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Summary. A new finite element method for elliptic problems with locally
periodic microstructure of lengthε > 0 is developed and analyzed. It is
shown that the method converges, asε → 0, to the solution of the homog-
enized problem with optimal order inε and exponentially in the number of
degrees of freedom independent ofε > 0. The computational work of the
method is bounded independently ofε. Numerical experiments demonstrate
the feasibility and confirm the theoretical results.
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1 Introduction

Numerous problems in engineering and the sciences involve media with
small-scale features, such as a large number of rivets, stiffeners, fibers etc.
In many casesscale resolution, i.e., the discretization of the small-scale
problem features with finite elements, is not feasible, even with advanced
hardware. The derivation of macroscopic models as the small scales tend to
zero by averaging or homogenization is by now well understood and estab-
lished for periodic structures (see, e.g. [3,4,12]). The averaged equations
have smooth coefficients and are therefore well-suited for Finite-Element
discretization. The small-scale features of the solution, however, are lost
in this process. Recovery of such features requires the computation of so-
called correctors which are as difficult to compute as the original problem.
Moreover, the averaged equations are obtained as leading term in asymptotic
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expansions of the solution as the scale-lengthε→ 0. In practice, however,
ε > 0 is given and fixed and the asymptotic limit may be a poor description
of the phenomena of interest. Since asymptotic expansions generally do not
converge, the inclusion of higher order terms at fixedε > 0 into the ho-
mogenization process will not improve the solution, in general. In addition,
the homogenization is basically related to a global periodic pattern of the
microstructure.

Some researchershave thereforeavoided theuseofhomogenization tech-
niques. For example, finite elementmultigrid andmultiscale techniqueshave
been developed for the resolution of the small scales (see, e.g. [7]). Such
schemes are successful in rather general situations, in particular in the ab-
sence of periodicity. However, they require scale-resolution, i.e., with linear
elements in dimensiond at leastO(ε−d) degrees of freedom. The multigrid
techniques constitute an optimal order process for the solution of the re-
sulting system of equations, but cannot overcome the requirement of scale
resolution. If the scales are resolved, these approaches yield algebraic con-
vergence rates.

In the present paper, we develop a newp-FE approach for the numerical
solution of homogenization problems. Its main features are as follows:

a) under the assumption oflocally periodic structure, the scale can be
resolved with computational work which is bounded independently ofε,

b) for piecewise analytic input data, the method will converge exponen-
tially, independent of the length scaleε, in particular also at fixed, positive
ε.

c) asε→ 0, the numerical solution converges to the homogenized limit
with an optimal rate inε.

d) the approach applies to general elliptic systems with locally periodic
microstructure.
A related algorithm has been used successfully in large scale computations
[1].

For the sake of illustration, the approach will be developed and analyzed
here for the classical elliptic problem

−∇ ·
(
a
(x
ε

)
∇u

)
+ a0

(x
ε

)
u = f in Ω,(1.1)

Bu = 0 on∂Ω.(1.2)

HereΩ is a bounded, connected subset ofR
d with boundary∂Ω and bound-

aryoperatorBwhichmaybeeither the traceoperator or theconormal deriva-
tive operator. The problem is assumed strongly elliptic, i.e.a(ξ), a0(ξ) are
positive.
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The Finite Element Method (FEM) for (1.1), (1.2) reads: finduε
N ∈ VN

ε

such that

a(uε, v) =
∫
Ω

{
a
(x
ε

)
∇u · ∇v + a0

(x
ε

)
uv
}
dx = (f, v)

∀v ∈ VN
ε(1.3)

whereVN
ε ⊂ H1(Ω) is a subspace of dimensionN which carries the es-

sential boundary conditions (if any). The FE-solutionuε
N is optimal in the

energy norm‖ · ‖E
∀v ∈ VN

ε : ‖uε − uε
N‖E ≤ ‖uε − v‖E(1.4)

and the performance of the FEM (1.3) depends strongly on the design of the
subspaceVN

ε .
The basic idea of our approach is the design of special,ε-dependent

subspacesVN
ε which resolve the microscale with a number of degrees of

freedom independent ofε and which give exponential convergence inN if
the right hand sidef of the problem is analytic. To this end, wemust assume
the coefficientsa(ξ), a0(ξ) in (1.1) to be1-periodic. The subspacesVN

ε will
be built by analyzing the Fourier-Bochner representation from [10,11] of
the solution of (1.1) on the unbounded domainR

d. We show that asymptotic
expansion of the kernel with respect toε aboutε = 0 reproduces the clas-
sical homogenization approach – thus the method is at least as good as that
approach.We obtain subspacesVN

ε by sampling the Fourier-Bochner kernel
for fixedε > 0 in the frequency domain.Weprove that if the sampling points
are properly selected, this yields function systems with exponential conver-
gence independent ofε > 0. We calculate theε-dependent shape functions
by solving a parameter-dependent unit-cell problem with thehp-FEM. Fi-
nally, we address the calculation of stiffness matrices for ourε-dependent
shape functions. We show that these matrices can be generated with work
independent ofε. In order to present the ideas in the simplest setting, we
concentrate here on the cased = 1 and globally periodic problems. We
hasten to add, however, that all proofs apply verbatim in dimensionsd > 1
[8]. Likewise, the assumption on global periodicity of the coefficientsa, a0
is not restrictive – if the coefficients are only patch-wise periodic, we may
resort to the partition of unity method (PUM) and useVN

ε simply as local
approximation spaces in the PUM (see [2] for more on the theory and ap-
plications of the PUM). Finally, we remark that the algorithms developed
here have shown good results also in the non-periodic setting, see e.g., [1],
even though the theoretical results do not apply there.

The outline of this paper is as follows. In Sect. 2 we present the ho-
mogenization problem on the unbounded domain and introduce the kernel
φ(y, ε, t) together with its properties. In Sect. 3 we show how the classical
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homogenization resultε → 0 can be obtained with our approach and de-
rive also the new spectral homogenization result. Exponential and spectral
convergence results are established. Section 4 addresses the computational
aspects of the kernel and of the stiffness matrices if theε-dependent shape
functions are used in ap-version FEM. Computational examples in full
agreement with the theory conclude the paper.

2 The homogenization problem onR

2.1 Variational setting and representation formula

Based on (1.1), consider the following elliptic, second order equation

− d

dx

(
a
(x
ε

) duε

dx
(x)

)
+ a0

(x
ε

)
uε(x) = f(x)(2.1)

onR, in whicha(·) anda0(·) areL∞(R), 2π-periodic functions,ε > 0 is
a real parameter andf ∈ L2(R). It is also assumed that there exist positive
constantsγ, γ1 > 0 such that

0 < γ ≤ a(ξ), a0(ξ) ≤ γ1, for a.e.ξ ∈ R.(2.2)

Then, it is shown in [10], [11] that (2.1) admits a unique solutionuε with
the following representation:

uε(x) =
1√
2π

(B)∫
R

f̂(t)eixtφ
(x
ε
, ε, t

)
dt.(2.3)

Here,f̂ represents the Fourier transform off and the integral is understood
as Fourier-Bochner integral of Banach-space valued functions. The kernel
φ(·, ε, t) is the2π-periodic weak solution of the so-calledunit-cell problem:

− 1
ε2

d

dy

(
a(y)

d

dy

(
φ(y, ε, t)eiεty

))
+a0(y)φ(y, ε, t)eiεty

= eiεty, y ∈ Q,(2.4)

whereQ := {y : |y| < π} denotes the fundamental period. To characterize
precisely thenotionof solutionof (2.1),we introduce the followingweighted
Sobolev spaces onR:

Definition 2.1 Forj = 0, 1 and for anyν ∈ R the weighted Sobolev spaces
Hj

ν(R) are defined to be

Hj
ν(R) = C∞

0 (R;C)
‖·‖j,ν

,(2.5)
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where

‖u‖2j,ν =
∫
R

(
j∑

l=0

∣∣∣∣dludxl
(x)

∣∣∣∣
2
)
e2ν|x| dx.(2.6)

Let us associate with (2.1) the sesquilinear formΨ(ε)[·, ·] : H1−ν(R) ×
H1

ν (R)→ C

Ψ(ε)[u, v] =
∫
R

{
a
(x
ε

) du

dx
(x)

dv

dx
(x) + a0

(x
ε

)
u(x)v(x)

}
dx.(2.7)

Proposition 2.2 There exist positive constantsν0,C andη such that for all
ν ∈ (0, ν0) and allε > 0,

1. |Ψ(ε)[u, v]| ≤ C‖u‖1,−ν‖v‖1,ν ,
2. inf

‖u‖1,−ν=1
sup

‖v‖1,ν=1
|Ψ(ε)[u, v]| ≥ η > 0,

3. sup
u∈H1

−ν(R)
|Ψ(ε)[u, v]| > 0 for all 0 �= v ∈ H1

ν (R),

4. for all f ∈ (
H1

ν (R)
)∗

, there exists a unique weak solutionuε of (2.1),
i.e.

uε ∈ H1
−ν(R) : Ψ(ε)[uε, v] = 〈f, v〉(H1

ν )∗×H1
ν
,

∀ v ∈ H1
ν (R).(2.8)

Moreover,uε admits the integral representation (2.3) and the following
a-priori estimate holds

‖uε‖H1
−ν
≤ (1/η)‖f‖(H1

ν )∗ .

A proof of these statements is given in [10].
Next, we define

ψ(y, ε, t) := φ(y, ε, t)eitεy.(2.9)

With the above notations, for everyt ∈ R the kernelψ(·/ε, ε, t) ∈ H1−ν(R)
is the unique weak solution of the problem

Ψ(ε)
[
ψ
( ·
ε
, ε, t

)
, v
]
= 〈eit(·), v〉(H1

ν )∗×H1
ν
, ∀ v ∈ H1

ν (R).(2.10)

In the remainder of this paper, we will show how the kernelsφ(y, ε, t),
ψ(y, ε, t) can be used to design FE-approximations of (1.1), (1.2) which
encode the microstructure and coefficient regularity. A crucial role in estab-
lishing exponential convergence will be played by the kernels’ analyticity.
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2.2 Analyticity of the kernels

It has already been shown in [11] that the kernelφ(·, ε, t) can be continued
analytically with respect to(ε, t) in a neighbourhood̂G ⊂ C

2 of R
2, with

values inH1
per(0, 2π), H

1−ν(R). We show here that for every fixedε > 0,
φ(·, ε, t) andψ(·, ε, t) can be continued analytically with respect tot in a
strip neighbourhood ofR, and the width of the strip is independent ofε.

Ford > 0 let us use the notation

Dd := {t ∈ C such that|Im t| < d}.(2.11)

Then the following theorem holds

Theorem 2.3 For everyν ∈ (0, ν0), the mappings

Dν/2 � t→ ψ
( ·
ε
, ε, t

)
∈ H1

−ν(R),(2.12)

Dν/2 � t→ φ
( ·
ε
, ε, t

)
∈ H1

−2ν(R),(2.13)

are holomorphic inDν/2 with values in the Banach spacesH1−ν(R),
H1−2ν(R) respectively. Moreover, for allk ≥ 0, ε > 0 and t ∈ Dν/2
holds

∥∥∥∥ dk

dtk
ψ
( ·
ε
, ε, t

)∥∥∥∥
1,−ν

≤
√
(2k)!

γνk
√

ν/2
,(2.14)

∥∥∥∥ dk

dtk
φ
( ·
ε
, ε, t

)∥∥∥∥
1,−2ν

≤ C(1 + |t|) k!
(ν/2)k

.(2.15)

For the Proof of Theorem 2.3 we refer to Appendix A.

3 Finite dimensional approximation in the nonperiodic setting

Our objective is to construct generalized FE spacesVN
ε which incorporate

the microstructure of the solutionuε. To this end, we approximate the rep-
resentation formula (2.3) by expressions of the form

∑N
k=1 ck(f)φk(x/ε)

whereck(·) may depend onf and onε in a complicated way. The first
approach is based on asymptotic expansion ofφ(y, ε, t) in ε and is, as we
show, nothing but classical homogenization. The second, spectral approach
exploits the analyticity ofφ(y, ε, t) in ε andt. It allows to obtain exponential
convergence rates, independent ofε.



