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Summary. We present a convergence analysis of an algorithm for the nu-
merical computation of the rank-one convex envelope of a functionf :
Mm×n → R. A rate of convergence for the scheme is established, and
numerical experiments are presented to illustrate the analytical results and
applications of the algorithm.

1. Introduction

In recent years, many surprising mechanical properties of crystalline ma-
terials, like the shape memory effect, have been successfully explained by
analyzing microstructures which are created during a solid to solid phase
transition of the material. In their fundamental paper [2] Ball and James
developed a mathematical theory in the framework of nonlinear elasticity in
which the experimentally observed geometries arise naturally as minimizers
(or almost energy minimizing configurations) of a non–convex free energy
functional. More precisely, one is led to the variational problem: Minimize

I(u) =
∫

Ω
f(Du)dx

whereu : Ω → R
n denotes the elastic deformation of the bodyΩ ⊂ R

n in
its reference configuration andf is the (nonlinear) energy density which we
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assume to be non-negative and to depend only on the deformation gradient
Du ∈ Mn×n. The zero set off has typically a multi-well structure,

{X : f(X) = 0} =
I⋃

i=1

SO(n)Ui,

where the matricesUi denote the preferred deformation for thei-th phase
andUi satisfiesUi = UT

i anddet Ui > 0. Finding minimizers is a non-
trivial problem, since the integrand fails to be quasiconvex and henceI is
not weakly lower semicontinuous (see, e.g. [9,22] for further information).
Minimizing sequences develop oscillations, so converge weakly, and not
strongly, to a deformation which is not energy minimizing. However, the
infimum of the energy, therelaxedor effectiveenergy, can be computed as
the minimum of the corresponding relaxed functional

Iqc(u) =
∫

Ω
fqc(Du)dx,(1.1)

wherefqc is the quasiconvex [9] envelope off , i.e., the largest quasiconvex
minorant off . We recall thatinf Iqc = inf I. Generally it is impossible to
computefqc explicitly (or even numerically) and therefore it is natural to
ask for lower and upper bounds on the effective energy. Here we focus on
replacingfqc byf rc, the rank–one [9] convex envelope off , which is defined
to be the largest rank–one convex minorant off . Since every quasiconvex
function is rank–one convex (the converse is not true, see [26]), we conclude
f ≥ f rc ≥ fqc and thereforeinf Irc = inf Iqc. However, minimizingIrc

can be as ill-posed as the original problem, unlessfqc andf rc coincide. On
the other hand, for all functions, for whichfqc andf rc are known explicitly,
these two envelopes do coincide [16,17] and thus the computation ofIrc is
certainly of interest, and this is the focus of this paper.

During the past decade a variety of numerical techniques have been pro-
posed for various non–convex problems where oscillations play an important
role, and the survey paper by Luskin [19] gives an extensive overview of
the progress made to date. Much of the numerical work on non–convex
variational problems has centered around the computation offqc at a single
point F ∈ Mm×n, [5–8,11,12]. Typically this is attempted by numerically
estimating the minima ofI(.) subject to affine boundary conditions. Luskin
et. al. and Carstensen et. al. [4,15,18,20] have also considered a variety of
other problems. The theory of Young measures [14,27] has been developed
to characterize the minimizing sequences ofI(.) and their weak limits [1,13,
24,27], and Nicolaides and Walkington [23] developed numerical schemes
which exploited this connection. In spite of all of this activity, there are no
robust and efficient algorithms for the approximation of non–convex varia-
tional problems. In this paper we consider an alternative approach. Instead
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of using minima ofI(.) to characterize the relaxed energy, the procedure
considered here exploits the convexity properties mentioned in the previous
paragraph. This approach is expensive in the sense that it necessitates com-
putations on a mesh in high dimensions (m×n for functionsf : R

m → R
n);

however, this one computation provides all of the information required to
solve many variational problems of the form (1.1) with a variety of boundary
conditions and various low order terms etc.

In the next Sections we recall the definition and various characterizations
of rank–one convex functions, and the algorithm proposed in [10] for the
computation of rank–one envelopes. Section 4 establishes a rate of conver-
gence for this algorithm and in Sect. 5 numerical examples are presented and
compared with the results in Sect. 4. We also consider examples where the
discrete rank–one convexification is used to estimate (relaxed) deformations
that minimize integrands of the form (1.1).

