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Summary. We present a convergence analysis of an algorithm for the nu-
merical computation of the rank-one convex envelope of a funcfion
M™*™ — R. A rate of convergence for the scheme is established, and
numerical experiments are presented to illustrate the analytical results and
applications of the algorithm.

1. Introduction

In recent years, many surprising mechanical properties of crystalline ma-
terials, like the shape memory effect, have been successfully explained by
analyzing microstructures which are created during a solid to solid phase
transition of the material. In their fundamental paper [2] Ball and James
developed a mathematical theory in the framework of nonlinear elasticity in
which the experimentally observed geometries arise naturally as minimizers
(or almost energy minimizing configurations) of a non—convex free energy
functional. More precisely, one is led to the variational problem: Minimize

I(u) :/Qf(Du)dx

whereu : 2 — R™ denotes the elastic deformation of the bddy- R" in
its reference configuration arfds the (nonlinear) energy density which we
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assume to be non-negative and to depend only on the deformation gradient
Du € M™*"_ The zero set of has typically a multi-well structure,

I

{X: f(X)=0}=JsOom)U,

=1

where the matrice&’; denote the preferred deformation for thth phase
andU; satisfiesU; = UiT anddet U; > 0. Finding minimizers is a non-
trivial problem, since the integrand fails to be quasiconvex and hénmge
not weakly lower semicontinuous (see, e.g. [9, 22] for further information).
Minimizing sequences develop oscillations, so converge weakly, and not
strongly, to a deformation which is not energy minimizing. However, the
infimum of the energy, theelaxedor effectiveenergy, can be computed as
the minimum of the corresponding relaxed functional

(1.1) [ (u) = /Q F(Du)da,

wheref° is the quasiconvex [9] envelope ffi.e., the largest quasiconvex
minorant of f. We recall thainf 79¢ = inf I. Generally it is impossible to
computef9© explicitly (or even numerically) and therefore it is natural to
ask for lower and upper bounds on the effective energy. Here we focus on
replacingf 9 by f¢, the rank—one [9] convex envelopefafwhich is defined

to be the largest rank—one convex minoranyf ofsince every quasiconvex
functionis rank—one convex (the converse is not true, see [26]), we conclude
f > fr¢ > f9° and thereforénf I*® = inf 19°. However, minimizingl*®

can be as ill-posed as the original problem, unjg$sand f*¢ coincide. On

the other hand, for all functions, for whighi® and ™ are known explicitly,
these two envelopes do coincide [16,17] and thus the computatibfi isf
certainly of interest, and this is the focus of this paper.

During the past decade a variety of numerical techniques have been pro-
posed for various non—convex problems where oscillations play an important
role, and the survey paper by Luskin [19] gives an extensive overview of
the progress made to date. Much of the numerical work on non—convex
variational problems has centered around the computatigffatt a single
point ' € M™*", [5-8,11,12]. Typically this is attempted by numerically
estimating the minima of (.) subject to affine boundary conditions. Luskin
et. al. and Carstensen et. al. [4,15,18,20] have also considered a variety of
other problems. The theory of Young measures [14,27] has been developed
to characterize the minimizing sequence$(of and their weak limits [1, 13,
24,27], and Nicolaides and Walkington [23] developed numerical schemes
which exploited this connection. In spite of all of this activity, there are no
robust and efficient algorithms for the approximation of non—convex varia-
tional problems. In this paper we consider an alternative approach. Instead
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of using minima ofi(.) to characterize the relaxed energy, the procedure
considered here exploits the convexity properties mentioned in the previous
paragraph. This approach is expensive in the sense that it necessitates com-
putations on a mesh in high dimensionsX n for functionsf : R™ — R™);
however, this one computation provides all of the information required to
solve many variational problems of the form (1.1) with a variety of boundary
conditions and various low order terms etc.

