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Summary. We present a new class of integration methods for differential
equations on manifolds, in the framework of Lie group actions. Canonical
coordinates of the second kind is used for representing the Lie group locally
by means of its corresponding Lie algebra. The coordinate map itself can, in
many cases, be computed inexpensively, but the approach also involves the
inversion of its differential, a task that can be challenging. To succeed, it is
necessary to consider carefully how to choose a basis for the Lie algebra, and
the ordering of the basis is important as well. For semisimple Lie algebras,
one may take advantage of the root space decomposition to provide a basis
with desirable properties. The problem of ordering leads us to introduce the
concept of an admissible ordered basis (AOB). The existence of an AOB is
established for some of the most important Lie algebras. The computational
cost analysis shows that the approach may lead to more efficient solvers for
ODEs on manifolds than those based on canonical coordinates of the first
kind presented by Munthe-Kaas. Numerical experiments verify the derived
properties of the new methods.

Mathematics Subject Classification (1991):65L05

1 Introduction

The adaptation of Runge–Kutta methods to homogeneous manifolds pro-
posed by Munthe-Kaas in [11] is based on canonical coordinates of the first
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kind. The methods use a Lie algebra action and a Lie group action on a man-
ifold, the two actions being related through the exponential mapping from
the Lie algebra to the Lie group. There is also a variety of other methods
which are based on this mapping, for instance those by Crouch and Gross-
man [4,13], and the ones by Zanna [17]. Even if one, in most applications
of these methods, assumes that the Lie algebra is of finite dimension, it may
still be a challenging computational task to evaluate the exponential map
for an arbitrary member of the algebra. If, for instance, the Lie algebra is
realized by means ofn× n matrices, one can use general purpose software
for computing the matrix exponential, but typically the cost will then beCn3

floating point operations whereC can be fairly large, say 20–30. A possible
remedy for this is to replaceexp by a map that approximates the exponential
mapping, but which is cheaper to compute. For certain Lie algebras, one can
use the Cayley transform, which under the circumstances above, still costs
Cn3 flops, but whereC can be made much smaller. Another problem is that
alternative maps may be hard to find. Certain negative results for specific
Lie algebras support this observation. A typical one concerns the special
linear algebrasl(V ) of trace-free endomorphisms of a linear spaceV , and
its corresponding Lie groupSL(V ) of automorphisms ofV with unit deter-
minant. It is proved in [7] that if a functionΨ , analytic at0, mapssl(V ) into
SL(V ), dim(V ) > 2, and satisfiesΨ(0) = Ψ ′(0) = 1, thenΨ = exp. In a
recent paper by Celledoni and Iserles [2] the authors propose to approximate
the exponential map by means of splitting techniques. Suppose we need to
exponentiatea ∈ g ⊂ gl(V ) and leta =

∑
ai with eachai ∈ g. It was

observed that if the rank of eachai (as an endomorphism ofV ) is small, then
its exponential can be computed at low cost. Moreover, their compositions
can be computed inexpensively as well.

In this work, we shall consider a fixed basis, saye1, . . . , ed, for the Lie
algebra,g, and for the corresponding Lie groupG, we shall use canonical
coordinates of the second kind. This means that in some neighborhoodU
of 0 in g, we define the map

Ψ : U → G, v =
∑
i

viei �→ exp(v1e1) · exp(v2e2) · · · exp(vded).(1)

In some parts of the exposition, it would have cost us little extra effort to
replace the functionexp in (1) by an arbitrary smooth map fromU ⊆ g toG,
but to maintain a convenient notation, we shall use the exponential mapping
in what follows. We note that the approach with canonical coordinates of
the second kind has recently been used by Celledoni and Iserles [3] for
approximating the matrix exponential.

The coordinate choice will together with the Lie algebra action on the
manifoldM , serve to transform the differential system fromM to a corre-
sponding system of ODEs in the Lie algebrag. An implementation of this
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transformation involves the computation of the inverse of the (trivialized)
tangent mapping ofΨ , denoteddΨ−1

u . This amounts to inverting ad × d
linear system in each evaluation of the right hand side of the transformed
system, whered = dim g. Thus, using general software for this purpose,
we must expect a complexity of orderd3. However, comparing with the
Munthe-Kaas approach for several of the most interesting Lie algebras, one
finds that the extra cost related to the inversion of the tangent mapping should
not have arithmetic complexity of higher order thand3/2. To overcome this
challenge, we have found that the Chevalley basis, known from the structure
theory of Lie algebras, can be used. This choice must be combined with a
certain ordering of the basis. We will start by considering how the differ-
ential equations can be transformed fromM to g, reviewing some results
from [11] and [5], in particular we will derive the expression fordΨu in-
volved in this transformation. Next, we consider a criterion on the ordering
of the Chevalley basis which allows us to cheaply invertdΨu. We can then
study, in particular, the case wheng is a semisimple Lie algebra overC.
We also consider solvable Lie algebras, recalling that any Lie algebra can
be decomposed into the semidirect product of a semisimple subalgebra ofg
and the radical ofg, by the Levi decomposition [16, p. 224]. Finally, we will
present numerical examples which support our claims, and we will make
comparisons in terms of flops and accuracy of the derived methods with
those of Munthe-Kaas [11].

2 Lie group methods

Suppose thatG is a Lie group with Lie algebrag, and that both are acting
on the manifoldM throughΛ : G × M → M andλ : g × M → M ,
respectively. Furthermore, suppose that there is a coordinate mapΨ : g → G
such that the two actions are related through the equation

λ(v, p) = Λ(Ψ(v), p), v ∈ g, p ∈ M.

The reader may keep in mind the particular case in whichM = G, andΛ
acts byG onG through left multiplication, i.e.Λ(g, h) = g · h.

Munthe-Kaas [11] introduces what he calls the generic presentation of
ODEs on manifolds in terms of the Lie algebra actionλ. His assumption
is that the vector fieldF , which defines the differential equations onM , is
related to a mapf : R × M → g such that

y′ = F (t, y) = λ∗(f(t, y))(y).(2)

Hereλ∗ is a map fromg to the set of vector fields onM . For v ∈ g it is
defined as

λ∗(v)(p) =
d

dt

∣∣∣∣
t=0

λ(tv, p).
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For our purposes, it is sufficient thatλ (and therebyλ∗) is defined locally,
but the reader should consult both [11] and [5] for a more detailed discussion
of this setting.

The derivative ofΨ atu is a mapΨ ′
u : g → TΨ(u)G. We will rather prefer

to work with the right trivialized mapdΨu : g → g, related toΨ ′
u through

Ψ ′
u = R′

Ψ(u) ◦ dΨu.
HereRg is the right translation mapRg(h) = h · g, g, h ∈ G, andR′

g =
TeRg : g → TgG. An elementary modification of a theorem in [11], leads
to the following result.

Theorem 1 Let the circumstances be as described above. For any point
p ∈ M , setλp(u) = λ(u, p). Define the vector field̃f : R × g → g relative
to p ∈ M as

f̃(t, u) = dΨ−1
u (f(t, λ(u, p))).

