally, as a basis folj, we may for instance take the
elements;el —e; e, 1 <i < ¢ Inparticular, we immediately obtain
a real realizatios(¢ 4+ 1, R) where all the roots belong. In consequence,
everything we do here withi(¢ + 1, C) also holds for the corresponding
representation of((¢ + 1, R).

We consider how the basis can be ordered such that an AOB results. With
the conventiores € gg, 5 € @, h = span(ey,, ... ,ep,), let

B = (eﬁiw‘l"" €8s jmr €—Biy iy 3 E—Bipn i €Oy - - 1 €h,)s

wherei; < i < --- < i, andm = £({ — 1)/2. We claim thatB is an
AOB for sl(¢ + 1,C), and prove it by using Theorem 5. Létbe ordered
in correspondence withs and consider first a positive rogt, ;, = «;, +
-+ . If a € dissuchthaty = k3;, 5, +a € o with 3; ;. < a,
k € N, theny = j;_ ;, with i; > i,. Thus, eithery > 3; ; ori, = 1i,, but
in the latter casey + 33;, ; ¢ @ for all j > 4,.. Similarly, for negative roots,
—,81‘“]‘,,, = -0y, — Q. Again, ify = _ﬁimjr +a € dwith o > ﬁimjr
theny = —3;, ;, with ¢, > ¢, and we conclude that above is an AOB for
g.

In computingd?¥,, ! (v), we may apply (6) together with Proposition 3
with k&, = 2. In fact, since the coefficient af; in the expansion of any
root is eithero, 1 or —1, it is clear thatca + 3, « € @, 5 € D, is neither
0 nor contained ind if £ > 2. In particular, we notice thatink(ad 2 ) =
1 whenevere; corresponds to a rogt (e; € gg), since the only root
satisfying23 + o € ¢ is a = —[3. We next consider the computational
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complexity involved in computing?,,*(v) for si(¢ + 1,C). We split the
computation into smaller tasks, and begin by studying the cost involved in
computing, for arbitraryw € g, the expression

1 1
9)  Adupe, (W) = w — ug [eg, w] + iuz lek, [ex, w]], 1<i<d,,

where we assume thatis given in the formw = Z?:l wje;. Suppose that
er = eg € gg, wheres € @is of the formg3 = £43; ;. We identify the basis
vectors that do not commute wigh, since only those will affeat. We begin
by choosing as a basis fgr the vectors; = h,,, i = 1,... ,n, defined
by (7). By Proposition 2 and the Cartan numbers, we se€dhat,,] = 0
unlessn = 3,7 — 1,4,7 — 1 (otherwise the coefficient multiplying is 0).
Thus, we obtain at most 4 updates caused by the elemeftstioé cost
is one addition and one multiplication for each. Next consﬁdﬁjﬁ(e,g),
k = 1,2. Note that, due to the ordering of the basis, this case only occurs
whenj € &*. From a result in [10, p. 37] we conclude thag,e_g] =
hg € b, hg = 2tg/k(ts, tz) under the identification df andh* introduced

J J
above. Hence, sincé = 3, ; = Zan, we deduce thalts = Zh%. So

n= n=
j —i+ 1 updates result, requiring each one addition and one multiplication.
Whenk = 2, we compute

leg, bl = —B(hg) eg = —(B,8) eg = —2ep.

This —2 cancels the factot /2 in (9), thus in this update, we need two
multiplications and one addition. Finally, consideg, e, ], wherea # —(
is an arbitrary root. If$ = 3; ; € 7, thena is of the form

Bjtim, j+1<m </, { — j elements,
—Bim, 1 <m <L, m#j, {—ielements,
—Bm.,j, 1 <m < j, m#i,j—1elements.

If 8 =—3;; € &7, thena € &~ isof the forma = -3 1 m, 7 +1 <
m < /£, thus there aré— j noncommuting elements. Each of these updates
costs one addition and one multiplication.