In the next Sections we recall the definition and various characterizations
of rank—one convex functions, and the algorithm proposed in [10] for the
computation of rank—one envelopes. Section 4 establishes a rate of conver-
gence for this algorithm and in Sect. 5 numerical examples are presented and
compared with the results in Sect. 4. We also consider examples where the
discrete rank—one convexification is used to estimate (relaxed) deformations
that minimize integrands of the form (1.1).

We finish this introductory section with a brief overview of the notation
utilized below. Ifa € R™ andb € R", then|a| and |b| will denote their
Euclidean normM™*"™ denotes the space of real x n matrices, forF’ €
M™*" | F| denotes the norm induced from the Euclidean norm&&n
and R". The tensor product of vectois € R™ andb € R"™, denoted
a®b e M™™", is the matrix having entriefz ® b);; = a;b;; observe
that|a ® b| = |a||b|. The maximum norm on finite dimensional spaces will
be indicated by> and the Lipschitz constant of a real valued functfois
denoted byf/|.i,. Greek letters. andy, will be used to indicate real numbers
in the interval0, 1].

2. Rank—one convex envelopes

Recall that a functiory : M™*™ — R is said to be rank-one convex if
FOAFL + (1 =N Fy) < Af(F1) + (1 — X) f(F») for all matricesF,, F; €
M™% with rank(F}, — Fy) = 1and all\ € [0,1]. If f € C?, then this is
equivalent taD?f(F; R, R) > 0 for all F', R € M™*" with rank(R) = 1.

There are two representations for the rank-one convex enveltipe
of a given functionf. The first formula is analogous to the inequality
FOSL L NF) < D70 Aif(F;) for convex functionsf where); € [0,1]
and>"" | \; = 1 (see Dacorogna [9]).

Definition 2.1. The sequence of pairé\;, F;) € (0,1) x M™*" § =
1...N, satisfies the conditio! (we write (\;, F;) € Hy) if the fol-
lowing holds:>"Y | A; = 1 and

I) if N =2 thenrank(F1 — FQ) =1,
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ii) if N > 2,thenthereexists € {1,..., N—1}suchthat, up to relabeling
the matrices,

Ai A
FL' 5 7Fi —k>
(A1+ + A )1 ..... T (Ak+1+ +Aw )kﬂ ..... y &
and if
pr=A+...+ A, p2=Ngt1+ ..+ AN,
and
ML+ .o+ M Ey Aet1Frr1 + ...+ ANEN
Hy = , Ho= ’
)\1++)\k )‘k+1+---+)\N

then(u;, H;) € Ho.
(Note that there are no additional conditiongvif= 1).

Then

@.1) foF mf{Z)\f . (M, F) € Hy, F = ZAF}

=1

Here the infimum is taken over al' € N and all(\;, F;) € H . Note that
it is not possible to bound/ in the definition off.

The second representation has a more algorithmic flavor and was ob-
tained in [17]. Letfy = f and define iteratively

Jeer(F) =it {Afu(F) + (1= N fu(Fo) s F = AFy + (1= Ay,
rank(F) — Fy) = 1}.

Then f*(F) = limy_, fr(F'). Our analysis takes advantage of both rep-
resentations: while the algorithm is based on the second representation, the
convergence analysis relies on the first representation.

3. The algorithm

Let G, = hZ™*™ be a uniform grid inM™*"™ and denote by, , = G, N
B(0,r) the intersection of the grid with the balt(0, ). Choose a subset
Ry C {hR: R € Z™*", rank(R) = 1} of rank-one matrices ig;. The
algorithm is now defined in the flow chart in Fig. 2.1. We use the notation
{f"} = A(f,Gn,) to denote the sequence of functions generated in the
algorithm (withEPS = 0).

Remarksl). Assume thaD C M™*". We say that a functiof, : G, — R
is D-convex if f3, the restriction off;, to {F' + tR} N G, is convex as a
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START(f,Gn.»)

i:=0; f!' == flg,..

