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Summary. A new finite element method for elliptic problems with locally
periodic microstructure of length > 0 is developed and analyzed. It is
shown that the method convergesgas> 0, to the solution of the homog-
enized problem with optimal order inand exponentially in the number of
degrees of freedom independentsof 0. The computational work of the
method is bounded independentiysoNumerical experiments demonstrate
the feasibility and confirm the theoretical results.
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1 Introduction

Numerous problems in engineering and the sciences involve media with
small-scale features, such as a large number of rivets, stiffeners, fibers etc.
In many casescale resolutioni.e., the discretization of the small-scale
problem features with finite elements, is not feasible, even with advanced
hardware. The derivation of macroscopic models as the small scales tend to
zero by averaging or homogenization is by now well understood and estab-
lished for periodic structures (see, e.g. [3,4,12]). The averaged equations
have smooth coefficients and are therefore well-suited for Finite-Element
discretization. The small-scale features of the solution, however, are lost
in this process. Recovery of such features requires the computation of so-
called correctors which are as difficult to compute as the original problem.
Moreover, the averaged equations are obtained as leading term in asymptotic
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expansions of the solution as the scale-length 0. In practice, however,

e > 0is given and fixed and the asymptotic limit may be a poor description
of the phenomena of interest. Since asymptotic expansions generally do not
converge, the inclusion of higher order terms at fixed- 0 into the ho-
mogenization process will not improve the solution, in general. In addition,
the homogenization is basically related to a global periodic pattern of the
microstructure.

Someresearchers have therefore avoided the use of homogenization tech-
niques. For example, finite element multigrid and multiscale techniques have
been developed for the resolution of the small scales (see, e.g. [7]). Such
schemes are successful in rather general situations, in particular in the ab-
sence of periodicity. However, they require scale-resolution, i.e., with linear
elements in dimensiodat leasiO (s ~¢) degrees of freedom. The multigrid
techniques constitute an optimal order process for the solution of the re-
sulting system of equations, but cannot overcome the requirement of scale
resolution. If the scales are resolved, these approaches yield algebraic con-
vergence rates.

In the present paper, we develop a neWwE approach for the numerical
solution of homogenization problems. Its main features are as follows:

a) under the assumption tcally periodic structurethe scale can be
resolved with computational work which is bounded independentty of

b) for piecewise analytic input data, the method will converge exponen-
tially, independent of the length scalein particular also at fixed, positive
e.

c) ase — 0, the numerical solution converges to the homogenized limit
with an optimal rate irz.

d) the approach applies to general elliptic systems with locally periodic
microstructure.

A related algorithm has been used successfully in large scale computations
[1].

For the sake of illustration, the approach will be developed and analyzed

here for the classical elliptic problem

(1.1) V. <a (f) Vu) +ag (g) w=1f ing,

(1.2) Bu=0 o0ono.

Heref2 is a bounded, connected subseRéiwith boundaryds2 and bound-

ary operato3 which may be either the trace operator or the conormal deriva-
tive operator. The problem is assumed strongly elliptic,d(€), ao(§) are
positive.
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The Finite Element Method (FEM) for (1.1), (1.2) reads: figde VN
such that

a(u®,v) = /Q {a (g) Vu - Vv + ag (g) uv} dr = (f,v)
(1.3) Vo € YN

whereVN ¢ H'(02) is a subspace of dimensia¥ which carries the es-
sential boundary conditions (if any). The FE-solutigi is optimal in the
energy norny| - |g

(1.4) Vo e VI fluf = ullp < [luf = ol

and the performance of the FEM (1.3) depends strongly on the design of the
subspaceN.

The basic idea of our approach is the design of specidgpendent
subspace® which resolve the microscale with a number of degrees of
freedom independent afand which give exponential convergenceNmif
the right hand sid¢ of the problem is analytic. To this end, we must assume
the coefficientsi(¢), ag(€) in (1.1) to bel-periodic. The subspaceg’ will
be built by analyzing the Fourier-Bochner representation from [10,11] of
the solution of (1.1) on the unbounded dom&ih We show that asymptotic
expansion of the kernel with respectd@bouts = 0 reproduces the clas-
sical homogenization approach — thus the method is at least as good as that
approach. We obtain subspad&sby sampling the Fourier-Bochner kernel
forfixede > 0inthe frequency domain. We prove that if the sampling points
are properly selected, this yields function systems with exponential conver-
gence independent ef> 0. We calculate the-dependent shape functions
by solving a parameter-dependent unit-cell problem withith&EM. Fi-
nally, we address the calculation of stiffness matrices forsedependent
shape functions. We show that these matrices can be generated with work
independent of. In order to present the ideas in the simplest setting, we
concentrate here on the cage= 1 and globally periodic problems. We
hasten to add, however, that all proofs apply verbatim in dimensgiond
[8]. Likewise, the assumption on global periodicity of the coefficients,
is not restrictive — if the coefficients are only patch-wise periodic, we may
resort to the partition of unity method (PUM) and ugg simply as local
approximation spaces in the PUM (see [2] for more on the theory and ap-
plications of the PUM). Finally, we remark that the algorithms developed
here have shown good results also in the non-periodic setting, see e.g., [1],
even though the theoretical results do not apply there.

The outline of this paper is as follows. In Sect. 2 we present the ho-
mogenization problem on the unbounded domain and introduce the kernel
#(y, e, t) together with its properties. In Sect. 3 we show how the classical
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homogenization result — 0 can be obtained with our approach and de-
rive also the new spectral homogenization result. Exponential and spectral
convergence results are established. Section 4 addresses the computational
aspects of the kernel and of the stiffness matrices ittdependent shape
functions are used in g-version FEM. Computational examples in full
agreement with the theory conclude the paper.

2 The homogenization problem oriR

2.1 Variational setting and representation formula

Based on (1.1), consider the following elliptic, second order equation

ey g (a(D) @)+ (2) @ - 1@

onR, in whicha(-) anday(-) are L>°(R), 27-periodic functionsg > 0 is
areal parameter anfic L?(R). Itis also assumed that there exist positive
constantsy, v; > 0 such that

(2.2) 0<~v<a(é),an(l) <m, foraefeR.

Then, it is shown in [10], [11] that (2.1) admits a unique solutidrwith
the following representation:

(B)
(2.3) ””tqb Z e, t)dt.
g [l e

Here, f represents the Fourier transformjoéind the integral is understood
as Fourier-Bochner integral of Banach-space valued functions. The kernel
o(+, e, t) is the2r-periodic weak solution of the so-calledit-cell problem

o (0004 (62.00) ) +aalyoty e 0
(2.4) =, yeQ,

where@ := {y : |y| < 7} denotes the fundamental period. To characterize
precisely the notion of solution of (2.1), we introduce the following weighted
Sobolev spaces dR:

Definition 2.1 Forj = 0, 1 and for any € R the weighted Sobolev spaces
H}(R) are defined to be

(2.5) Hi(R) = Wll'”j,u7
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where
J 2
2 2v|x
(2.6) ul2, = / (2% e > o2l g
Let us associate with (2.1) the sesquilinear fobfx)[-,-] : H' (R) x
HL(R) — C

2.7) ¥(e)[u,v] = / {a (;) 32( ):Z()—i—ao <:c> (x)v(x)} dx.
R

Proposition 2.2 There exist positive constantg, C andr such that for all
v e (0,1) and alle > 0,

L [ (e)[u,v]| < Cllully,-vllv
2. | H1nf sup |¥(e)[u,v]| >n >0,
wll1 =1 o]y, =1
3. sup |¥(e)[u,v]| >0forall 0#ve HL(R),
uEHlV(R)
4. forall f € (HL(R))", there exists a unique weak solutiaf of (2.1),
ie.

wt € HL,(R):  W(e)[us,v] = (f,0) (1) xmys
(2.8) Vv € HL(R).

Moreover,u® admits the integral representation (2.3) and the following
a-priori estimate holds

[l e, < L/

A proof of these statements is given in [10].
Next, we define

(2.9) w(yae’f?t) = ¢<y7€at)eit€y'

With the above notations, for everye R the kernek)(-/¢,¢,t) € H! (R)
is the unigque weak solution of the problem

(2.10) w(e) [zp (é,e,t) ,v} = <eit('),v>(H3)*XH3, Vo € HL(R).

In the remainder of this paper, we will show how the kernglg, <, t),
Y(y,¢e,t) can be used to design FE-approximations of (1.1), (1.2) which
encode the microstructure and coefficient regularity. A crucial role in estab-
lishing exponential convergence will be played by the kernels’ analyticity.
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2.2 Analyticity of the kernels

It has already been shown in [11] that the kerpel €, ¢) can be continued

analytically with respect t¢e, ) in a neighbourhood? c C2 of R2, with

values inH,,(0,2r), H! ,(R). We show here that for every fixed> 0,

o(-,e,t) andyy(-,e,t) can be continued analytically with respectttm a

strip neighbourhood dR, and the width of the strip is independentzof
Ford > 0 let us use the notation

(2.11) Dy = {t € Csuchthatlmt| < d}.

Then the following theorem holds

Theorem 2.3 For everyv € (0, 1), the mappings

(2.12) Dyjp 3t — 1) (ggt> e H'(R),
(213) DZ//Q Bt—>¢<g,€,t> GHEQV(R)a

are holomorphic inD, , with values in the Banach spacds! ,(R),
HEQV(R) respectively. Moreover, for ak > 0, e > 0 andt € D,
holds

d* /- (2k)!
(214) Hdtkw <g7€7 t) - S ryyk /71//27

dk . k!
(215) ' W@Z) (g,e,t) o S C(l + |t|)W

For the Proof of Theorem 2.3 we refer to Appendix A.