We finish this introductory section with a brief overview of the notation
utilized below. Ifa ∈ R

m andb ∈ R
n, then|a| and |b| will denote their

Euclidean norm.Mm×n denotes the space of realm× n matrices, forF ∈
Mm×n, |F | denotes the norm induced from the Euclidean norms onR

m

and R
n. The tensor product of vectorsa ∈ R

m and b ∈ R
n, denoted

a ⊗ b ∈ Mm×n, is the matrix having entries(a ⊗ b)ij = aibj ; observe
that|a⊗ b| = |a| |b|. The maximum norm on finite dimensional spaces will
be indicated bỳ∞ and the Lipschitz constant of a real valued functionf is
denoted by|f |Lip. Greek lettersλ andµ will be used to indicate real numbers
in the interval[0, 1].

2. Rank–one convex envelopes

Recall that a functionf : Mm×n → R is said to be rank-one convex if
f(λF1 + (1− λ)F2) ≤ λf(F1) + (1− λ)f(F2) for all matricesF1, F2 ∈
Mm×n with rank(F1 − F2) = 1 and allλ ∈ [ 0, 1 ]. If f ∈ C2, then this is
equivalent toD2f(F ;R, R) ≥ 0 for all F , R ∈ Mm×n with rank(R) = 1.

There are two representations for the rank-one convex envelopef rc

of a given functionf . The first formula is analogous to the inequality
f(

∑n
i=1 λiFi) ≤

∑n
i=1 λif(Fi) for convex functionsf whereλi ∈ [ 0, 1 ]

and
∑n

i=1 λi = 1 (see Dacorogna [9]).

Definition 2.1. The sequence of pairs(λi, Fi) ∈ (0, 1) × Mm×n, i =
1 . . . N , satisfies the conditionHN (we write (λi, Fi) ∈ HN ) if the fol-
lowing holds:

∑N
i=1 λi = 1 and

i) if N = 2 thenrank(F1 − F2) = 1,
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ii) if N > 2, then there existsk ∈ {1, . . . , N−1} such that, up to relabeling
the matrices,
(

λi

λ1 + . . . + λk
, Fi

)
1,...,k

∈ Hk,

(
λi

λk+1 + . . . + λN
, Fi

)
k+1,...,N

∈ HN−k,

and if
µ1 = λ1 + . . . + λk, µ2 = λk+1 + . . . + λN ,

and

H1 =
λ1F1 + . . . + λkFk

λ1 + . . . + λk
, H2 =

λk+1Fk+1 + . . . + λNFN

λk+1 + . . . + λN
,

then(µi, Hi) ∈ H2.

(Note that there are no additional conditions ifN = 1).

Then

f rc(F ) = inf
{ N∑

i=1

λif(Fi) : (λi, Fi) ∈ HN , F =
N∑

i=1

λiFi

}
.(2.1)

Here the infimum is taken over allN ∈ N and all(λi, Fi) ∈ HN . Note that
it is not possible to boundN in the definition off rc.

The second representation has a more algorithmic flavor and was ob-
tained in [17]. Letf0 = f and define iteratively

fk+1(F ) = inf
{

λfk(F1) + (1− λ)fk(F2) : F = λF1 + (1− λ)F2,

rank(F1 − F2) = 1
}

.

Thenf rc(F ) = limk→∞ fk(F ). Our analysis takes advantage of both rep-
resentations: while the algorithm is based on the second representation, the
convergence analysis relies on the first representation.

3. The algorithm

Let Gh = hZ
m×n be a uniform grid inMm×n and denote byGh,r = Gh ∩

B(0, r) the intersection of the grid with the ballB(0, r). Choose a subset
Rh ⊂ {hR : R ∈ Z

m×n, rank(R) = 1} of rank-one matrices inGh. The
algorithm is now defined in the flow chart in Fig. 2.1. We use the notation
{fh

i } = A(f,Gh,r) to denote the sequence of functions generated in the
algorithm (withEPS = 0).

Remarks.1). Assume thatD ⊂ Mm×n. We say that a functionfh : Gh → R

is D-convex if f̃h, the restriction offh to {F + tR} ∩ Gh is convex as a
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STOP (fh

i )
?
Y ES

PPPPPP
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������

PPPPPP‖fh
i − fh

i−1‖∞ < EPS

?

fh
i+1 := g; i := i + 1

?

∀F ∈ Gh,r, ∀R ∈ Rh

g := convexify(g, F, R, Gh,r)

?

g := fh
i

?

i := 0; fh
i := f |Gh,r

?

�
�

�
START (f, Gh,r)

NO

�

Fig. 2.1The algorithm for the computation of the rank-one convex envelope

function of one variable for allF ∈ Gh andR ∈ D (see [21] for a discussion
of general properties ofD-convex functions). The functioñfh, which we may
consider to be defined onZ, is convex iff̃h(i−1)−2f̃h(i)+f̃h(i+1) ≥ 0 for
all i ∈ Z. This is equivalent to asking that the piecewise affine interpolation
of fh is convex as a function onR. Rank-one convexity corresponds to
D = {R ∈ Mm×n : rank(R) = 1}.