Generalizedp-FEM in homogenization 325

3.1 Asymptotic approximation of (2.3) (expansion inε)

3.1.1 Derivation of the expansion.Since the kernelφ(·, ε, t) is analytic
with respect toε with values inH1

per(−π, π), it can be expanded in powers
of ε, for every fixedt ∈ R, i.e.,

φ(·, ε, t) =
∞∑
k=0

εkφk(·, t).(3.1)

Note that the convergence radius depends ont, and the coefficientsφk(·, t)
are inH1

per(−π, π) and depend holomorphically ont. Setting

Φ(ε, t)[φ, v] : =

π∫
−π

a(y)
d

dy

(
φ(y)eiεyt

) d

dy
(v(y)eiεyt)

+ε2a0(y)φ(y)v(y) dy,(3.2)

we may write

Φ(ε, t) = Φ0 + εΦ1(t) + ε2Φ2(t),(3.3)

in which

Φ0[φ, v] :=

π∫
−π

a(y)
dφ

dy
(y)

dv

dy
(y) dy,

Φ1(t)[φ, v] := i

π∫
−π

a(y)
(
tφ(y)

dv

dy
(y)− t

dφ

dy
(y)v(y)

)
dy,

Φ2(t)[φ, v] :=

π∫
−π

(|t|2a(y) + a0(y)
)
φ(y)v(y) dy,

for all φ, v ∈ H1
per(−π, π), t ∈ R. We note that

Φk(t)[φ, v] =
k∑

k′=0

(it)k
′
Φk;k′ [φ, v],(3.4)

with Φk;k′ [·, ·] independent ofε andt. Denote by

W 1
per =

{
φ ∈ H1

per(−π, π) :
π∫

−π

φ(y) dy = 0
}
.
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Sinceφ(·, ε, t) is the weak solution of the variational problem

φ(·, ε, t) ∈ H1
per(−π, π) : Φ(ε, t)[φ(·, ε, t), v] = ε2

π∫
−π

v(y) dy,(3.5)

after substituting the expansion (3.1) into (3.3) and equating like powers of
ε, the following expressions forφk(·, t) can be derived (for the proof we
refer to [11] for example)

φk(·, t) =




g0(t), if k = 0

k−1∑
j=0

gj(t)χk−j(·, t) + gk(t), if k ≥ 1,
(3.6)

where for eachk ≥ 1, χk(·, t) ∈W 1
per is the solution of

Φ0[χk(·, t), v] =




−Φ1(t)[1, v], if k = 1

−Φ1(t)[χ1(·, t), v]− Φ2(t)[1, v], if k = 2

−Φ1(t)[χk−1(·, t), v]− Φ2(t)[χk−2(·, t), v], if k ≥ 3,
(3.7)
and thegk(t) ∈ C are defined recursively by

gk(t) =




2π
Φ1(t)[χ1, 1] + Φ2(t)[1, 1]

, if k = 0

−g0(t)
2π

k−1∑
j=0

gj(t) (Φ1(t)[χk+1−j(·, t), 1]

+Φ2(t)[χk−j(·, t), 1]) , if k ≥ 1.

(3.8)

Let nowχ1;1(·) ∈W 1
per be the unique weak solution of

Φ0[χ1;1 + y, v] = 0, ∀ v ∈W 1
per.(3.9)

Then,χ1;1(·) is a real valued function and it can be deduced directly from
the definition ofχ1(·, t) that

χ1(·, t) = itχ1;1(·).(3.10)
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Substituting (3.10) in the definition ofg0 we get

g0(t) =
1

A|t|2 +A0
,(3.11)

where

A0 =
1
2π

π∫
−π

a0(y) dy,

A =
1
2π

Φ0(χ1;1 + y, y) =
1
2π

Φ0(χ1;1 + y, χ1;1 + y).(3.12)

Replacing in the integral representation (2.3) ofuε(x) the kernelφ(·, ε, t)
by its asymptotic expansion (3.1), we get the formal expansion foruε in
powers ofε

uε(x) =
∑
k≥0

εkuε
(k)(x).

The leading termuε
(0)(x) = u(0)(x) is by (3.6) and (3.11) independent ofε

and the uniqueweak solution of the homogenized differential equation, with
constant coefficientsA andA0 defined by the averaging formulas (3.12)

− d

dx

(
A
du(0)

dx

)
+A0u(0)(x) = f(x).

If f satisfies the usual assumptions, the coefficientsuε
(k)(x), k ≥ 1, may be

represented as Bochner integrals with kernelφk(·/ε, t)

uε
(k)(x) =

1√
2π

(B)∫
R

f̂(t)eixtφk

(x
ε
, t
)
dt.(3.13)

Solving forφ1(·, t) now yields

φ1(·, t) = g0(t)χ1(·, t) + g1(t) = itg0(t)χ1;1(·) + g1(t).

Therefore, by (3.13)

uε
(1)(x) =

duε
(0)

dx
χ1;1

(x
ε

)
+ ũε

(1)(x),

where

ũε
(1)(x) =

1√
2π

∫
R

f̂(t)g1(t)eitxdt.
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Similarly,

φ2(·, t) = g0(t)χ2(·, t) + g1(t)χ1(·, t) + g2(t)
= g0(t)

(
(it)2χ2;2(·) + χ2;0(·)

)
+ itg1(t)χ1;1(·) + g2(t),

where

Φ0 [χ2;2, v] = −
π∫

−π

a(y)χ1;1(y)
dv

dy
(y)dy +

π∫
−π

a(y)
d

dy
(χ1;1 + y) v(y)dy,(3.14)

Φ0 [χ2;0, v] = −
π∫

−π

a0(y)v(y)dy, ∀ v ∈W 1
per.(3.15)

Hence,

uε
(2)(x) =

d2u(0)

dx2 (x)χ2;2

(x
ε

)

+u(0)(x)χ2;0

(x
ε

)
+

dũε
(1)

dx
(x)χ1;1

(x
ε

)
+ ũε

(2)(x),

where

ũε
(2)(x) =

1√
2π

∫
R

f̂(t)g2(t)eitxdt.

By (3.4) and an induction argument it can be directly derived from (3.7) that

χk(·, t) =
[ k
2 ]∑

l=0

χk;k−2l(·)(it)k−2l,(3.16)

whereχk;j(·) are real valued functions which are independent ofε, t.
WritingΦ1(t)[·, ·] = itΦ1;1[·, ·] andΦ2(t)[·, ·] = (it)2Φ2;2[·, ·]+Φ2;0[·, ·]

we can easily find a recursive system of equations forχk;k−2l(·)
[ k
2 ]∑

l=0

(it)k−2lΦ0[χk;k−2l, v] = −
[ k−1

2 ]∑
j=0

(it)k−2jΦ1;1[χk−1;k−1−2j , v]

−
[ k−2

2 ]∑
m=0

{
(it)k−2mΦ2;2[χk−2;k−2−2m, v]

+(it)k−2−2mΦ2;0[χk−2;k−2−2m, v]
}
.
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Equating like equal powers ofit in both sides we get a recursive set of
variational problems forχk;k−2l(·), for k ≥ 1 (χ−1;−1 ≡ 0, χ0;0 ≡ 1)

Φ0[χk;k−2l, v] =




−Φ1;1[χk−1;k−1, v]

−Φ2;2[χk−2;k−2, v], if l = 0,

−Φ1;1[χk−1;k−1−2l, v]

−Φ2;2[χk−2;k−2−2l, v]

−Φ2;0[χk−2;k−2l, v], if 1 ≤ l ≤ [
k
2

]− 1,

−Φ1;1[χk−1;k−1−2l, v]

−Φ2;0[χk−2;k−2l, v], if l =
[
k
2

]
, k odd,

−Φ2;0[χk−2;k−2l, v], if l =
[
k
2

]
, k even.

(3.17)
Moreover, it can be also seen that

gk(t) = (g0(t))
k+1 p

(k)
3k (it),

wherep(k)
j (·) denotes a polynomial with real coefficients of degreej.

Proposition 3.1 For k ≥ 0 and anyt ∈ R,

φk(·, t) ∈ Span{χk−j; k−j−2l(·)}0≤j≤k,0≤2l≤k−j ,

with χi;j(·) defined recursively by (3.17) and the convention thatχ0;0 ≡ 1.

Proof.By substituting (3.16) in (3.6) we can writeφk(·, t) in the following
form

φk(·, t) =
k−1∑
j=0

gj(t)
[ k−j

2 ]∑
l=0

χk−j;k−j−2l(·)(it)k−j−2l

+gk(t) ∈ span{χk−j; k−j−2l(·)}0≤j≤k,0≤2l≤k−j . ��

3.1.2 Justification. Taking the Taylor expansion ofφ(·, ε, t) with integral
representation for the remainder, we can write

φ(·, ε, t) =
L∑

k=0

εkφk(·, t) + εL+1

L!

(B)∫
(0,1)

(1− s)L
dL+1φ

dεL+1 (·, sε, t) ds

=
L∑

k=0

εkφk(·, t) + εL+1

(L+ 1)!
dL+1φ

dεL+1 (·, θ(ε), t),
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for some intermediate point0 < θ(ε) < ε. Therefore,

uε(x) = uε,L(x) +
εL+1

√
2π(L+ 1)!

(B)∫
R

f̂(t)eixt
dL+1φ

dεL+1

(x
ε
, θ(ε), t

)
dt,

whereuε,L(x) =
∑L

k=0 ε
kuε

(k)(x). Assume now thatk ≥ 2 and take thek-
th derivative with respect toε in the variational definition (3.5) ofφ(·, ε, t).
It follows that d

kφ
dεk (·, ε, t) ∈ H1

per(−π, π) is the weak solution of

Φ(ε, t)
[
1
k!

dkφ

dεk
(·, ε, t), v

]
= −Φ1(t)

[
1

(k − 1)!
dk−1φ

dεk−1 (·, ε, t), v
]

−2 εΦ2(t)
[

1
(k − 1)!

dk−1φ

dεk−1 (·, ε, t), v
]

−Φ2(t)
[

1
(k − 2)!

dk−2φ

dεk−2 (·, ε, t), v
]

+2 δk2

π∫
−π

v(y) dy,

with δk2 denoting the Kronecker symbol. By an induction argument it can
be shown that∥∥∥∥ 1k! d

kφ

dεk
(·, ε, t)

∥∥∥∥
H1(−π,π)

≤ Cηk(1 + |t|)3k+1(3.18)

uniformly with t ∈ R, where the constantsC > 0, η > 1 are independent
of t andk. Assume now thats > 0 andf ∈ Hs(R). Then,

‖uε − uε,L‖1,−ν ≤ εL‖f‖Hs(R)

×
(∫

R

∥∥∥∥ 1
(L+ 1)!

dL+1φ

dεL+1

( ·
ε
, θ(ε), t

)∥∥∥∥
2

1,−ν

(1 + |t|2)−s dt

)1/2

.

From the estimate (3.18) it follows that

‖uε − uε,L‖1,−ν ≤MεLηL+1‖f‖Hs(R) = CLε
L‖f‖Hs(R),(3.19)

for f sufficiently smooth. In conclusion, for sufficiently smooth dataf and
anyε > 0, the solutionuε(x) can be approximated to any orderL in ε from
the subspace

Span
{
χk;l

(x
ε

)}
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whereχk;l(y) are the functions arising in the classical homogenization ap-
proach (see, e.g., [12]).
One might therefore consider choosingSpan{χk;l(y)} as local FE approx-
imation spaces. This has indeed been tried (see, e.g., [3]) and gives rea-
sonable results in special cases. However, there are severe disadvantages
of this approach: i) the number ofχk;l(y) necessary to achieve an error of
orderεL grows likeL2 (and worse in higher dimensions), ii) in practice,
ε > 0 is given and not at our disposal; therefore, there is no guarantee that at
fixed ε > 0 the inclusion of further terms in the asymptotic expansion will
decrease the error, iii) the constant in the error estimate (3.19) in general
increases quickly withL.

3.2 Spectral approximation of (2.3)

The error estimate (3.19) is in analogy toh-type FEM based on Taylor
series expansion of the exact solution withε > 0 assuming the role ofh
(there, we can reduceh, but here we cannot chooseε > 0, however). Taylor
series will, in general, not give error estimates which are optimal in terms
of the polynomial degree of the approximation. We will therefore derive
in the present section a different system of microscale shape functions and
establish spectral approximation results for them.

The main idea is to approximate the Fourier-Bochner integral (2.3) by
a finite sum by truncating a (generalized) Poisson summation formula. To
this end, leth > 0 andk be an integer, and defineS(k, h) by

S(k, h)(x) =
sin[π(x− kh)/h]
π(x− kh)/h

.(3.20)

Weshall refer toS(k, h)as thek’th Sinc function,with stepsizeh, evaluated
atx.

Lemma 3.2

S(k, h)(x) =
1
2π

π/h∫
−π/h

heikht−ixtdt,(3.21)

and

∫
R

S(k, h)(x)S(l, h)(x)dx =
h2

2π

π/h∫
−π/h

ei(k−l)htdt = hδk−l.(3.22)

Proof.See, eg., [13], Theorem1.10.1.
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Definition 3.3 For a Banach spaceX, we denote by

Hp(Dd;X) = { g : Dd → X| g is analytic in
Dd andNp(g,Dd;X) <∞},(3.23)

where

Np(g,Dd;X) =




lim
δ→0+

( ∫
∂Dd(δ)

‖g(z)‖pX |dz|
)1/p

, if 1 ≤ p <∞

lim
δ→0+

sup
z∈Dd(δ)

‖g(z)‖X , if p =∞,

and for0 < δ < 1,Dd(δ) is defined by

Dd(δ) = {z ∈ C : |Re (z)| < 1/δ, |Im (z)| < d(1− δ)}.
Definition 3.4 We say, a functionf fulfills the ‘usual assumptions’, iff ∈
L2(R), and its Fourier transformation̂f(·) can be extended to a holomorphic
function in the stripDd, with d = d(ν) = ν/2 andf̂ satisfies the following
growth condition :

|f̂(z)| ≤ C(f)e−α|z|, ∀ z ∈ Dd,(3.24)

for some positive constantsC(f), α > 0.

