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Summary. We consider a second-order elliptic equation with discontinuous

or anisotropic coefficients in a bounded two- or three dimensional domain,
and its finite-element discretization. The aim of this paper is to prove some
a priori and a posteriori error estimates in an appropriate norm, which are
independent of the variation of the coefficients.

Résune. Nous consiérons uneequation elliptique du second ordseco-
efficients discontinus ou anisotropes dans un domainecbemrdimension

2 ou 3, et sa disétisation pa€lements finis. Le but de cet article est de
déemontrer des estimations d’erreur a priori et a posteriori dans une norme
appropréee qui soient inépendantes de la variation des coefficients.
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1. Introduction

We consider the Dirichlet problem for second-order elliptic equations

—div(Agradu)=f in {2
u=0 ondf?

in a bounded two- or three dimensional polyhedral domain with a Lipschitz—
continuous boundary. Herel denotes a function with values in square,
symmetric, positive definite matrices of ordeor 3 according to the space
dimensiornd. We are interested in two rather different situations:

(1.1)
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— Either the functior is discontinuous: it is only smooth on a finite num-
ber of subdomains and has large jumps across the interfaces between the
subdomains. This models for instance several layers of fluids with rather
different viscosities which weakly depend on the depth [8, Chap. 3].

— Or the matrixA is constant on the whole domain but has eigenvalues
of very different sizes, which results in an anisotropy of equation (1.1).
This models for instance elastic materials in thin layers.

We work with a finite element discretization of problem (1.1), relying on
possibly anisotropic triangulations of the initial domain. Here “anisotropic”
means that the triangulations do not satisfy the standard regularity property
which excludes very flattriangles or tetrahedra. Itis our goal to prove a priori
and a posteriori estimates that are independent of the large parameters linked
to equation (1.1), i.e. the size of the jumps in the case of a discontinuous
matrix A or the ratio of the eigenvalues in the case of an anisotropic mddtrix
Once these estimates are proven, the finite element mesh can be constructed
adaptively such that the error is the smallest possible for a fixed number of
degrees of freedom.

Let us briefly describe the main ideas which enable us to achieve our
goal. If A is discontinuous, the mesh should be aligned with the disconti-
nuities, i.e. jumps ofA may only occur across inter-element boundaries. A
moadification of Cement’s quasi-interpolation operator [3] then allows us to
obtain estimates for the interpolation error which are independent of the size
of the jumps ofA. In addition the scaling factors of the error estimator must
correctly take into account the local sizeAfIf A is anisotropic, the mesh
should take account of this anisotropy. This means that element geometries
should be measured not with respect to the standard Euclidean norm but
must be computed using a new metric dependinglon

The outline of this paper is as follows. We analyze the case of a discon-
tinuous, isotropic functionl in Sect. 2, the one of a continuous, anisotropic
function A in Sect. 3. In each case, we first consider a simple model prob-
lem. We give its variational formulation, describe the discrete problem, and
prove a prioriand a posteriori error estimates. Then we explain how to ex-
tend the analysis to more complex situations. In order to clarify the analysis
and to avoid unnecessary technicalities, we always work with the simplest
finite element space consisting of continuous, piecewise affine functions.
All arguments and estimates, however, are formulated in such a way that
they immediately carry over to higher order finite element discretizations.

2. Isotropic discontinuous coefficients

We first consider equation (1.1) with = o wherea is a given, scalar,
piecewise constant function da. Accordingly we introduce a disjoint par-
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Q,

Fig. 1. Partition of the domairn?

tition of 2 into a finite number of open subdomaif¥s, 1 < ¢ < L, such
that the functiony is equal to the constamt, on each(2,, as illustrated in
Fig. 1. We define the two parameters

Omin = N ay, Omax = INaX Qy,

1<¢<L 1<¢<L

and we assume that,,;, is positive. We are particularly interested in the
critical case where the rati@.x/amin iS large. Our goal is to establish
estimates which are independent of this ratio. In Sects. 2.e and 2.f we will
treat the cases of non scalar and piecewise smooth coefficients.

2.a Variational formulation and regularity

We assume that the dafabelong toH —!(2). For simplicity, we use the
same notation for the scalar productfid(£2) and for its extension to a
duality pairing betweed ~1(£2) and H}(£2). Then, problem (1.1) admits
the following equivalent variational formulatiofind v in H{ (£2) such that

(2.1) Yo € H}(02), /Qa(a:) grad v - grad vde = /Qf(a:)v(ac) da.

Due to the boundedness®fthe bilinear form on the left-hand side of (2.1)
is continuous; thanks to the positivity of.;,, it is coercive. Hence, the
Lax-Milgram lemma leads to the following well-posedness result.

Proposition 2.1 For any dataf in H~1(£2), problem(2.1) has a unique
solutionu in H(2).

Additional regularity of the solution can be proven thanks to the argu-
ments of Meyers [10]. We refer to [2, Lemma 3.1] for the regularity result in
WLP(Q) spaces. In view of the discretization, however, we prefer to work
with Hilbertian Sobolev spaces.
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Proposition 2.2 There exists a real numbeg with0 < s¢ < % depending
on the geometry of2 and on the ration,,ax /amin, Such that the mapping,
which associates with any right-hand sifléhe unique solution of problem
(2.1), is continuous fronf7*~1(£2) into H5™1(£2) N H{(£2) for all s with

0 <s <sp.