2). In the algorithm we use a procedureconvexify (g, F, R,Gh,r) which
computes the one dimensional convexification ofg restricted tò h = {F +
tR}∩Gh,r. Let us call this restrictiongh. In the special situation at hand the
points are sorted, so the convex envelope ofgh can be obtained withO(k)
operations wherek is the number of points oǹh.

3). An interesting (and open) question is how to order the one-dimension-
al convexifications to achieve rapid convergence. Some examples seem to
indicate that it is crucial to use a random order to propagate the information
obtained in one step faster through the grid (see Sect. 5).
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4. Convergence of the algorithm

The following convergence result was established in [10]. Recall thatRh

is a subset of the rank one matrices on the gridGh = hZ
m×n and that a

function f : Mm×n → R is Rh-convex if its restriction toGh is convex
along all directions inRh.

Theorem 4.1. Assume thatf is Lipschitz continuous and that there exists
a rank-one convex functiongrc : Mm×n→ R such thatf ≥ grc onB(0, r)
andf = grc on Mm×n \ B(0, r). Then there exists anRh-convex function
fh : Gh → R such that the functions{fh

i } = A(f,Gh,2r) defined in the
algorithm in Fig. 2.1 converge tofh.

Remark.It is necessary to compute the rank-one convexification on a domain
which containsB(0, r) as a proper subset; otherwise, the computed function
could beRh-convex onB(0, r) but fail to beRh-convex on allMm×n.

If the rank-one convex envelope off can be computed withN bounded
from above by some constant in formula (2.1), then we have the following
quantitative estimate for the errorf − fh:

Theorem 4.2. Assume that the hypotheses in Theorem 4.1 are satisfied and
thatf rc can be computed by formula (2.1) withN ≤ N0. Suppose that

Rh = {h(a⊗ b) : a ∈ Z
m, b ∈ Z

n, |a|`∞ , |b|`∞ < h−1/3}.
Then there exists a constantC which depends only onm, n andr (the radius
appearing in Theorem 4.1) such that

‖f rc − fh‖L∞(Gh) ≤ C|f |Liph
1/3.

The proof of the theorem is based on the following approximation lemma
which is interesting in its own right. While the explicit formulae given for
the constants appearing in the lemma are not of particular interest, we state
them here for ease of exposition in the proof given below.

Lemma 4.3. Assume that0 < h ≤ 1 and (λi, Fi) ∈ HN with F =∑N
i=1 λiFi. Suppose thatF h ∈ Gh satisfies|F − F h| ≤ c0h

1/3. Then
there exist(λh

i , F h
i ) ∈ HN and a constantc1 which depends only onm, n,

andmaxi |Fi| such that

i) F h
i ∈ Gh andF h =

∑N
i=1 λh

i F h
i ;

ii) |F h
i − Fi| ≤ (c0 + (N − 1)c1)h1/3 for i = 1, . . . , N ;

iii) we have the estimate

∣∣∣
N∑

i=1

(λif(Fi)− λh
i f(F h

i ))
∣∣∣ ≤ (c0 + (N + 1)c1) |f |Liph

1/3.
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Given this approximation lemma, Theorem 4.2, follows almost immedi-
ately.

Proof (of Theorem 4.2).Fix F ∈ Gh. By hypothesis there exits(λi, Fi) ∈
HN such thatf rc =

∑N
i=0 λif(Fi). Next letF h ∈ Gh be a closest point to

F , so that|F − F h| ≤ √mnh/2, and observe that

f rc(F )− fh(F ) = f rc(F )− fh(F h) ≤
N∑

i=0

λif(Fi)− λh
i f(F h

i )

where(λh
i , F h

i ) ∈ HN is the sequence guaranteed by Lemma 4.3 and we
have used the fact thatfh(F h) is the minimum over all sequences(λh

i , F h
i ) ∈

HN in Gh. ut
To establish Lemma 4.3 we will first develop some elementary approx-

imation properties of vectors and matrices on equi–spaced lattices. Given
a lattice of points with spacing

√
h and a vectora ∈ R

m, in order to find
a vectorah ∈ √hZ

m whose angle froma is less thanε it will, in general,
be necessary forah to have length of order

√
h/ε. If we then approximate

a by an integer multiple ofah, a ∼ kah, then the error in the magnitude is
of order

√
h/ε. This elementary argument illustrates that there is a trade off

between the accuracy of the angle and the accuracy of the length, and shows
that the following lemma (where we putε ∼ h1/3) is sharp.