Then the following theorem holds :

Theorem 3.5 Under the ‘usual assumptions’ onf the mapping

Dd � t→ g(t, ·) = gε(t, ·) := 1√
2π

f̂(t)φ
( ·
ε
, ε, t

)
∈ H1

−2ν(R)(3.25)

is in Hp(Dd;H1−2ν(R)), for all 1 ≤ p ≤ ∞.
Moreover, there existsC(γ, ν) > 0 such thatgε(t, ·) satisfies the growth
condition:

‖gε(t, ·)‖1,−2ν ≤ C(γ, ν)C(f)
(
1 +

1
α

)
e− α

2 |t|, ∀ t ∈ Dd,(3.26)

whereα andC(f) are as in (3.24).

Proof.Strictly speaking,g in (3.25) depends onε. However, all estimates
which follow will be robust with respect toε and we therefore do not write
the dependence onε explicitly.
From the usual assumptions onf and from (2.15) it follows easily that there
exists a positive constantC = C(γ, ν) > 0 such that

‖g(t, ·)‖1,−2ν ≤ C(γ, ν)C(f)(1 + |t|)e−α|t|, ∀ t ∈ Dd.(3.27)
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It follows therefore that

‖g(t, ·)‖1,−2ν ≤ C(γ, ν)C(f)
(
1 +

1
α

)
e− α

2 |t|, ∀ t ∈ Dd.(3.28)

Then, for1 ≤ p <∞, we have that

Np(g,Dd;H1
1,−2ν) =

( ∫
∂Dd

‖g(z, ·)‖p1,−2ν |dz|
)1/p

≤ C(γ, ν)C(f)
(
1 +

1
α

)( ∫
∂Dd

e− pα
2 |z||dz|

)1/p

≤ C(γ, ν)C(f)
(
1 +

1
α

)(
8
αp

)1/p

.

The casep =∞ is treated analogously. ��
Let L ≥ 1 and assume in what follows thatπ/h ≥ 2L, i.e.,h ≤ π/(2L).
Define, forz ∈ Dd,

C(g, h)(z, x) :=
∞∑

k=−∞
g(kh, x)S(k, h)(z),

CN(g, h)(z, x) :=
N∑

k=−N

g(kh, x)S(k, h)(z)

in H1−2ν(R), and set

E(f, h)(z, x) := g(z, x)− C(g, h)(z, x),
EN(f, h)(z, x) := g(z, x)− CN(g, h)(z, x)(3.29)

in H1−2ν(R). Defineδ(f, h)(·), δN(f, h)(·) ∈ H1−2ν(−L,L) ∩ H0−2ν(R)
formally as

δ(f, h)(x) = lim
δ→0+

(B)∫
R

e−δ|t|eixtE(f, h)(t, x) dt,(3.30)

δN(f, h)(x) = lim
δ→0+

(B)∫
R

e−δ|t|eixtEN(f, h)(t, x) dt.(3.31)

It will be shown that the above definitions make sense, and that the limits
in (3.30) and (3.31) are well defined as Bochner integrals ofH1−2ν(−L,L),
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respectivelyH0−2ν(R)-valued functions. Notice that the weighted Sobolev
spacesH1−2ν(−L,L) are continuously embedded inH1(−L,L), and

‖F (·)‖H1(−L,L) ≤ eνL‖F (·)‖H1
−2ν(−L,L),

∀F (·) ∈ H1
−2ν(−L,L).(3.32)

From the properties of theSinc functionsS(k, h)(·) in Lemma 3.2 it will
be seen that

δN(f, h)(x) = lim
δ→0

(B)∫
R

e−δ|t|eixt
{
g(t, x)−

N∑
k=−N

g(kh, x)S(k, h)(t)

}
dt

(3.33)

=




(B)∫
R

eixtg(t, x) dt− h

N∑
k=−N

g(kh, x)eikhx , if |x| < π

h
,

∫
R

eixtg(t, x) dt , if |x| > π

h
,

in H0−2ν(R) ∩H1−2ν(−L,L). To this end, define the following trapezoidal
approximation of (2.3)

uε
N,h(x) = 1[− π

h
,π
h ]
(x)

1√
2π

h

N∑
k=−N

φ
(x
ε
, ε, kh

)
f̂(kh)eikhx

= 1[− π
h
,π
h ]
(x)

1√
2π

h

N∑
k=−N

ψ
(x
ε
, ε, kh

)
f̂(kh).(3.34)

Remark 3.6Since

f̂(−ξ) = f̂(ξ), ψ
( ·
ε
, ε,−ξ

)
= ψ

( ·
ε
, ε, ξ

)
,

it follows that

uε
N,h(x) = 1[− π

h
,π
h ]
(x)

1√
2π

hψ
(x
ε
, ε, 0

)
f̂(0) + 21[− π

h
,π
h ]
(x)

1√
2π

h

×
{

N∑
k=1

Reψ
(x
ε
, ε, kh

)
Ref̂(kh)− Imψ

(x
ε
, ε, kh

)
Im f̂(kh)

}
,

and the solution of (2.3) can formally be written asuε(·) = uε
N,h(·) +

δN(f, h)(·).
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3.3 Exponential convergence

We will now show that (3.34) approximatesuε in (2.3) at an exponential
rate, independent ofε. We start with the following result.

Lemma 3.7 Assume thatf satisfies the ‘usual assumptions’,g is as in (3.25)
andz ∈ Dd is arbitrary. Then holds the representation

E(f, h)(z, x) = g(z, x)− C(g, h)(z, x)

=
sin(πz/h)

2πi

(B)∫
R

{
g(t− id−, x)

(t− z − id) sin[π(t− id)/h]

− g(t+ id−, x)
(t− z + id) sin[π(t+ id)/h]

}
dt,

where this equality has to be understood as equality between two elements
of the Banach spaceH1−2ν(R) and the integral as a Bochner integral of
H1−2ν(R)-valued functions.

Proof.Let 0 < δ < d, letn denote a positive integer, letD(n, δ) denote the
region

D(n, δ) =
{
z ∈ C | |Rez| <

(
n+

1
2

)
h, |Im z| < δ

}
(3.35)

and consider, forz = a+ ib ∈ Dd fixed,ζ = ξ+ iη, the following Bochner-
integral inH1−2ν(R)

E(n, δ, f)(z, x) =
sin(πz/h)

2πi

(B)∫
∂D(n,δ)

g(ζ, x)
(ζ − z) sin(πζ/h)

dζ.(3.36)

Then, forn sufficiently large andδ sufficiently close tod, z is in D(n, δ)
and|z − ζ| ≥ min

{(
n+ 1

2

)
h− |a|, δ − |b|} > 0.

Along the vertical segments of the boundary∂D(n, δ)

ζ = ±
(
n+

1
2

)
h+ iy

and therefore| sin(πζ/h)| = cosh(πy/h) ≥ 1. Then, theH1−2ν-norm of
the integral (3.36) along these segments is bounded by

| sin(πz/h)|
2π

δ∫
−δ

{∥∥g ((n+ 1
2

)
h+ iy, ·)∥∥1,−2ν∣∣(n+ 1
2)h− a

∣∣
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+

∥∥g ((−n− 1
2

)
h+ iy, ·)∥∥1,−2ν∣∣(−n− 1
2)h− a

∣∣
}

dy

≤ | sin(πz/h)|
2π

(2δ)1/qNp(g,Dd;H1
−2ν(R))

×
{

1∣∣(n+ 1
2

)
h− a

∣∣ + 1∣∣(n+ 1
2

)
h+ a

∣∣
}
,

which tends to zero asn → ∞ (here1/p + 1/q = 1). Now, since the
following relations hold

sinh(πδ/h) ≤ [
cosh2(πδ/h)− cos2(πt/h)

]1/2
= | sin[π(t± iδ)/h]| ≤ cosh(πδ/h),

and along the horizontal segments of∂Dd

|z − ζ| = [(a− ξ)2 + (|b| − δ)2]1/2,

theH1−2ν-norm of the integral along these segments has the bound

| sin(πz/h)|
2π sinh(πδ/h)

Np(g,Dd;H1
−2ν(R))

×
{∫

R

1
[(a− ξ)2 + (|b| − δ)2]q/2

dξ

}1/q

.(3.37)

This implies thatE(n, δ, f)(z, ·) ∈ H1−2ν(R) admits the representation

E(n, δ, f)(z, ·) = g(z, ·)− sin(πz/h)
n∑

k=−n

(−1)kg(kh, ·)
π(z − kh)/h

= g(z, ·)−
n∑

k=−n

sin
[
π
(z − kh)

h

]

π
z − kh

h

g(kh, ·)

= g(z, ·)−
n∑

k=−n

S(k, h)(z)g(kh, ·).

Also, the limitsn→∞ andδ → d exist inH1−2ν(R) in both sides and the
lemma follows. ��
Remark 3.8We do not actually need the strong ‘usual assumptions’ onf
to deduce the above integral representation forE(f, h)(z, ·) for z in the
stripDd. These assumptions onf just imply that the integrandg defined
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in (3.25) is inHp(Dd;H1−2ν(R)), for every1 ≤ p ≤ ∞, as shown in
Theorem 3.5. For the proof of Lemma 3.7 it is sufficient to know thatg ∈
Hp(Dd;H1−2ν(R)), for some1 ≤ p ≤ ∞, and such a property ong holds
under more general hypothesis onf than the ‘usual assumptions’, such as
f ∈ Hs

comp(R) for somes > 1. In this caseg ∈ H∞(Dd;H1−2ν(R)) and
again the representation in Lemma 3.7 is valid.

Theorem 3.9 Let f satisfy the ‘usual assumptions’ in Definition 3.4 with
someα, d > 0 and letL > 0 be arbitrary. Define

h =
(

πd

αN

)1/2

,(3.38)

and assumeN ≥ (4dL2)/(απ), i.e., such thatπ/h ≥ 2 L.
Then, withE(f, h)(t, ·) as in Lemma 3.7 we have the following repre-

sentation

δ(f, h)(·) := lim
δ→0+

(B)∫
R

eit(·)e−δ|t|E(f, h)(t, ·) dt

=

(B)∫
R

f1(t, ·)g(t− id−, ·) dt+
(B)∫
R

f2(t, ·)g(t+ id−, ·) dt,

in H0−2ν(R) ∩H1−2ν(−L,L). Here, the kernelsf1 andf2 are defined by

f1(t, x) =




exd+ixt , if x < −π

h

i

2
e(x− π

h )(d+it)

sin[π(t− id)/h]
, if − π

h
< x <

π

h

0 , if x >
π

h
,

(3.39)

and

f2(t, x) =




0 , if x < −π

h

− i

2
e−(x+π

h )(d−it)

sin[π(t+ id)/h]
, if − π

h
< x <

π

h

e−xd+ixt , if x >
π

h
.

(3.40)
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Moreover, there exists a constantC = C(γ, ν)C(f) (1 + 1/α)2 (1/α) > 0,
which depends onf, α, d, γ, but is independent ofN andL, such that

‖δ(f, h)(·)‖0,−2ν + ‖δ(f, h)(·)‖H1
−2ν(−L,L) ≤ Ce−(πdαN)1/2

.

For the proof of this theorem we refer to Appendix B.
Ourmain result on the trapezoidal approximationuε

N, h(x)of theFourier-
integral (2.3) is :

Theorem 3.10Under the assumptions in Theorem 3.9, the errorδN(f, h)(·)
= uε(·) − uε

N,h(·), with uε
N,h(·) as in (3.34), decays exponentially with

respect toN and uniformly with respect toε in the‖·‖0,−2ν , ‖·‖H1
−2ν(−L,L)-

norms:

‖δN(f, h)(·)‖0,−2ν + ‖δN(f, h)(·)‖H1
−2ν(−L,L)

≤ C(γ, ν)C(f)
(
1 +

1
α

)2 1
α
e−(παdN)1/2

.(3.41)

The constantsC(γ, ν), C(f) are independent ofε,N,L.