For this particular Lie algebra, the above analysis will lead to the pre-
cise computational cost of computing, ! in terms of arithmetic opera-
tions. However, for other Lie algebras this counting process is more compli-
cated, especially since there may or may not be a constant multiplying the
u; (u? resp.) in each update, thereby in some cases adding to the number of
multiplications. We therefore choose to give the number of updates required
for each evaluation of¥, !, and we divide the updates into categories as
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Table 1. Number of updates needed in the computatiodf * (v) for A,

Elements ofy  4¢°
Reflected root ¢ 4+ 1¢° + 14

2 2
ad uges %Z + %E
All other roots  ¢3 — ¢
Total 20+ 502 — 44

described in Table 1. The result in each category is obtained by summing up

the updates for all operatofﬁ;}jej that occur in the expression faw,, !

Note in particular, that thé® terms come from the categories “All other
roots” and “Reflected root”, where the cost is one addition and one muilti-
plication for each update.

4.2 The Lie algebra’y, [ > 3

The symplectic Lie algebra(2¢, C) has the root system @f, and a usual
representation is

sp(20,C) = {u € gl(n,C) : ' J + Ju=0}, J= [_Ojé {ﬂ .

One easily checks that such matrieesiust be of the form

u:[Q M ] M=M" N=NT.

N -QT
We let, as beforeq, ... ,a, be a base. The positive roots @ty are
obtained from the Cartan matrix
2 -1 1
-1 2-1
Ce, = ;
-1 2-1
- 72 2_
they can be characterized in terms®f; = i:i a, as follows [16, p.

301]
ot = {85, 1<i<j<&} |J{Bie+Bju—r, 1<i<j<l—1}

Thus, the dimension afp(2¢, C) equals2/? + ¢. Note in particular that all
roots are of the formy = > 7% . r, ,a, with eachr,, # 0 having the

n=iq
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same sign. We use this notation to introduce an orderingacording to
the following rules.

l.ay€edt,a_ €d” = a, <a_

Ja ip
2. f a = Z TanQn, = Z 7800, @, 3 € @ (@~ resp.) then
N=tq n=ig

a< B &= ja>Js.

There always exist orderings satisfying 1 and 2, but generally more than
one. We claim that the corresponding ordering of the basis leads to an AOB.
Note first that if a coefficient,, ,, is such thatr, ,| > 1 thenn < ¢ and
|Ta,e| = 1. We suppose that € & and use Theorem 5. f = ka + 3
with 3 > «, then eithery € 7, thusy > « or else,j, < j,. In the latter
case, eithety > «, or j, = j,, butthen alb € @ satisfyingy < § < aare
such thaty + ¢ ¢ @. The argument forr € ¢~ is similar, and we conclude
that the ordering above leads to an AOB.

As a choice of basis fdy in the case, we recommend to use the vectors
(h1,...,hy), obtained as linear combinations of thg, defined in (7), as
follows:

J4
1 .
hi=Y ha; — Fhae, i=1,.. L
Jj=t

This particular choice causes, for gllc @, [eg, h;] = 0 for a minimum of
¢ —2members of hq,... , hy}, according to Proposition 2.
Itis easy to check thatif € &, then the corresponding basis elemegnt

satisfiemd? = Ofork > 2. Thus, we can use Proposition 3 with= 2 for
Lo ———1 .
computingAd .«;; . Moreover, one can prove thatnk (ad ga) is either 1 or

3foreachy € @. Certainly,0 # ad 2 (e_q) € span(e,) foranya € ¢. We
proceed by making the change of variables= \; — A1, 1 <i< /-1,

ay = 2),. Then, the roots have the forta(\; — \;), 1 <i < j < ¢, and
(A + ), 1 <p < g < L Thus, the remaining possibilities for obtaining
2a+pedare lfa=+(\—)\), 1 <i<j</thenf = £2)\;
orB=TF2\. Ifa==x£N+ ), 1 <p<gq<{ theng = F2)\, or
F2\;. Whena = 2, 1 < p </, we getrank(ad? ) = 1. We shall omit

the details about the cost of computidg, ' (v). The situation is similar,
although somewhat more complicated tharst¢f + 1, C). Itis for instance

nolonger true thatwhenever= o+ € @, [eq, eg] = £e,, inotherwords,
one sometimes needs to multiply the result with an appropriate factor. This
complicates the counting of arithmetic operations. We will give more precise
results about the computational cost of computig ! (v) in the numerical
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Table 2. Number of updates needed in the computatiod®f * (v) for C;

Elementsofy  4¢% — 2¢
Reflected root 2¢% — ¢

2 2
ad uges gﬂ — %E
All other roots  4¢% — 602 + 2¢
Total 4060+ 50 — 50

experiment section. The number of updates is given in Table 2. Depending

on the type of root, an update costs one addition and 1-3 multiplications.
Note, in particular, that the dominant tertd?, comes from the category

“All other roots”, where the cost is one addition and one multiplication for

each update.