Lemma 4.4. Let 0 < h ≤ 1, 0 6= a ∈ R
m and for integerd > 0 let

Zd = {i ∈ Z : |i| ≤ d}. Then there existsd > 0 andah ∈ √h Z
m
d such

that

– d ≤ h−1/3,
– |ah| ≤ √m h1/6,
– The angle between the vectorsah anda is bounded by(π/2)

√
m h1/3.

Proof. Let d > 0 be an integer and define the boxB = {√hx|x ∈
R

m, |x|`∞ ≤ d} and its discrete counterpartBh = {√hx|x ∈ Z
m, |x|`∞

≤ d}, and denote their boundaries by∂B and∂Bh respectively. Leta0 = ta,
t > 0, be the point at which the ray generated bya meets∂B, and setah to
be the point on∂Bh closest toa0. Clearly

√
h d ≤ |ah| ≤ √hm d and since

each component of the errorah − a0 is no bigger than
√

h/2 it follows that
|ah − a0| ≤ √hm/2.

Consider now the angle,θ, formed between the vectorsah anda0. Since
0 ≤ θ ≤ π/2 it follows that

θ ≤ (π/2) sin(θ) ≤ π

2
|ah − a0|
|ah| ≤ π

√
m

4d
.

Selectingd to be the largest integer less than or equal to1/h1/3 establishes
the lemma. ut
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The proof of Lemma 4.3 will follow by induction upon the “number of
laminates”N . The following lemma and its corollary will not only initialize
the induction argument but will also be used for the inductive step.

Lemma 4.5. Let H = µH1 + (1 − µ)H2 ∈ Mm×n, rank(H2 −H1) ≤ 1
andHh ∈ Gh satisfy|H −Hh| ≤ c0h

1/3. Then there exits{(µh, Hh
1 ), (1−

µh, Hh
2 )} ∈ H2 satisfying

– Hh
1 , Hh

2 ∈ Gh andHh = µhHh
1 + (1− µh)Hh

2 ,
– Hh

i −H ∈ ZRh, i = 1, 2, where

Rh = {h(a⊗ b) : a ∈ Z
m, b ∈ Z

n, |a|∞, |b|∞ < h−1/3},
– |Hi −Hh

i | ≤ (c0 + c1)h1/3, i = 1, 2, and
– |µ− µh| ≤ c2h

1/3/|H1 −H2|,
wherec1 = (π|H2 −H1|(

√
m +

√
n)/2 +

√
mn) andc2 = 2c1.

Proof. Let H2 − H1 = a ⊗ b with a ∈ R
m, b ∈ R

n, and without loss
of generality let|a| = |b|. Let ah, bh be the vectors guaranteed by the
Lemma 4.4, and note thatah ⊗ bh ∈ Gh.

If |ah||bh| ≥ |a||b| setHh
1 = Hh

2 = Hh andµh = µ. The error inH1 is
bounded by

|H1 −Hh
1 | = |H − (1− µ)(a⊗ b)−Hh|
≤ |H −Hh|+ (1− µ)|a||b|
≤ |H −Hh|+ (1− µ)|ah||bh|
≤ (c0 + (1− µ)

√
mn)h1/3

≤ (c0 + c1)h1/3

and the error inHh
2 is similarly bounded.

Suppose now that|ah||bh| < |a||b|. Let k ∈ Z and compute

(1− µ)(a⊗ b)− k(ah ⊗ bh)

= (1− µ)
|a||b|
|ah||bh|(ã⊗ b̃)− k(ah ⊗ bh)

= (1− µ)
|a||b|
|ah||bh|

(
(ã− ah)⊗ b̃ + ah ⊗ (b̃− bh)

)

+
(

(1− µ)
|a||b|
|ah||bh| − k

)
(ah ⊗ bh),

whereã = |ah|a/|a| and b̃ = |bh|b/|b|, so that|ã| = |ah| and|b̃| = |bh|.
Selectingk ≥ 0 to be the integer closest to(1 − µ)|a||b|/(|ah||bh|) and
noting that|ã− ah| ≤ |ah|θ ≤ (π/2)|ah|√mh1/3 gives the estimate

|(1 − µ)(a ⊗ b) − k(ah ⊗ bh)| ≤ (
π(1 − µ)|a||b|(√m +

√
n) +

√
mn

)
h1/3/2.
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A similar computation shows that there is an integerl ≥ 0 such that

|µ(a⊗b)−l(ah⊗bh)| ≤ (
πµ|a||b|(√m +

√
n) +

√
mn

)
h1/3/2 ≤ c1h

1/3

SettingHh
1 = Hh − k(ah ⊗ bh) gives an error

|H1 −Hh
1 | = |H −Hh − (1− µ)(a⊗ b) + k(ah ⊗ bh)| ≤ (c0 + c1)h1/3

and settingHh
2 = Hh + l(ah ⊗ bh) gives a similar estimate.