. rh
g =17

VF € Gnr, VR € R

lg := convexify(g, F, R, Gn,r)

fla=giii=itl

IS = fisille < EPS

STOP(f}")

Fig. 2.1 The algorithm for the computation of the rank-one convex envelope

function of one variable for alt” € G; andR € D (see [21] for a discussion

of general properties @-convex functions). The functiofy,, which we may
considerto be defined & is convex iffy, (i —1) =25 (i) + fx(i+1) > 0for

all i € Z. This is equivalent to asking that the piecewise affine interpolation
of f, is convex as a function oR. Rank-one convexity corresponds to
D ={R e M™" : rank(R) = 1}.

2). In the algorithm we use a procedwenvexify (g, F, R, G, ) which
computes the one dimensional convexification oéstricted to/;, = {F +
tR} NGy, Letus call this restrictiony,. In the special situation at hand the
points are sorted, so the convex envelopeg;ofan be obtained witk (k)
operations where is the number of points oéy,.

3). Aninteresting (and open) question is how to order the one-dimension-
al convexifications to achieve rapid convergence. Some examples seem to
indicate that it is crucial to use a random order to propagate the information
obtained in one step faster through the grid (see Sect. 5).
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4. Convergence of the algorithm

The following convergence result was established in [10]. RecallRhat
is a subset of the rank one matrices on the ghid= hZ™*™ and that a
function f : M™*" — R is R,-convex if its restriction taj; is convex
along all directions iR y,.

Theorem 4.1. Assume thaf is Lipschitz continuous and that there exists
a rank-one convex functiggi® : M™*" — R such thatf > ¢" on B(0, r)
and f = g" onM™*™ \ B(0,r). Then there exists &R -convex function
f" 1 G, — R such that the function§f} = A(f,G2.) defined in the
algorithm in Fig. 2.1 converge t@".

Remarkltis necessary to compute the rank-one convexification on adomain
which containg3(0, ) as a proper subset; otherwise, the computed function
could beR,-convex onB(0, r) but fail to beRj,-convex on allM™*".

If the rank-one convex envelope ffcan be computed withV bounded
from above by some constant in formula (2.1), then we have the following
quantitative estimate for the errgr— f":

Theorem 4.2. Assume that the hypotheses in Theorem 4.1 are satisfied and
that f* can be computed by formula (2.1) with < Ny. Suppose that

Ry = {h(a (= b) ra€e ij be Zn, ‘a’goo, ’b’goo < h*l/S}.

Then there exists a constatiwhich depends only an, n andr (the radius
appearing in Theorem 4.1) such that

£ = Pl gy < ClflLiph'®.

The proof of the theorem is based on the following approximation lemma
which is interesting in its own right. While the explicit formulae given for
the constants appearing in the lemma are not of particular interest, we state
them here for ease of exposition in the proof given below.

Lemma4.3. Assume thad < h < 1 and (\;, F;) € Hy with F =
SN | \iFi. Suppose thaf" e G, satisfies|F — F"| < ¢oh'/3. Then
there exis{\!, F*) € H and a constant; which depends only om, n,

)

andmax; |F;| such that

i) F'eg,andF" =N Aph
i) |FP—F| <(co+ (N —1)e))h/3fori=1,...,N;
iii) we have the estimate

N
| ) = AEFED)| < (co+ (N + Der) [Fuiph
i=1
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Given this approximation lemma, Theorem 4.2, follows almost immedi-
ately.

Proof (of Theorem 4.2Fix F' € G,. By hypothesis there exits\;, F;) €
Hn such thatf™ = Zf\io X\ f(F;). Next letF" € G;, be a closest point to
F,sothal F — F"| < \/mnh/2, and observe that

N
FE(F) = fME) = f7(F) = fM"(F") < Y- Nf (F) = XL F(E])
1=0
where(\!, F") € H is the sequence guaranteed by Lemma 4.3 and we
have used the fact thgt (F") is the minimum over all sequenceg’, F") €
Hn in gh. O

To establish Lemma 4.3 we will first develop some elementary approx-
imation properties of vectors and matrices on equi—spaced lattices. Given
a lattice of points with spacing’. and a vecton € R™, in order to find
a vectora” € vhZ™ whose angle frona is less thare it will, in general,
be necessary far" to have length of ordey/h /. If we then approximate
a by an integer multiple of”, a ~ ka”, then the error in the magnitude is
of orderv/h/e. This elementary argument illustrates that there is a trade off
between the accuracy of the angle and the accuracy of the length, and shows
that the following lemma (where we pat~ h'/3) is sharp.