Then

λ′
p ◦ f̃ = F ◦ λp,

where the composition applies to the second argument ofF .

Proof. The proof is almost an exact copy of the corresponding proof in [11]
but is included for completeness. We assume here that the Lie algebrag is
identified withTeG. The existence of a local group actionΛ : G×M → M
such thatΛ(Φ(v), p) = λ(v, p) as presented above is crucial. We write
Λp(g) = Λ(g, p), ft(u) = f(t, u), f̃t(u) = f̃t(u), and compute

λ′
p ◦ f̃t(u) = (Λp ◦ Φ(u))′ ◦ f̃t(u)

= Λ′
p ◦ R′

Φ(u) ◦ dΦu ◦ dΦ−1
u (ft ◦ λp(u))

= Λ′
p ◦ R′

Φ(u) ◦ ft ◦ λp(u).

For anyu, v ∈ g we have

λ∗(v)(λp(u)) =
d

dt

∣∣∣∣
t=0

Λ(Φ(tv), Λ(Φ(u), p))

=
d

dt

∣∣∣∣
t=0

Λ(Φ(tv) · Φ(u), p) = Λ′
p ◦ R′

Φ(u)(v).

So finally we compute

F ◦ λp(u) = λ∗
(
ft ◦ λp(u)

)(
λp(u)

)
= Λ′

p ◦ R′
Φ(u)

(
ft ◦ λp(u)

)
= λ′

p ◦ f̃t.
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An implication of this theorem is that one can replace the differential
system onM by the equationu′ = f̃(t, u) on g, and the solution of the
original equationy′ = F (t, y) is obtained simply asy(t) = λp(u(t)). One
needs to be concerned with finding efficient methods for computing the
actionλp(u) = Λ(Ψ(u), p) as well as the inverse tangent mapdΨ−1

u (v) for
arbitraryu, v ∈ g.

We now suppose that a differential equation on the manifoldM is given
in the form (2), and that we are solving, according to Theorem 1, the equation

u′ = dΨ−1
u (f(t, λ(u, p)))(3)

by a classical integration method in some neighborhood ofp ∈ M . The
most popular integration methods can be divided into two classes, the linear
multi-step methods and the one-step methods, first and foremost represented
by the Runge–Kutta methods. Also, recently the general linear methods
have increased their popularity, and offer a third alternative. The fact that
the coordinate chart centered atp only yields a local representation ofM
implies that one generally needs to switch charts throughout the integration,
this amounts to alteringp in (3). In the case of multi-step methods, this may
cause some difficulty, since they carry approximations to the solution and
its derivative in several points, and they all have to be transferred to the
new coordinate chart whenever a switch is taking place. There are several
possibilities in handling this, and we refer to [6] for details. With Runge–
Kutta methods the situation is simpler, one can change coordinate chart in
each step without problems. All numerical results presented in Sect. 6 will
be based on the use of Runge–Kutta methods. The algorithm we obtain is,
apart from the coordinate map, the same as the one presented by Munthe-
Kaas in [11]. Let(aij), 1 ≤ i, j ≤ s, be the elements of the Butcher matrix,
and let(bi), 1 ≤ i ≤ s, be the weights. These coefficients can be taken
from any classical Runge–Kutta method, no special requirements need to
be imposed.

Algorithm 2
y0 := p
for i = 1, 2, . . . , s

ui := h
∑s
j=1 ai,j k̃j

ki := f(hci, λ(ui, y0))
k̃i := dΨ−1

ui
(kj)

end
v := h

∑s
j=1 bj k̃j

y1 := λ(v, y0)
wherep, y0, y1 ∈ M , ui, ki, k̃i, v ∈ g.
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If the coefficients(ai,j) come from an explicit Runge–Kutta method,
i.e. ai,j = 0, i ≤ j, then the above algorithm is explicit. In principle, the
algorithm may also be used when the coefficients come from an implicit
Runge–Kutta method, but the resulting computational costs may then be
high.

As opposed to the methods in [11], the cost of computing the correction
k̃i = dΨ−1

ui
(kj) does not depend on the order of the Runge–Kutta method,

see Tables 1–3 for details regarding the classical Lie algebras. It is difficult to
make precise comparisons between the cost of computing the corrections in
the above methods and the Munthe-Kaas methods, because the latter make
use of Lie brackets as part of the correction, whose computational cost may
be hard to quantify. However, an upper bound for cost of computing the
commutator between twon×n matrices is2n3 additions and2n3 multipli-
cations, thus evenonecommutator computed in this way is far more costly
than the computation ofdΨ−1

u as proposed for the classical Lie algebrasA�
–D� discussed in Sect. 4.

Still, we believe that the major difference between the cost of the Munthe-
Kaas methods and those presented here, lies in computing the coordinate
map as a part of the actionλ. To perform a comparison, one again needs
to make certain assumptions. Suppose that a matrix representation is used
for the elements of the Lie group/Lie algebra, and that the coordinate maps
are realized as the matrix exponential (composition of matrix exponentials,
respectively). Assume furthermore that we use the matrix representations
discussed for the Lie algebrasA� –D�. Then the cost of computing the map
(1) is for each case approximately1 · n3 additions and1 · n3 multiplica-
tions. In comparison, our experience with the MATLAB functionexpm for
computing the corresponding map for canonical coordinates of the first kind
is typically a total ofC · n3 additions and multiplications. The constantC
depends on the size of the matrix elements, but in our experience it usually
lies in the range20–30.

3 Preliminaries

We now assume thatΨ is given by (1), introduce the basise1, . . . , ed for g,
and compute, foru = u1e1 + · · · + uded andv = v1e1 + · · · + vded,

dΨu(v) =
d

dt

∣∣∣∣
t=0

R′
Ψ(u)−1 ◦ Ψ(u + tv)

=
d

dt

∣∣∣∣
t=0

exp((u1 + tv1)e1) · · · exp((ud + tvd)ed)Ψ(u)−1

= v1e1 +
d∑
i=2

viAd eu1e1 · · · Ad eui−1ei−1 (ei).(4)
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Here, for anyg ∈ G, the operatorAd g : g → g is defined as

Ad g = L′
g ◦ R′

g−1 ,

whereLg : h �→ g · h andRg : h �→ h · g. In (4) and throughout this paper,
we will omit the symbol◦ in compositions whenever it is convenient, thus
composition of operators will be signified by juxtaposition.

Let (e1, . . . , ed) be an ordered basis for a Lie algebrag, and let(ε1, . . . ,
εd) be the dual basis forg∗, i.e.εi(ej) = δij , 1 ≤ i, j ≤ d. For any linear
operatorA : g → g, we denote byA∗ : g∗ → g∗ the transpose, such that
for anyφ ∈ g∗ andv ∈ g,

(A∗φ)(v) = φ(Av).