3 Finite dimensional approximation in the nonperiodic setting

Our objective is to construct generalized FE spaé¢&svhich incorporate

the microstructure of the solutiarf. To this end, we approximate the rep-
resentation formula (2.3) by expressions of the f(ﬁﬁzl ck(f)or(x/e)
wherecg(-) may depend oryf and one in a complicated way. The first
approach is based on asymptotic expansion(gf <, ¢) in € and is, as we
show, nothing but classical homogenization. The second, spectral approach
exploits the analyticity of(y, ¢, t) in e andt. It allows to obtain exponential
convergence rates, independent of
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3.1 Asymptotic approximation of (2.3) (expansion)n

3.1.1 Derivation of the expansionSince the kerneb(-,¢,t) is analytic
with respect ta with values mH;er( m, ), it can be expanded in powers
of ¢, for every fixedi € R, i.e.,

(31) ¢('757t) = Zekqbk('at)

Note that the convergence radius depends and the coefficients, (-, ¢)

are meer( 7, ) and depend holomorphically anSetting

™

#(e0f00): = [ )3 (40)6) 1 wen)

Y
(3.2) +e%ao(y)o(y)o(y) dy,
we may write
(3.3) D(e,t) = Do+ D1 (t) + *Pa (),
in which

woignil = [ aly) 0G0

—T

21(0)i6) =1 [ aly) <t¢(y)fl2(y) - tjj@)v(y)) dy,

—Tr

™

[ (aty) + aolo) 601 .

—Tr

Po(t)[0, 0] :

forall ¢,v € H!

per(—,7),t € R. We note that

k

(3.4) Bk (1) 6, 0] = D (i) B [, 0],

k'=0

with &,/ [-, -] independent of andt. Denote by

per—{¢€ m)r/¢<y>dy:o}.
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Since¢(-, ¢, t) is the weak solution of the variational problem

™

(35) ¢(-,e,t) € Hyop(—m,m) 1 ®(e,t)[0(-, e, 1), 1] —EQ/U(y)dy,

—Tr

after substituting the expansion (3.1) into (3.3) and equating like powers of
e, the following expressions fapy (-, ¢) can be derived (for the proof we
refer to [11] for example)

(3.6) G5 1) = k-1
Zgj(t)Xk—j('at) +gr(t), ifk>1,
=0

where for eactk > 1, xx(-,t) € W,,, is the solution of

(— &1 (t)[1, ], if k=1

Po[xk(st),v] = _@1(t)[xl('>t)vv] - @2(15)[1,11], if k=2

= D1(t) [xk—1(- 1), v] — P2(t) [x—2(+, 1), 0], if k>3,

(3.7)
and thegx(t) € C are defined recursively by
27 .
B0 1+ SO0 1 =0
a0(t) k—1
(3.8) gk(t) = _7 gj( ) (dsl(t”XkJrl*j('ﬂt)’ 1]
j=0
+P2(t) [xk—; (5 1), 1]) if k> 1.

Let nowx1.1(-) € Wp,, be the unique weak solution of

(3.9) Bolx11 +y,v] =0, YoeW,

per*

Then,x1.1(+) is a real valued function and it can be deduced directly from
the definition ofy (-, ¢) that

(3.10) X1 (-5 t) = itxa; ().
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Substituting (3.10) in the definition @gf, we get

1

(3.11) go(t) = A 1 Ay’

where

™

1
Ag = o /GO(Z/) dy,

—T

1 1
(B.12) A= _—Ps(x11+v,y) = 7-Po(x11 + ¥ x1:1 +¥)-
27 27

Replacing in the integral representation (2.3)dfr) the kernel(-, ¢, ¢)
by its asymptotic expansion (3.1), we get the formal expansion¥an

powers ofs
= Z Ekufk) (x)
k>0
The leading termi,, (z) = u((z) is by (3.6) and (3.11) independenteof
and the unigue weak solution of the homogenized differential equation, with
constant coefficientd and Ay defined by the averaging formulas (3.12)

4/ d
- (A ;‘?) + Aoy (z) = f(x).

If f satisfies the usual assumptions, the coeﬁicie@;)s(x), k > 1, may be
represented as Bochner integrals with keepgl /<, t)

(B)
(3.13) / He oy )
R

Solving for¢; (-, t) now yields

$1(,t) = go(t)xa () + g1(t) = itgo(t)x1,1(-) + g1(t)-
Therefore, by (3.13)

0 X ~
i@ = g xa (3) + (@),
where
~ 1 ¢ it
i) = <= [ Fomear
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Similarly,

¢2(- ) = go(t)xz2(, )+91() 1(55t) + ga(t)
= go(t) ((it)*x2:2(-) + x20(-)) + itgr () x1:1(-) + g2(t),

where

™

@ ool = [ a(?J)Xl;l(y)ZZ(y)dy +

—Tr
™

(3.14) /a(y)dci/ (x11 + ¥) v(y)dy,

—T
™

(315) By [xa0v] = — / ao(y)o@)dy, Vv e Wl

—Tr

Hence
- d*u(p) z
ufy)(®) = — 5 (2)x22 (g)
d"E
x 1 x .
Tuo) (@20 () + —SH @ () + iy @),
where

o)~ 5z [T

By (3.4) and an induction argument it can be directly derived from (3.7) that

(3.16) Zxkk 20 (+) (i),

whereyy.;(-) are real valued functions which are independent, of
Writing Dq (t)[-, } = it@l;l[-, ] and@Q(t)[-, ] = (it)zqig;z[', ] +¢2;0[', ]

we can easily find a recursive system of equationsdor_o;(-)

(5] [*54]

(i) Do [xhpa1,v] = = D (1) VP [xh-1-1-25, 0]
1=0 =0

- Z { (it) 2" Poya [Xk—2:k—2—2m> V]

+(1t)k - 2m¢2;0[><k—2;k—2—2m,v]}~

[MES
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Equating like equal powers at in both sides we get a recursive set of
variational problems fog.;—2(-), fork > 1 (x-1,.-1 =0, xo.0 = 1)

(—P11 [Xh—15k—1, V]
— D22 [Xk—2k—2, ], if I =0,
= P11 [Xh—13k—1-21, V]

— Do [ Xk—2:k—2—21, V]

@0[Xk;k—2z,v] = _@2;0[Xk_2;k_%v], if1<i1< [%] 1,
= P11 [Xk—136-1-21, V]
— D0 Xk—2:k—21, V], if | =[%], kodd
—D2.0[Xk—2;k—21, V], if 1 = [£], keven
(3.17)

Moreover, it can be also seen that
k
gk () = (go(t))" " pi (it),
wherep.™ () denotes a polynomial with real coefficients of degjee
Proposition 3.1 For k > 0 and anyt € R,

¢k('> t) € Span{Xk—j; k_j_Ql(')}OSjSk,OSQngfj )
with x;.;(-) defined recursively by (3.17) and the convention thaf = 1.

Proof. By substituting (3.16) in (3.6) we can writg (-, ¢) in the following
form

(k)

k-1 [%£]
t= Zgj(t) Z Xoo— g2t () (it)F 92
J=0 1=0
+91(t) € span{xk—j; k—j-21(-) Yo j<k0<o1<k—j 0

3.1.2 Justification. Taking the Taylor expansion ef(-, , t) with integral
representation for the remainder, we can write

(B)
oL+l a1
Ze (- / (1-— s)L JoLT (-, se,t)ds
(0,1)
L Lt gl
Z L+1)' d€L+1( 0(6)7t)7

k=0
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for some intermediate poift< 6(¢) < e. Therefore,

(B)
L+1 gk
o) =)+t [ e Gt (et ar
R

whereust (z) = Zﬁzo 5’“ufk,) (x). Assume now that > 2 and take the-

th derivative with respect toin the variational definition (3.5) af(-, ¢, ¢).
It follows that‘éi—f(-,e,t) € H! (-, ) is the weak solution of

per

1 d~ 1 dkt
¢<Eut) |:k!d€f('7€7t)7v:| = —¢1<t> I:(k_ 1)‘ dgk_(f('7€7t)7v:|
k—1
—2eds(t) [(k_ll)!jek?(w&t),v]

1 a2
~2a(t) | g s (2010

T

26} [ o) do

—T

with 65 denoting the Kronecker symbol. By an induction argument it can
be shown that

1 d*
aas < O (L+ [+

(3.18) ‘
H(—m,m)

(e0)

uniformly with ¢ € R, where the constants > 0,7 > 1 are independent
of ¢ andk. Assume now that > 0 andf € H*(R). Then,

©—u Mo <M fllmem)

1 dL'HgZ) .
8 (/ H (L+ 1)l deltl (2’9(5“)
R
From the estimate (3.18) it follows that

1m0 < MM Fll s ) = CLe®| 1l s m).

for f sufficiently smooth. In conclusion, for sufficiently smooth détand
anye > 0, the solutioru®(z) can be approximated to any ordein ¢ from

the subspace
spon {0 ()}

[lu
2 1/2
(1+t*)~* dt> .

1,—v

(3.19) [|u® — uT




Generalizeg-FEM in homogenization 331

whereyy.(y) are the functions arising in the classical homogenization ap-
proach (see, e.g., [12]).

One might therefore consider choosiigan{ x.; ()} as local FE approx-
imation spaces. This has indeed been tried (see, e.g., [3]) and gives rea-
sonable results in special cases. However, there are severe disadvantages
of this approach: i) the number qf..;(y) necessary to achieve an error of
orders” grows like L? (and worse in higher dimensions), ii) in practice,

e > 0is given and not at our disposal; therefore, there is no guarantee that at
fixede > 0 the inclusion of further terms in the asymptotic expansion will
decrease the error, iii) the constant in the error estimate (3.19) in general
increases quickly witfL.

3.2 Spectral approximation of (2.3)

The error estimate (3.19) is in analogy ketype FEM based on Taylor
series expansion of the exact solution with> 0 assuming the role of
(there, we can reducde but here we cannot choose> 0, however). Taylor
series will, in general, not give error estimates which are optimal in terms
of the polynomial degree of the approximation. We will therefore derive
in the present section a different system of microscale shape functions and
establish spectral approximation results for them.

The main idea is to approximate the Fourier-Bochner integral (2.3) by
a finite sum by truncating a (generalized) Poisson summation formula. To
this end, let, > 0 andk be an integer, and defirfg k, i) by

sin[m(x — kh)/h}.

(3.20) S(k, h)(x) = Y

We shallrefertad (k, h) asthek’th Sincfunction, with step sizé, evaluated
atz.