4.3 The Lie algebrd3,, ¢ > 1

The orthogonal Lie algebrao(2¢ + 1,C), has the root system dB, and
can be represented as matrice€I&‘t1)* 2¢+1) of the form

0 a¥ »T
b Q M |,abeCl M,N,QeC> M"=—-M, N'"=—N.

It is also possible to represent elementsa®/ + 1, C) as complex skew-
symmetric(2/ + 1) x (2¢ + 1) matrices, but it leads to a more complicated
form of the basis vectors, corresponding to roots.

The Cartan matrix is

2 -1
-1 2-1
Cp, = ;

which yields the positive roots [16, p. 304]
St ={Bi;, 1<i<j<&} |J{Bu+ B 1<i<j<i}

We therefore see that the dimensiosof2/ + 1, C) is 202 + (. Also in this
case, any root can be written in the fornw = 7% . r, ,a, with each

n=iq
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ra.n 7 0 having the same sign. With this notation we propose the following
ordering of®.

l.a, €dt, a_ €d™ = ay <a_

Ja jﬁ
2. If a = Z TanOn, B = Z T8n0n, Q, 3 € &* (&~ resp.) then
Nn=tq n=ig

a<f <= jo<jp

One can prove that such an ordering corresponds to an AOB, the argument
is almost identical to that farp(2¢, C).

As basis(hy, ... , hy) for b, we recommend to use
¢
hi=Y hay i=1,...,L
J=t

This leads again to maximum two updates for edeh ® when we consider
[eg,hi], 1= 1,... ,ﬁ.

The cost analysis foB, is almost identical to that of’,, we obtain
precisely the same number of updates. We find again that for all®,
ad® = 0 wheneverk > 2, so that Proposition 3 holds with, = 2. And
rank(ad 2 )is either 1 or3fory € . The update counts for the computation
of d¥, ! (v) is identical to those in Table 2.

4.4 The Lie algebrd),

The Lie algebrao(2¢, C) can be represented as matrices in the form
[f\)] _]gT] , M,N,QeC™ MT"=_-M, NT=_N.

Alternatively, we can us@/ x 2¢ skew-symmetric complex matrices as
representation.
The Cartan matrix is

2 -1
~1 2-1
Cp, = 1 2-1 ;
1 2-1-1
1 2 0

-1 0 2]
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Table 3. Number of updates needed in the computatiodf * (v) for D,

Elementsof) 4/ — 44
Reflected root 262 — 2¢

ad? ses 02—y
All other roots  4¢% — 1202 + 8¢
Total 403 — 502 + 4

and the positive roots are [16, p. 298]

t={B, 1<i<j<{} U{ﬂz’,@ﬂ-i-ﬁj,e, 1<i<j <y,

where 3, , is ignored wherp > ¢. The dimension oo(2¢,C) is thus
20 — ¢

Now all roots can be written in the form = ff i5 TB,n0m, Where at
leastrg;, # 0, rg, # 0, and where all5,, are either nonnegative or
nonpositive. One can use the same approach aSfoo argue that if the
roots are ordered according to the rules

l.a,€dt,a_ €d = ay <a_

Ja ip
2. f a = Z TanQn, = Z T8n0n, O, 3 € &* (¢~ resp.) then
N=tq n=ig

O‘<ﬂ<:ja>jﬂa

then the corresponding ordered basis is an AOB.

As basis fory, we chooséh, ... , hy), where
¢
= ha, = s(hay, T he,), 1<i< -1,
j=t
1
he = 5( hae 1 +h0¢e)

Again, we can usg, = 2in Proposition 3, and in this casenk(ad gﬁ) =1
forall g € @.

We omit the details of computational cost, the main results are given in
Table 3.