For eachk = 0, . . . , d, we define the subspaces

Vk = span{e1, . . . , ek}, V ck = span{ek+1, . . . , ed},

where we takeV0 = V cd = {0}, andVd = V c0 = g. We also define the
projectorPk : g → V ck by

Pk :
d∑
i=1

viei �→
d∑

j=k+1

vjej ,

and we letP0 andPd equal the identity and zero operator ong, respectively.
For eachu =

∑
uiei ∈ g, we define the linear operatorŝAd eukek : g → g

by

Âd eukek = I − Pk + Ad eukekPk, k = 1, . . . , d.

Definition 1 We shall say that the ordered basis(e1, . . . , ed) is an ad-
missible ordered basis(AOB) if, for eachu =

∑
ujej ∈ g and for each

i = 1, . . . , d − 1, we have

Ad eu1e1 · · · Ad euieiPi = Âd eu1e1 · · · Âd euieiPi.(5)

SincePi−1(ei) = ei, i = 1, . . . , d − 1, andÂd euiei (ej) = ej , j ≤ i,
we obtain

Proposition 1 If the basis(e1, . . . , ed) is an AOB, it holds that

dΨu = Âd eu1e1 · · · Âd eud−1ed−1 , for all u ∈ g.
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This result serves as a motivation for the above definition of an AOB. Each
of the operatorŝAd eukek , k = 1, . . . , d − 1, are invertible wheneveru =∑

uiei belongs to a sufficiently small neighborhood of0 ∈ g, in which case
we have

dΨ−1
u = Âd

−1
eud−1ed−1 · · · Âd

−1
eu1e1 .

Suppose that the ordered basis can be chosen such that for somed∗ < d,
V cd∗ is an abelian subalgebra ofg. Then the restriction ofAd euiei , i > d∗,

to V cd∗ is the identity operator onV cd∗ and it follows that̂Ad euiei , i > d∗,
is the identity operator on all ofg. Thus, for an AOB with this property, we
have

dΨ−1
u = Âd

−1
eud∗ed∗ · · · Âd

−1
eu1e1 .(6)

Considering Definition 1 it may seem difficult to find an AOB for a Lie
algebrag, or even to verify whether a given ordered basis is an AOB. For this
reason we give the following tool for determining an AOB for an arbitrary
Lie algebrag.

Theorem 3 Let (e1, . . . , ed) be an ordered basis forg and suppose that
for all pairs of integers(i,m) such that1 ≤ m < i ≤ d − 1 and for all
u =

∑
i uiei ∈ g, either

P ∗
i Ad ∗

euieiεm = 0,

or

[em, en] = 0, m < n < i.

Then(e1, . . . , ed) is an AOB forg.

Proof. We use the shorthand notationAj = Ad eujej andÂj = Âd eujej ,
and setQj = I − Pj . Thus,Âj = Aj + (I − Aj)Qj , and we compute, for
anyw ∈ g,

Â1 · · · ÂiPiw = A1 · · ·AiPiw

+
i−1∑
j=1

Â1 · · · Âj−1(I − Aj)QjAj+1 · · ·AiPiw.

Set

Zr :=
r−1∑
j=1

Â1 · · · Âj−1(I − Aj)QjAj+1 · · ·ArPr, 1 ≤ r ≤ i − 1.
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We wish to prove, by induction oni, thatZi vanishes on all ofg, for each
1 ≤ i ≤ d − 1, under the assumptions of the theorem. This holds trivially
for i = 1. Suppose that for somei > 1, Zr = 0, 1 ≤ r ≤ i − 1. Then set

AiPiw =
d∑

m=1

εm(AiPiw)em,

so that

Ziw =
d∑

m=1

εm(AiPiw)
i−1∑
j=1

Â1 · · · Âj−1(I − Aj)QjAj+1 · · ·Ai−1em.

We now split the outer sum into two parts
i−1∑
m=1

+
d∑
m=i

. In the latter sum,

we may replaceem by Pi−1em and discard the last term of the inner sum,
j = i − 1, sinceQi−1em = 0, m ≥ i. Thus we can invoke the induction
hypothesis,Zi−1 = 0, and conclude that

Ziw =
i−1∑
m=1

εm(AiPiw)
i−1∑
j=1

Â1 · · · Âj−1(I − Aj)QjAj+1 · · ·Ai−1em.

Let 1 ≤ m′ ≤ i − 1 be any integer such thatεm′(AiPiw) /= 0 for some
w ∈ g, or equivalently,P ∗

i A
∗
i εm′ /= 0. The assumption[em′ , en] = 0, m′ ≤

n ≤ i − 1, implies thatAnem′ = em′ , so if we split the inner sum in two
pieces form = m′, we get

m′−1∑
j=1

Â1 · · · Âj−1(I − Aj)QjAj+1 · · ·Am′−1em′

+
i−1∑
j=m′

Â1 · · · Âj−1(I − Aj)Qjem′ .

The first sum vanishes by the induction hypothesis,Zm′−1 = 0, sinceem′ =
Pm′−1em′ . In the second sum we note that sincej ≥ m′,Qjem′ = em′ , and
(I − Aj)em′ = 0 since[ej , em′ ] = 0. This concludes the proof.

When the basis can be chosen such thatad ei is nilpotent for many of the
basis elementsei, it is useful to recall the relationAd eujej = exp(ad ujej ),
and we can rephrase Theorem 3 as follows

Corollary 1 Let (e1, . . . , ed) be an ordered basis forg and suppose that
for all 1 ≤ m < i ≤ d − 1, k ∈ N, either

P ∗
i

(
ad kei

)∗
εm = 0,
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or

[em, en] = 0, m < n < i.

Then(e1, . . . , ed) is an AOB forg.

4 The semisimple case

In this section we consider semisimple Lie algebras overC. Most of the
tools we use are valid for any algebraically closed field. We will use, without
proofs, several well known results from the structure theory of semisimple
Lie algebras, the reader may consult the texts [10,16,8] for details and
proofs, and also [1] which gives a good introduction without too many
details.

We start by recalling that for any Lie algebra, theKilling form is de-
fined as the bilinear formκ(u, v) = Tr(ad u ◦ ad v), for u, v ∈ g. A Lie
algebra is semisimple if and only ifκ is nondegenerate. Every semisimple
Lie algebra contains semisimple elements (x ∈ g is semisimple ifad x is
diagonalizable). A subalgebrah is toral if all its elements are semisimple.
Moreover, ifh is not properly contained in any other toral subalgebra, it is
called amaximal toral subalgebra(MTS). For semisimple Lie algebras, an
MTS always exists. A toral subalgebra ofg is abelian, and the eigenspace
of eachad h, h ∈ h, equals all ofg. Thus, the operatorsad h, h ∈ h, form a
commuting family of linear transformations ofg and are thereforesimulta-
neously diagonalizable. In other words, there exists a full set of eigenvectors
shared by allad h, h ∈ h. For each such eigenvectorx ∈ g, there is an ele-
mentα in the dual spaceh∗ of h such that[h, x] = α(h)x for eachh ∈ h. In
particular, the 0-functional corresponds to{x ∈ g : [h, x] = 0 ∀ h ∈ h}, the
centralizer ofh in g. It can be proved thath equals its centralizer ing. The
α /= 0 in h∗ defined as above are calledroots, we denote byΦ the set of roots.
For eachα ∈ h∗, we letgα = {x ∈ g : [h, x] = α(h)x, ∀ h ∈ h}, and we
can thus write down theroot space decompositionor Cartan decomposition
of g as a direct sum

g = h ⊕
∐
α∈Φ

gα.