Lemmad.4.Let0 < h < 1,0 # a € R™ and for integerd > 0 let
Zq={i € Z : |i| < d}. Then there existd > 0 anda” € VhZ7 such
that

—d<hY3,

_ |ah| < \/mhl/G’

— The angle between the vectarsanda is bounded by /2)\/m h'/3.

Proof. Let d > 0 be an integer and define the bdx = {Vhz|z €
R™, |z|mo < d} and its discrete counterpay, = {Vhz|r € Z™, |z
< d}, and denote their boundaries®# andd By, respectively. Let" = ta,
t > 0, be the point at which the ray generateddoyeets) B, and set” to
be the point o B;, closest ta:’. Clearlyv/h d < |a"| < vhm d and since
each component of the errat — a° is no bigger than/h/2 it follows that
la" — a®| < vVhm/2.

Consider now the anglé, formed between the vectazd anda’. Since
0 < 6 < 7/2itfollows that

) 7 lah —a®|  my/m
0 < 2 0) < — < .
< (r/2)sn0) < 315 < T

Selectingd to be the largest integer less than or equdlb'/? establishes
the lemma. O
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The proof of Lemma 4.3 will follow by induction upon the “number of
laminates”N. The following lemma and its corollary will not only initialize
the induction argument but will also be used for the inductive step.

Lemma4.5. LetH = pHy + (1 — p)Ho € M™*™ rank(Hy — Hy) < 1
andH" € G, satisfy|H — H"| < coh'/3. Then there exit§(u", H"), (1 —
pl, HA)} € H, satisfying

- H!' HY € G, andH" = P HP + (1 — M) HY,

— Hl' — H € ZRy, i = 1,2, where

Ry ={h(a®b): a € Z", b€ Z" |alsc, bloc < h ™'/},

— |H; — HI'| < (co +¢1)h/3,i=1,2, and
— |p— p < cah!/3 /| Hy — Ha),

wherec; = (r|Hs — Hi|(v/m + /n)/2 + /mn) andcy = 2¢;.

Proof. Let Hy — H] = a ® bwith a € R™, b € R"”, and without loss
of generality letja| = |b|. Let a”, b" be the vectors guaranteed by the
Lemma 4.4, and note that @ b" € G,,.

If |a"[|b"| > |a||b| setH} = H} = H" andu” = . The error inH; is
bounded by

[Hy — HY| = [H — (1 - p)(a®b) — H"|
< [H — H"| + (1 — p)lal b
< [H — H"[ + (1 - p)la"(|"]
< (co + (1 = p)v/mn)h'/?

3

< (Co + C1)h1/
and the error inf/% is similarly bounded.
Suppose now thdt”|[b"| < |a||b|. Letk € Z and compute
1-p)(a®b) — k(" ®b")
|al[b] ;

=<1—u>|h|‘bh|< 2 ) = ka" &)
|a|\b\
— (1 thh|( M @b+ ah (b—bh)>

|af|b] & bl
+((1 W aor k>< o

whered = |a”|a/|a| andb = |b"[b/|b|, so that|a| = |a"| and|b| = |b"|.
Selectingk > 0 to be the integer closest {d — p)|al|b|/(|a"||6"]) and
noting thatla — a”| < |a"|6 < (7/2)|a"|\/mh!/3 gives the estimate

(1= w(a®b) — k(a" @8")| < (w(1 — plal]b|(Vm + Vi) + vmn) b/ /2.
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A similar computation shows that there is an integer 0 such that
p(a@b)—1(a"@b")| < (wplal[bl(v/m + V/n) + Vmn) b3 /2 < e p'?
SettingH!' = H" — k(a" ® b") gives an error

|Hy — HY| = |H — H" — (1 — p)(a®b) + k(a" @ b")| < (co + c1)n'/?

and settingd} = H" + I(a" ® b") gives a similar estimate.