4.5 Other semisimple Lie algebras

Apart from the Lie algebrasgl, — D, there exists only a finite number of
semisimple Lie algebras with irreducible root systems, meaning thatthe base
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A cannot be partitioned into two disjoint subsets which are orthogonal with

respect to the Killing form (alternatively, the Cartan matrix is an irreducible

matrix). In the case of Lie algebras with reducible root systems, we can

divide them into irreducible subsystems and treat each of them separately.
The remaining root systems aw, Fy, Eg, E7 andEs. In principle, one

can do the same type of analysis for these cases as discussed above, but we

shall only give a few details for the caé&, having Cartan matrix

2 -1
e[ 2.

The dimension o7 is 14, thus there are 6 positive roots, namely
ag, a1 + ag, 3o + 2a, 201 + ag, 3a1 + ag, ag.

In fact, if the corresponding basis is ordered with the positive roots first as
above, then followed by the negative roots in the same order and finally a
basis forh, then an AOB results.

For G5, one needs to use. = 3 in Proposition 3.

5 The solvable case

In a solvable Lie algebra, there exists an ascending series of iggals,
with dimg; = k such thatg; C go C --- C gq = g. In this case, it is
particularly easy to settle the existence of an AOB, for instance by letting
span(eq_k+1,- - - ,eq) = gk In particular, this implies that for ea¢hV¢ is

stable undesd ., and this implies thaP; (ad ’g)* em = 0forallm < ¢in
Corollary 1. However, in general, this may not be the most efficient choice
of basis. Keeping in mind théj, g| is nilpotent for any solvable Lie algebra,

we may hope that a significant number of the,, are nilpotent. Even so,

we cannot, in the above situation, be guaranteed the pleasant properties of
the Chevalley basis used in the semisimple case, for instancie that €
span(e, ) forsomer. For solvable Lie algebras, there may not existany MTS.

A tempting modification could therefore be to replace the MTS Baean
subalgebrawhich s, by definition, a nilpotent selfnormalizing subalgebra of

g, guaranteed to exist at least for Lie algebras @Vver R. But in our setting,

the Cartan subalgebras have certain unfavourable properties, for instance,
they are not necessarily abelian, and their elements need not be semisimple.
We believe that, in general, a more satisfactory solution is obtained if a
toral subalgebra can be identified. Unfortunately, such subalgebras do not
necessarily exist, but we shall present an example where such an approach
can be used.
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5.1 The solvable Lie algebrdn, F)

LetF be eithefR or C. The Lie algebra(n, F) can be represented as a sub-
algebra ofgl(n, ), consisting of upper triangular matrices. The dimension
of t(n,F) is clearlyd = n(n + 1)/2. The diagonal matrices form a toral
n-dimensional subalgebria of t(n,F). In particular, this subalgebra is a
Cartan subalgebra fafn, ). The root system leads to a basis of the type
ez‘ejT7 1< j<n.

This basis yields an AOB if for instaneg_,,.; = eieiT,z' =1,...,n,and
the remaining elements are ordered such dapé;-fl < ej,el whenever

J2
i1 < i9. With this basis, we find thatd? = 0if » < d — n and we can

r

derive a particularly simple form of#, !, namely

d—n
dv, ' =1-) ady. P,

r=1

wherey = Zle u;€;.

6 Numerical experiments

With the purpose of the numerical simulations merely being to illustrate
and verify the above theory, we have chosen to only consider real matrix
Lie groupsG € GL(n,R), with corresponding Lie algebrg and let the
manifold M beG itself. We use the obvious real realizations of the represen-
tations ofA, — D, presented in Sect. 4. In the setting of Sect. 2 the Lie group
acts on itself by multiplicatioml(g,p) = g - p. For any elemeny € G,

we enumerate the matrix elements column by columg,as. . , y,2, and
define in all casegl, — Dy, the mapf : G — gin (2) as

d
(10) fly) = (Z ym) /lyle,
i=1

whered < n? is the dimension of. As initial condition we use the identity
matrix and we let the particular Lie algebras Ag,), Bs, C5 and Ds, re-
spectively. We compare the results from the integration methods proposed
in this paper with results generated by the Munthe-Kaas method [11] opti-
mized using free Lie algebra techniques [12, p. 20]. We denote this method
by MK and let A — Ddenote the integrators based on the four classical Lie
algebras. All the numerical methods are based on the coefficients of “the
classical Runge—Kutta method” [9, p. 138] of order four.
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Table 4. Flops ratio between Munthe-Kaas methods and new methods such that the obtained
global error is10~°