Lemma 3.2
w/h
(3.21) S(k,h)(x) = S helkht=izt gy
2
Y
—7/h
and
w/h
h? ,
(3.22) [ S(k,h)(z)S(l,h)(z)dx = — F=Dht gy — By,
2
T
R —7m/h

Proof. See, eg., [13], Theorem 1.10.1.
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Definition 3.3 For a Banach spac¥, we denote by
H?(Dy; X) = {g:Dyg — X]|gisanalyticin

(3.23) DgandN,(g,Dg; X) < 00 },

where

1/p
i ([ laGIlE) T f1sp<x

§—0t
Ny(9,Da; X) = aD4(5)

lim sup [[g(2)[lx , ifp=oo,
6—=0F 2eDy(8)

and for0 < § < 1, Dy(9) is defined by
Dy(0) ={z € C : |[Re(2)] <1/6, |Im(2)| < d(1—9)}.

Definition 3.4 We say, a functiory fulfills the ‘usual assumptions’, if €
L2(R), and its Fourier transformatiof(-) can be extended to a holomorphic
function in the stripD,, with d = d(v) = v/2 and f satisfies the following
growth condition :

(3.24) 1f(2)| < C(f)e @l vzeD,,
for some positive constan€s(f), a > 0.
Then the following theorem holds :

Theorem 3.5 Under the ‘usual assumptions’ ghthe mapping

(325)Dd S5t — g(tv ) = gs(tv ) = \/12?

isin H?(Dg; HY,,(R)), forall 1 < p < co.
Moreover, there exist€'(y,v) > 0 such thatg.(t, -) satisfies the growth
condition:

f1)9 (Z.et) € HLy (R)

26) (1, b2 < CIC() (142 )8, wieDy

wherea andC'(f) are as in (3.24).

Proof. Strictly speakingg in (3.25) depends on. However, all estimates
which follow will be robust with respect to and we therefore do not write
the dependence anexplicitly.

From the usual assumptions grand from (2.15) it follows easily that there
exists a positive constant = C'(, ) > 0 such that

(3:27) lg(t, )20 < C(,)C(S) L+ [the M, Vie Dy
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It follows therefore that

1 o
(3.28) llg(t,)l1.-2 < C(1,1)C(f) <1 + a) e i, vteD,

Then, forl < p < oo, we have that

1/p
N, (9, D HY ) = ( [ st ->\|’f,2,,rdz|)

Dy

< C(v,v)C(f) <1+i) ( / e—‘”;’lzl\d/z)l/p

0Dy
o o 1 8 1/p
< 1+ — — .
<ctae (1+1) ()
The case = o is treated analogously. O

Let L > 1 and assume in what follows thayh > 2 L, i.e.,h < w/(2L).
Define, forz € Dy,

C(.q’h)(zvx) = Z g(kh,m)S(k,h)(z),
k=—0o0
N
Cn(g,h)(z, ) =Y g(kh,z)S(k, h)(2)
k=—N

in H', (R), and set

E(fv h)(Z,SL‘) = g(z,x) - C(gv h)(z,l‘),
(3.29) Ex(f,h)(z,x) :=g(z,2) — Cx(g,h)(z,x)

in H',,(R). Defined(f,h)(), ox(f,h)() € H'y (~L,L) N H%,(R)
formally as

(B)

(3.30) O(f,h)(w) = lim, et B h)(t, 2) dt,
R
(B)

(3:31)  on(fh)(w) = Jim e eI B (F, h) (8, z) dt.
R

It will be shown that the above definitions make sense, and that the limits
in (3.30) and (3.31) are well defined as Bochner integral bf,(—L, L),
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respectivelyH", (R)-valued functions. Notice that the weighted Sobolev
spacedi!, (—L, L) are continuously embedded i (—L, L), and

IFO i —L,py < € FINFONm,, (-1,
(3.32) VE(:) e HY (~L,L).

From the properties of th&inc functionsS(k, k)(-) in Lemma 3.2 it will
be seen that

(B) N
ON(f,h)(x) = lim [ e *Mei! {g(t,w— > g(kh,x>5<k,h><t>} dt
6—0
R k=—N
(3.33)
(B) N
ixt _ ikhx i ™
/e g(t,x)dt —h Z g(kh,x)e , ifjz| < W
— R k=-N
/ei“tg(t,at)dt . f \m|>%,
R

in H°,,(R) N H!,, (—L, L). To this end, define the following trapezoidal
approximation of (2.3)

G r Ty
1 N x A
(3.34) =1 zj(@) =k 3 zp( e kh) F(kh).
k=—N

N
x {Z Re¢( e kh) Ref(kh) - |m¢( 2, kh) Im f(kh)
k=1

and the solution of (2.3) can formally be written @) = uf,,(-) +

oN(f, ) ().
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3.3 Exponential convergence

We will now show that (3.34) approximates in (2.3) at an exponential
rate, independent af We start with the following result.

Lemma 3.7 Assume thaf satisfies the ‘usual assumptiongis asin (3.25)
andz € Dy is arbitrary. Then holds the representation

E(fa h)('zv JJ) = 9(27 JJ) - C(ga h)(Z, J})
(B)
_ sin(mz/h) / g(t —id~, x)
N 271 (t — z —id) sin[n (t — id) / h]
R
B g(t+id~,x) gt
(t — z +id) sin[r (t + id) /] ’
where this equality has to be understood as equality between two elements

of the Banach spacé&l!, (R) and the integral as a Bochner integral of
H', (R)-valued functions.

Proof.Let0 < § < d, letn denote a positive integer, [&t(n, §) denote the
region

(3.35) D(n, o) = {z € C||Rez| < <n+ ;) h, lIm 2| < 5}

and consider, for = a+1ib € D, fixed,( = £ +1in, the following Bochner-
integral inH*,, (R)

(B)
_ sin(mz/h) 9(¢,)
(3:36) E(n, 6, f)(z,2) = — — aﬂ/@(g—z)ﬁmﬂQ%Jdg

Then, forn sufficiently large and sufficiently close tai, z is in D(n, §)
and|z — ¢| > min{(n+ 3) h —|a|,d — b} > 0.
Along the vertical segments of the bound&®(n, J)

1
C:i<n+2>h+w

and thereforésin(r(/h)| = cosh(my/h) > 1. Then, theH', -norm of
the integral (3.36) along these segments is bounded by

|sm7rz/h|/{Hg )h"‘w?)‘h —2u

+3)h — a|
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1 .
g\\—n—-3 h”+zyf _9oy
e hiala)

[
|51n(7rz/h)|

™

e )
G Dh—al " [ el

which tends to zero a8 — oo (herel/p + 1/¢ = 1). Now, since the
following relations hold

(20)'9N (g, Dy HL 5, (R))

sinh(rd/h) < [cosh?(wd/h) — cos?(rt/h)]"/*
= |sin[n(t £id)/h]| < cosh(mwd/h),

and along the horizontal segmentsidd,
|z = ¢l = [(a =&+ (o] - 6)*)'2,
the H!,, -norm of the integral along these segments has the bound

|sin(mz/h)|
27 sinh(7wé/h)

1 1/q
(237 {R/ CESETErErad

This implies thatE(n, J, f)(z,-) € H!, (R) admits the representation

Np<97Dd§H£2u(R))

n _1\k .
Bl o) =t ) —siny 37 G
k=—n

) [W(z—kh)}
-2 z—liLh g(kh, )
"h

Z S(k,h)(2)g(kh,-).

Also, the limitsn — oo andd — d existin H*, (R) in both sides and the
lemma follows. O

Remark 3.8We do not actually need the strong ‘usual assumptionsf on
to deduce the above integral representationHof, h)(z, -) for z in the
strip Dy. These assumptions ghjust imply that the integrang defined
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in (3.25) is in HP(Dy; H',, (R)), for everyl < p < oo, as shown in
Theorem 3.5. For the proof of Lemma 3.7 it is sufficient to know that
H?(Dy; HY,,(R)), for somel < p < oo, and such a property anholds
under more general hypothesis fithan the ‘usual assumptions’, such as
f € HE,,,(R) for somes > 1. In this casey € H*(Dg; H!,,(R)) and
again the representation in Lemma 3.7 is valid.

Theorem 3.9 Let f satisfy the ‘usual assumptions’ in Definition 3.4 with
somen, d > 0 and letL > 0 be arbitrary. Define

wd 1/2
(3.38) h = <aN) ,

and assumeéV > (4dL?)/(an), i.e., such thatr/h > 2 L.
Then, withE(f, h)(t,-) as in Lemma 3.7 we have the following repre-
sentation

(B)
(.m0 = tim [ SOeIB(f, () de
R
(B) (B)
- / fi(t, gt —id™, ) dt + / folt, Vgt +id™ ) dt,
R R

in H, (R)N H, (—L,L).Here, the kernelg; and f; are defined by

rd+ixt if _E
e , ifx< N
(=7 ) (d+it)
(339) filt,w)={ L " P N
2 sin[m(t — id)/h) h h
7T
0 if —
s ifr> o
and
T
0 if ——
o ife<—o

7 e_(m+%)(d_it) ) T T
if ——<z< -

(3.40) folt,z) ={ _ i |
2sin(r(t +id)/h] h h

. _ 7
o~ wd+ixt . ifx > 7
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Moreover, there exists a constafit= C'(v, v)C(f) (1 + 1/a)* (1/a) > 0,
which depends off, , d, ~, but is independent ¥ and L, such that

—(rdaN)1/2
16Cf, Y (Mo~ + I8(F ) (Wl (—p,ny < Ce™ TN,

For the proof of this theorem we refer to Appendix B.
Ourmainresultonthe trapezoidal approximaﬁi@gh(x) ofthe Fourier-
integral (2.3) is :

Theorem 3.10 Under the assumptionsin Theorem 3.9, the efsd(if, k) (-)

= u®(-) — ufy, (), with ufy,(-) as in (3.34), decays exponentially with
respecttaV and uniformly with respecttointhe||-[lo,~2v. |- [ g1, (—1.1)-
norms:

1ox(f5 P)(Mllo~20 + I08CF )l are,, (—1.1)

2
(3.41) < C(v,v)C(f) <1 + ;) 1 ~(raany/2.

(0%

The constant€’(, v), C(f) are independent aof, N, L.