Next, setu” = 1/(1+k) (at least one of or [ is positive sincea”||b"| <
la||b]) and observe thati® = p"H} + (1 — p*)HY. Adding the error
estimates fo(1 — 1)(a ® b) andu(a ® b) gives

(a®@b) — (k+1)(a" @ b")| < b/
The triangle inequality implies
lallp] = ta"|[p"]| < c1nt/,
[lallol = 1+ Bla"[16"]] < ern!/?
and the identity

w (ulallpl = tla|[B*]) — p (lal[b] — (k + D’ |b"))
pe= al[b] '

establishes the bound on the erfor- " |.
Finally, recall that” € vhZ7T andb® € VhZ, whered < h~'/3, thus
H" — Hh = k(a" @ V") € ZR;,. O

Corollary 4.6. The matrices in the lemma satisfy

\wf (Hy) + (1= p) f(Ha) — p" f(H?) — (1 — ") f(HY)]
< (co+ 1+ )| fliph’? .

Proof. Applying the triangle inequality to the identity
uf(H) + (1= o) f(Ha) — " FCHT) = (1= ) £ (H)
= (= ") (F(HY) = F(Ha)) + i (F(EL) = f(HD))
(1= ) (f(H2) - £(HD))
gives
[ (H) + (1= ) f () = i (D) + (1= ) ()|
< (I = w1 Hy = Hal 4+ | Hy — ]| 4+ (1= )| Hy = HE|) | fluip

and the result follows. O
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Proof. (of Lemma 4.3) Observe that we may assume without loss of gener-
ality thatey > /mh/2, and set

o1 = <7TmzaX]Fi (vV/m +v/n) + m) .

We now induct onN. Lemma 4.5 and Corollary 4.6 establishe the case
for N = 2. Suppose that the result holds for integers smaller ffiaand

let {(/\i,Fi)}iN:1 € Hy andH = ), \;F;. Definition 2.1 guarantees the
existence ok € {1,..., N — 1} such that

Ai

Ai
A N— ) € Hy, o € Hn-
<>\1+"'+)\k )11k ’ (Ak+1+"'+AN )ik+1,mN o

and{(u, H1), (1 — p, Ha)} € Ho wherep = Ay + -+ - 4+ A, and

i MEFL A A F i, A1 Fr1 + -+ >\NFN
1= : 9 = 3
k+1 + - +)\N

A+ A
Observe thati = pHy + (1 — p)Ho, rank Hy — Hy) < 1, and there is
H" € g, satisfying|H — H"| < \/mh/2 < coh!/? so, an application
of Lemma 4.5 giveq (up,, H}'), (1 — p", H})Y € Ho, andH], HY € G,
satisfying|H; — H!'| < (co + ¢1)h'/3. The inductive hypothesis when
applied to each haIf of the splitting (Wi'&h] + ¢1 playing the role ofc)
gives{(ul', FM}E | € Hy and{(ul, FI)}Y | € My satisfying

~ FreGyi=12,... . NandH = ¥F @ FhHy =N, i Fl,

—|F, — FM < ((co+e¢1) +max(k —1,N —k —1)ey) b3 < (e +
(N —1)¢)hl/3,

M () - FE] < (o + ) + (B + Der) [ Fluiph!?
+ A\

< (co+ (N + 1)er)| fluiph'’?,

< ((eo + 1)

+(N = k+ Der) | fluph'®
< (co + (N + Dey)| fluiph'/.