Next, setµh = l/(l+k) (at least one ofk or l is positive since|ah||bh| <
|a||b|) and observe thatHh = µhHh

1 + (1 − µh)Hh
2 . Adding the error

estimates for(1− µ)(a⊗ b) andµ(a⊗ b) gives

|(a⊗ b)− (k + l)(ah ⊗ bh)| ≤ c1h
1/3.

The triangle inequality implies∣∣∣µ|a||b| − l|ah||bh|
∣∣∣ ≤ c1h

1/3,∣∣∣|a||b| − (l + k)|ah||bh|
∣∣∣ ≤ c1h

1/3

and the identity

µ− µh =

(
µ|a||b| − l|ah||bh|)− µh

(|a||b| − (k + l)|ah||bh|)
|a||b| .

establishes the bound on the error|µ− µh|.
Finally, recall thatah ∈ √hZ

m
d andbh ∈ √hZ

n
d , whered < h−1/3, thus

Hh −Hh
1 = k(ah ⊗ bh) ∈ ZRh. ut

Corollary 4.6. The matrices in the lemma satisfy

|µf(H1) + (1− µ)f(H2)− µhf(Hh
1 )− (1− µh)f(Hh

2 )|
≤ (c0 + c1 + c2)|f |Liph

1/3 .

Proof. Applying the triangle inequality to the identity

µf(H1) + (1− µ)f(H2)− µhf(Hh
1 )− (1− µh)f(Hh

2 )

= (µ− µh) (f(H1)− f(H2)) + µh
(
f(H1)− f(Hh

1 )
)

+(1− µh)
(
f(H2)− f(Hh

2 )
)

gives∣∣∣µf(H1) + (1− µ)f(H2)− µhf(Hh
1 ) + (1− µh)f(Hh

2 )
∣∣∣

≤
(
|µ− µh||H1 −H2|+ µh|H1 −Hh

1 |+ (1− µh)|H2 −Hh
2 |

)
|f |Lip

and the result follows. ut
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Proof. (of Lemma 4.3) Observe that we may assume without loss of gener-
ality thatc0 ≥

√
mh/2, and set

c1 =
(

π max
i
|Fi| (

√
m +

√
n) +

√
mn

)
.

We now induct onN . Lemma 4.5 and Corollary 4.6 establishe the case
for N = 2. Suppose that the result holds for integers smaller thanN , and
let {(λi, Fi)}Ni=1 ∈ HN andH =

∑
i λiFi. Definition 2.1 guarantees the

existence ofk ∈ {1, . . . , N − 1} such that
(

λi

λ1 + · · · + λk
, Fi

)
i=1,...k

∈ Hk,

(
λi

λk+1 + · · · + λN
, Fi

)
i=k+1,...N

∈ HN−k

and{(µ, H1), (1− µ, H2)} ∈ H2 whereµ = λ1 + · · ·+ λk, and

H1 =
λ1F1 + · · ·+ λkFk

λ1 + · · ·+ λk
, H2 =

λk+1Fk+1 + · · ·+ λNFN

λk+1 + · · ·+ λN
.

Observe thatH = µH1 + (1 − µ)H2, rank(H2 − H1) ≤ 1, and there is
Hh ∈ Gh satisfying|H − Hh| ≤ √mh/2 ≤ c0h

1/3 so, an application
of Lemma 4.5 gives{(µh, Hh

1 ), (1 − µh, Hh
2 )} ∈ H2, andHh

1 , Hh
2 ∈ Gh

satisfying |Hi − Hh
i | ≤ (c0 + c1)h1/3. The inductive hypothesis when

applied to each half of the splitting (withc0 + c1 playing the role ofc0)
gives{(µh

i , F h
i )}ki=1 ∈ Hk and{(µh

i , F h
i )}Ni=k+1 ∈ HN−k satisfying

– F h
i ∈ Gh, i = 1, 2, . . . , N ,andHh

1 =
∑k

i=1 µiF
h
i, H

h
2 =

∑N
i=k+1 µiF

h
i ,

– |Fi − F h
i | ≤ ((c0 + c1) + max(k − 1, N − k − 1)c1)h1/3 ≤ (c0 +

(N − 1)c1)h1/3,
– ∣∣∣∣∣

k∑
i=1

λi

λ1 + · · · + λk
f(Fi) − µh

i f(F h
i )

∣∣∣∣∣ ≤ ((c0 + c1) + (k + 1)c1) |f |Liph1/3

≤ (c0 + (N + 1)c1)|f |Liph1/3,

∣∣∣∣∣
N∑

i=k+1

λi

λk+1 + · · · + λN
f(Fi) − µh

i f(F h
i )

∣∣∣∣∣ ≤ ((c0 + c1)

+(N − k + 1)c1) |f |Liph1/3

≤ (c0 + (N + 1)c1)|f |Liph1/3.