Proof. From the definitions (3.30) and (3.31) &ff, 2)(-) anddin(f, h)(+)
and the properties of th€inc functionsS(k, h)(-) in Lemma 3.2 it follows
that

(B)

on(f R) () = 6(f, h) () + lim [ e e g(kh, )S(k, h)(t) dt
sy, 6—0t J
(342)  =3(f,h)()+ \/127?1[_:7:](-)2 hf(kh)o (.2 kh) M0,

|k|>N

in H°, (R), respectively

(3.43) x (£, 1) () = 6(F,h)() + —— > hf(kh)gb(é,s—:,kh) QFh ()

™
|k|>N

§

in H', (—L, L). It follows therefore that

H(SN(f? h)<')”0,—2u < H(S(fa h)(')‘|0,—2u

“ v 3 o G ) ]

™
|k|>N

<16(f, 1) (llo, 20 +C D hlf(kh)],

|k|>N

0,—2v
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loxCfs DY ere,, (—z,2) < N6CFHR)Omr,, (—Lp)

1 ; : i«

+ o Mo (Zean) 0
|k|>N

<8GR pr, .y +C Y hlF (kD)

|k|>N

since it has been shown in Lemma A.2 thai(-/c, e, t)e!)?||; o, <
C(v,v), forallt € Dy C C, therefore in particular for al € R. Since
|f(kR)| < C(f)eelkin,

—ah

€ L —ann
m§2c(f)ae ar

(3.44) h > |f(kh)| <2C(f)he N
|k|>N
which implies with our choice of. that the sum in (3.42) satisfies the

estimate (3.41). It is therefore enough to show thatf, h)(-)|lo,—2, +
16CF, B) ()1, (~,1) satisfy (3.41), and this is just the statement of The-

orem3.9. O
As a corollary, the following approximation result holds

Corollary 3.11 Let us assume that satisfies the usual assumptions and
that

1/2 2
(3.45) h= <”d> N> ML
alN aT
Let
N ._ - _ .
WX .= Span {Rw (6,a,kh) Tm (6,5,kh> L0<k< N} .
(3.46)
Then
Ué%y ||ua B U||Hi2u(_L7L)7Hg2u(R)
1 2 1 _(ﬂ_adN)l/Z
(3.47) <C(y,v)O(f) [ 1+ o) &t ;

whereC'(f) anda = a(f) are those from Definition 3.4.

3.4 Spectral convergence

In this section we assume thain (2.1) isinHZ . (R). We will show that

comp

for anye > 0 the solutionu® can be approximated by
uy € Span{Rey(-/e,e,kh),Im(-/e,e,kh) : |k| < N}

with respect td| - ||;,—, at an algebraic convergence rate independeat of



340 A.M. Matache et al.

Proposition 3.12 Assume thaf in (2.1) is Hg,,,,(R) with s > 1 and let
supp f C (=M, M), with M > 0. Letd := min{1/M,v/2} and N > 1.
Then, for any > 0 and all NV

(348)  inf |lu —vlly_, < CosMENTETDE fll s ey,

€

whereC, s > 0 is independent of, N and M.

Proof. By a density argument it can be assumed fhat C5°(—M, M). It

is known then that the Fourier transform o€an be continued analytically
in C and f is uniformly bounded in a strip of width /M. Therefore, the
integrand in the Bochner integral representation (2.3)°ak analytic in a
strip with values in the Banach spag€ ,(R)

glt,) = f(t)y (éaé‘,t) € A (Duin{1/arp/2y: HL,(R)) -

Defined = min{1/M,v/2}, and leth = /d/N. Let us split the solution
uf again as

i)=Y \/%hf(kh)w (gekh>

k|<N
(B)
(3.49) + (k) (= e, kh) + | g(t,)dt —h> " g(kh,-).
k>zjv:+1r <5 ) R/ gz

We defineug; as the first sum in the right hand side of (3.49). The regularity

of f implies that
1 —ityﬁ ‘
o / e dya(y)
supp f

<CM'Y?|fllgsm), YtER, VYa<s.

tf ()] =

It has been shown in Theorem 2.3 thdt /e, ¢, t) is analytic inD,, /, with
values in H! (R) and uniformly bounded. Moreover, the norm
Hw(-/e,5,t)HLoo(Dy/2;H1V(R)) is bounded uniformly with respect te.
Hence, the second sum in (3.49) satisfies the estimate in (3.48)

1 . .
> —=hfkh)y (=& kh
w>Na1 VT (8 )
< CMY2||fllgsh > (kh)™
|k|>N+1
1/2 (s=1)/2
< Cos MZ( Nl s ry (dN) :

1,—v
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It remains to find a similar bound for the remainder in (3.49). Define by

5(9) = [ g(t.)at =3 ho(kh,),

kEZ

=

We can writed(g) as

®)
(350)  (g) = / {g(t,-)—Zg(kh,-)S(k,h)(t)} dt.
% keZ

Sincesupiep, [|9(t, )1, < Cusupyep, |f(8)] < Co M| f| rs(r), by
Definition 3.3¢(t,-) € H>™ (Dg; HL,(R)). Therefore, as pointed out in
Remark 3.8, the integrand in (3.50) can be written as

= > g(kh,-)S(k, h)(t)

keZ

(B)
_ sin(7t/h) / g(t —id™,")
2mi (1 —t —id) sin[n (7 — id)/h]

g(T+1id, )

(3.51) " (r — t+id) sin[r(r + id) /1]

dr.

Substituting (3.51) in (3.50), changing the order of integration and integrat-
ing with respect ta first, we get that

(B)

77r/h d+iT) o
/ 2 sin[m T—zd)/h} glr —id", )
R
3.5 i e—ﬂ'/h(d—ZT) . g
(3.52) _§sin[7r(7'+id)/h]g(7+l ) dr

Taking the]| - ||1,—, norm of§(g) in (3.52) we can estimate it as follows

16(9) 11— < Cose™ ™ N M2 | f|| o my

and conclude the proof. O
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4 Generalizedp-FEM in homogenization
4.1 Convergence results
We return to the problem (1.1) on the bounded dom@in= (—1,1): let

f(-) € L*(N2) ands > 0fixed. Denote by:*(-) € H}(£2) the weak solution
of the following boundary value problem

(o) ) v @)= s o
4.1  w(=1) = v*(1) = 0.

FE-convergence results for (4.1) can be deduced from the unbounded domain
case. We start with a spectral convergence result.

Theorem 4.1 Let f € H*({2) for somes > 1 and consideMV* := W N
H}(£2),withWF asin (3.46). Then, there exists a constant- 0 depending
only on{? ands, such that

(4.2) inf ||uf — vy, 0 < Cu "I £ 0.
ewt

v

Proof.The proofis based on Proposition 3.12 and on a well known extension
result for Sobolev functions. There exists a continuous extension operator
Y H*(02) — H*(R),suchthasupp Xg C 2,V g € H*(2),with2 C 2

and{2 compactly embedded iR. Let us denote by the extensiort f of f.

Then, by the continuity of, || f||s,gr < C||flls, 2, with C > 0 a constant
depending only om, £2 and 2, but independent ofi. Letw® € H! , be the
solution of (2.1) corresponding tp. Then, its restrictioni®|, solves the
differential equation in (4.1), but does not fulfill the boundary conditions.
They can be enforced by solving two extra problems (2.1) with right hand
sidesfi, f2 € C§°(R), such that

(4.3) (supp f1 U supp f2) N 2 = 0.

Let u3, u5 be the corresponding solutions (&) of (2.1) with respect to
f1, f2. Then, because of (4.3), their restrictiaris,,, u5|; solve the differ-
ential equation in (4.1) with homogeneous right hand side. Denoting by

u® =10 + aui|n + cus| o,

then there exist unique constamisce € R, such that® satisfies the ho-
mogeneous boundary conditions in (4.1). Moreover, it can be seen that
lei] + |ea| < Cs |l flls, 2, with the constanC , > 0 depending only
ons,v.
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By Proposition 3.12%°, w5, w5 can be approximated iffl, (R) at an
algebraic rate of convergenge (*~1)/2 by elements of the FE spad&’,
and therefore their restrictions fatoo. O

No exponential convergence can be proved in this way, since for ana-
lytic f € [—1,1], ¥'f is not an analytic function o® anymore; however,
the following result shows thét subspaces are designed corresponding to
solutions of (4.1) with polynomial right hand side, exponential convergence
is achievedTo this end, associated with the kernél, ¢, t) as in (2.9), we
introduce the FE-spacé4’ ¢ H}(—1,1) :

dp (-
K= — (- << =
Vi Span{Re 7l (6,5,0),0_l_u,l 2k,
i (-
— (- << =
im = (6,5,0>,0_l_u,l 2k:+1},

(4.4) V= (V' +span{vf, o)) [ Ho(—1,1),

wherevi(-), v5(-) are the solutions of (4.1) with homogeneous data 0
and the following inhomogeneous boundary conditions:

(-1)=1, ©5(1)=0, resp. vj(—1)=0, v§(1)=L1.

Theorem 4.2 Let f be analytic in[—1, 1] and letu® be the weak solution
of (4.1). There exist constant§ b > 0, depending only oif, such that for
1 € N sufficiently large

(4.5) inf [lu® = ol gz 11y < Ce™™.

veVY

With other words, the error with respect to the FE-spa&edecays expo-
nentially with respect t@, uniformly ine.

Remark 4.3We observe that!' is spanned by products of the “micro” shape
functionsj—:ﬂb (%,e,1) ‘ times polynomials of degree at mgstIn par-

t=0
ticular, we see that increasing the number of “micro” shape functions must
be accompanied by some increase in the macroscopic polynomial gegree
to achieve (4.5). We will address this computationally below.

Before giving the proof of Theorem 4.2 we need the following preparatory
lemma.

Lemma 4.4 Let L(-), k € N denote the:-th Legendre polynomial, and
considerf € A([—1,1]) and its Legendre serief(xz) = >~ arLi(x).
Then,

‘2

[ee) ‘ak
(4.6) 22% T1 = ||f”%2(—1,1)
k=0
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and there exis€(f), b > 0 such that
(4.7) 1 = F P2y < C(fe™,

wheref®) is the truncated Legendre series
p
(4.8) O = "apLy.
k=0

The constant > 0 depends on the domain of analyticity faf ).