Pi(N1) Pi(N2) Pi(N3) Px(Ni) Ps(Ny)

A 4.1 2.8 2.6 4.5 3.9
B 4.5 4.7 3.9 7.3 3.2
C 4.3 3.4 4.2 3.1 2.7
D 6.0 4.3 3.3 5.9 3.0
-2 B -2 D
10 10
B D
107 - — - MK 107 - — — MK =
5 5 =7
% 10° % 10° ==
=) =) i
10° 10° - g
/
10 10 10 10
0 2 4 6 8 10 0 2 4 6 8 10

Fig. 1. Global error for simulation of (10) on the intenjal, 10]

Figure 1 shows global error as a function of time for B and D. For a
given stepsize, the global error generated by the new methods tend to be
slightly larger than the one produced by the Munthe-Kaas method, but this
depends strongly on the problem. However, when measuring the efficiency
as the number of flops required to obtain a prescribed global error, the
proposed methods are superior to the Munthe-Kaas method, as is indicated
in Figure 2 for the above problem. This observation has been supported
through a number of other numerical tests we have done. Rather than giving
all the details for these tests, we have chosen to present in Table 4 the ratio
between the number of flops required by the Munthe-Kaas methods and the
new methods in order to obtain a global errot@f ¢ for arange of problems.

The problemP; is defined by (10) and, and P; are other similar artificial
problems. HeréV; = 10, Ny = 20, N3 = 30 are related to the dimension

of the problem. For cases A and B, the problems are phrased in the Lie
algebras((N; + 1, R) andso(V; + 1, R), respectively. For cases C and D,
we have usedp(N;,R) andso(N;, R), respectively.

We also tested a problem based on the Lie algébraR ), defined in a
similar way as (10), the difference being that we replat@d with f((y +
yT)/2). In the casen = 10 we recorded a flops ratio &f.1 for a global
error of 1076,
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A B
A B
- - - MK - - - MK
10° 10°
S )
@ <
3 3
fe) Qo
o o
o [=)]
10710 10*10
10* 10° 10° 10" 10* 10° 10° 10"
flops flops
C D
c D
- - - MK - - - MK
10° 10°
s s
@ 5
3 3
fe) Qo
) o
o (=]
10 10 loflO
10* 10° 10° 10" 10* 10° 10° 10"
flops flops

Fig. 2. Efficiency of the integrators measured as global error versus flops

We have used the MATLAB functioexpm as the exponential mapping
in the Munthe-Kaas method, and tfieps function is used for counting
flops. Since the cost involved in evaluating the right hand side fungtisn
the same for all the numerical methods, we have not included it in the flops
count, the purpose being to remove factors disturbing the actual comparison
of the methods.

As pointed out in Sect. 4, it is possible to count numbeupélates
involved in computingd®, ! (v) simply by studying the properties of the
underlying root systems. However, in practice there are other effects which
come into play in an actual implementation. One aspect which was men-
tionedin Sect. 4 is thatthe number of flops required for each update may vary.
Another factor is that there may be overhead costs involved, for instance in
initializing counter variables in loops.

Table 5 shows polynomials fitted to the flop counts observed from our
actual implementation of the algorithms. We see that, Ber— Dy, the
leading term is3¢3, which is twice the leading term in Tables 2 and 3. This
is consistent with the fact that tifé term comes from updates consisting of
one multiplication and one addition.
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Table 5. Computation cost measured in flops for the~! mappings. The matrix represen-
tations and orderings of the basis elements are as described in Sect. 4

A 20 4+11° + 10 (30 +In®—14n+38)
Be: 8%+ 80* — 64 (n® —n? —4n +4)

Ce: 8+ J02 =50 (n®+ In? 121 n)

Dy: 86— 4+30  (n® 19 2 )

2

n° —n” + n
t(n): %n‘3+n f%n

. Coordinate mapping, ¥ 5 Inverse of d¥
10 10
expm dexpinv
— W(©) dvi(c)
- — - YD) -1
] [ - — - d¥ (D
210 2100] ©)
S k]
g z
£ 10° £ 10}
c c
7
7
2 4 2