DeflnlngAh A+ A)pbfori =1,2,... kand A = (A\gyq +

-+ )\N)uh fori = (k: +1),...,N, gives{(\?, E")}Y,, € Hy, and an
appllcatlon of the triangle mequality to the two equations above establishes
the bound on the error in the average of fhealues. O
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5. Numerical experiments
5.1. Kohn and Strang example

Our first experiment uses a slight modification of the following example
computed in [17]. Define

C[1+]X]2 if X #0,
f(X)_{ 0 if X =0.

Then
weixy = J LHIXP i p(X) > 1,
d (X)_{2(p—D) if p(X) <1,
wherep(X) = /| X|> + 2D, D = |detX|. Now let

Fx) = 1+[X]? if | X]|>V2 -1,
Tl 2v2lX| i X <vV2-1.

Clearly, f'© < f < f and thereforef™® = f*. Moreover,f satisfies the
assumptions of Theorem 4.1 (loes not satisfy the assumptions sirfds

not continuous; however, we got the same numerical resultg &ord f).

For our computations we used the following sets of rank-one matrices in
gh,r:

Rir={h(a®b): a€Z™, beZ", |a|ps,|blr~ < k}.

The results of the computations are summarized in Table 5.1. We used a
uniform grid in the cubé—1, 1]* with NGRID points on the one dimensional
axes and computed the errorfii° at the grid points. We used the s&$

with & = 1,2, 3 which containl6, 64 and256 elements, respectively. The
algorithm was implemented with an alphabetical ordering of the points on
the grid, a fixed indeX for the set of matrice®,, and the basic loop in the
algorithm was iterated until the error stabilized. The number of iterations
required for each case is given in the table in parenthesis. The different rows
in Table 5.1 show the error for fixed parameterskip andk.

As expected, the error decreases as the grid is refined and the number of
directions increases. While one could not expect to verify the rate/of
predicted by Theorem 4.2 with so felwalues, it is clear that in order to
get convergence thatandNGRID must increase together, as hypothesized
in the theorem. Moreover, the table suggests that for largfee rate of
convergence is about linear in= 2/NGRID for this particular case.
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Table 5.1Numerical results for the (modified) Kohn Strang example

Ilf* = ]| (iterations)

NGRID k=1 k=2 k=3
5 0.085786 (1) 0.085786 (1) 0.085786 (1)
9 0.043861 (1) 0.043861(1) 0.043861 (1)
17 0.067 187 (1) 0.031250(1) 0.031250 (1)
33 0.076 384 (1) 0.021354(2) 0.012649 (5)
65 0.076 488 (2) 0.026 795 (2) 0.009730(2)

5.2. Kohn’s example

Kohn [16] explicitly computes the quasiconvex hull of functions of the form

5.1) FX) = 5 min(X — 412, X — 45
to be
fi fi—fa<—=A/2
X)) = f2 fi—fa=)/2

fo=(f2= [1+A/2)2/(2N) |fa = f1] <A/2

wheref; = | X — A1]2/2, fo = | X — A3]?/2 and ) is the maximal eigen-
vector of (Ay — A7)T(Ay — Ap). If rank(Ay — A7) = 1 then f™ is the
convexification off. Notice thatf can not be trivially modified to satisfy
the hypotheses of Theorem 4.1. However, Kohn's analysis revealgthat
is realized as a “simple laminate”, that is, for eahe M *" there exists
{(w, X1), (1 — p1, Xa)} € Ha such that

X)) = pf(X1) + (1= p) f(X2).

Moreover,| X — X;|, |[X — Xs| < |A2 — A4], thus ifr > 0 andR >
r + |Ay — Ay, the restriction the results from algorithdi f, G, r) to the
grid G, will converge at the established ratefas+ 0.