The reader should note that the elements ofΦ are not generally linearly
independent inh∗. For future use we defineΦ = Φ ∪ {0}.

We summarize some properties of the roots, the proofs can be found in
[10] and [8].
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Theorem 4

a. Eachgα, α ∈ Φ, is one-dimensional.
b. If x ∈ gα thenad x is nilpotent.
c. For arbitraryα, β ∈ h∗, we have[gα, gβ] ⊆ gα+β. Moreover, ifα, β, α+

β ∈ Φ, then[gα, gβ] = gα+β.
d. α ∈ Φ ⇒ −α ∈ Φ.
e. The restriction of the Killing form toh is nondegenerate.

A choice of basis forg known as theChevalleybasis is obtained by choosing
one basis vector for each subspacegα along with a particular basis forh.

The existence of abaseis significant for our further use of roots. A subset
∆ of Φ is a base if

1. ∆ = (α1, . . . , α�) is a basis ofh∗.
2. Each rootα ∈ Φ can be written as

α =
�∑
i=1

riαi

with integer coefficientsri that are all nonnegative or nonpositive.

A base exists for any system of roots. The above properties of a base, together
with d. of Theorem 4, allow us to splitΦ into two disjoint subsets,Φ+ and
Φ− of the same cardinality,Φ = Φ+ ∪ Φ−. The positive rootsΦ+ are those
which can be written as a nonnegative linear combination of the elements
of ∆.

The fact that the Killing form is nondegenerate onh gives us a way to
identify h andh∗ in a unique way. We may associateφ ∈ h∗ with tφ ∈ h
if φ(h) = κ(tφ, h) for all h ∈ h. In this way, we also obtain a bilinear
form onh∗, defined for anyα, β ∈ h∗ as(α, β) = κ(tα, tβ). Given a base
∆ = (α1, . . . , α�) this identification determines a basis forh, we take it to
be the set(hα1 , . . . , hα�

)

hαi =
2tαi

κ(tαi , tαi)
.(7)

We may now express any basis forh to be used in the AOB as a linear
combination of thehαi . The choice which is optimal with respect to com-
putational cost may depend on the Lie algebra, we may in each case use
Proposition 2 below to search for an optimal basis forh. First, with a given
base for a semisimple Lie algebra, the numbers

Ci,j = 〈αi, αj〉 =
2(αi, αj)
(αj , αj)

, 1 ≤ i, j ≤ 6,

are called the Cartan numbers. It can be shown that they are all integers, and
C = (Ci,j)�i,j=1 ∈ Z

�×� is called the Cartan matrix. It turns out that, up to
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isomorphisms,C determines the Lie algebra completely. The structure of
Lie algebras in terms of their root systems is of course studied extensively
in the literature to which we refer for more details. However, we just remark
here that the number of possible root systems are limited, and in the sequel
we shall study the most important of them. Before we proceed to this point,
we shall prove some general results which will be useful later.

Proposition 2 Letβ =
∑�
i=1 riαi ∈ Φ and let0 /= eβ ∈ gβ. Then, for any

basis elementhαj under the above identification, we have

ad eβ (hαj ) = −
�∑
i=1

riCi,jeβ.

Proof. We compute

ad eβ (hαj ) = −β(hαj )eβ = −
�∑
i=1

riαi(hαj )eβ

= −
�∑
i=1

ri
2

κ(tαj , tαj )
αi(tαj )eβ

= −
�∑
i=1

ri
2(αi, αj)
(αj , αj)

eβ

= −
�∑
i=1

riCi,jeβ.

We are now in a position to characterize an AOB in terms of the root system.

Theorem 5 Let {β1, . . . , βd∗}, d∗ = d − 6, be the set of rootsΦ for a
semisimple Lie algebrag. Suppose that a Chevalley basis is ordered as

(eβ1 , . . . , eβd∗ , h1, . . . , h�)

whereeβi
∈ gβi

, and(h1, . . . , h�) is a basis forh. Such an ordered basis is
an AOB if

kβi + βs = βm, m < i < s ≤ d∗, k ∈ N

⇒ βm + βn �∈ Φ, m < n ≤ i − 1.(8)

Proof. We may check that the conditions in Corollary 1 are satisfied. We
use the conventionei := eβi

, 1 ≤ i ≤ d∗, anded∗+j := hj , 1 ≤ j ≤ 6,
whenever it is convenient. Forei ∈ h, ad keiPi = 0 for all k ∈ N, so the first
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condition of the corollary applies for allm < i. Next, suppose thatei ∈ gβi

for some rootβi. We compute for arbitraryw ∈ g, k ∈ N, andm < i

εm(ad keiPiw) =
d∑

s=i+1

εs(w)εm(ad keies) =
d∗∑

s=i+1

εs(w)εm(ad keies).

The last equality results from the fact that whenevers > d∗, we have
es ∈ h, and thus[ei, es] ∈ gβi

andad keies = 0 for k > 1. From propertyc.
in Theorem 4 we conclude that the only cases in whichv := ad keies /= 0
are whenγ := kβi+ βs ∈ Φ. If γ = 0, thenv ∈ h, thusεm(v) = 0. In fact,
we obtain a nonzero term in the above sum if and only if there is ans, with
i < s < d∗ such thatβm = kβi + βs ∈ Φ. In other words, this condition
corresponds precisely toP ∗

i

(
ad kei

)∗
εm /= 0. In such a case, we need to

impose the condition that[em, en] = 0, m < n < i, and this means that
βm + βn �∈ Φ, m < n < i.

Note that since alle1, . . . , ed∗ aread -nilpotent, it suffices to check that
(8) holds for integers1 ≤ k ≤ k∗, wherek∗ is the smallest integer such that
ad k∗+1

ei = 0.

Proposition 3 If an AOB (e1, . . . , ed) for g is ordered as above, and if
ei ∈ gβi

, βi ∈ Φ, then

Âd
−1
euiei = I +

k∗∑
k=1

(−ui)k

k!
ad keiPi,

whereadmei = 0 for m > k∗.

Proof. Note that with the ordering above,ad keiPi ad reiPi = ad k+rei Pi. Now

Âd euiei = (I − Pi) + exp(ad uiei)Pi = I +
k∗∑
k=1

uki
k!

ad keiPi.

By direct computation we get the required result.