For a proof of this result see e.qg. [6].

Proof of Theorem 4.Denoting bysf,, (-) the weak solution i3 (—1,1)
of (4.1) which corresponds tH = L, we get that

17
(4.9) ufy () =Y ard(y ()
k=0

solves (4.1) with the right hand sid€”). By Lemma 4.4 the error with
respect to the exact solutien satisfies the following bound

(4.10) [Ju® = u,y I —1,0) < COIS — f(#)HLQ(fl,l) < C(y, fle™™.

It is therefore enough to show tha&)(-) € V. To this end, recall that
d'/dthp(- /e, e, 0) are solutions of (2.1) corresponding fo= (iz)'. Since
¢('/5» &, _t) = ¢('/8’ &, t)v

Cg;f (g“)) = Rei‘f (i,s,o), if | =2k, k € N,

3
Cg;f (ge()) :ilmﬁ (ggo) if 1 =2k+ 1,k €N.

Therefore(—i)!d' /dt'y(- /¢, ¢, 0) solves (2.1) withf = 2! and takes in all
cases real values. O

4.2 Selection of the micro shape functions

We have seen so far that collocation of the ketf@l/<, <, ) at various sets

of collocation points\ = {t;}; gives systems of shape functions with very
favorable approximation properties for elliptic problems with microstruc-
ture. In the present section, we present a FEM for the solution of the unit
cell problem and a methodology to derive a well conditioned set of shape
functions from the collocated kernelgz /<, ¢,t;), t; € N. This will be
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based on the SVD of the matrix of coefficient vectors of the Finite Element
approximations to the(y, ¢, ¢;), t; € N.

Let N = {¢; : j =1,...,4} be any set of collocation points i@.
Given a partition7 of the unit cell@Q = (—m, ) into intervalsK, for an
arbitraryt; € N, compute the FE approximations

Sy t;) € SENQ.T) : B(e.t))[d,v] = 2 / o(g) dy,
Q
(4.11) Vo e SELQ,T),

per

whered (e, t)[-, ] is as in (3.2) and the FE spasg:; (Q, T) is defined by

(4.12) ShL(Q,T) = {u € Hu(Q) : u

K

and P, (K) is a space of polynomials of degree at mésbn K. Since

the sesquilinear fornd(e, t)[-, ] is coercive (in the sense that aéf@ing
inequality holds and the unit cell solution operator is injective), there exists
a unique solutionb(y, e, t;) € Sgar(Q, T) of (4.11).

Several questions arise in practice:

1. How to design the mesh in Sﬁéﬁ(@, T) for the computation of the
unit-cell problem?

2. How to choose the collocation poirttS

3. Are the functions)(y, e, t;) suitable as basis functions for FE calcu-
lations? B

4. How doesspan {¢(y, ¢, t;) : t; € N'} depend onV'?

We have found the following answers:

1. If the coefficient functiona(y), ao(y) in (4.1) are piecewise analytic
functions ofy, so are the)(y, ¢,t;). Therefore,T is selected such that the
elements coincide with pieces of analyticityaf), ao(-).

2. In agreement with Theorem 3.9, we choogg:) = jh whereh =
1//pwith j = 0,1,...,n — 1. Notice that the values af anda in (3.38)
are generally not available. Therefore, the choicé;ab to some extent
heuristic (see, however, item 4. below).

3. By Theorem 2.3¢(y, €, t) is analytic int att = 0. As p increases,
the collocation points; will cluster neart = 0 (as, e.qg., iMV in (3.46))
resulting in almostlinear dependence ofthe shapefunaﬁ();)s:, tj);these
functions are hence not well-suited as basis for a generaghkdeM. Some
orthogonalization is needed to obtain a well-conditioned basis. In addition,
the pointg;; (1) depend om meaning that the shape functiopgy, ¢, (1))
are not hierarchical.
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We propose therefore aversamplingi.e. to selecfi > p sufficiently
large and

N={t;(p): j=1,.... 0},
and to perform arthogonalizatioras follows:

Algorithm 4.5 Let N(y) be a basis ofS"Sé(Q,T). Thené(y,e,t;) =
®;(e)"N(y), j=1,...,4 Compute the SVD

[D1(¢), ..., Du(e)] = Udiag(oq,...,0.)V."

withoy > 09 > 03 > ... > 05 > 0 and set

(4.13) V¥ :=span {qu (§,€> =U/N (g) = 17"'a:u}7

with Q]— being thej-th column ofU.

Ignoring roundoff, this orthogonalization changes only the basis, but not the
span of the shape functionsif = . If © < [i, however, the definition
(4.13) will change the span. Nevertheless; if< eps for u < j < i with

eps of the order of machine precision, this change will be negligible.

4. 1f |kh| < po < 1, with py being the radius of convergence of the
power series of)(-/e,¢,t) att = 0, then the elements R /¢, ¢, kh),
Ima)(-/e, e, kh) of the FE spac&VY in (3.46) can be, up to an exponentially
decaying remaindes—**, approximated by elements in the FE spate
introduced in (4.4), withu, equal to the number of such that|k|h <
po- Since the kernely(- /e, e,t) is analytic int, for any set of collocation
points{t;} which are close to the origin, spam(-/<,,t;)} is practically
independent of the choice of the collocation points. Therefore the precise
choice oft; will not matter much, as long as with increasinghey cover
the interval—, /1, /1] and are spaced dg, /i by Theorem 3.10.

We present in Fig. 2 the shape functio{xﬁﬁ-(y,5)}2‘:1 obtained with
Algorithm 4.5 for the case whewy = 1, a(-) is as in (4.14)¢ = 0.001.
Based on Theorem 3.10 the set of collocation point&/is= {t;(i1) =
j/ViL s 3 =0,....4, i = 64}. In this case the number gfsuch that
the corresponding singular values > eps = 1071 is 4 = 5. Hence the
orthogonalization has, as a byproduct, also reduced the number of micro
shape functions substantially. We clearly see the low regularity of these
shape functions at the jumpsa@f-) aty = +x /2. Note also that, unlike the
kernelso(y, ¢, t;), theg;(y, ) are piecewise polynomials.

0 iflyl <3, 1ty < 3,
(4.14)a(y) = ao(y) =
1 else, 50 else .
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12 T T T T T T T

0 L L L L L L L
-4 -3 -2 -1 0 1 2 3 4

Fig. 1. The coefficient(-)

€= 0.001: |4 =5 linear independent shape functions (orthogonalized by SVD)
0.2 T T T T T T T

0.1

0.05

-0.05

-0.15

0.2 ! ! ! ! ! ! !
-4 -3 -2 -1 0 1 2 3 4

Fig. 2. ¢;(e),j=1,...,5

Remark 4.6We see in Fig. 2 thap, (y,c) = const; this is due tog = 1,
in fact if ag # 1, then the solution of (4.11) far = 0 is not the constant
function equal ta.. To illustrate this, we choos€-) andag(-) as in (4.14).
Our numerical results indicate that in this case we have, ) = const +
O(e)p2(y, €) + h.o.t, see Fig. 3.

Remark 4.7In numerical experiments we found that Algorithm 4.5 is very
robust with respect to the choice of collocation points. After the SVD the
first shape functions associated with the largest singular values are practi-
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wpl(y,s) (obtained by SVD) for e = 0.01
-8.79 T T T T T T T

-8.795 1

-8.805 1

-8.811 b

-8.815 b

-8.82 L L L L L L L
-4 -3 -2 -1 0 1 2 3 4

@,(¥,€) (obtained by SVD) for e = 0.001
-8.8025 . . . . . . .

-8.803 b

-8.8035[ 1

-8.804 b

-8.8045 b

-8.805 1

-8.8055 b

-8.806 L L L L L L L
-4 -3 -2 -1 0 1 2 3 4

Fig. 3. 10%¢1(y, €) in the case when the absolute tegg{-) is not a constant, but piecewise
constant

cally independent of the number and of the choicg of he shape functions
®;(-, ) resulting from Algorithm 4.5 are therefore, at least numericaily,
erarchical and enablierarchic modelingf problems with microstructure.

4.3 Generalizegh-FEM

We consider now the problem (1.3) with absolute teags= 1, ap = 0,
respectively. Sinc#* in (4.4) is not available (because the computation of
the boundary correctors, v5 is as expensive as that of the solution itself),
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we construct a spao%’ﬁ((z, T) C H¢(£2) with analogous properties:

pr+1pg+1

{2 a2,

4.15) i eR, VKeT,j:1,...,pK+1,M:1,...,MK+1},

SyE(0R,T) = {u € H} (R

wherev!l (z) = N, ((F[K])*1 (m)) VK e T.ByFIKl . (-11,1) 5 K
we denote the linear mapping with respect to the elemért (z, Tx)

o= FI(€) = (1 - Oug +5(1+ T, VE€ (-1,1),

and{NN;(£)} is the standard hierarchical polynomial basis

Ni(§) = (1-8)/2, Nao(§) = (1+¢)/2,
¢
/Lj_Q(t) dt, Vj>3.

-1

2j — 1

(4.16) GERIE

By the vectorp = {px } k7 We denote the ‘macro’ polynomial degree of
the FE method, angt = {ux }xe7 Stands for the ‘micro’ degree of the
spectral approximation.

The FE solution:% () is defined as usual:

1
, z\ dus dv
wip() e 5@ ¢ [a(2) U@ @) ds
]
1

(4.17) :/f(a:)v(a:) dr, YveS§ER,T).

-1

We see from (4.15) that each element contains products of standard poly-
nomial shape functions (4.16) and the fitgt + 1 micro shape functions.
We used in all our computations the orthonormalized micro shape functions
®j(y,€) in (4.13) from the unit cell problem with absolute tetin= 1. The
mesh7T = Ty |J 7o is selected to have the following properties:

—if K € Ty, (which means thak’ is a boundary element and the length
of K is O(¢)), then we choose the standgrd FEM elements, since the
microscale is resolved by, i.e.,ux = 0 andpx = p; these elements are
needed to accommodate the homogeneous boundary conditions and could
be omitted for the Neumann problem.
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f(x) = exp(x); 4 elements at the boundary; € J1E-2; a,=1
0
10

107

H
°

Relative error for the energy
I
S

H
o,

107 | ——

EEEETE
Wonon oo
[ R RN

107

L L L L L L ]
1 2 3 4 5 6 7 8
"macro" degree p

Fig. 4. Exponential rate of convergence for the FE enefdy.) = exp(z)

—if K € Ty, then we take:.yr = p andpg = p, which corresponds to
the PUM usingVt as local approximation spaces. With this choice, the FE
functionsu € SOB’H((Z,T) will provide excellent approximation properties
on the interior element& € 7, for the elements oP; it turns out that
the boundary correctors;, v5 are also very well approximated on these
elements bys5 (12, 7).