Proof.From the definitions (3.30) and (3.31) ofδ(f, h)(·) andδN(f, h)(·)
and the properties of theSinc functionsS(k, h)(·) in Lemma 3.2 it follows
that

δN(f, h)(·) = δ(f, h)(·) +
∑

|k|>N

lim
δ→0+

(B)∫
R

e−δ|t|eit(·)g(kh, ·)S(k, h)(t) dt

= δ(f, h)(·) + 1√
2π

1[− π
h
,π
h ]
(·)
∑

|k|>N

hf̂(kh)φ
( ·
ε
, ε, kh

)
eikh(·),(3.42)

in H0−2ν(R), respectively

δN(f, h)(·) = δ(f, h)(·) + 1√
2π

∑
|k|>N

hf̂(kh)φ
( ·
ε
, ε, kh

)
eikh(·),(3.43)

in H1−2ν(−L,L). It follows therefore that
‖δN(f, h)(·)‖0,−2ν ≤ ‖δ(f, h)(·)‖0,−2ν

+
1√
2π

∑
|k|>N

h|f̂(kh)|
∥∥∥φ( ·

ε
, ε, kh

)
ei(·)kh

∥∥∥
0,−2ν

≤ ‖δ(f, h)(·)‖0,−2ν + C
∑

|k|>N

h|f̂(kh)|,
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‖δN(f, h)(·)‖H1
−2ν(−L,L) ≤ ‖δ(f, h)(·)‖H1

−2ν(−L,L)

+
1√
2π

∑
|k|>N

h|f̂(kh)|
∥∥∥φ( ·

ε
, ε, kh

)
ei(·)kh

∥∥∥
1,−2ν

≤ ‖δ(f, h)(·)‖H1
−2ν(−L,L) + C

∑
|k|>N

h|f̂(kh)|,

since it has been shown in Lemma A.2 that‖φ(·/ε, ε, t)ei(·)t‖1,−2ν ≤
C(γ, ν), for all t ∈ Dd ⊂ C, therefore in particular for allt ∈ R. Since
|f̂(kh)| ≤ C(f)e−α|k|h,

h
∑

|k|>N

|f̂(kh)| ≤ 2C(f)h e−αNh e−αh

1− e−αh
≤ 2C(f)

1
α
e−αNh,(3.44)

which implies with our choice ofh that the sum in (3.42) satisfies the
estimate (3.41). It is therefore enough to show that‖δ(f, h)(·)‖0,−2ν +
‖δ(f, h)(·)‖H1

−2ν(−L,L) satisfy (3.41), and this is just the statement of The-
orem 3.9. ��

As a corollary, the following approximation result holds

Corollary 3.11 Let us assume thatf satisfies the usual assumptions and
that

h =
(

πd

αN

)1/2

, N ≥ 4dL2

απ
.(3.45)

Let

WN
ε := Span

{
Reψ

( ·
ε
, ε, kh

)
, Imψ

( ·
ε
, ε, kh

)
: 0 ≤ k ≤ N

}
.

(3.46)
Then

inf
v∈WN

ε

‖uε − v‖H1
−2ν(−L,L),H0

−2ν(R)

≤ C(γ, ν)C(f)
(
1 +

1
α

)2 1
α
e−(παdN)1/2

,(3.47)

whereC(f) andα = α(f) are those from Definition 3.4.

3.4 Spectral convergence

In this section we assume thatf in (2.1) is inHs
comp(R). We will show that

for anyε > 0 the solutionuε can be approximated by

uε
N ∈ Span{Reψ(·/ε, ε, kh), Im ψ(·/ε, ε, kh) : |k| ≤ N}

with respect to‖ · ‖1,−ν at an algebraic convergence rate independent ofε.
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Proposition 3.12 Assume thatf in (2.1) isHs
comp(R) with s > 1 and let

supp f ⊂ (−M,M), withM > 0. Letd := min{1/M, ν/2} andN ≥ 1.
Then, for anyε > 0 and allN

inf
v∈WN

ε

‖uε − v‖1,−ν ≤ Cν,sM
1/2N−(s−1)/2‖f‖Hs(R),(3.48)

whereCν,s > 0 is independent ofε,N andM .

Proof.By a density argument it can be assumed thatf ∈ C∞
0 (−M,M). It

is known then that the Fourier transform off can be continued analytically
in C and f̂ is uniformly bounded in a strip of width1/M . Therefore, the
integrand in the Bochner integral representation (2.3) ofuε is analytic in a
strip with values in the Banach spaceH1−ν(R)

g(t, ·) = f̂(t)ψ
( ·
ε
, ε, t

)
∈ A (Dmin{1/M,ν/2};H1

−ν(R)
)
.

Defined = min{1/M, ν/2}, and leth =
√

d/N . Let us split the solution
uε again as

uε(·) =
∑

|k|≤N

1√
2π

h f̂(kh)ψ
( ·
ε
, ε, kh

)

+
∑

|k|≥N+1

1√
2π

h f̂(kh)ψ
( ·
ε
, ε, kh

)
+

(B)∫
R

g(t, ·) dt− h
∑
k∈Z

g(kh, ·).(3.49)

We defineuε
N as the first sum in the right hand side of (3.49). The regularity

of f implies that∣∣∣tαf̂(t)∣∣∣ = 1√
2π

∣∣∣∣
∫

supp f

e−ity d
αf

dyα
(y)

∣∣∣∣
≤ CM1/2‖f‖Hs(R), ∀ t ∈ R, ∀α ≤ s.

It has been shown in Theorem 2.3 thatψ(·/ε, ε, t) is analytic inDν/2 with
values in H1−ν(R) and uniformly bounded. Moreover, the norm
‖ψ(·/ε, ε, t)‖L∞(Dν/2;H1

−ν(R)) is bounded uniformly with respect toε.
Hence, the second sum in (3.49) satisfies the estimate in (3.48)∥∥∥∥ ∑

|k|≥N+1

1√
2π

h f̂(kh)ψ
( ·
ε
, ε, kh

)∥∥∥∥
1,−ν

≤ CνM
1/2‖f‖Hs(R)h

∑
|k|≥N+1

(kh)−s

≤ Cν,sM
1/2‖f‖Hs(R)(dN)−(s−1)/2.
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It remains to find a similar bound for the remainder in (3.49). Define by

δ(g) =

(B)∫
R

g(t, ·) dt−
∑
k∈Z

h g(kh, ·).

We can writeδ(g) as

δ(g) =

(B)∫
R

{
g(t, ·)−

∑
k∈Z

g(kh, ·)S(k, h)(t)
}

dt.(3.50)

Sincesupt∈Dd
‖g(t, ·)‖1,−ν ≤ Cν supt∈Dd

|f̂(t)| ≤ CνM
1/2‖f‖Hs(R), by

Definition 3.3g(t, ·) ∈ H∞ (Dd;H1−ν(R)
)
. Therefore, as pointed out in

Remark 3.8, the integrand in (3.50) can be written as

g(t, ·)−
∑
k∈Z

g(kh, ·)S(k, h)(t)

=
sin(πt/h)

2πi

(B)∫
R

g(τ − id−, ·)
(τ − t− id) sin[π(τ − id)/h]

− g(τ + id−, ·)
(τ − t+ id) sin[π(τ + id)/h]

dτ.(3.51)

Substituting (3.51) in (3.50), changing the order of integration and integrat-
ing with respect tot first, we get that

δ(g) =

(B)∫
R

{
i

2
e−π/h(d+iτ)

sin[π(τ − id)/h]
g(τ − id−, ·)

− i

2
e−π/h(d−iτ)

sin[π(τ + id)/h]
g(τ + id−, ·)

}
dτ.(3.52)

Taking the‖ · ‖1,−ν norm ofδ(g) in (3.52) we can estimate it as follows

‖δ(g)‖1,−ν ≤ Cν,se−π
√
dNM1/2‖f‖Hs(R),

and conclude the proof. ��
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4 Generalizedp-FEM in homogenization

4.1 Convergence results

We return to the problem (1.1) on the bounded domainΩ := (−1, 1): let
f(·) ∈ L2(Ω) andε > 0 fixed. Denote byuε(·) ∈ H1

0 (Ω) the weak solution
of the following boundary value problem

− d

dx

(
a
(x
ε

) duε

dx
(x)

)
+ a0

(x
ε

)
uε(x) = f(x) in Ω,

uε(−1) = uε(1) = 0.(4.1)

FE-convergence results for (4.1) canbededuced from theunboundeddomain
case. We start with a spectral convergence result.

Theorem 4.1 Letf ∈ Hs(Ω) for somes > 1 and considerW̃µ
ε :=Wµ

ε ∩
H1

0 (Ω), withWµ
ε as in (3.46). Then, there exists a constantC > 0depending

only onΩ ands, such that

inf
v∈W̃µ

ε

‖uε − v‖1, Ω ≤ Cµ−(s−1)/2‖f‖s,Ω.(4.2)

Proof.The proof is based onProposition 3.12 and on awell known extension
result for Sobolev functions. There exists a continuous extension operator
Σ : Hs(Ω)→ Hs(R), such thatsuppΣg ⊂ Ω̃,∀ g ∈ Hs(Ω), withΩ ⊂ Ω̃
andΩ̃ compactly embedded inR. Let us denote byf the extensionΣf of f .
Then, by the continuity ofΣ, ‖f‖s,R ≤ C‖f‖s,Ω, with C > 0 a constant
depending only ons,Ω andΩ̃, but independent onf . Letuε ∈ H1−ν be the
solution of (2.1) corresponding tof . Then, its restrictionuε|Ω solves the
differential equation in (4.1), but does not fulfill the boundary conditions.
They can be enforced by solving two extra problems (2.1) with right hand
sidesf1, f2 ∈ C∞

0 (R), such that

(supp f1 ∪ supp f2) ∩Ω = ∅.(4.3)

Let uε
1, u

ε
2 be the corresponding solutions (onR) of (2.1) with respect to

f1, f2. Then, because of (4.3), their restrictionsuε
1|Ω, uε

2|Ω solve the differ-
ential equation in (4.1) with homogeneous right hand side. Denoting by

uε := uε|Ω + c1u
ε
1|Ω + c2u

ε
2|Ω,

then there exist unique constantsc1, c2 ∈ R, such thatuε satisfies the ho-
mogeneous boundary conditions in (4.1). Moreover, it can be seen that
|c1| + |c2| ≤ Cs, ν‖f‖s,Ω, with the constantCs, ν > 0 depending only
ons, ν.
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By Proposition 3.12,uε, uε
1, u

ε
2 can be approximated inH1−ν(R) at an

algebraic rate of convergenceµ−(s−1)/2 by elements of the FE spaceWµ
ε ,

and therefore their restrictions toΩ too. ��
No exponential convergence can be proved in this way, since for ana-

lytic f ∈ [−1, 1], Σf is not an analytic function onR anymore; however,
the following result shows thatif subspaces are designed corresponding to
solutions of (4.1) with polynomial right hand side, exponential convergence
is achieved. To this end, associated with the kernelψ(·, ε, t) as in (2.9), we
introduce the FE-spaces̃Vµ

ε ⊂ H1
0 (−1, 1) :

Vµ
ε := span

{
Re

dlψ

dtl

( ·
ε
, ε, 0

)
, 0 ≤ l ≤ µ, l = 2k,

Im
dlψ

dtl

( ·
ε
, ε, 0

)
, 0 ≤ l ≤ µ, l = 2k + 1

}
,

Ṽµ
ε := (Vµ

ε + span{vε1, vε2})
⋂

H1
0 (−1, 1),(4.4)

wherevε1(·), vε2(·) are the solutions of (4.1) with homogeneous dataf = 0
and the following inhomogeneous boundary conditions:

vε1(−1) = 1, vε1(1) = 0, resp. vε2(−1) = 0, vε2(1) = 1.

Theorem 4.2 Let f be analytic in[−1, 1] and letuε be the weak solution
of (4.1). There exist constantsC, b > 0, depending only onf , such that for
µ ∈ N sufficiently large

inf
v∈Ṽµ

ε

‖uε − v‖H1
0 (−1,1) ≤ Ce−bµ.(4.5)

With other words, the error with respect to the FE-spaceṼµ
ε decays expo-

nentially with respect toµ, uniformly inε.

Remark 4.3Weobserve thatVµ
ε is spannedbyproducts of the “micro” shape

functions dl

dtl
φ
(
x
ε , ε, t

) ∣∣∣∣
t=0

times polynomials of degree at mostµ. In par-

ticular, we see that increasing the number of “micro” shape functions must
be accompanied by some increase in the macroscopic polynomial degreep
to achieve (4.5). We will address this computationally below.

Before giving the proof of Theorem 4.2 we need the following preparatory
lemma.

Lemma 4.4 Let Lk(·), k ∈ N denote thek-th Legendre polynomial, and
considerf ∈ A([−1, 1]) and its Legendre seriesf(x) =

∑∞
k=0 akLk(x).

Then,
∞∑
k=0

2
|ak|2
2k + 1

= ‖f‖2L2(−1,1)(4.6)
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and there exist̃C(f), b > 0 such that

‖f − f (p)‖L2(−1,1) ≤ C̃(f)e−bp,(4.7)

wheref (p) is the truncated Legendre series

f (p) :=
p∑

k=0

akLk.(4.8)

The constantb > 0 depends on the domain of analyticity off(·).
For a proof of this result see e.g. [6].

Proof of Theorem 4.2.Denoting byφε
(k)(·) the weak solution inH1

0 (−1, 1)
of (4.1) which corresponds tof = Lk, we get that

uε
(µ)(·) :=

µ∑
k=0

akφ
ε
(k)(·)(4.9)

solves (4.1) with the right hand sidef (µ). By Lemma 4.4 the error with
respect to the exact solutionuε satisfies the following bound

‖uε − uε
(µ)‖H1

0 (−1,1) ≤ C(γ)‖f − f (µ)‖L2(−1,1) ≤ C(γ, f)e−bµ.(4.10)

It is therefore enough to show thatuε
(µ)(·) ∈ Ṽµ

ε . To this end, recall that

dl/dtlψ(·/ε, ε, 0) are solutions of (2.1) corresponding tof = (ix)l. Since
ψ(·/ε, ε,−t) = ψ(·/ε, ε, t),

dlψ

dtl

( ·
ε
, ε, 0

)
= Re

dlψ

dtl

( ·
ε
, ε, 0

)
, if l = 2k, k ∈ N,

dlψ

dtl

( ·
ε
, ε, 0

)
= iIm

dlψ

dtl

( ·
ε
, ε, 0

)
, if l = 2k + 1, k ∈ N.