In the discussion that follows, we shall always assume that∆ = (α1, . . . ,
α�) is a base, and we define the elements ofβi,j of h∗ as

βi,j =
j∑
k=i

αk, 1 ≤ i ≤ j ≤ 6.
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4.1 The Lie algebraA�

This Lie algebra is commonly represented as the set of trace free complex
(6 + 1) × (6 + 1) matrices and is denotedsl(6 + 1,C). The MTS is the
6-dimensional subalgebra of diagonal matrices. The set of positive roots is
[16, p. 296]

{βi,j , 1 ≤ i ≤ j ≤ 6}.
It is obtained from the Cartan matrix

CA�
=


2 −1

−1 2 −1
... ... ...

−1 2 −1
−1 2

 .

Letting er be therth canonical unit vector inC�+1, we find thatgβi,j
is

spanned byeieT
j+1, 1 ≤ i ≤ j ≤ 6. For the negative roots−βi,j , we have

ej+1eT
i ∈ g−βi,j

. Finally, as a basis forh, we may for instance take the
elementseieT

i −ei+1eT
i+1, 1 ≤ i ≤ 6. In particular, we immediately obtain

a real realizationsl(6 + 1,R) where all the roots belong. In consequence,
everything we do here withsl(6 + 1,C) also holds for the corresponding
representation ofsl(6 + 1,R).

We consider how the basis can be ordered such that an AOB results. With
the conventioneβ ∈ gβ, β ∈ Φ, h = span(eh1, . . . , eh�

), let

B = (eβi1,j1
, . . . , eβim,jm

, e−βi1,j1
, . . . , e−βim,jm

, eh1, . . . , eh�
),

wherei1 ≤ i2 ≤ · · · ≤ im andm = 6(6 − 1)/2. We claim thatB is an
AOB for sl(6 + 1,C), and prove it by using Theorem 5. LetΦ be ordered
in correspondence withB and consider first a positive rootβir,jr = αir +
· · · + αjr . If α ∈ Φ is such thatγ = kβir,jr + α ∈ Φ with βir,jr < α,
k ∈ N, thenγ = βis,js with is ≥ ir. Thus, eitherγ > βir,jr or is = ir, but
in the latter case,γ + βir,j �∈ Φ for all j > ir. Similarly, for negative roots,
−βir,jr = −αir −· · ·−αjr . Again, ifγ = −βir,jr +α ∈ Φ with α > βir,jr
thenγ = −βis,js with is ≥ ir and we conclude thatB above is an AOB for
g.

In computingdΨ−1
u (v), we may apply (6) together with Proposition 3

with k∗ = 2. In fact, since the coefficient ofαk in the expansion of any
root is either0, 1 or −1, it is clear thatkα + β, α ∈ Φ, β ∈ Φ, is neither
0 nor contained inΦ if k > 2. In particular, we notice thatrank(ad 2

ei) =
1 wheneverei corresponds to a rootβ (ei ∈ gβ), since the only rootα
satisfying2β + α ∈ Φ is α = −β. We next consider the computational
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complexity involved in computingdΨ−1
u (v) for sl(6 + 1,C). We split the

computation into smaller tasks, and begin by studying the cost involved in
computing, for arbitraryw ∈ g, the expression

Âd
−1
eukek (w) = w − uk [ek, w] +

1
2
u2
k [ek, [ek, w]], 1 ≤ i ≤ d∗,(9)

where we assume thatw is given in the formw =
∑d
j=1 wjej . Suppose that

ek := eβ ∈ gβ, whereβ ∈ Φ is of the formβ = ±βi,j . We identify the basis
vectors that do not commute witheβ, since only those will affectw. We begin
by choosing as a basis forh, the vectorshi = hαi , i = 1, . . . , n, defined
by (7). By Proposition 2 and the Cartan numbers, we see that[eβ, hn] = 0
unlessn = j, j − 1, i, i − 1 (otherwise the coefficient multiplyingeβ is 0).
Thus, we obtain at most 4 updates caused by the elements ofh, the cost
is one addition and one multiplication for each. Next considerad keβ (e−β),
k = 1, 2. Note that, due to the ordering of the basis, this case only occurs
whenβ ∈ Φ+. From a result in [10, p. 37] we conclude that[eβ, e−β] =
hβ ∈ h, hβ = 2tβ/κ(tβ, tβ) under the identification ofh andh∗ introduced

above. Hence, sinceβ = βi,j =
j∑
n=i

αn, we deduce thathβ =
j∑
n=i

hαn . So

j− i+1 updates result, requiring each one addition and one multiplication.
Whenk = 2, we compute

[eβ, hβ] = −β(hβ) eβ = −〈β, β〉 eβ = −2 eβ.

This −2 cancels the factor1/2 in (9), thus in this update, we need two
multiplications and one addition. Finally, consider[eβ, eα], whereα /= −β
is an arbitrary root. Ifβ = βi,j ∈ Φ+, thenα is of the form

βj+1,m, j + 1 ≤ m ≤ 6, 6 − j elements,
−βi,m, i ≤ m ≤ 6, m /= j, 6 − i elements,
−βm,j , 1 ≤ m ≤ j, m /= i, j − 1 elements.

If β = −βi,j ∈ Φ−, thenα ∈ Φ− is of the formα = −βj+1,m, j + 1 ≤
m ≤ 6, thus there are6− j noncommuting elements. Each of these updates
costs one addition and one multiplication.

For this particular Lie algebra, the above analysis will lead to the pre-
cise computational cost of computingdΨ−1

u in terms of arithmetic opera-
tions. However, for other Lie algebras this counting process is more compli-
cated, especially since there may or may not be a constant multiplying the
ui (u2

i resp.) in each update, thereby in some cases adding to the number of
multiplications. We therefore choose to give the number of updates required
for each evaluation ofdΨ−1

u , and we divide the updates into categories as
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Table 1. Number of updates needed in the computation ofdΨ−1
u (v) for A�

Elements ofh 4�2

Reflected root 1
6 �3 + 1

2 �2 + 1
3 �

ad 2
uβeβ

1
2 �2 + 1

2 �

All other roots �3 − �

Total 7
6 �3 + 5�2 − 1

6 �

described in Table 1. The result in each category is obtained by summing up

the updates for all operatorŝAd
−1
eujej that occur in the expression fordΨ−1

u .
Note in particular, that the63 terms come from the categories “All other

roots” and “Reflected root”, where the cost is one addition and one multi-
plication for each update.

4.2 The Lie algebraC�, l ≥ 3

The symplectic Lie algebrasp(26,C) has the root system ofC� and a usual
representation is

sp(26,C) = {u ∈ gl(n,C) : uTJ + Ju = 0}, J =
[

0 I�
−I� 0

]
.

One easily checks that such matricesu must be of the form

u =
[
Q M
N −QT

]
, M = MT, N = NT.

We let, as before,α1, . . . , α� be a base. The positive roots inC� are
obtained from the Cartan matrix

CC�
=


2 −1

−1 2 −1
... ... ...