Remark 4.8Equivalently, we may choos®, = () and modify the shape
functions¢;(y, €) in the elementd( € 7, abutting at the boundary, see [8]
for details.

Remark 4.9Computation of the stiffness matrix can be done with a fixed
number of operations (independent=)fexploiting the periodicity of the
coefficientsa(-), ag(-) and that of the special shape functiefigy, ). We
must compute only once integrals@f(y, ¢) and its derivatives times mono-
mials on the unit cell. This is the reason to usgy, <) times monomials
instead of)(y, ¢, t;). Full details can be found in [8].

4.4 Numerical results

We implemented the generalizgeFEM described in the previous section
for (4.1) witha(-) as in (4.14) and absolute termig = 1, ag = 0, respec-
tively. Two different right hand sides were chosen, namely

(4.18) filz) =1, foz) =¢"

The exact solution:® () corresponding ta,y = 0 and f(x) = fi(z) is
piecewise cubic, foif = f> the solutionu®(x) is piecewise analytic but
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Fig. 5. Convergence rate for fixed micro deggeand increasing macro polynomial degree

p- f(z) = f2(z)
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f(x) = exp(x); 4 elements at the boundary; e 11E-6
10 . r & 5 - r 2
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Fig. 5. (continued)

f(x) = exp(x); 4 elements at the boundary; e 11E-3
10 ross o

10°

Relative error for the energy
=
S

1 2 3 4
"micro” degree p

Fig. 6. Convergence rate for fixed macro polynomial degre@d increasing micro degree

p f(x) = f2(x)

non-polynomial on the microscale. The goal of the numerical experiments
is to showa) that exponential convergence can be achieved (with subspaces
(4.15)),b) that this convergence is indeed independent of that the par-
ticular choice of the subspace spén,, (£,¢) , p=1,...,ux + 1} needs
to take into account only the principal part of the operator (4.1) &nd
to investigate combination gfxr and ux necessary to obtain exponential
convergence. Note that our mathematical theory does not allow to draw
conclusions o) andd).

In all experimentg is increased on a fixed me§h= 7y U 7y, with 7y,
covering4 periods of lengtt2me at each boundary point for various values
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f(x) =1; p="micro" degree; 4 elements at the boundary; ¢ 11E-1
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Fig. 7. Convergence rate for fixed micro deggeand increasing macro polynomial degree

p- f(z) = fi(z)
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f(x) = exp(x); 4 = "micro" polynomial degree; e[]1E-6
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Fig. 7. (continued)
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Fig. 8. Relative error for the energy versige for increasing micro degree

of 1. Figure 4 shows the convergence of the generalizB&M foray = 1,
f(z) = f2(z) ande =2 10~2. The curves corresponding to= 1 show the
error when only macroscopic shape functions, i.e. global polynomials, are
used (recall thaty = 1 and thatp; (y, ) = const, see Remark 4.6).

We see that for fixe@ds > 1 and increasing, first exponential conver-
gence is apparent, however a saturation occurspdesgel which depends
on the micro degreg. Exponential convergence requires therefore the joint
increase of the micro degreewith the macro degreg.

So far, our theory concerned the case whgnp- 0. In practice, however,
also the casey = 0 is of interest, for example in diffusion problems. For
ag = 0, our mathematical results require several technical modifications.
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Fig. 9. Exponential rate of convergence in thé® norm for the stresseg(z) = f2(x)
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Fig. 9. (continued)

Since a change iny does not affect the principal part of the differential
operator which strongly influences the shape functions, we investigate next
the performance of shape functions corresponding te 1 for the problem
(4.1) without absolute terma.

In Fig. 5 we show analogous results fay = 0, f(z) = fa(z) (with
respect to the same mesh) and different microsealerying from= 10-6
up to= 10~!. We note that foru = 1 and fore = 10~! a very slow
convergence is apparent - here the scales are resolved, but the low solution
regularity stalls the spectral convergence. As before, one can see from the
results in Fig. 6 that keeping fixed and increasing: does not lead to
exponential convergence, in agreement with Remark 4.3. Rather, Figs. 4, 5,
6 show again that must be increased together wijitio obtain exponential
convergence that iobust i.e. independent of.

Comparing the error plots in Fig. 5 for severand the same fixed value
of u we see that the saturation level appears to be proportional to some
power ofs. This is more clearly visible in Fig. 8 and indicates that our finite
elements with the choice > 1 can represent the correctors in classical
homogenization theory and are consistent with the homogenized problem
ate = 0 of higher order ire.

In Fig. 7 we show analogous results fitr) = fi(x), ap = 0. Since the
exact solution:*(x) is piecewise cubic, for smailno change occurs when
uis increased beyond = 4, despite our shape functions being obtained for
ag = 1rather thanfory = 0. We conclude that the micro shapefunctions of
the problem (4.1) witlug = 1 perform equally well if used for the operator
without absolute term.
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Finally, in Fig. 9 we show the pointwise error

d

—— (u° —ufpp)

(4.19) ’ e

Loo(—1,1)

for f(z) = f2(z) and various. We see that the above conclusions apply
also to these errors with respect to the (stron§ét)>°-norm.

A Proof of Theorem 2.3

Lemma A.1 The mapping

D, s := {t € Csuch thafIm¢t| < v/2} 5t — G(t) := &' € (HL(R))"
(A1)

is holomorphic inD,, » with values in the Banach spa¢éf}(R))". More-
over,Gy(t) == (iz)*el® € (HL(R))" is thek—th derivative with respect
tot of the (H(R))"-valued mapping=(¢) and its norm has the following
bound

vV (2k)!

vk 1U]2’
Proof. It is sufficient to show that v € H}(R) the application
(A.3) Dyjp 2t = (G(t),v) (11w x i r) € C

is C-differentiable. Lety € D, /, arbitrary, fixed, and € D, /, such that
|t —to] < v/4. Then,

1
't _— (G(t) = G(t0), v) (1 (m)y* x L (R) — (G1(0), V) (11 (R))* x HL(R)

< anw[ /
R

< CW)[t = tolllvllre-

el:rt _ el:cto

t—to

. iiUem:tO

1/2
e—21/|x|dx:|

This implies that the limit

1
(A.4) lim
t—to T — 1o

(G(t) — G(t0), v) (1 ()" x HL(R)

exists and is equal t+1 (o), v) (i1 ())* x 1L (R)-
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Let us takev € H! and estimate(G (), v) (1 (r))* x 1 (®) |

{GR(E), ) s oy s | = \ [rdtuw) as
R

1/2
< ol ([ laPtetin®sle-el)
R
25!

Now, for ¢ € D, 5, lety(t) be the weak solution ! ,(R) of the
following problem

< vl

(A5) W(e)[Wq(t),v] = (Gr(t), V) (i) xmi®), Vv € Hy(R).

Lemma A.2 The mapping
(A.6) Dyjp 3t — 1 (g5t> € H',(R)

is holomorphic irD,, , with values in the Banach spa¢e' ,(R). Moreover,

dk .
(A7) Uit = Zxv (So5.t).
and its norm
. (2k)!
(A.8) 1% @), < TR

uniformly with respectté € D, /,.

Proof. The proof is similar to that of Lemma A.1 and is based on the fact
that

(A.9) ¥ (e) [w (ﬂé‘,t) ,v] = (G(t), V) (m1(R))* x HL(R)

e
and on the properties of the sesquilinear fobtx)[-, -] stated in Propo-
sition 2.2. In order to prove the analyticity of thié® ,(R)-valued map-
pingt — 1(-/¢,¢,t) in the stripD,, 5, it is enough to show that for every
v € HL(R) theC-valued function

(A.10) D,y 3t — U(e) [qp (gst) ,u} eC
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is holomorphic. From the definition aff it follows that
_ 1 . .
iy @ o () - () o
(G(t) — G(t0), ) (H1)y* x H}

= lim
t—to t — to

= (G1(0),v) 1y x 1y = ¥(€)[¥(t0), v].
In addition, from (A.2)

1 (2k)!
< NGl <

d* :
All) |- (-,et —/—
( ) Hdtkw <5’67 ) T v kv ]2’

uniformly with respecttd € D, 5. O

Theorem A.3 For a givenr > 0 there exists a positivé = d(v) such that
the mapping
(A.12) Dyst— ¢( e, t) e H',,(R)

is a holomorphic function of € D, with values in the Banach space
H!, (R). Moreover,
C(1+1t])

k!
o (2e) s (w/2)F

where the constarit’ > 0 depends ow, v, but does not depend are D,.

Vt € Dy,

Proof.Letd = d(v) = v/2 andt, € D, arbitrary, fixed. Then, since we can
write ¢(-/e,e,t) = e 1t0y(- /e, e, t) it follows that in the Banach space
H£2V(R) ) Hilj(R)

dk €T
o (et
t=to

k
(A.14) - Z(-u«)’(l) e itozy) (=) (g e, tg>
=0

Taking now thé| - ||1,—2,-norm in both sides we get that

H dtk

t=to 1,—2v

g(—ix)l<l> eHoryhh (2 e )

0,—2v
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| > (i)’ <l;> (—itg)e oz (k=D (g e, to)

Let us estimate only the first term of the right hand side, the others can be
treated analogously.