For our numerical experiments we selected the the matrices,

(AR

forwhichrank(As — A1) = 2,\ = |Ay— A;| = 3(7T—5v/3)/8 ~ 1.01. We
computedf;¢ on[-2, 2]*N Gy, and computed the error da 1, 1]1*NG,. Itis

clear that this problem will require a finer mesh than the previous example
to resolve the variations of, and this is indicated in Table 5.2. For this
example there was no difference between the errors whemn2 (64 rank

one directions) and = 3 (256 directions), and for these parameters the rate
of convergence appeared to be approximately two.

|
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Table 5.2Numerical results for Kohn’s example

Ilf* = ]| (iterations)
NGRID k=1 k=2 k=3
5  0.125150(0) 0.125150(0) 0.125 150 (0)
9  0075128(1) 0.075128(1) 0.075128 (1)
17 0.024149(1) 0.024149(1) 0.024 149 (1)
33 0.011956(1) 0.006863 (1) 0.006 863 (2)
65  0.009306(1) 0.001733(1) 0.001733 (1)

5.3. Tartar’s infinite rank laminate

Our next experiment is based on ideas from [25] and [3]. We identify
the diagonal matrices with points ®&? by <$ 2) = (z,y). Let K =

{(%7 1)7 (L _%)7 (_%? _1)7 (_ ’ 5)} andf( ) = diSt(Xv K)’WheraiiSt

(.,.) is the Frobenius distance. While the quasi convexification of this func-
tion is not known, it is known that the zero setf, is given by the square

[—5, E] and the four line segments parallel to the axes connecting the points
in K and the square (see Fig. 5.1). Indeed, itis easy to see that this set must
be contained in the zero setff, since if f°(1, 1) = max{ f°(+1,£3)},

then by the rank-one convexity ¢f¢ we conclude

1 1
D < G+ 30 - = 3G D),

a contradiction unlesg™(3, 3) = f*(3,—3) = 0.

Using one iteration of the basic loop in the algorithm witbrID=
21 andR; as the set of discrete rank-one directions, the level set of the
computed (nonnegative) function restricted to the subspace of all diagonal
matrices at level.01 is shown in Fig. 5.1. Note that the algorithm performs
882 = 2. (21)? one dimensional convexifications in the subspace of all
diagonal matrices. The third plot in Fig. 5.1 shows the level set of the level
0.0001 where we now performed tH&82 rank-one convexifications in the
subspace of all diagonal matrices in a stochastic order, i.e. we gustsed
diagonal matrices and picked randomly one of the two rank-one directions
(0,1) and(1,0). This example clearly indicates that one should analyze a
stochastic version of the algorithm.

5.4. Solving a relaxed variational problem

For our final example we approximate the solution of a (relaxed) variational
problem using the relaxed energy computed by our algorithm. Consider the
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_J

A

Fig. 5.1 Computation of a nontrivial zero set of a rank-one convex function in diagonal
matrices; the left plot shows the exact zero set, the middle one the levgf"Set- 0.01}

of a discrete rank-one convexification computed with a deterministic algorithm while the
right one shows the level sé€f™ > 0.0001} computed with a stochastic version. The little
triangles at the points-0.5, 0.5) and(0.5, —0.5) are artifacts generated by the triangulation
used by the plotting algorithm

problem of minimizing
I(u) = / ff(Du)dzr  ulgo = up
Q

where 2 = (0,1)? is the unit square. To approximate this problem we
replacef™ by the computed approximatigfij° and minimize over the class

of functions which are piecewise linear on a triangulatiofkofVe consider

the simplest situation where the unit square is divided into a uniform square
mesh and the triangles formed by adding the diagonals of the small squares.
Since we do not compute any gradients fgif, we use the very simple
relaxation algorithm to find local minima:

— Initialize e = 1, u|p = 0, ulon = uo
— Whilee > 1076
— For every basis functiop replaceu by u + €¢ if this lowers the
energyl(.).
— If u & e¢ never lowers the energy let— ¢/2.