−1 2 −1
−2 2

 ,

they can be characterized in terms ofβi,j =
∑j
n=i αn as follows [16, p.

301]

Φ+ = {βi,j , 1 ≤ i ≤ j ≤ 6}
⋃

{βi,� + βj,�−1, 1 ≤ i ≤ j ≤ 6 − 1}.

Thus, the dimension ofsp(26,C) equals262 + 6. Note in particular that all
roots are of the formα =

∑jα
n=iα rα,nαn with eachrα,n /= 0 having the
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same sign. We use this notation to introduce an ordering ofΦ according to
the following rules.

1. α+ ∈ Φ+, α− ∈ Φ− ⇒ α+ < α−

2. If α =
jα∑
n=iα

rα,nαn, β =
jβ∑
n=iβ

rβ,nαn, α, β ∈ Φ+ (Φ− resp.) then

α < β ⇐ jα > jβ.

There always exist orderings satisfying 1 and 2, but generally more than
one. We claim that the corresponding ordering of the basis leads to an AOB.
Note first that if a coefficientrα,n is such that|rα,n| > 1 thenn < 6 and
|rα,�| = 1. We suppose thatα ∈ Φ+ and use Theorem 5. Ifγ = kα + β
with β > α, then eitherγ ∈ Φ−, thusγ > α or else,jγ ≤ jα. In the latter
case, eitherγ > α, or jγ = jα, but then allδ ∈ Φ satisfyingγ < δ < α are
such thatγ + δ �∈ Φ. The argument forα ∈ Φ− is similar, and we conclude
that the ordering above leads to an AOB.

As a choice of basis forh in the case, we recommend to use the vectors
(h1, . . . , h�), obtained as linear combinations of thehαj defined in (7), as
follows:

hi =
�∑
j=i

hαj − 1
2
hα�

, i = 1, . . . , 6.

This particular choice causes, for allβ ∈ Φ, [eβ, hi] = 0 for a minimum of
6 − 2 members of{h1, . . . , h�}, according to Proposition 2.

It is easy to check that ifα ∈ Φ, then the corresponding basis elementeα
satisfiesad keα = 0 for k > 2. Thus, we can use Proposition 3 withk∗ = 2 for

computinĝAd
−1
euiei . Moreover, one can prove thatrank(ad 2

eα) is either 1 or
3 for eachα ∈ Φ. Certainly,0 /= ad 2

eα(e−α) ∈ span(eα) for anyα ∈ Φ. We
proceed by making the change of variablesαi = λi−λi+1, 1 ≤ i ≤ 6− 1,
α� = 2λ�. Then, the roots have the form±(λi − λj), 1 ≤ i < j ≤ 6, and
±(λp+λq), 1 ≤ p ≤ q ≤ 6. Thus, the remaining possibilities for obtaining
2α + β ∈ Φ are: If α = ±(λi − λj), 1 ≤ i < j ≤ 6, thenβ = ±2λj
or β = ∓2λi. If α = ±(λp + λq), 1 ≤ p < q ≤ 6, thenβ = ∓2λp or
∓2λq. Whenα = 2λp, 1 ≤ p ≤ 6, we getrank(ad 2

eα) = 1. We shall omit
the details about the cost of computingdΨ−1

u (v). The situation is similar,
although somewhat more complicated than forsl(6+1,C). It is for instance
no longer true that wheneverγ = α+β ∈ Φ, [eα, eβ] = ±eγ , in other words,
one sometimes needs to multiply the result with an appropriate factor. This
complicates the counting of arithmetic operations. We will give more precise
results about the computational cost of computingdΨ−1

u (v) in the numerical
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Table 2. Number of updates needed in the computation ofdΨ−1
u (v) for C�

Elements ofh 4�2 − 2�

Reflected root 2�2 − �

ad 2
uβeβ

5
2 �2 − 3

2 �

All other roots 4�3 − 6�2 + 2�

Total 4�3 + 5
2 �2 − 5

2 �

experiment section. The number of updates is given in Table 2. Depending
on the type of root, an update costs one addition and 1–3 multiplications.

Note, in particular, that the dominant term,463, comes from the category
“All other roots”, where the cost is one addition and one multiplication for
each update.

4.3 The Lie algebraB�, 6 ≥ 1

The orthogonal Lie algebraso(26 + 1,C), has the root system ofB� and
can be represented as matrices inC

(2�+1)×(2�+1) of the form 0 aT bT

−b Q M
−a N −QT

, a, b ∈ C
�, M,N,Q ∈ C

�×�, MT = −M, NT = −N.

It is also possible to represent elements ofso(26 + 1,C) as complex skew-
symmetric(26+ 1) × (26+ 1) matrices, but it leads to a more complicated
form of the basis vectorseα corresponding to roots.

The Cartan matrix is

CB�
=


2 −1

−1 2 −1
... ... ...

−1 2 −2
−1 2

 ,

which yields the positive roots [16, p. 304]

Φ+ = {βi,j , 1 ≤ i ≤ j ≤ 6}
⋃

{βi,� + βj,�, 1 ≤ i < j ≤ 6}.

We therefore see that the dimension ofso(26+ 1,C) is 262 + 6. Also in this
case, any rootα can be written in the formα =

∑jα
n=iα rα,nαn with each
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rα,n /= 0 having the same sign. With this notation we propose the following
ordering ofΦ.

1. α+ ∈ Φ+, α− ∈ Φ− ⇒ α+ < α−

2. If α =
jα∑
n=iα

rα,nαn, β =
jβ∑
n=iβ

rβ,nαn, α, β ∈ Φ+ (Φ− resp.) then

α < β ⇐ jα < jβ.

One can prove that such an ordering corresponds to an AOB, the argument
is almost identical to that forsp(26,C).

As basis(h1, . . . , h�) for h, we recommend to use

hi =
�∑
j=i

hαj , i = 1, . . . , 6.

This leads again to maximum two updates for eachβ ∈ Φwhen we consider
[eβ, hi], i = 1, . . . , 6.

The cost analysis forB� is almost identical to that ofC�, we obtain
precisely the same number of updates. We find again that for allα ∈ Φ,
ad keα = 0 wheneverk > 2, so that Proposition 3 holds withk∗ = 2. And
rank(ad 2

eα) is either 1 or 3 forα ∈ Φ. The update counts for the computation
of dΨ−1

u (v) is identical to those in Table 2.

4.4 The Lie algebraD�

The Lie algebraso(26,C) can be represented as matrices in the form[
Q M
N −QT

]
, M,N,Q ∈ C

�×�, MT = −M, NT = −N.

Alternatively, we can use26 × 26 skew-symmetric complex matrices as
representation.