—ir ( ) —1t0xwk 0) (7 , to)

¢ 0,—2v
k 1/2
Z( >(/‘ |2z k=) (T to)‘ o2im(to)al 4l/x|dx>

=

=, ( ) (u/2e>l <(uk/§>i)!l <O

Here we used that’e™"* < (p/ve)P,Vx > 0, p € N and the estimations
for the|| - ||1,—,-norm of the derivatives with respecttof (- /¢, ¢, t) from
Lemma A.2. Summing up all the estimates it follows that

< C(l + ‘t0|)

dk x k!
(G| ]S /2

This implies therefore that the series

o S (e

k=0

0,—2v

0

(A.15) ’

t=to

t=to

is absolutely convergent in the Banach spate,, (R) for |t — to| < v/2
suchthat € D;. O

B Proof of Theorem 3.9

In this appendix we will present the proof of Theorem 3.9. Our aim is to
approximate the Fourier-Bochner integral

(B) (B)

(B.A) w()= L R/ F)" o (L. e.t) dt = / O g(t, ) dt,
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where

o) = = F1)0 (Z.e.t) € A H, (B)).

The integrals in (B.1) have to be understood as Bochner-integrals of
H!, (R)-valued functions. Recall that by Theorem 3.5

19(t Yl < Clr)CL) (1 + 1) 5 vieD,

(07

Define the approximations

N

B2 uwipl)i=1 g 5 ()os=h 3 FEn (Ze.kh)
A —

=3
R

and its error

(B.3) ON(f,h) () i= () — ufy ()

Proposition B.1 Assume thatf € L>*(R?) N L}(R; L>*(R)) andg €
HY, (R). Then

(B)

(B.4) / g()f(t, ) dt = () / f(t.) d.
R

R

Proof. Let us verify that the expressions in (B.4) have sense. The Bochner
integral is well defined, sincky(-) f (¢, -) < [lg()llo, (t, )| o

and| f(t,-)|| = is, as a function of, in L*(R). Then, the right hand side

of (B.4) is an element of7®, (R) since

/f(t, it € L°(R).
R

We consider two cases:
Case 1: ifg € C§°(R), the assertion is obvious.

Case 2y € H_Ql,( ) = CgO(R)H'||°”2", then take(g,,), € C5°(R), such
thatg, — gin H%,, (R), asn — oco. Then,

| / e

/ 1900) — 9Ol 20/l 70, Vel
0,—2v
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Now, the integrand|g.(-) — g(-)llo,—2v[|f (¢, )|z — 0, @sn — oo, for
almost everyt € R, and is bounded by ah! applicationC|| f(t, )| e,
uniformly with respect tou. It follows therefore that

(B)

/ dt—>/ Ndt inHC,

R

asn — oo. Since

() / £t ) dt = g() / F(t-)dt in HO, (R)
R R

asn — oo the proposition follows. O

Proposition B.2 Assume that
f e L®(®R; W (=L, L)) 0 L' (R; W (~L, L))
andg € H', (R). Then

(B)
(B.5) / g()f(t,) dt = g() / ft,)dt
R R

inH', (—L,L).

Proof.First of all, let us convince ourselves that the expressions in (B.5) have
sense. The Bochnerintegralis well defined, sige) f (¢, )| 1, (—r,0) <

g1, —20[1.f (£, )lw.ee (— 1,1y, Whichis inL!(R) as a function of. Then,

the right hand side of (B.4) is an elementiét , ,(—L, L), since

/f(t, Ndt € WH(—L, L).

As before, we use a density argument :
Case 1: ifg € C°(R), the assertion is obvious.

Case2y c H', (R) = CgO(R)H'Hl”Q”, then take(g,, ), C C5°(R), such
thatg,, — g in HEQV(R), asn — co. Then

| [,
i21/(7[/7L)

< / 19n() = g2l £t Ve ry .
R
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Now, the integrand|g..(-) — g(:)ll1,—2v |l f (£, )llwrco(—r,2) — 0, asn —
oo, for almost everyt € R, and is bounded by ah' with respect tot
applicationC|| f(t, -) [l w1. (—r,1), for all n. It follows therefore that

(B)

(B)
[ardt s [ g0rfeya inly, (L1,
R R
asn — oo, and the proposition follows since
() [ £t )t o) [ £t de in B (L)
R R

asn — oo. 0O
Recall now that

ON(fh) () = u () = ujvu(-)

(B) N
= / Vg(t,-ydt — W[z = ()g(kh, Delkh)
R k=—N

>3
=3

Proposition B.3 Let us assume thdt > 1 is given, andh = (rd/aN)'/?
satisfies

> 2L,

S

i.e., N > 4dL?/ar. Then,

lim g(kh,-) / e M) S (K, h) () dt = hip

6—0t

(B.6)

R

in H%,, (R) N HY, (~L,L).
Proof. First, let us notice that singgkh, ) € H!, (R) and

B7)  Fy() = / o6t Sk, 1) (£) dt € W (R),
R

(BB (1) = F(1) =1 ](~)heikh(') e L®(R)NWH>®(~L, L),

Lo
h’h
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the terms in (B.6) are well defined as element&8f,,(R)NH®, (L, L).
Then,

i
o1 . .
Fg(.ﬁU) :/e—6|te1tx2ﬂ—(/helkh‘r—n—td,r) dt
R

=3

jus

_% R
- 5 _— 5
—— ikhT _n ikh(s+x)
w/e rEpy p v P
% i
BT 1—m)/6
h ikhx ikhs 0 _ h ikhx ikhoT 1
T / T2 8= / 2T
(~7e)1s

It the following it will be shown that uniformly with respect toandé

(B.9) |F5(z)| < h, VazeR,
(B.10) 'CZUF(;(QJ) < WiL FER., Vo (—L, L),

and

(B.11)  Fs(z) — 1[_%,%](a:)heik’hm, asé — 0T, fora.e.x € R,
(B.lZ)%F(g(x) — %F(:ﬂ) = ikh%e** fora.e.x € (—L,L).

The assertions (B.9) and (B.11) follow immediately from the representation
of Fg(-)ﬁ

h . 1
(B.13) = —elkhe / elhhoT dr.
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From (B.13) it can be deduced that

jus
h

d h wkhr —2(x—T1)0
d:rF(S(x):ﬂ/ekh EENCEEEk

>3

—
|
3
|
~—
~
(S2)

hosknal knes 1 r=(f-2)/o
oikhTo L

T ) 1+ 72

T:(—%—x)/é

dr.

4 h oikha / RITLIITHA

T 1+ 72
(=f-z)/s

It follows therefore that for: € (—L, L) C [-7/h,7/h],
d R Skha ikh(r/h—a) 1/0
ZF _
dx () o ° 1+ [(m/h—x)/6)?
R Skhe ikh(—n/h—z) 1/0
L 11 [(—n/h —2)/3]?
kh? Gl 1
R ke / oikhoT dr
T 1+ 72
(=F—=)/0

— _ﬁeikw 1/6 + ﬁe—ikw 1/5
T 1+ [(r/h—x)/0)2 =« 1+ [(—7/h —x)/0)?
kh? e 1
(B.14) —|—i7eikhx / R

1472
(=f-=)/0

>3

Since|r/h+ x| > L,

1/5 1/5
TS [ /h L) ol = 15 (Lo
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asd — 0T. This will imply that the first two terms in (B.14) converge to
0, asé — 0%, uniformly with respect tor € (—L, L). Furthermore, it
can be easily seen that the last term in (B.14) convergék/ite'*"*, as

d — 0T, and is uniformly with respect td andx € (—L, L) bounded by
kh?. Moreover, since

1/5

15 (Ljo) =

1
— )
5T V>0,
it follows that

d

h
—F < — 2 —L.L).
T 5(x)_7rL—|—/~ch, Vd>0, Vaxe(-L,L)
Then,
(B.15) lim [lg(kh,)(Fs(-) = F(-)II§ 2, =0,
d—0t
since

Jim [lg(kh, ) (Fs() = FCDIE o,

6—0t

~ lm / \g(kh, ) 2419 Fy(z) — F()|? da,
R

whichis0O because of Lebesgue Theorem on dominated convergence. Indeed,
the integrand is in.}(R), converges td for almost everyr € R, and is
bounded by an integrable functidth g(kh, z)e 21712,

With similar arguments it can be shown that

(B.16)  lim [lg(kh, )(ES() = F(D3pr, (1) =0,
since
lg(kh, YE5() = FO)2n py
d 2
< / |g(kh, x)|?e™ VI ‘dxF(s(m)—F(fU)
(=L,L)
(8.17) T |Fs(a) - F(@)?] de

2
+ / ’jg(kh,x) Wl Fy(2) — F(2))? da.
T
(_LvL)

The integrands in (B.17) are ib' (- L, L), converge td a.e. in(—L, L),
asd — 0™ and are uniformly (with respect t& > 0) bounded by an
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L'(—L, L) function. The Lebesgue Theorem on dominated convergence
implies therefore that

(B.18)  lim [lg(kh, )(F5() = F(Dlar,, (-r.1) =0 =

Now, it follows that
(B)
(L)) = [ gt d
R

(B.19) — Z lim g(kh,- / e M) S (K, h)(t) dt

6%0"’
R

inH%, (R)NH!,, (—L,L).ByPropositions B.1, B.2 the erraig( f, h)(-)
can be now mterpreted as the following Bochner- mtegraIsthZ R),
respectivelyi!, (L, L):

5N<f,h><->=5grg ““ o (g <kh,->5<k,h><t>) dt
= lim lt< ol g(t (kh,-)S(k:,h)(t)) dt
6—>0+ oo

|k|>N-+1
in H°, (R), respectively

(B)

N
on(fih)() = lim [ el (g(t,o— > glkh, ~>S<k,h><t>) dt
6_)0+]R b N
(B)
= lim [ OB )@yt Y he M Og(kn, ),

R |k[>N+1
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in H1, (—L, L). Now, it has already been shown that

(B.20)

(B.21)

> 1L

|k|>N+1

(e Og (R, )

>3

)

>3

0,—2v

e )
> heOg(kn, )H
|k|>N+1 HY,, (~L,L)

< C(%V)Cg) —VrdaN

€ )

if h = (rd/aN)'/2.
It remains to find similar estimates for the [lo,—2.. [| - || ;71 (r,z)-norms

of

(B.22)

(B)

/eW%*“Ewmxaoﬁ,

R

which are uniform with respect t asé — 07.
By Theorem 3.7,E(f,h)(t,-) has the following representation as
Bochner-integral off!, , (R)-valued functions

E(f,h)(E, )

and
(B.23)

(B)
_sin(nt/h) g(t—1id~,)
27 / { (1 —t —id) sin[m (7 — id)/h]
B g(t+1id™,-) .
(1 —t + id) sin[n (7 + id) /h] } oy

IECS h)(E, )20 < C,

uniformly with respect ta € R. It follows therefore that

(B)

(B)

/eit(-)e—étlE(ﬁ B, ) dt = / oit() gl sin(7t/h)

R

2mi
(7,t)ER2

L
(1 —t —id) sin[r (7 — id) /h]

B g(t+id—,-) .
(r =t + id) sm[x(r +1d) /] } dr dt.