Definingλh
i = (λ1 + · · · + λk)µh

i for i = 1, 2, . . . , k andλh
i = (λk+1 +

· · · + λN )µh
i for i = (k + 1), . . . , N , gives{(λh

i , F h
i )}Ni=0 ∈ HN , and an

application of the triangle inequality to the two equations above establishes
the bound on the error in the average of thef values. ut
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5. Numerical experiments

5.1. Kohn and Strang example

Our first experiment uses a slight modification of the following example
computed in [17]. Define

f(X) =
{

1 + |X|2 if X 6= 0,
0 if X = 0.

Then

f rc(X) =
{

1 + |X|2 if ρ(X) ≥ 1,
2(ρ−D) if ρ(X) ≤ 1,

whereρ(X) =
√|X|2 + 2D, D = |detX|. Now let

f̃(X) =
{

1 + |X|2 if |X| ≥ √2− 1,

2
√

2|X| if |X| ≤ √2− 1.

Clearly,f rc ≤ f̃ ≤ f and thereforẽf rc = f rc. Moreover,f̃ satisfies the
assumptions of Theorem 4.1 (f does not satisfy the assumptions sincef is
not continuous; however, we got the same numerical results forf and f̃ ).
For our computations we used the following sets of rank-one matrices in
Gh,r:

Rk = {h(a⊗ b) : a ∈ Z
m, b ∈ Z

n, |a|`∞ , |b|`∞ ≤ k}.

The results of the computations are summarized in Table 5.1. We used a
uniform grid in the cube[−1, 1 ]4 with ngrid points on the one dimensional
axes and computed the error inL∞ at the grid points. We used the setsRk

with k = 1, 2, 3 which contain16, 64 and256 elements, respectively. The
algorithm was implemented with an alphabetical ordering of the points on
the grid, a fixed indexk for the set of matricesRk, and the basic loop in the
algorithm was iterated until the error stabilized. The number of iterations
required for each case is given in the table in parenthesis. The different rows
in Table 5.1 show the error for fixed parametersngrid andk.

As expected, the error decreases as the grid is refined and the number of
directions increases. While one could not expect to verify the rate ofh1/3

predicted by Theorem 4.2 with so fewk values, it is clear that in order to
get convergence thatk andngrid must increase together, as hypothesized
in the theorem. Moreover, the table suggests that for largek the rate of
convergence is about linear inh = 2/ngrid for this particular case.
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Table 5.1Numerical results for the (modified) Kohn Strang example

‖fh − f rc‖ (iterations)
ngrid k = 1 k = 2 k = 3

5 0.085 786 (1) 0.085 786 (1) 0.085 786 (1)
9 0.043 861 (1) 0.043 861 (1) 0.043 861 (1)

17 0.067 187 (1) 0.031 250 (1) 0.031 250 (1)
33 0.076 384 (1) 0.021 354 (2) 0.012 649 (5)
65 0.076 488 (2) 0.026 795 (2) 0.009 730 (2)

5.2. Kohn’s example

Kohn [16] explicitly computes the quasiconvex hull of functions of the form

f(X) =
1
2

min(|X −A1|2, |X −A2|2)(5.1)

to be

f rc(X) =




f1 f1 − f2 ≤ −λ/2
f2 f1 − f2 ≥ λ/2

f2 − (f2 − f1 + λ/2)2/(2λ) |f2 − f1| < λ/2

wheref1 = |X − A1|2/2, f2 = |X − A2|2/2 andλ is the maximal eigen-
vector of(A2 − A1)T(A2 − A1). If rank(A2 − A1) = 1 thenf rc is the
convexification off . Notice thatf can not be trivially modified to satisfy
the hypotheses of Theorem 4.1. However, Kohn’s analysis reveals thatfqc

is realized as a “simple laminate”, that is, for eachX ∈ Mm×n there exists
{(µ, X1), (1− µ, X2)} ∈ H2 such that

f rc(X) = µf(X1) + (1− µ)f(X2).