The Cartan matrix is

CD�
=



2 −1
−1 2 −1

... ... ...
−1 2 −1

−1 2 −1 −1
−1 2 0
−1 0 2


,
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Table 3. Number of updates needed in the computation ofdΨ−1
u (v) for D�

Elements ofh 4�2 − 4�

Reflected root 2�2 − 2�

ad 2
uβeβ

�2 − �

All other roots 4�3 − 12�2 + 8�

Total 4�3 − 5�2 + �

and the positive roots are [16, p. 298]

Φ+ = {βi,j , 1 ≤ i ≤ j < 6}
⋃

{βi,�−2 + βj,�, 1 ≤ i < j ≤ 6},

whereβp,q is ignored whenp > q. The dimension ofso(26,C) is thus
262 − 6.

Now all roots can be written in the formβ =
∑jβ
n=iβ rβ,nαn, where at

leastrβ,iβ /= 0, rβ,jβ /= 0, and where allrβ,n are either nonnegative or
nonpositive. One can use the same approach as forC� to argue that if the
roots are ordered according to the rules

1. α+ ∈ Φ+, α− ∈ Φ− ⇒ α+ < α−

2. If α =
jα∑
n=iα

rα,nαn, β =
jβ∑
n=iβ

rβ,nαn, α, β ∈ Φ+ (Φ− resp.) then

α < β ⇐ jα > jβ,

then the corresponding ordered basis is an AOB.
As basis forh, we choose(h1, . . . , h�), where

hi =
�∑
j=i

hαj − 1
2
(hα�−1 + hα�

), 1 ≤ i ≤ 6 − 1,

h� =
1
2
(−hα�−1 + hα�

).

Again, we can usek∗ = 2 in Proposition 3, and in this caserank(ad 2
eβ

) = 1
for all β ∈ Φ.

We omit the details of computational cost, the main results are given in
Table 3.

4.5 Other semisimple Lie algebras

Apart from the Lie algebrasA� – D� there exists only a finite number of
semisimple Lie algebras with irreducible root systems, meaning that the base
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∆ cannot be partitioned into two disjoint subsets which are orthogonal with
respect to the Killing form (alternatively, the Cartan matrix is an irreducible
matrix). In the case of Lie algebras with reducible root systems, we can
divide them into irreducible subsystems and treat each of them separately.

The remaining root systems areG2,F4,E6,E7 andE8. In principle, one
can do the same type of analysis for these cases as discussed above, but we
shall only give a few details for the caseG2, having Cartan matrix

CG2 =
[

2 −1
−3 2

]
.

The dimension ofG2 is 14, thus there are 6 positive roots, namely

α2, α1 + α2, 3α1 + 2α2, 2α1 + α2, 3α1 + α2, α1.

In fact, if the corresponding basis is ordered with the positive roots first as
above, then followed by the negative roots in the same order and finally a
basis forh, then an AOB results.

ForG2, one needs to usek∗ = 3 in Proposition 3.

5 The solvable case

In a solvable Lie algebra, there exists an ascending series of ideals,gk
with dim gk = k such thatg1 ⊂ g2 ⊂ · · · ⊂ gd = g. In this case, it is
particularly easy to settle the existence of an AOB, for instance by letting
span(ed−k+1, . . . , ed) = gk. In particular, this implies that for eachi, V ci is
stable underad ei and this implies thatP ∗

i

(
ad kei

)∗
εm = 0 for all m < i in

Corollary 1. However, in general, this may not be the most efficient choice
of basis. Keeping in mind that[g, g] is nilpotent for any solvable Lie algebra,
we may hope that a significant number of thead ei are nilpotent. Even so,
we cannot, in the above situation, be guaranteed the pleasant properties of
the Chevalley basis used in the semisimple case, for instance that[ei, ej ] ∈
span(er) for somer. For solvable Lie algebras, there may not exist any MTS.
A tempting modification could therefore be to replace the MTS by aCartan
subalgebra, which is, by definition, a nilpotent selfnormalizing subalgebra of
g, guaranteed to exist at least for Lie algebras overC orR. But in our setting,
the Cartan subalgebras have certain unfavourable properties, for instance,
they are not necessarily abelian, and their elements need not be semisimple.
We believe that, in general, a more satisfactory solution is obtained if a
toral subalgebra can be identified. Unfortunately, such subalgebras do not
necessarily exist, but we shall present an example where such an approach
can be used.
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5.1 The solvable Lie algebrat(n,F)

Let F be eitherR or C. The Lie algebrat(n,F) can be represented as a sub-
algebra ofgl(n,F), consisting of upper triangular matrices. The dimension
of t(n,F) is clearlyd = n(n + 1)/2. The diagonal matrices form a toral
n-dimensional subalgebrah of t(n,F). In particular, this subalgebra is a
Cartan subalgebra fort(n,F). The root system leads to a basis of the type

eieT
j , i ≤ j ≤ n.

This basis yields an AOB if for instanceed−n+i = eieT
i , i = 1, . . . , n, and

the remaining elements are ordered such thatei1e
T
j1

< ei2e
T
j2

whenever
i1 < i2. With this basis, we find thatad 2

er = 0 if r ≤ d − n and we can
derive a particularly simple form ofdΨ−1

u , namely

dΨ−1
u = I −

d−n∑
r=1

ad urerPr,

whereu =
∑d
i=1 uiei.

6 Numerical experiments

With the purpose of the numerical simulations merely being to illustrate
and verify the above theory, we have chosen to only consider real matrix
Lie groupsG ⊂ GL(n,R), with corresponding Lie algebrag, and let the
manifoldM beG itself. We use the obvious real realizations of the represen-
tations ofA� –D� presented in Sect. 4. In the setting of Sect. 2 the Lie group
acts on itself by multiplicationΛ(g, p) = g · p. For any elementy ∈ G,
we enumerate the matrix elements column by column asy1, . . . , yn2 , and
define in all casesA� –D�, the mapf : G → g in (2) as

f(y) =

(
d∑
i=1

yiei

)
/‖y‖F,(10)

whered < n2 is the dimension ofg. As initial condition we use the identity
matrix and we let the particular Lie algebras beA10, B5, C5 andD5, re-
spectively. We compare the results from the integration methods proposed
in this paper with results generated by the Munthe-Kaas method [11] opti-
mized using free Lie algebra techniques [12, p. 20]. We denote this method
by MK and let A – Ddenote the integrators based on the four classical Lie
algebras. All the numerical methods are based on the coefficients of “the
classical Runge–Kutta method” [9, p. 138] of order four.
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Table 4. Flops ratio between Munthe-Kaas methods and new methods such that the obtained
global error is10−6

P1(N1) P1(N2) P1(N3) P2(N1) P3(N1)

A 4.1 2.8 2.6 4.5 3.9

B 4.5 4.7 3.9 7.3 3.2

C 4.3 3.4 4.2 3.1 2.7

D 6.0 4.3 3.3 5.9 3.0
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Fig. 1. Global error for simulation of (10) on the interval[0, 10]

Figure 1 shows global error as a function of time for B and D. For a
given stepsize, the global error generated by the new methods tend to be
slightly larger than the one produced by the Munthe-Kaas method, but this
depends strongly on the problem. However, when measuring the efficiency
as the number of flops required to obtain a prescribed global error, the
proposed methods are superior to the Munthe-Kaas method, as is indicated
in Figure 2 for the above problem. This observation has been supported
through a number of other numerical tests we have done. Rather than giving
all the details for these tests, we have chosen to present in Table 4 the ratio
between the number of flops required by the Munthe-Kaas methods and the
new methods in order to obtain a global error of10−6 for a range of problems.
The problemP1 is defined by (10) andP2 andP3 are other similar artificial
problems. HereN1 = 10, N2 = 20, N3 = 30 are related to the dimension
of the problem. For cases A and B, the problems are phrased in the Lie
algebrassl(Ni + 1,R) andso(Ni + 1,R), respectively. For cases C and D,
we have usedsp(Ni,R) andso(Ni,R), respectively.