Therefore,(−i)ldl/dtlψ(·/ε, ε, 0) solves (2.1) withf = xl and takes in all
cases real values. ��

4.2 Selection of the micro shape functions

We have seen so far that collocation of the kernelψ(x/ε, ε, t) at various sets
of collocation pointsN = {tj}j gives systems of shape functions with very
favorable approximation properties for elliptic problems with microstruc-
ture. In the present section, we present a FEM for the solution of the unit
cell problem and a methodology to derive a well conditioned set of shape
functions from the collocated kernelsψ(x/ε, ε, tj), tj ∈ N . This will be
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based on the SVD of the matrix of coefficient vectors of the Finite Element
approximations to theφ(y, ε, tj), tj ∈ N .

Let N = {tj : j = 1, . . . , µ̂} be any set of collocation points inC.
Given a partitionT of the unit cellQ = (−π, π) into intervalsK, for an
arbitrarytj ∈ N , compute the FE approximations

φ̃(y, ε, tj) ∈ Sk,1
per(Q, T ) : Φ(ε, tj)[φ̃, v] = ε2

∫
Q

v(y) dy,

∀ v ∈ Sk,1
per(Q, T ),(4.11)

whereΦ(ε, t)[·, ·] is as in (3.2) and the FE spaceSk, 1
per (Q, T ) is defined by

Sk,1
per(Q, T ) :=

{
u ∈ H1

per(Q) : u
∣∣∣∣
K

∈ Pk(K), ∀K ∈ T
}
,(4.12)

andPk(K) is a space of polynomials of degree at mostk on K. Since
the sesquilinear formΦ(ε, t)[·, ·] is coercive (in the sense that a Gårding
inequality holds and the unit cell solution operator is injective), there exists
a unique solutioñφ(y, ε, tj) ∈ Sk,1

per(Q, T ) of (4.11).
Several questions arise in practice:
1. How to design the meshT in Sk,1

per(Q, T ) for the computation of the
unit-cell problem?

2. How to choose the collocation pointstj?
3. Are the functions̃φ(y, ε, tj) suitable as basis functions for FE calcu-

lations?
4. How doesspan {φ̃(y, ε, tj) : tj ∈ N} depend onN?
We have found the following answers:
1. If the coefficient functionsa(y), a0(y) in (4.1) are piecewise analytic

functions ofy, so are thẽφ(y, ε, tj). Therefore,T is selected such that the
elements coincide with pieces of analyticity ofa(·), a0(·).

2. In agreement with Theorem 3.9, we choosetj(µ) = jh whereh =
1/
√
µ with j = 0, 1, ..., µ − 1. Notice that the values ofd andα in (3.38)

are generally not available. Therefore, the choice oftj is to some extent
heuristic (see, however, item 4. below).

3. By Theorem 2.3,φ(y, ε, t) is analytic int at t = 0. As µ increases,
the collocation pointstj will cluster neart = 0 (as, e.g., inWµ

ε in (3.46))
resulting inalmost linear dependenceof the shape functionsφ̃(y, ε, tj); these
functions are hence not well-suited as basis for a generalizedp-FEM. Some
orthogonalization is needed to obtain a well-conditioned basis. In addition,
the pointstj(µ) depend onµmeaning that the shape functionsφ̃(y, ε, tj(µ))
are not hierarchical.
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We propose therefore anoversampling, i.e. to select̂µ > µ sufficiently
large and

N = {tj(µ̂) : j = 1, . . . , µ̂},
and to perform anorthogonalizationas follows:

Algorithm 4.5 Let N(y) be a basis ofSk,1
per(Q, T ). Then φ̃(y, ε, tj) =

Φj(ε)�N(y), j = 1, . . . , µ̂. Compute the SVD

[Φ1(ε), . . . , Φµ̂(ε)] = U diag(σ1, . . . , σµ̂)V �

with σ1 ≥ σ2 ≥ σ3 ≥ . . . ≥ σµ̂ ≥ 0 and set

V̂µ
ε := span

{
φj

(x
ε
, ε
)
:= U�

j N
(x
ε

)
, j = 1, . . . , µ

}
,(4.13)

with U j being thej-th column ofU .

Ignoring roundoff, this orthogonalization changes only the basis, but not the
span of the shape functions ifµ = µ̂. If µ < µ̂, however, the definition
(4.13) will change the span. Nevertheless, ifσj < eps for µ < j ≤ µ̂ with
eps of the order of machine precision, this change will be negligible.

4. If |kh| ≤ ρ0 < 1, with ρ0 being the radius of convergence of the
power series ofψ(·/ε, ε, t) at t = 0, then the elements Reψ(·/ε, ε, kh),
Imψ(·/ε, ε, kh) of the FE spaceWN

ε in (3.46) can be, up to an exponentially
decaying remaindere−bµ, approximated by elements in the FE spaceVµ

ε

introduced in (4.4), withµ equal to the number ofk such that|k|h ≤
ρ0. Since the kernelψ(·/ε, ε, t) is analytic int, for any set of collocation
points{tj} which are close to the origin, span{ψ(·/ε, ε, tj)} is practically
independent of the choice of the collocation points. Therefore the precise
choice oftj will not matter much, as long as with increasingµ they cover
the interval[−√µ,

√
µ] and are spaced as1/

√
µ by Theorem 3.10.

We present in Fig. 2 the shape functions{φj(y, ε)}µj=1 obtained with
Algorithm 4.5 for the case whena0 ≡ 1, a(·) is as in (4.14),ε = 0.001.
Based on Theorem 3.10 the set of collocation points isN = {tj(µ̂) =
j/
√
µ̂ : j = 0, . . . , µ̂, µ̂ = 64}. In this case the number ofj such that

the corresponding singular valuesσj > eps = 10−10 is µ = 5. Hence the
orthogonalization has, as a byproduct, also reduced the number of micro
shape functions substantially. We clearly see the low regularity of these
shape functions at the jumps ofa(·) aty = ±π/2. Note also that, unlike the
kernelsφ(y, ε, tj), theφj(y, ε) are piecewise polynomials.

a(y) =




10 if |y| ≤ π

2
,

1 else,

a0(y) =




1 if |y| ≤ π

2
,

50 else .

(4.14)
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Fig. 1. The coefficienta(·)
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ε = 0.001: µ = 5 linear independent shape functions (orthogonalized by SVD)

Fig. 2. φj(·, ε), j = 1, . . . , 5

Remark 4.6We see in Fig. 2 thatφ1(y, ε) ≡ const; this is due toa0 ≡ 1,
in fact if a0 �≡ 1, then the solution of (4.11) fort = 0 is not the constant
function equal to1. To illustrate this, we choosea(·) anda0(·) as in (4.14).
Our numerical results indicate that in this case we haveφ1(y, ε) = const+
O(ε)φ2(y, ε) + h.o.t, see Fig. 3.

Remark 4.7In numerical experiments we found that Algorithm 4.5 is very
robust with respect to the choice of collocation points. After the SVD the
first shape functions associated with the largest singular values are practi-
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Fig. 3. 102φ1(y, ε) in the case when the absolute terma0(·) is not a constant, but piecewise
constant

cally independent of the number and of the choice oftj . The shape functions
φj(·, ε) resulting from Algorithm 4.5 are therefore, at least numerically,hi-
erarchical, andenablehierarchic modelingof problemswithmicrostructure.

4.3 Generalizedp-FEM

We consider now the problem (1.3) with absolute termsa0 ≡ 1, a0 ≡ 0,
respectively. SincẽVµ

ε in (4.4) is not available (because the computation of
the boundary correctorsvε1, v

ε
2 is as expensive as that of the solution itself),
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we construct a spaceS
p, µ

0 (Ω, T ) ⊂ H1
0 (Ω) with analogous properties:

S
p, µ

0 (Ω, T ) =
{
u ∈ H1

0 (Ω) : u
∣∣∣∣
K

=
pK+1∑
j=1

µK+1∑
µ=1

u
[K]
j, µν

[K]
j (x)φµ

(x
ε
, ε
)
,

u
[K]
j, µ ∈ R, ∀K ∈ T , j = 1, . . . , pK + 1, µ = 1, . . . , µK + 1

}
,(4.15)

whereν[K]
j (x) = Nj

((
F [K]

)−1
(x)

)
, ∀K ∈ T . ByF [K] : (−1, 1)→ K

we denote the linear mapping with respect to the elementK = (xK , xK)

x = F [K](ξ) =
1
2
(1− ξ)xK +

1
2
(1 + ξ)xK , ∀ ξ ∈ (−1, 1),

and{Nj(ξ)} is the standard hierarchical polynomial basis
N1(ξ) = (1− ξ)/2, N2(ξ) = (1 + ξ)/2,

Nj(ξ) =

√
2j − 1
2

ξ∫
−1

Lj−2(t) dt, ∀ j ≥ 3.(4.16)

By the vectorp = {pK}K∈T we denote the ‘macro’ polynomial degree of
the FE method, andµ = {µK}K∈T stands for the ‘micro’ degree of the
spectral approximation.

The FE solutionuε
FE(x) is defined as usual:

uε
FE(·) ∈ S

p, µ

0 (Ω, T ) :

1∫
−1

a
(x
ε

) duε
FE

dx
(x)

dv

dx
(x) dx

=

1∫
−1

f(x)v(x) dx, ∀ v ∈ S
p, µ

0 (Ω, T ).(4.17)

We see from (4.15) that each element contains products of standard poly-
nomial shape functions (4.16) and the firstµK + 1 micro shape functions.
We used in all our computations the orthonormalized micro shape functions
φj(y, ε) in (4.13) from the unit cell problemwith absolute terma0 ≡ 1. The
meshT = Tb

⋃ T0 is selected to have the following properties:
– if K ∈ Tb (which means thatK is a boundary element and the length

of K is O(ε)), then we choose the standardp - FEM elements, since the
microscale is resolved byTb, i.e.,µK = 0 andpK = p; these elements are
needed to accommodate the homogeneous boundary conditions and could
be omitted for the Neumann problem.
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Fig. 4. Exponential rate of convergence for the FE energy.f(x) = exp(x)

– if K ∈ T0, then we takeµK = µ andpK = p, which corresponds to
the PUM usingVµ

ε as local approximation spaces. With this choice, the FE
functionsu ∈ S

p, µ

0 (Ω, T ) will provide excellent approximation properties
on the interior elementsK ∈ T0 for the elements ofVµ

ε ; it turns out that
the boundary correctorsvε1, v

ε
2 are also very well approximated on these

elements byS
p, µ

0 (Ω, T ).
Remark 4.8Equivalently, we may chooseTb = ∅ and modify the shape
functionsφj(y, ε) in the elementsK ∈ T0 abutting at the boundary, see [8]
for details.

Remark 4.9Computation of the stiffness matrix can be done with a fixed
number of operations (independent ofε) exploiting the periodicity of the
coefficientsa(·), a0(·) and that of the special shape functionsφj(y, ε). We
must compute only once integrals ofφj(y, ε) and its derivatives timesmono-
mials on the unit cell. This is the reason to useφj(y, ε) times monomials
instead ofψ(y, ε, tj). Full details can be found in [8].

4.4 Numerical results

We implemented the generalizedp-FEM described in the previous section
for (4.1) witha(·) as in (4.14) and absolute termsa0 ≡ 1, a0 ≡ 0, respec-
tively. Two different right hand sides were chosen, namely

f1(x) = 1, f2(x) = ex.(4.18)

The exact solutionuε(x) corresponding toa0 ≡ 0 andf(x) = f1(x) is
piecewise cubic, forf = f2 the solutionuε(x) is piecewise analytic but
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Fig. 5. Convergence rate for fixed micro degreeµ and increasing macro polynomial degree
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Fig. 5. (continued)
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Fig. 6. Convergence rate for fixed macro polynomial degreep and increasing micro degree
µ. f(x) = f2(x)

non-polynomial on the microscale. The goal of the numerical experiments
is to showa) that exponential convergence can be achieved (with subspaces
(4.15)),b) that this convergence is indeed independent ofε, c) that the par-
ticular choice of the subspace span

{
φµ

(
x
ε , ε

)
, µ = 1, . . . , µK + 1

}
needs

to take into account only the principal part of the operator (4.1) andd)
to investigate combination ofpK andµK necessary to obtain exponential
convergence. Note that our mathematical theory does not allow to draw
conclusions onc) andd).

In all experimentsp is increased on a fixed meshT = T0 ∪ Tb with Tb
covering4 periods of length2πε at each boundary point for various values
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Fig. 7. Convergence rate for fixed micro degreeµ and increasing macro polynomial degree
p. f(x) = f1(x)
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Fig. 7. (continued)
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Fig. 8. Relative error for the energy versus1/ε for increasing micro degreeµ

of µ. Figure 4 shows the convergence of the generalizedp-FEM for a0 ≡ 1,
f(x) = f2(x) andε ∼= 10−2. The curves corresponding toµ = 1 show the
error when only macroscopic shape functions, i.e. global polynomials, are
used (recall thata0 ≡ 1 and thatφ1(y, ε) ≡ const, see Remark 4.6).