Moreover,|X − X1|, |X − X2| ≤ |A2 − A1|, thus if r > 0 andR >
r + |A2 − A1|, the restriction the results from algorithmA(f,Gh,R) to the
grid Gh,r will converge at the established rate ash→ 0.

For our numerical experiments we selected the the matrices,

A1 =
[
5/4 0
0 3/4

]
A2 =

[
3
√

3/8 3/8
−5/8 5

√
3/8

]

for whichrank(A2−A1) = 2, λ = |A2−A1| = 3(7−5
√

3)/8 ' 1.01. We
computedf rc

h on[−2, 2]4∩Gh, and computed the error on[−1, 1]4∩Gh. It is
clear that this problem will require a finer mesh than the previous example
to resolve the variations off , and this is indicated in Table 5.2. For this
example there was no difference between the errors whenk = 2 (64 rank
one directions) andk = 3 (256 directions), and for these parameters the rate
of convergence appeared to be approximately two.
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Table 5.2Numerical results for Kohn’s example

‖fh − f rc‖ (iterations)
ngrid k = 1 k = 2 k = 3

5 0.125 150 (0) 0.125 150 (0) 0.125 150 (0)
9 0.075 128 (1) 0.075 128 (1) 0.075 128 (1)

17 0.024 149 (1) 0.024 149 (1) 0.024 149 (1)
33 0.011 956 (1) 0.006 863 (1) 0.006 863 (2)
65 0.009 306 (1) 0.001 733 (1) 0.001 733 (1)

5.3. Tartar’s infinite rank laminate

Our next experiment is based on ideas from [25] and [3]. We identify

the diagonal matrices with points inR2 by

(
x 0
0 y

)
= (x, y). Let K =

{(1
2 , 1), (1,−1

2), (−1
2 ,−1), (−1, 1

2)}andf(X) = dist(X, K), wheredist
(., .) is the Frobenius distance. While the quasi convexification of this func-
tion is not known, it is known that the zero set off rc, is given by the square
[−1

2 , 1
2 ]2 and the four line segments parallel to the axes connecting the points

in K and the square (see Fig. 5.1). Indeed, it is easy to see that this set must
be contained in the zero set off rc, since iff rc(1

2 , 1
2) = max{f rc(±1

2 ,±1
2)},

then by the rank-one convexity off rc we conclude

f rc(1
2 , 1

2) ≤ 2
3
f rc(1

2 , 1) +
1
3
f rc(1

2 ,−1
2) =

1
3
f rc(1

2 ,−1
2),

a contradiction unlessf rc(1
2 , 1

2) = f rc(1
2 ,−1

2) = 0.
Using one iteration of the basic loop in the algorithm withngrid=

21 andR1 as the set of discrete rank-one directions, the level set of the
computed (nonnegative) function restricted to the subspace of all diagonal
matrices at level0.01 is shown in Fig. 5.1. Note that the algorithm performs
882 = 2 · (21)2 one dimensional convexifications in the subspace of all
diagonal matrices. The third plot in Fig. 5.1 shows the level set of the level
0.0001 where we now performed the882 rank-one convexifications in the
subspace of all diagonal matrices in a stochastic order, i.e. we guessed882
diagonal matrices and picked randomly one of the two rank-one directions
(0, 1) and(1, 0). This example clearly indicates that one should analyze a
stochastic version of the algorithm.

5.4. Solving a relaxed variational problem

For our final example we approximate the solution of a (relaxed) variational
problem using the relaxed energy computed by our algorithm. Consider the
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Fig. 5.1 Computation of a nontrivial zero set of a rank-one convex function in diagonal
matrices; the left plot shows the exact zero set, the middle one the level set{f rc > 0.01}
of a discrete rank-one convexification computed with a deterministic algorithm while the
right one shows the level set{f rc > 0.0001} computed with a stochastic version. The little
triangles at the points(−0.5, 0.5) and(0.5, −0.5) are artifacts generated by the triangulation
used by the plotting algorithm

problem of minimizing

I(u) =
∫

Ω
f rc(Du) dx u|∂Ω = u0

whereΩ = (0, 1)2 is the unit square. To approximate this problem we
replacef rc by the computed approximationf rc

h and minimize over the class
of functions which are piecewise linear on a triangulation ofΩ. We consider
the simplest situation where the unit square is divided into a uniform square
mesh and the triangles formed by adding the diagonals of the small squares.
Since we do not compute any gradients off rc

h , we use the very simple
relaxation algorithm to find local minima:

– Initialize ε = 1, u|Ω = 0, u|∂Ω = u0
– While ε > 10−6

– For every basis functionφ replaceu by u ± εφ if this lowers the
energyI(.).