10 10

0 2

10 10 10" 10
dimension (1) dimension (1)

10

Fig. 3. Cost of computing coordinate mappings and the inverse of their differentials. The
dexpinv function is the fourth order approximation to dexpobtained by truncating its
series

Figure 3 shows the cost of the coordinate mappings and the inverse of
their differentials. The mappings(C,) and¥(D,) as well asd¥~1(Cy)
andd¥~!(D,) are computed exactly, while the exponential function is the
MATLAB expm function. The dexp! is an infinite sum of commutators,
and since the simulation in this section have been conducted with methods
using coefficients of a fourth order scheme, we havaléetpinv be an
order four approximation to dexp.

Table 6 lists the cost involved in computing the coordinate mappings
U € g — G. Again, these polynomials are based on counting of operations
in our implementation. For instance, we remark that the flops count for
computing?,, depends, among other things, on whether the compaosition of
the exponentials is done from the left or right, i.e., whether one begins with
exp(viey) or exp(vgeq).

In developing codes for computing?, ! it seems necessary to make
extensive use of pointers (indirect addressing). For this reason we have not
tried to analyze the cost in terms of CPU time in our numerical experiments.
The efficiency with respect to time consumption will depend strongly on
details of the implementation, as well as on the software and hardware
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Table 6. Computation cost measured in flops for the coordinate mapgmghe matrix
representations and orderings of the basis elements are as described in Sect. 4

n® —n? +4n

n3+3n2—g

Ap 24202 +50+4
Bi: 803 +240% + 110+ 1

—~ o~ o~
— 3
D=
~—

Cot 840 +1 n®+in®+1
Dy: 80° =50 —20+1 n®—2n* —n+1)
t(n): n®—5n* —n+1

environment in which the code is executed. All the numerical experiments
presented in this paper are done with Matlab.

There exists a number of software packages for Lie group and Lie al-
gebra computations which may be useful tools in developing and analyzing
methods of the type presented here. We mention in partitid4i 5] and
GAP [14].

7 Concluding remarks and open problems

We have presented a new approach for solving ordinary differential equa-
tions on manifolds. Our main purpose has been to demonstrate that such
methods can be implemented cheaply, and thereby constitute a worth while
alternative to the methods of Munthe-Kaas [11]. There is still a lot of work
do be done in the construction and analysis of these new methods. A natural
first step will be to apply them to real problems, for instance in computational
mechanics. In such settings, it has proved useful to phrase the equations and
thereby the solution techniques by means of the coadjoint action of a Lie
group on the dual of its Lie algebra.

In this paper, we have focused on semisimple Lie algepmagrC, but
we should also be able to handle particular real forngsBbr instance, in the
case ofB, (D, resp.), itis of interest to consider the compact realization of
real skew-symmetria x n matrices where = 2/+1 (n = 2¢resp.), and it
is not clear from the present paper how this is done in the best way. Certainly,
the natural choice of basis elements in this representation is the set of rank
two matrices;iejT —ejel, 1 <i < j <n.However, one can prove that no
AOB can result from this basis if constructed in accordance with Theorem 3
when/? > 2. Instead one can consider alternatives to AOBs. An attractive
feature of the admissible ordered basis is that it causes the opé#gtbto
factor intod, operators as in (6), each depending onlyooecoordinate of
the second kind. We could relax on this requirement, and demand#at
be written as a composition of somewhat fewer factors, each depending on
a “small set” of coordinates, such that the cost of computing it would still
be acceptably low. Another natural generalization of the present approach,
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is to replace thexp function in (1) with some other mag, but since the
cost of computing the exponential of basis vectors of the type used in our
examples is already very low, we doubt that there is much to gain in terms
of computational cost by replacingp.

Apart from what can be seen in the numerical experiments, we have
not been able to quantify the error growth in the new methods compared
to that of the Munthe-Kaas methods. It is possible to find examples where
either of the method types has the smaller global error for a fixed stepsize.
However, in all the tests we have performed, the obtained global error vs the
number of floating point operations has been significantly smaller with the
new methods. Generally, the error growth in integration methods based on
actions, is an interesting subject for further studies.
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