We see that for fixedµ > 1 and increasingp, first exponential conver-
gence is apparent, however a saturation occurs at ap-level which depends
on the micro degreeµ. Exponential convergence requires therefore the joint
increase of the micro degreeµ with the macro degreep.

So far, our theory concerned the case whena0 > 0. In practice, however,
also the casea0 = 0 is of interest, for example in diffusion problems. For
a0 = 0, our mathematical results require several technical modifications.
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Fig. 9. Exponential rate of convergence in theL∞ norm for the stresses.f(x) = f2(x)
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Fig. 9. (continued)

Since a change ina0 does not affect the principal part of the differential
operator which strongly influences the shape functions, we investigate next
the performance of shape functions corresponding toa0 = 1 for the problem
(4.1) without absolute terma0.

In Fig. 5 we show analogous results fora0 ≡ 0, f(x) = f2(x) (with
respect to the samemesh) and different microscalesε, varying from∼= 10−6

up to∼= 10−1. We note that forµ = 1 and for ε ∼= 10−1 a very slow
convergence is apparent - here the scales are resolved, but the low solution
regularity stalls the spectral convergence. As before, one can see from the
results in Fig. 6 that keepingp fixed and increasingµ does not lead to
exponential convergence, in agreement with Remark 4.3. Rather, Figs. 4, 5,
6 show again thatµmust be increased together withp to obtain exponential
convergence that isrobust, i.e. independent ofε.

Comparing the error plots in Fig. 5 for severalε and the same fixed value
of µ we see that the saturation level appears to be proportional to some
power ofε. This is more clearly visible in Fig. 8 and indicates that our finite
elements with the choiceµ > 1 can represent the correctors in classical
homogenization theory and are consistent with the homogenized problem
atε = 0 of higher order inε.

In Fig. 7 we show analogous results forf(x) = f1(x), a0 ≡ 0. Since the
exact solutionuε(x) is piecewise cubic, for smallε no change occurs when
µ is increased beyondµ = 4, despite our shape functions being obtained for
a0 ≡ 1 rather than fora0 ≡ 0.We conclude that themicro shapefunctions of
the problem (4.1) witha0 = 1 perform equally well if used for the operator
without absolute term.



Generalizedp-FEM in homogenization 357

Finally, in Fig. 9 we show the pointwise error∥∥∥∥ d

dx
(uε − uε

FE)
∥∥∥∥
L∞(−1,1)

(4.19)

for f(x) = f2(x) and variousε. We see that the above conclusions apply
also to these errors with respect to the (stronger)W 1,∞-norm.

A Proof of Theorem 2.3

Lemma A.1 The mapping

Dν/2 := {t ∈ C such that|Im t| < ν/2} � t→ G(t) := eitx ∈ (
H1

ν (R)
)∗

(A.1)
is holomorphic inDν/2 with values in the Banach space

(
H1

ν (R)
)∗

. More-

over,Gk(t) := (ix)keitx ∈ (
H1

ν (R)
)∗

is thek−th derivative with respect
to t of the

(
H1

ν (R)
)∗

-valued mappingG(t) and its norm has the following
bound

∀ t ∈ Dν/2 : ‖Gk(t)‖(H1
ν (R))∗ ≤

√
(2k)!

νk
√

ν/2
, k = 0, 1, 2, ... .(A.2)

Proof. It is sufficient to show that∀ v ∈ H1
ν (R) the application

Dν/2 � t→ 〈G(t), v〉(H1
ν (R))∗×H1

ν (R) ∈ C(A.3)

is C-differentiable. Lett0 ∈ Dν/2 arbitrary, fixed, andt ∈ Dν/2 such that
|t− t0| ≤ ν/4. Then,∣∣∣∣ 1

t− t0
〈G(t)−G(t0), v〉(H1

ν (R))∗×H1
ν (R) − 〈G1(t0), v〉(H1

ν (R))∗×H1
ν (R)

∣∣∣∣
≤ ‖v‖1,ν

[ ∫
R

∣∣∣∣eixt − eixt0

t− t0
− ixeixt0

∣∣∣∣
2

e−2ν|x|dx
]1/2

≤ C(ν)|t− t0|‖v‖1,ν .

This implies that the limit

lim
t→t0

1
t− t0

〈G(t)−G(t0), v〉(H1
ν (R))∗×H1

ν (R)(A.4)

exists and is equal to〈G1(t0), v〉(H1
ν (R))∗×H1

ν (R).
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Let us takev ∈ H1
ν and estimate|〈Gk(t), v〉(H1

ν (R))∗×H1
ν (R)|:

|〈Gk(t), v〉(H1
ν (R))∗×H1

ν (R)| =
∣∣∣∣
∫
R

(ix)keitxv(x) dx
∣∣∣∣

≤ ‖v‖1,ν
(∫

R

|x|2ke2|Im(t)x|e−2ν|x|
)1/2

≤ ‖v‖1,ν
√
(2k)!

νk
√

ν/2
. ��

Now, for t ∈ Dν/2, let ψ
ε
k(t) be the weak solution inH1−ν(R) of the

following problem

Ψ(ε)[ψε
k(t), v] = 〈Gk(t), v〉(H1

ν (R))∗×H1
ν (R), ∀ v ∈ H1

ν (R).(A.5)

Lemma A.2 The mapping

Dν/2 � t→ ψ
( ·
ε
, ε, t

)
∈ H1

−ν(R)(A.6)

is holomorphic inDν/2 with values in the Banach spaceH1−ν(R). Moreover,

ψε
k(t) =

dk

dtk
ψ
( ·
ε
, ε, t

)
,(A.7)

and its norm

‖ψε
k(t)‖1,−ν ≤

√
(2k)!

γνk
√

ν/2
,(A.8)

uniformly with respect tot ∈ Dν/2.

Proof.The proof is similar to that of Lemma A.1 and is based on the fact
that

Ψ(ε)
[
ψ
( ·
ε
, ε, t

)
, v
]
= 〈G(t), v〉(H1

ν (R))∗×H1
ν (R)(A.9)

and on the properties of the sesquilinear formΨ(ε)[·, ·] stated in Propo-
sition 2.2. In order to prove the analyticity of theH1−ν(R)-valued map-
ping t → ψ(·/ε, ε, t) in the stripDν/2, it is enough to show that for every
v ∈ H1

ν (R) theC-valued function

Dν/2 � t→ Ψ(ε)
[
ψ
( ·
ε
, ε, t

)
, v
]
∈ C(A.10)



Generalizedp-FEM in homogenization 359

is holomorphic. From the definition ofψε
1 it follows that

lim
t→t0

1
t− t0

Ψ(ε)
[
ψ
( ·
ε
, ε, t

)
− ψ

( ·
ε
, ε, t0

)
, v
]

= lim
t→t0

1
t− t0

〈G(t)−G(t0), v〉(H1
ν )∗×H1

ν

= 〈G1(t0), v〉(H1
ν )∗×H1

ν
= Ψ(ε)[ψε

1(t0), v].

In addition, from (A.2)∥∥∥∥ dk

dtk
ψ
( ·
ε
, ε, t

)∥∥∥∥
1,−ν

≤ 1
γ
‖Gk(t)‖(H1

ν )∗ ≤
√
(2k)!

γνk
√

ν/2
,(A.11)

uniformly with respect tot ∈ Dν/2. ��
Theorem A.3 For a givenν > 0 there exists a positived = d(ν) such that
the mapping

Dd � t→ φ
( ·
ε
, ε, t

)
∈ H1

−2ν(R)(A.12)

is a holomorphic function oft ∈ Dd with values in the Banach space
H1−2ν(R). Moreover,∥∥∥∥ dk

dtk
φ
( ·
ε
, ε, t

)∥∥∥∥
1,−2ν

≤ C(1 + |t|) k!
(ν/2)k

, ∀t ∈ Dd,(A.13)

where the constantC > 0 depends onν, γ, but does not depend ont ∈ Dd.

Proof.Letd = d(ν) = ν/2 andt0 ∈ Dd arbitrary, fixed. Then, since we can
write φ(·/ε, ε, t) = e−i t(·)ψ(·/ε, ε, t) it follows that in the Banach space
H1−2ν(R) ⊃ H1−ν(R)

dk

dtk
φ
(x
ε
, ε, t

) ∣∣∣∣∣
t=t0

=
k∑

l=0

(−ix)l
(
k

l

)
e−it0xψ(k−l)

(x
ε
, ε, t0

)
.(A.14)

Taking now the‖ · ‖1,−2ν-norm in both sides we get that∥∥∥∥ dk

dtk
φ
(x
ε
, ε, t

) ∣∣∣∣∣
t=t0

∥∥∥∥
1,−2ν

≤
∥∥∥∥

k∑
l=0

(−ix)l
(
k

l

)
e−it0xψ(k−l)

(x
ε
, ε, t0

)∥∥∥∥
0,−2ν
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+
∥∥∥∥

k∑
l=0

l (−ix)l−1(−i)
(
k

l

)
e−it0xψ(k−l)

(x
ε
, ε, t0

)∥∥∥∥
0,−2ν

+
∥∥∥∥

k∑
l=0

(−ix)l
(
k

l

)
e−it0x d

dx

(
ψ(k−l)

(x
ε
, ε, t0

))∥∥∥∥
0,−2ν

+
∥∥∥∥

k∑
l=0

(−ix)l
(
k

l

)
(−it0)e−it0xψ(k−l)

(x
ε
, ε, t0

)∥∥∥∥
0,−2ν

.

Let us estimate only the first term of the right hand side, the others can be
treated analogously.∥∥∥∥∥

k∑
l=0

(−ix)l
(
k

l

)
e−it0xψ(k−l)

(x
ε
, ε, t0

)∥∥∥∥∥
0,−2ν

≤
k∑

l=0

(
k

l

)(∫
R

|x|2l
∣∣∣ψ(k−l)

(x
ε
, ε, t0

)∣∣∣2 e2|Im(t0)x|e−4ν|x|dx
)1/2

≤ C

k∑
l=0

(
k

l

)(
l

ν/2e

)l (k − l)!
(ν/2)k−l

≤ C
k!

(ν/2)k
.

Here we used thatxpe−νx ≤ (p/νe)p, ∀x > 0, p ∈ N and the estimations
for the‖ · ‖1,−ν-norm of the derivatives with respect tot of ψ(·/ε, ε, t) from
Lemma A.2. Summing up all the estimates it follows that∥∥∥∥ dk

dtk
φ
(x
ε
, ε, t

) ∣∣∣∣
t=t0

∥∥∥∥
1,−2ν

≤ C(1 + |t0|) k!
(ν/2)k

.(A.15)

This implies therefore that the series
∞∑
k=0

(t− t0)k

k!
dk

dtk
φ
(x
ε
, ε, t

) ∣∣∣∣
t=t0

(A.16)

is absolutely convergent in the Banach spaceH1−2ν(R) for |t − t0| < ν/2
such thatt ∈ Dd. ��

B Proof of Theorem 3.9

In this appendix we will present the proof of Theorem 3.9. Our aim is to
approximate the Fourier-Bochner integral

uε(·) = 1√
2π

(B)∫
R

f̂(t)eit(·)φ
( ·
ε
, ε, t

)
dt =

(B)∫
R

eit(·)g(t, ·) dt,(B.1)
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where

g(t, ·) = 1√
2π

f̂(t)φ
( ·
ε
, ε, t

)
∈ A(Dd;H1

−2ν(R)).

The integrals in (B.1) have to be understood as Bochner-integrals of
H1−2ν(R)-valued functions. Recall that by Theorem 3.5

‖g(t, ·)‖1,−2ν ≤ C(γ, ν)C(f)
(
1 +

1
α

)
e− α

2 |t| ∀ t ∈ Dd.

Define the approximations

uε
N,h(·) := 1[− π

h
,π
h ]
(·) 1√

2π
h

N∑
k=−N

f̂(kh)ψ
( ·
ε
, ε, kh

)
(B.2)

and its error

δN(f, h)(·) := uε(·)− uε
N,h(·).(B.3)

Proposition B.1 Assume thatf ∈ L∞(R2) ∩ L1(R;L∞(R)) and g ∈
H0−2ν(R). Then

(B)∫
R

g(·)f(t, ·) dt = g(·)
∫
R

f(t, ·) dt.(B.4)

Proof.Let us verify that the expressions in (B.4) have sense. The Bochner
integral is well defined, since‖g(·)f(t, ·)‖0,−2ν ≤ ‖g(·)‖0,−2ν‖f(t, ·)‖L∞

and‖f(t, ·)‖L∞ is, as a function oft, in L1(R). Then, the right hand side
of (B.4) is an element ofH0−2ν(R) since∫

R

f(t, ·)dt ∈ L∞(R).

We consider two cases:
Case 1: ifg ∈ C∞

0 (R), the assertion is obvious.