– If u± εφ never lowers the energy letε← ε/2.

Sincef rc
h is only known at the grid pointsGh ⊂ Mm×n it is necessary to

use an interpolation procedure to estimatef rc
h (Du) for arbitrary gradients.

Clearly it would be desirable to have an interpolation scheme that computed
a rank one convex function from data that was “discretely” rank one convex.
However, we do not know of any such scheme (or if this is even possible) so
we used the natural multi–linear interpolation on the four dimensional cubes
(i.e. tensor products ofxi and(1 − xi)). This procedure is not completely
satisfactory in the sense that the relaxation algorithm would typically fail
to minimize I(.). In an attempt to circumvent this problem we initially
added a term of the formν|Du|2 to the integrand, to compensate for the
lack of (quasi) convexity of the interpolant. As the iterations proceeded



Estimates for numerical approximations of rank one convex envelopes 661

Table 5.3EnergyI(uh) and‖∇uh − B‖L2 for affine boundary data; Kohn’s energy

fqc = f rc f f rc
h

h\ν 0.0 0.0 10.0 0.0 10.0
1/8 0.199 761 0.252 027 0.277 667 0.202 507 0.200 710

0.000 060 0.352 011 0.000 011 0.082 143 0.000 013
1/16 0.199 761 0.240 885 0.245 972 0.208 264 0.200 716

0.000 218 0.387 229 0.324 721 0.193 382 0.000 237
1/32 0.199 761 0.236 125 0.236 678 0.245 633 0.230 610

0.000 939 0.402 100 0.395 681 0.468 030 0.372 291

(andu converged)ν was reduced to zero. In the two examples below we
considered the relaxation of Kohn’s bulk energy function (5.1) computed on
a mesh havingNgrid= 65 (see Table 5.2).

We first consider an example with affine boundary conditions for which
the minimizer of the relaxed problem is the extension of the affine boundary
values to the interior. On the boundary we specifiedu(x) = Bx + c where
c = (0, 1/4)T and

B =
[

1/2 1/4
−1/4 15/32

]
.

The relaxation is achieved as0.199761 ' f rc(B) = λf(B1) + (1− λ)B2
where

λ ' 0.394493, B1 '
[

0.871019 0.035792
0.121019 0.254542

]
, B2 '

[
0.258278 0.389558

−0.491722 0.608308

]
.

In Table 5.3 we tabulate the energy valuesI(uh) and the norm‖∇uh−B‖L2

computed using various mesh sizes, bulk energy functions and parameter
valuesν. As expected, whenf rc = fqc was used for the bulk energy function
the affine solution was always found, and computations with the original
functionf exhibit some form of oscillation. For the coarser meshes,h = 1/8
andh = 1/16 the numerical relaxationf rc

h was adaquate for computation
of the affine solution. However, whenh = 1/32 the mesh appears to be
sufficiently fine to detect errors in the interpolant off rc

h . For example, even
whenν is initially set to100.0 (so that the solution is initially driven to
the affine function) the computed local minima had curved`1 contours1 as
indicated in Fig. 5.2. This suggests that the lack of quasi–convexity in the
interpolant of the discrete data is playing a role.

For a second example we selected the boundary data to have degree
one. While this is not particularly interesting from a physical stand point
(corresponding to an inversion), it does force the minimizer to take on many
gradient values (unlike the previous example), so this computation may be

1 |u|`1 = |u1| + |u2|
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Fig. 5.2Contour Plots of|u|`1 . (a)f rc = fqc, ν = 0, (b) f , ν = 0, (c) f rc
h , ν = 100

Table 5.4EnergyI(uh) for degree one variational problem; Kohn’s energy

fqc = f rc f f rc
h

h\ν 0.0 0.0 10.0 0.0 10.0 100.0
1/8 0.173 627 0.200 565 0.189 265 0.175 216 0.175 104 0.175 103

1/16 0.170 198 0.188 119 0.187 324 0.173 716 0.172 598 0.172 528
1/32 0.169 017 0.183 546 0.184 685 0.183 599 0.172 637 0.172 126

more typical of what one may encounter. If

r = r(x, y) =
√

(x− 1/2)2 + (y − 1/2)2 + 1/4

the boundary values we consider areu(x, y) = (1/r)(x− 1/2, y − 1/2)T.
Energy values computed with these boundary values are listed in Table 5.4,
and reproduce most of the trends appearing in Table 5.3. In particular, the
energy computed withfqc = f rc decreased in a monotone fashion as the
mesh was refined, and the energy computed usingf rc

h initially decreased
before becoming sensitive to the lack of convexity in the interpolant off rc

h .
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