Here, the integrals will be alternatively considered as Bochner integrals
of H°, (R), respectivelyH!, (—L, L)-valued functions. Now, since the
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HY, (R),respectively', (—L, L)-norms ofthe integrands areir (R?),
we can change the order of the integration and we get

(B)

[ €0 e B e,
R
(B) (B)

1 etCedltl g(r —id—, ")
N in(t/h )
270 { / sin(mt/h) T —t —id sin[r (T — id)/h]
R R

it() g =0l id—. -
e ™ .g(7'+1d.,) a\ g
T —t+id sin[x (7 +id)/h]

— sin(wt/h)

We shall restrict ourselves to the first term, the second can be treated in an
analogous fashion. To this end, using Propositions B.1, B.2 we get that

()
) elt() =l g(t —id—,") gt —id,)
/ St/ h) 30 sl =iy /h Y s (r —ia)/m] )

R
(B.24)
in H, (R)N H', (-L,L),where

eit(')e_ém

(B.25) Fs(r,-) := /Sin(ﬂt/h) P dt.
R

We get therefore that

e O g(r —id-, )
/ { / sin(mt/h) 54 Snjr(r — i) /7 dt}dT

R R

g(r—id™,")
sin[w (7 — id)/h]

(B.26) = Fs(r,-) dr.

%\@

Assume now that the following hold: for atl € R

(B.27) Fs(1,x) — Fy(r,x) = F(r,2), asé — 07, a.e.x € R,
d d "
(B.28)%F5(T,$) — %F(T,l‘), aso - 0", a.ex € (—L, L),
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where
( omisin[n(r —id) /R4 | if ¢ < —%
F(r,z) = —me~i(w/h=2)(r—id) , if — % <z < %
T
0 if 2> —.
\ ;P> o

Moreover, assume that

(B.29) |F5(m,x)| <2m, VzeR

iFtS(Ta 1’)

(B.30) ‘ -

1
SC(1+|TD+37 Vz e (_LaL)v

whereC' > 0 depends o, h, but does not depend anc (—L, L), 6 or
7. Assuming that (B.27), (B.28), (B.29), (B.30) hold tB}(r, -), we claim
that

(B) ( ) (B) -
, g(r —1i g T—i
61;%1 sin[r (7 — id)/h] sin[r (7 —id)/ h] F(r,-)dr,
R R
(B.31)

inH%,, (R)NHL,, (—L,L).Inorderto prove (B.31), under the assumptions
(B.27), (B.28), (B.29), (B.30), let us estimate first

F(S(Ta ) _F(Tv ) ?

sin[r (7 — id)/h|

HQ(T —id™,)

0,—2v

(8.32) < / el |g(r — id™, 2) 2| Fy(r, 2) — F(r,)[? da,

R
2
Hg(T —1id™, ‘)F-(S(T’ )= F(T, )
sin[w(r —id)/h] |1, (—1.1)
< [ eyt i, a)p

(_LvL)

d d
—_— 2 E— _— —
|F5(7-7$) F(7-7:U)| + ’dng(T’x) dxF(T’x)

2
]dx
2

(B.33) + / i dig(f—id*,z) |Fs(7,x) — F(r,z)* dz.
e

(—L,L)
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Now, since the integrands convergetpasd — 0T, for a.e.z € R,
respectively for a.ex € (—L, L), and are bounded by integrable functions,
we conclude by Lebesgue Theorem on dominated convergence that

L Fg(T,')—F(Ta')
(B.34) HQ(T —id”,) sin[m(r —id)/h] ||y _a, ~ 0
respectively
o\ Fs(r,) = F(7,)
(B.35) Hg(T —id™,-) sin[r (T — id) /h] ‘ HY, (—L,L) -

asé — 0T, for a.e.r € R. Moreover,
. F(S(Ta')_F(T?')
Hg (r—id”,) sin[r(r — 1d)/h] [l s,
< Cllg(r —id™,)llo,—20 || F5(7, ) — F(7, ) |Loo(m)

< Cly,v)C(f) <1 + ;) L

respectively

HQ(T g, )l = F .)‘

sinf (7 —id)/h] || g1 (1.1

< Cllg(r —id™, )~ | F5(7, ) = F(7, ) l[lwree (- L,1)

< C(v,v)C(f) <1 + ;):—Z‘Tl.

The Lebesgue Theorem on dominated convergence implies therefore that

g(T —id™, ") N — F(r,-
(B.36) R/ st (r —1y/A] o) ET ) o
g(T —id™, ") 3 — F(r,-
(B.37)R/ Sinf(r — i) /7] (Fs(r,-) — F(r, ))’ P — 0,

asé — 01, which proves (B.31).

Itremainsto show (B.27), (B.28), (B.29) and (B.30) fa«r, -). As a Fourier
transformation of &1 function, F5(7, -) is continuous with respect tq for
all - € R and alld > 0. One can see that

5.38) rir) = (200,
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where byF we denote the Fourier transformation and
gs(t) = el sin(wt /h).

Then, Fj(r, ) satisfies the following first order differential equation gin

% Fy(r,2) — i(7 — id) Fy(r, ) = —iF (gs) ()

o o
B.39 —_ _ ‘
(©:39) [52+(x+’,;)2 52+(x—’,;)2]

Therefore, for every € R, Fj(7, z) admits the following representation

Fy(r,2) = Fs(r,a)e” (771"

T

(B40) _/e—i('r—id)(s—a:)|: o - 1) 2:| ds.
4 (s+7)° 2+(s—%)

a

LemmaB.4 LetT € R andd > 0 be arbitrary. Then,
(B.41) lim Fs(r,z)=0.

|z|—o00
Proof. It is enough to show that

ity

(B.42) lim [ed— qr=o.
ly|—o0 T—t—id
R
Let us first notice that
1ty i _
/e‘”' _ 9 /e (7 — id) cos(ty) it
T—1— 1d 24 (d+ i)
R 0
T t _ tsin(ty)
B.43 dt 3.
( ) / + (d+ 17‘) }
0

We will show that the second integral converge$ &s|y| — oo, because
the first one can be treated in the same fashion.

T tsin(ty) 1 te 0t
ot
_ UYL g = 2 cos(ty)— —
/e 121 (d +ir)?2 y cos(ty) +(d+ir)?

t=00

t=0
00

1 st t £+ (d+ir)* — 217
: t -0 “
+y /cos( y)e { 2+ (d1in)? + [t2 + (d + i7)2]2 )

0
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which converges t as|y| — co. O
It follows therefore that

o0

o 1) 1)
Fi(ryz) = [ eitrmiate { _ ds,
’ 2+ (s+1)7 824 (s—1)°

(B.44) '

and this implies thatFs(7, z)| < 27. Moreover, through changes of vari-
ables we can rewrite (B.44) in the following form

[e.9]

o 1
F _ —i(t—id)(6s—xz—m/h)
s = [ e o ds
(%Jr:p)/é
00 o )
B.4 o —i(r—id)(ds—z+m/h)
(8.45) | s
(—%—0—%)/5

and now (B.27) and (B.29) follow straightforwardly. In order to show (B.28)
and (B.30) we make use of (B.39):

d 1) 1)
—Fs(r,x) =i(r —id) Fs(1,x) — [ — )
da 2+ (x+5)° 24 (z—1)°
(B.46)

Since

1) 1) 1
N2 @2 Sor
62+(xiﬁ) +

Vexe (—-L,L), Ydé>0,

(B.28) and (B.30) are now immediate. With these results, we get that
(B) (B)
lim [ "Oe MBS, h)(t, ) dt = / fit,)g(t —id™, ) dt
R

6—0t
R

(B)
+ | fa(t,-)g(t +id™,-)dt,
/

in H°, (R) N H', (—L,L), wherefi(t,-) and f»(t,-) are as in (3.39),
(3.40). Notice that
1

”fl(tv ')HLO"(R)a HfQ(t’)”LOO(R) S m7
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respectively

1

11 ) wree—r,nys 120 )lwreo—r,ry) < C(d)(1 + |t|)m-

It follows therefore that

16(f, ) ()

|Qm/sm/Jfa@,oan|m<tid—,»nagudt
R

+%/Jfau,»uLmrm<t+ad,»ua_2ydu
R

1
L — t—1id™, )0 —2w
< ooy /| ot =i o
R

+ llg(t +1d™,)llo,—2v dt,

respectively
Wﬁwwmﬂgmg/mwwwwLMM@AJAMnﬁ
R

+/mmmww%mmwufmﬂmu
R

1,—2v

C
< s [ ot =i,
R

+ [lg(t +id™, )

1,-20) (14 [t]) dt.
This implies that

—(r / .
18(f, B)(o,-2, < Co™(7eN)! 2/||9(t—1d o, —2v
R

+ Hg(t + idiv ')HO,—QV dt

< Qe (mdaN)!/? / |f(t —id7)|(1 + |t —id|)
R

A~

+ f(t+1id7)|(1+ [t +id|) dt

< C(v,v)C(f) (1 + 1) le—<wdam1/27
a ) o

respectively
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—(rwdaN)Y/ g
10/, h)(')HHLQU(—L,L) <Ce (rdaN)! 2/(||g(t—1d c)1,—20

R

+ lg(t +1d7, ) [1,-20) (1+ [¢]) dt

< ce<frdaN>”2/(|f(t_id)|(1+\t—id|)
R

+1f(E a7 I(1+ [ ) ) (1 [2]) e

2
< C(v,v)C(f) (1 + 1) le—(ﬂdaN)l/Q‘
a o

The proof of Theorem 3.9 is now complete
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