Case 2:g ∈ H0−2ν(R) = C∞
0 (R)

‖·‖0,−2ν
, then take(gn)n ⊂ C∞

0 (R), such
thatgn → g in H0−2ν(R), asn→∞. Then,

∥∥∥∥
(B)∫
R

(gn − g)(·)f(t, ·) dt
∥∥∥∥

0,−2ν
≤
∫
R

‖gn(·)− g(·)‖0,−2ν‖f(t, ·)‖L∞dt.
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Now, the integrand‖gn(·) − g(·)‖0,−2ν‖f(t, ·)‖L∞ → 0, asn → ∞, for
almost everyt ∈ R, and is bounded by anL1 applicationC‖f(t, ·)‖L∞ ,
uniformly with respect ton. It follows therefore that

(B)∫
R

gn(·)f(t, ·) dt→
(B)∫
R

g(·)f(t, ·) dt in H0
−2ν ,

asn→∞. Since

gn(·)
∫
R

f(t, ·) dt→ g(·)
∫
R

f(t, ·) dt in H0
−2ν(R)

asn→∞ the proposition follows. ��
Proposition B.2 Assume that

f ∈ L∞(R;W 1,∞(−L,L)) ∩ L1(R;W 1,∞(−L,L))
andg ∈ H1−2ν(R). Then

(B)∫
R

g(·)f(t, ·) dt = g(·)
∫
R

f(t, ·) dt(B.5)

in H1−2ν(−L,L).
Proof.First of all, let us convince ourselves that the expressions in (B.5) have
sense. TheBochner integral iswell defined, since‖g(·)f(t, ·)‖H1

−2ν(−L,L) ≤
‖g(·)‖1,−2ν‖f(t, ·)‖W 1,∞(−L,L), which is inL

1(R) as a function oft. Then,
the right hand side of (B.4) is an element ofH1−2ν(−L,L), since∫

R

f(t, ·)dt ∈W 1,∞(−L,L).

As before, we use a density argument :
Case 1: ifg ∈ C∞

0 (R), the assertion is obvious.

Case 2:g ∈ H1−2ν(R) = C∞
0 (R)

‖·‖1,−2ν
, then take(gn)n ⊂ C∞

0 (R), such
thatgn → g in H1−2ν(R), asn→∞. Then

∥∥∥∥
(B)∫
R

(gn − g)(·)f(t, ·) dt
∥∥∥∥
H1

−2ν(−L,L)

≤
∫
R

‖gn(·)− g(·)‖1,−2ν‖f(t, ·)‖W 1,∞(−L,L)dt.
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Now, the integrand‖gn(·) − g(·)‖1,−2ν‖f(t, ·)‖W 1,∞(−L,L) → 0, asn →
∞, for almost everyt ∈ R, and is bounded by anL1 with respect tot
applicationC‖f(t, ·)‖W 1,∞(−L,L), for all n. It follows therefore that

(B)∫
R

gn(·)f(t, ·) dt→
(B)∫
R

g(·)f(t, ·) dt in H1
−2ν(−L,L),

asn→∞, and the proposition follows since

gn(·)
∫
R

f(t, ·) dt→ g(·)
∫
R

f(t, ·) dt in H1
−2ν(−L,L),

asn→∞. ��
Recall now that

δN(f, h)(·) = uε(·)− uε
N,h(·)

=

(B)∫
R

eit(·)g(t, ·) dt−
N∑

k=−N

h1[− π
h
,π
h ]
(·)g(kh, ·)eikh(·).

Proposition B.3 Let us assume thatL ≥ 1 is given, andh = (πd/αN)1/2

satisfies
π

h
≥ 2L,

i.e.,N ≥ 4dL2/απ. Then,

lim
δ→0+

g(kh, ·)
∫
R

e−δ|t|eit(·)S(k, h)(t) dt = h1[− π
h
,π
h ]
(·)g(kh, ·)eikh(·)

(B.6)

in H0−2ν(R) ∩H1−2ν(−L,L).
Proof.First, let us notice that sinceg(kh, ·) ∈ H1−2ν(R) and

Fδ(·) :=
∫
R

e−δ|t|eit(·)S(k, h)(t) dt ∈W 1,∞(R),(B.7)

F0(·) = F (·) := 1[− π
h
,π
h ]
(·)heikh(·) ∈ L∞(R) ∩W 1,∞(−L,L),(B.8)



364 A.M. Matache et al.

the terms in (B.6) are well defined as elements ofH0−2ν(R)∩H1−2ν(−L,L).
Then,

Fδ(x) =
∫
R

e−δ|t|eitx
1
2π

( π
h∫

− π
h

heikhτ−iτtdτ

)
dt

=
h

2π

π
h∫

− π
h

eikhτ
(∫

R

e−δ|t|eitx−iτt dt

)
dτ

=
h

π

π
h∫

− π
h

eikhτ
δ

δ2 + (x− τ)2
dτ =

h

π

π
h

−x∫
− π

h
−x

eikh(s+x) δ

δ2 + s2 ds

=
h

π
eikhx

π
h

−x∫
− π

h
−x

eikhs
δ

δ2 + s2 ds =
h

π
eikhx

(π
h

−x)/δ∫
(− π

h
−x)/δ

eikhδτ
1

1 + τ2 dτ.

It the following it will be shown that uniformly with respect tox andδ

|Fδ(x)| ≤ h, ∀ x ∈ R,(B.9) ∣∣∣∣ ddxFδ(x)
∣∣∣∣ ≤ h

πL
+ kh2, ∀ x ∈ (−L,L),(B.10)

and

Fδ(x)→ 1[− π
h
,π
h ]
(x)heikhx, asδ → 0+, for a.e.x ∈ R,(B.11)

d

dx
Fδ(x)→ d

dx
F (x) = ikh2eikhx, for a.e.x ∈ (−L,L).(B.12)

The assertions (B.9) and (B.11) follow immediately from the representation
of Fδ(·):

Fδ(x) =
π

h

π
h∫

− π
h

eikhτ
δ

δ2 + (x− τ)2
dτ

=
h

π
eikhx

(π
h

−x)/δ∫
(− π

h
−x)/δ

eikhδτ
1

1 + τ2 dτ.(B.13)
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From (B.13) it can be deduced that

d

dx
Fδ(x) =

h

π

π
h∫

− π
h

eikhτ
−2(x− τ)δ

[δ2 + (x− τ)2]2
d

=
h

π
eikhx

π
h

−x∫
− π

h
−x

eikhs
2δs

(δ2 + s2)2
ds

=
h

π
eikhx

(π
h

−x)/δ∫
(− π

h
−x)/δ

eikhδτ
2τ

δ(1 + τ2)2
dτ

= −h

π
eikhx

1
δ
eikhτδ

1
1 + τ2

∣∣∣∣
τ=(π

h
−x)/δ

τ=(− π
h

−x)/δ

+
h

π
eikhx

(π
h

−x)/δ∫
(− π

h
−x)/δ

eikhδτ ikh
1

1 + τ2 dτ.

It follows therefore that forx ∈ (−L,L) ⊂ [−π/h, π/h],
d

dx
Fδ(x) = −h

π
eikhxeikh(π/h−x) 1/δ

1 + [(π/h− x)/δ]2

+
h

π
eikhxeikh(−π/h−x) 1/δ

1 + [(−π/h− x)/δ]2

+i
kh2

π
eikhx

(π
h

−x)/δ∫
(− π

h
−x)/δ

eikhδτ
1

1 + τ2 dτ

= −h

π
eikπ

1/δ
1 + [(π/h− x)/δ]2

+
h

π
e−ikπ 1/δ

1 + [(−π/h− x)/δ]2

+i
kh2

π
eikhx

(π
h

−x)/δ∫
(− π

h
−x)/δ

eikhδτ
1

1 + τ2 dτ.(B.14)

Since|π/h± x | ≥ L,

1/δ
1 + [(π/h± x)/δ]2

≤ 1/δ
1 + (L/δ)2

→ 0,
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asδ → 0+. This will imply that the first two terms in (B.14) converge to
0, asδ → 0+, uniformly with respect tox ∈ (−L,L). Furthermore, it
can be easily seen that the last term in (B.14) converges toikh2eikhx, as
δ → 0+, and is uniformly with respect toδ andx ∈ (−L,L) bounded by
kh2. Moreover, since

1/δ
1 + (L/δ)2

≤ 1
2L

, ∀ δ > 0,

it follows that∣∣∣∣ ddxFδ(x)
∣∣∣∣ ≤ h

πL
+ kh2, ∀ δ > 0, ∀x ∈ (−L,L).

Then,

lim
δ→0+

‖g(kh, ·)(Fδ(·)− F (·))‖20,−2ν = 0,(B.15)

since

lim
δ→0+

‖g(kh, ·)(Fδ(·)− F (·))‖20,−2ν

= lim
δ→0+

∫
R

|g(kh, x)|2e−4ν|x||Fδ(x)− F (x)|2 dx,

which is0becauseofLebesgueTheoremondominatedconvergence. Indeed,
the integrand is inL1(R), converges to0 for almost everyx ∈ R, and is
bounded by an integrable function|2h g(kh, x)e−2ν|x||2.
With similar arguments it can be shown that

lim
δ→0+

‖g(kh, ·)(Fδ(·)− F (·))‖2H1
−2ν(−L,L) = 0,(B.16)

since

‖g(kh, ·)(Fδ(·)− F (·))‖2
H1

−2ν(−L,L)

≤
∫

(−L,L)

|g(kh, x)|2e−4ν|x|
[∣∣∣∣ ddxFδ(x)− F (x)

∣∣∣∣
2

+ |Fδ(x)− F (x)|2] dx
+

∫
(−L,L)

∣∣∣∣ ddxg(kh, x)
∣∣∣∣
2

e−4ν|x||Fδ(x)− F (x)|2 dx.

(B.17)

The integrands in (B.17) are inL1(−L,L), converge to0 a.e. in(−L,L),
as δ → 0+ and are uniformly (with respect toδ > 0) bounded by an
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L1(−L,L) function. The Lebesgue Theorem on dominated convergence
implies therefore that

lim
δ→0+

‖g(kh, ·)(Fδ(·)− F (·))‖H1
−2ν(−L,L) = 0. ��(B.18)

Now, it follows that

δN(f, h)(·) =
(B)∫
R

eit(·)g(t, ·) dt

−
N∑

k=−N

lim
δ→0+

g(kh, ·)
∫
R

e−δ|t|eit(·)S(k, h)(t) dt(B.19)

inH0−2ν(R)∩H1−2ν(−L,L). ByPropositionsB.1, B.2 the errorsδN(f, h)(·)
can be now interpreted as the following Bochner-integrals inH0−2ν(R),
respectivelyH1−2ν(−L,L):

δN(f, h)(·) = lim
δ→0+

(B)∫
R

eit(·)e−δ|t|
(
g(t, ·)−

N∑
k=−N

g(kh, ·)S(k, h)(t)
)

dt

= lim
δ→0+

(B)∫
R

eit(·)e−δ|t|
(
g(t, ·)−

∞∑
k=−∞

g(kh, ·)S(k, h)(t)
)

dt

+
∑

|k|≥N+1

lim
δ→0+

(B)∫
R

eit(·)e−δ|t|g(kh, ·)S(k, h)(t) dt

= lim
δ→0+

(B)∫
R

eit(·)e−δ|t|E(f, h)(t, ·) dt

+
∑

|k|≥N+1

1[− π
h
,π
h ]
(·)heikh(·)g(kh, ·),

in H0−2ν(R), respectively

δN(f, h)(·) = lim
δ→0+

(B)∫
R

eit(·)e−δ|t|
(
g(t, ·)−

N∑
k=−N

g(kh, ·)S(k, h)(t)
)

dt

= lim
δ→0+

(B)∫
R

eit(·)e−δ|t|E(f, h)(t, ·) dt+
∑

|k|≥N+1

heikh(·)g(kh, ·),
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in H1−2ν(−L,L). Now, it has already been shown that∥∥∥∥ ∑
|k|≥N+1

1[− π
h
,π
h ]
(·)heikh(·)g(kh, ·)

∥∥∥∥
0,−2ν

≤ C(γ, ν)
C(f)
α

e−√
πdαN ,(B.20) ∥∥∥∥ ∑

|k|≥N+1

heikh(·)g(kh, ·)
∥∥∥∥
H1

−2ν(−L,L)

≤ C(γ, ν)
C(f)
α

e−√
πdαN ,(B.21)

if h = (πd/αN)1/2.
It remains to find similar estimates for the‖ · ‖0,−2ν , ‖ · ‖H1

−2ν(−L,L)-norms
of

(B)∫
R

eit(·)e−δ|t|E(f, h)(t, ·) dt,(B.22)

which are uniform with respect toδ, asδ → 0+.
By Theorem 3.7,E(f, h)(t, ·) has the following representation as

Bochner-integral ofH1−2ν(R)-valued functions

E(f, h)(t, ·) = sin(πt/h)
2πi

(B)∫
R

{
g(τ − id−, ·)

(τ − t− id) sin[π(τ − id)/h]

− g(τ + id−, ·)
(τ − t+ id) sin[π(τ + id)/h]

}
dτ,

and
‖E(f, h)(t, ·)‖1,−2ν ≤ C,(B.23)

uniformly with respect tot ∈ R. It follows therefore that

(B)∫
R

eit(·)e−δ|t|E(f, h)(t, ·) dt =
(B)∫

(τ,t)∈R2

eit(·)e−δ|t| sin(πt/h)
2πi

×
{

g(τ − id−, ·)
(τ − t− id) sin[π(τ − id)/h]

− g(τ + id−, ·)
(τ − t+ id) sin[π(τ + id)/h]

}
dτ dt.