We also tested a problem based on the Lie algebrat(n,R), defined in a
similar way as (10), the difference being that we replacedf(y) with f

(
(y+

yT)/2
)
. In the casen = 10 we recorded a flops ratio of5.1 for a global

error of10−6.
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Fig. 2. Efficiency of the integrators measured as global error versus flops

We have used the MATLAB functionexpm as the exponential mapping
in the Munthe-Kaas method, and theflops function is used for counting
flops. Since the cost involved in evaluating the right hand side functionf is
the same for all the numerical methods, we have not included it in the flops
count, the purpose being to remove factors disturbing the actual comparison
of the methods.

As pointed out in Sect. 4, it is possible to count number ofupdates
involved in computingdΨ−1

u (v) simply by studying the properties of the
underlying root systems. However, in practice there are other effects which
come into play in an actual implementation. One aspect which was men-
tioned in Sect. 4 is that the number of flops required for each update may vary.
Another factor is that there may be overhead costs involved, for instance in
initializing counter variables in loops.

Table 5 shows polynomials fitted to the flop counts observed from our
actual implementation of the algorithms. We see that, forB� – D�, the
leading term is863, which is twice the leading term in Tables 2 and 3. This
is consistent with the fact that the63 term comes from updates consisting of
one multiplication and one addition.
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Table 5. Computation cost measured in flops for thedΨ−1 mappings. The matrix represen-
tations and orderings of the basis elements are as described in Sect. 4

A�: 5
2 �3 + 11�2 + 1

2 � ( 5
2n3 + 7

2n2 − 14n + 8)
B�: 8�3 + 8�2 − 6� (n3 − n2 − 4n + 4)
C�: 8�3 + 17

2 �2 − 11
2 � (n3 + 17

8 n2 − 11
2 n)

D�: 8�3 − 19
2 �2 + 3

2 � (n3 − 19
8 n2 + 3

4n)
t(n): 1

3n3 + n2 − 4
3n
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Fig. 3. Cost of computing coordinate mappings and the inverse of their differentials. The
dexpinv function is the fourth order approximation to dexp−1 obtained by truncating its
series

Figure 3 shows the cost of the coordinate mappings and the inverse of
their differentials. The mappingsΨ(C�) andΨ(D�) as well asdΨ−1(C�)
anddΨ−1(D�) are computed exactly, while the exponential function is the
MATLAB expm function. The dexp−1 is an infinite sum of commutators,
and since the simulation in this section have been conducted with methods
using coefficients of a fourth order scheme, we have letdexpinv be an
order four approximation to dexp−1.

Table 6 lists the cost involved in computing the coordinate mappingsΨ :
U ∈ g → G. Again, these polynomials are based on counting of operations
in our implementation. For instance, we remark that the flops count for
computingΨu depends, among other things, on whether the composition of
the exponentials is done from the left or right, i.e., whether one begins with
exp(v1e1) or exp(vded).

In developing codes for computingdΨ−1
u it seems necessary to make

extensive use of pointers (indirect addressing). For this reason we have not
tried to analyze the cost in terms of CPU time in our numerical experiments.
The efficiency with respect to time consumption will depend strongly on
details of the implementation, as well as on the software and hardware
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Table 6. Computation cost measured in flops for the coordinate mappingsΨ . The matrix
representations and orderings of the basis elements are as described in Sect. 4

A�: �3 + 2�2 + 5� + 4 (n3 − n2 + 4n)
B�: 8�3 + 24�2 + 11� + 1 (n3 + 3n2 − 7

2n + 1
2 )

C�: 8�3 + �2 + 1 (n3 + 1
4n2 + 1)

D�: 8�3 − 5�2 − 2� + 1 (n3 − 5
4n2 − n + 1)

t(n): n3 − 5
4n2 − n + 1

environment in which the code is executed. All the numerical experiments
presented in this paper are done with Matlab.

There exists a number of software packages for Lie group and Lie al-
gebra computations which may be useful tools in developing and analyzing
methods of the type presented here. We mention in particularLIE [15] and
GAP [14].

7 Concluding remarks and open problems

We have presented a new approach for solving ordinary differential equa-
tions on manifolds. Our main purpose has been to demonstrate that such
methods can be implemented cheaply, and thereby constitute a worth while
alternative to the methods of Munthe-Kaas [11]. There is still a lot of work
do be done in the construction and analysis of these new methods. A natural
first step will be to apply them to real problems, for instance in computational
mechanics. In such settings, it has proved useful to phrase the equations and
thereby the solution techniques by means of the coadjoint action of a Lie
group on the dual of its Lie algebra.

In this paper, we have focused on semisimple Lie algebrasg overC, but
we should also be able to handle particular real forms ofg. For instance, in the
case ofB� (D� resp.), it is of interest to consider the compact realization of
real skew-symmetricn×nmatrices wheren = 26+1 (n = 26 resp.), and it
is not clear from the present paper how this is done in the best way. Certainly,
the natural choice of basis elements in this representation is the set of rank
two matriceseieT

j −ejeT
i , 1 ≤ i < j ≤ n. However, one can prove that no

AOB can result from this basis if constructed in accordance with Theorem 3
when6 ≥ 2. Instead one can consider alternatives to AOBs. An attractive
feature of the admissible ordered basis is that it causes the operatordΨ−1

u to
factor intod∗ operators as in (6), each depending only ononecoordinate of
the second kind. We could relax on this requirement, and demand thatdΨ−1

u

be written as a composition of somewhat fewer factors, each depending on
a “small set” of coordinates, such that the cost of computing it would still
be acceptably low. Another natural generalization of the present approach,
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is to replace theexp function in (1) with some other mapφ, but since the
cost of computing the exponential of basis vectors of the type used in our
examples is already very low, we doubt that there is much to gain in terms
of computational cost by replacingexp.

Apart from what can be seen in the numerical experiments, we have
not been able to quantify the error growth in the new methods compared
to that of the Munthe-Kaas methods. It is possible to find examples where
either of the method types has the smaller global error for a fixed stepsize.
However, in all the tests we have performed, the obtained global error vs the
number of floating point operations has been significantly smaller with the
new methods. Generally, the error growth in integration methods based on
actions, is an interesting subject for further studies.
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