Since f;¢ is only known at the grid pointg;, C M™*" it is necessary to
use an interpolation procedure to estimgig Du) for arbitrary gradients.
Clearly it would be desirable to have an interpolation scheme that computed
arank one convex function from data that was “discretely” rank one convex.
However, we do not know of any such scheme (or if this is even possible) so
we used the natural multi-linear interpolation on the four dimensional cubes
(i.e. tensor products af; and(1 — z;)). This procedure is not completely
satisfactory in the sense that the relaxation algorithm would typically fail
to minimize I(.). In an attempt to circumvent this problem we initially
added a term of the form|Du|? to the integrand, to compensate for the
lack of (quasi) convexity of the interpolant. As the iterations proceeded
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Table 5.3EnergyI(uy) and||Vuy, — B[ for affine boundary data; Kohn’s energy

fQC — frc f ,1;(:
h\v 0.0 0.0 10.0 0.0 10.0
1/8 0.199761 0.252027 0.277667 0.202507 0.200 710
0.000060 0.352011 0.000011 0.082143 0.000013
1/16 0.199761 0.240885 0.245972 0.208264 0.200 716
0.000218 0.387229 0.324721 0.193382 0.000 237
1/32  0.199761 0.236125 0.236678 0.245633 0.230610
0.000939 0.402100 0.395681 0.468030 0.372291

(andu converged) was reduced to zero. In the two examples below we
considered the relaxation of Kohn's bulk energy function (5.1) computed on
a mesh havindNGriD= 65 (see Table 5.2).

We first consider an example with affine boundary conditions for which
the minimizer of the relaxed problem is the extension of the affine boundary
values to the interior. On the boundary we specifiéd) = Bx + ¢ where

c=(0,1/4)T and
/2 1/4
b= [—1/4 15/32} ‘

The relaxation is achieved as199761 ~ f*(B) = \f(B1) + (1 — \) B>
where

A~ 0304493, B ~ {0.871019 0.035792}  Bao { 0.258278 0.389558

0.121019 0.254542 —0.491722 0.608308 |

In Table 5.3 we tabulate the energy validés;, ) and the norni Vuy, — B| 1.2
computed using various mesh sizes, bulk energy functions and parameter
values . As expected, whefi® = f9°was used for the bulk energy function
the affine solution was always found, and computations with the original
function f exhibit some form of oscillation. For the coarser meshes,1/8

andh = 1/16 the numerical relaxatiorf;® was adaquate for computation

of the affine solution. However, whein = 1/32 the mesh appears to be
sufficiently fine to detect errors in the interpolantfgf. For example, even
whenv is initially set to100.0 (so that the solution is initially driven to
the affine function) the computed local minima had cur¢edontours as
indicated in Fig. 5.2. This suggests that the lack of quasi—convexity in the
interpolant of the discrete data is playing a role.

For a second example we selected the boundary data to have degree
one. While this is not particularly interesting from a physical stand point
(corresponding to an inversion), it does force the minimizer to take on many
gradient values (unlike the previous example), so this computation may be

" lule = fua| + fusl
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Fig. 5.2Contour Plots ofu|,1. (8) f* = f4, v =0, (b) f,v =0, (c) f+°, v = 100

Table 5.4Energy! (uy,) for degree one variational problem; Kohn’s energy

ch — frc f ;Lc
h\v 0.0 0.0 10.0 0.0 10.0 100.0
1/8 0.173627 0.200565 0.189265 0.175216 0.175104 0.175103
1/16 0.170198 0.188119 0.187324 0.173716 0.172598 0.172528
1/32 0.169017 0.183546 0.184685 0.183599 0.172637 0.172126

more typical of what one may encounter. If
(x—1/2)24+(y—1/2)2+1/4

the boundary values we consider aie, y) = (1/7)(z — 1/2,y — 1/2)7.
Energy values computed with these boundary values are listed in Table 5.4,
and reproduce most of the trends appearing in Table 5.3. In particular, the
energy computed withf4¢ = f*° decreased in a monotone fashion as the
mesh was refined, and the energy computed ugjfianitially decreased
before becoming sensitive to the lack of convexity in the interpolayfifof

<,

r=r(ry) =

—~
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