Here, the integrals will be alternatively considered as Bochner integrals
of H0−2ν(R), respectivelyH

1−2ν(−L,L)-valued functions. Now, since the
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H0−2ν(R), respectivelyH
1−2ν(−L,L)-normsof the integrandsare inL1(R2),

we can change the order of the integration and we get

(B)∫
R

eit(·) e−δ|t| E(f, h)(t, ·) dt

=
1
2πi

(B)∫
R

{ (B)∫
R

sin(πt/h)
eit(·)e−δ|t|

τ − t− id
g(τ − id−, ·)

sin[π(τ − id)/h]

− sin(πt/h)
eit(·)e−δ|t|

τ − t+ id
g(τ + id−, ·)

sin[π(τ + id)/h]
dt

}
dτ.

We shall restrict ourselves to the first term, the second can be treated in an
analogous fashion. To this end, using Propositions B.1, B.2 we get that

(B)∫
R

sin(πt/h)
eit(·)e−δ|t|

τ − t− id
g(τ − id−, ·)

sin[π(τ − id)/h]
dt =

g(τ − id−, ·)
sin[π(τ − id)/h]

Fδ(τ, ·)

(B.24)
in H0−2ν(R) ∩H1−2ν(−L,L), where

Fδ(τ, ·) :=
∫
R

sin(πt/h)
eit(·)e−δ|t|

τ − t− id
dt.(B.25)

We get therefore that

(B)∫
R

{ (B)∫
R

sin(πt/h)
eit(·)e−δ|t|

τ − t− id
g(τ − id−, ·)

sin[π(τ − id)/h]
dt

}
dτ

=

(B)∫
R

g(τ − id−, ·)
sin[π(τ − id)/h]

Fδ(τ, ·) dτ.(B.26)

Assume now that the following hold: for allτ ∈ R

Fδ(τ, x)→ F0(τ, x) = F (τ, x), asδ → 0+, a.e.x ∈ R,(B.27)
d

dx
Fδ(τ, x)→ d

dx
F (τ, x), asδ → 0+, a.e.x ∈ (−L,L),(B.28)
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where

F (τ, x) =




2πi sin[π(τ − id)/h]eix(τ−id) , if x < −π

h

−πe−i(π/h−x)(τ−id) , if − π

h
< x <

π

h

0 , if x >
π

h
.

Moreover, assume that

|Fδ(τ, x)| ≤ 2π, ∀x ∈ R(B.29) ∣∣∣∣ ddxFδ(τ, x)
∣∣∣∣ ≤ C(1 + |τ |) + 1

L
, ∀x ∈ (−L,L),(B.30)

whereC > 0 depends ond, h, but does not depend onx ∈ (−L,L), δ or
τ . Assuming that (B.27), (B.28), (B.29), (B.30) hold forFδ(τ, ·), we claim
that

lim
δ→0+

(B)∫
R

g(τ − id−, ·)
sin[π(τ − id)/h]

Fδ(τ, ·) dτ =

(B)∫
R

g(τ − id−, ·)
sin[π(τ − id)/h]

F (τ, ·) dτ,

(B.31)
inH0−2ν(R)∩H1−2ν(−L,L). In order to prove (B.31), under theassumptions
(B.27), (B.28), (B.29), (B.30), let us estimate first

∥∥∥∥g(τ − id−, ·)Fδ(τ, ·)− F (τ, ·)
sin[π(τ − id)/h]

∥∥∥∥
2

0,−2ν

≤
∫
R

e−4ν|x||g(τ − id−, x)|2|Fδ(τ, x)− F (τ, x)|2 dx,(B.32)

∥∥∥∥g(τ − id−, ·)Fδ(τ, ·)− F (τ, ·)
sin[π(τ − id)/h]

∥∥∥∥
2

H1
−2ν(−L,L)

≤
∫

(−L,L)

e−4ν|x||g(τ − id−, x)|2

×
[
|Fδ(τ, x)− F (τ, x)|2 +

∣∣∣∣ ddxFδ(τ, x)− d

dx
F (τ, x)

∣∣∣∣
2
]
dx

+
∫

(−L,L)

e−4ν|x|
∣∣∣∣ ddxg(τ − id−, x)

∣∣∣∣
2

|Fδ(τ, x)− F (τ, x)|2 dx.(B.33)
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Now, since the integrands converge to0, as δ → 0+, for a.e.x ∈ R,
respectively for a.e.x ∈ (−L,L), and are bounded by integrable functions,
we conclude by Lebesgue Theorem on dominated convergence that∥∥∥∥g(τ − id−, ·)Fδ(τ, ·)− F (τ, ·)

sin[π(τ − id)/h]

∥∥∥∥
0,−2ν

→ 0,(B.34)

respectively∥∥∥∥g(τ − id−, ·)Fδ(τ, ·)− F (τ, ·)
sin[π(τ − id)/h]

∥∥∥∥
H1

−2ν(−L,L)
→ 0,(B.35)

asδ → 0+, for a.e.τ ∈ R. Moreover,∥∥∥∥g(τ − id−, ·)Fδ(τ, ·)− F (τ, ·)
sin[π(τ − id)/h]

∥∥∥∥
0,−2ν

≤ C‖g(τ − id−, ·)‖0,−2ν‖Fδ(τ, ·)− F (τ, ·)‖L∞(R)

≤ C(γ, ν)C(f)
(
1 +

1
α

)
e− α

2 |τ |,

respectively∥∥∥∥g(τ − id−, ·)Fδ(τ, ·)− F (τ, ·)
sin[π(τ − id)/h]

∥∥∥∥
H1

−2ν(−L,L)

≤ C‖g(τ − id−, ·)‖1,−2ν‖Fδ(τ, ·)− F (τ, ·)‖W 1,∞(−L,L)

≤ C(γ, ν)C(f)
(
1 +

1
α

)2

e− α
4 |τ |.

The Lebesgue Theorem on dominated convergence implies therefore that∫
R

∥∥∥∥ g(τ − id−, ·)
sin[π(τ − id)/h]

(Fδ(τ, ·)− F (τ, ·))
∥∥∥∥

0,−2ν
→ 0,(B.36)

∫
R

∥∥∥∥ g(τ − id−, ·)
sin[π(τ − id)/h]

(Fδ(τ, ·)− F (τ, ·))
∥∥∥∥
H1

−2ν(−L,L)
→ 0,(B.37)

asδ → 0+, which proves (B.31).
It remains to show (B.27), (B.28), (B.29) and (B.30) forFδ(τ, ·). AsaFourier
transformation of aL1 function,Fδ(τ, ·) is continuous with respect tox, for
all τ ∈ R and allδ > 0. One can see that

Fδ(τ, ·) = F
(

gδ(t)
τ − t− id

)
(·),(B.38)
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where byF we denote the Fourier transformation and

gδ(t) = e−δ|t| sin(πt/h).

Then,Fδ(τ, ·) satisfies the following first order differential equation (inx):
d

dx
Fδ(τ, x)− i(τ − id)Fδ(τ, x) = −iF(gδ)(x)

= −
[

δ

δ2 +
(
x+ π

h

)2 − δ

δ2 +
(
x− π

h

)2
]
.(B.39)

Therefore, for everya ∈ R, Fδ(τ, x) admits the following representation

Fδ(τ, x) = Fδ(τ, a)e−i(τ−id)x

−
x∫

a

e−i(τ−id)(s−x)
[

δ

δ2 +
(
s+ π

h

)2 − δ

δ2 +
(
s− π

h

)2
]
ds.(B.40)

Lemma B.4 Let τ ∈ R andδ > 0 be arbitrary. Then,

lim
|x|→∞

Fδ(τ, x) = 0.(B.41)

Proof. It is enough to show that

lim
|y|→∞

∫
R

e−δ|t| eity

τ − t− id
dt = 0.(B.42)

Let us first notice that

∫
R

e−δ|t| eity

τ − t− id
dt = − 2

{ ∞∫
0

e−δt (τ − id) cos(ty)
t2 + (d+ iτ)2

dt

+ i

∞∫
0

e−δt t sin(ty)
t2 + (d+ iτ)2

dt

}
.(B.43)

We will show that the second integral converges to0 as|y| → ∞, because
the first one can be treated in the same fashion.

∞∫
0

e−δt t sin(ty)
t2 + (d+ iτ)2

dt = −1
y
cos(ty)

te−δt

t2 + (d+ iτ)2

∣∣∣∣∣∣
t=∞

t=0

+
1
y

∞∫
0

cos(ty)e−δt

[
− δ

t

t2 + (d+ iτ)2
+

t2 + (d+ iτ)2 − 2 t2

[t2 + (d+ iτ)2]2

]
dt,
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which converges to0 as|y| → ∞. ��
It follows therefore that

Fδ(τ, x) =

∞∫
x

e−i(τ−id)(s−x)
[

δ

δ2 +
(
s+ π

h

)2 − δ

δ2 +
(
s− π

h

)2
]
ds,

(B.44)

and this implies that|Fδ(τ, x)| ≤ 2π. Moreover, through changes of vari-
ables we can rewrite (B.44) in the following form

Fδ(τ, x) =

∞∫
(π

h
+x)/δ

e−i(τ−id)(δs−x−π/h) 1
1 + s2 ds

−
∞∫

(− π
h

+x)/δ

e−i(τ−id)(δs−x+π/h) 1
1 + s2 ds,(B.45)

and now (B.27) and (B.29) follow straightforwardly. In order to show (B.28)
and (B.30) we make use of (B.39):

d

dx
Fδ(τ, x) = i(τ − id)Fδ(τ, x)−

[
δ

δ2 +
(
x+ π

h

)2 − δ

δ2 +
(
x− π

h

)2
]
.

(B.46)

Since

δ

δ2 +
(
x± π

h

)2 ≤ δ

δ2 + L2 ≤
1
2L

, ∀x ∈ (−L,L), ∀ δ > 0,

(B.28) and (B.30) are now immediate. With these results, we get that

lim
δ→0+

(B)∫
R

eit(·)e−δ|t|E(f, h)(t, ·) dt =
(B)∫
R

f1(t, ·)g(t− id−, ·) dt

+

(B)∫
R

f2(t, ·)g(t+ id−, ·) dt,

in H0−2ν(R) ∩ H1−2ν(−L,L), wheref1(t, ·) andf2(t, ·) are as in (3.39),
(3.40). Notice that

‖f1(t, ·)‖L∞(R), ‖f2(t, ·)‖L∞(R) ≤
1

sinh(πd/h)
,
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respectively

‖f1(t, ·)‖W 1,∞(−L,L), ‖f2(t, ·)‖W 1,∞(−L,L) ≤ C(d)(1 + |t|) 1
sinh(πd/h)

.

It follows therefore that

‖δ(f, h)(·)‖0,−2ν ≤
∫
R

‖f1(t, ·)‖L∞ ‖g(t− id−, ·)‖0,−2ν dt

+
∫
R

‖f2(t, ·)‖L∞ ‖g(t+ id−, ·)‖0,−2ν dt,

≤ 1
sinh(πd/h)

∫
R

‖g(t− id−, ·)‖0,−2ν

+ ‖g(t+ id−, ·)‖0,−2ν dt,

respectively

‖δ(f, h)(·)‖H1
−2ν(−L,L) ≤

∫
R

‖f1(t, ·)‖W 1,∞(−L,L) ‖g(t− id−, ·)‖1,−2ν dt

+
∫
R

‖f2(t, ·)‖W 1,∞(−L,L) ‖g(t+ id−, ·)‖1,−2ν dt,

≤ C(d)
sinh(πd/h)

∫
R

(‖g(t− id−, ·)‖1,−2ν

+ ‖g(t+ id−, ·)‖1,−2ν
)
(1 + |t|) dt.

This implies that

‖δ(f, h)(·)‖0,−2ν ≤ Ce−(πdαN)1/2
∫
R

‖g(t− id−, ·)‖0,−2ν

+ ‖g(t+ id−, ·)‖0,−2ν dt

≤ Ce−(πdαN)1/2
∫
R

|f̂(t− id−)|(1 + |t− id|)

+ f̂(t+ id−)|(1 + |t+ id|) dt
≤ C(γ, ν)C(f)

(
1 +

1
α

)
1
α
e−(πdαN)1/2

,

respectively
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‖δ(f, h)(·)‖H1
−2ν(−L,L) ≤ Ce−(πdαN)1/2

∫
R

(‖g(t− id−, ·)‖1,−2ν

+ ‖g(t+ id−, ·)‖1,−2ν
)
(1 + |t|) dt

≤ Ce−(πdαN)1/2
∫
R

(
|f̂(t− id−)|(1 + |t− id|)

+ |f̂(t+ id−)|(1 + |t+ id|)
)
(1 + |t|) dt

≤ C(γ, ν)C(f)
(
1 +

1
α

)2 1
α
e−(πdαN)1/2

.

The proof of Theorem 3.9 is now complete.��
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