Proof. Denote byL the Laplace operator which associates with any right-
hand sidef in H~!(2) the unique weak solution of the Laplace equation

—Au=f in {2
u=0 on0df2.

This operator is continuous froid ~1(£2) into H}(£2) with norm1. Also,
there exists a real numbei such thatl is continuous fromH*1~1(2)
into H*171(2) N H{(£2). This number is at leas} in the case of a gen-
eral polygon or polyhedron [4] antlin the case of a convex domain [5,
Theorem 3.2.1.2]. Denoting by the corresponding norm, an interpola-
tion argument [9, Chap. 1, Boreme 5.1] yields that is continuous from
H*~1(2) into H¥T1(2) N H}(£2) with norm at mosty*/*! for all s with
0<s<sy.

When dividing equation (2.1) bw.x, adding and subtracting\u, and
applying the operatof, we observe that problem (2.1) can equivalently be
written as

1

Qmax

«

u+ LG(u) =

Lf, with G(u)= Au—div < grad u) .

Qmax

Hence, the desired regularity result holds foraBuch that the norm of
LG from H5T1(02) N H}(£2) into itself is less thar. Fix ans < § and
evaluatd|G (u) || grs—1 () for anyw in H5T1(£2) N Hg(£2). Since the diver-
gence operator is continuous frabi(£2)? into H~1(£2) with norm1 and
from H'(£2)? into L2(£2) with norm+/d, itis continuous fron#7*(£2)¢ into
H*~1(£2) with norm at mostiz. This yields

16l = v (1= ) arad ) 100

max

< dz| (1 - ) grad ul| s ()a-

amax



Elliptic equations with non-smooth coefficients 583
Sinces is less than%, we have on the other hand
1
L 0 2 2
H( _ _a ) grad UH — (1— > grad u
Omax Hs(Q)d ; amax H‘S(_Qg)d

Qmin
< (1 o ) | grad ul] - oy

max

This implies that

max

s Omin
1G(W)[-1(0) < d> <1 2 ) lull o1 (@)nm (2)-

Combining this with the estimate of the norm 6fyields the desired reg-
ularity property for alls < % such thatdz (1 — amin/Omax) /5 < 1.
0

2.b The discrete problem

We consider afamily7y, ), of partitions off2 into a finite number of triangles

if d = 2, or tetrahedra it = 3, which satisfies the usuadmissibility
condition any two elements share at most a vertex, or a whole edge, or, if
d = 3, a complete face. In addition we assume that:

— The family(7)y, isregular, i.e. the ratio of the diameter of any element
K in 7T, to the diameter of its largest inscribed ball is bounded by a
constantr independent of< and ofh.

— For all h, the boundaries of all subdomaif are the union of edges
resp. faces of elements i, i.e., any elemenk” does not intersect two
different subdomaing,.

As usual i stands for the maximal diameter of the eleméiitin 7;,.

Denote byP; (K ) the space of restrictions 1§ of affine functions irR?
and set

(2.2) X = {Uh € Co(ﬁ); VK € T, Up |k € Pi(K), vp =0 onaﬁ}.

The discrete problem then ind vy, in X}, such that

(2.3) Vo, € Xy, / a(z) grad uy, - grad vy, de :/ f(x)vp(x) de.
2 Q

From the Lax-Milgram theorem we again obtain:

Proposition 2.3 For any dataf in H~1(£2), problem(2.3) has a unique
solutionuy, in X3,
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In order to obtain error estimates which are independent of the ratio
Qmax/ Qmin, We Will work with the natural energy norm for (2.1). Itis defined
for all functionsv in HE(£2) by

(2.4) ||v]la = Ha% grad UHL2(Q)d: {/Q a(z) grad v - grad vda:}g.

2.c A priori error analysis

Since|| - || is the energy norm of the bilinear form on the left-hand side of
(2.1) and (2.3), €a’s lemma [1, Theorem 13.1] immediately implies that
2.5 —uplle = inf — wp)|a-

(25) o —unllo = inf =y

Hence, we must evaluate the distance.db X}, for the norm|| - ||,. In
order to do this we denote by, the maximal diameter of the elements of
Tr, which are contained if?,. For brevity we denote by/;* the orthogonal
projection fromH{ (£2) onto X}, for the norm|| - ||

Proposition 2.4 For any real numbers with 1 < s < 2, there exists a
constante, which neither depends dnnor on the ratioaax /@min, SUCh
that the following estimate holds for amyin H*(£2) N H}(£2)

L 2

a 2(s—1

(2.6)  |lv— |0 <c {Z 2 oy || grad v||?{s_1(95)d} .
/=1

Proof. We first work with functions inff2(£2), next with generas.
If the functionv belongs toH?(2), it is continuous both in dimensions
d = 2 andd = 3. Hence, we have

lv = Hivlla < [lv=Zhvlla,

whereZ;, denotes the Lagrange interpolation operator at the vertices of the
elements irf;,. The standard estimate [1, Theorem 16.1]

’7) - IhU‘Hl(Qg) < chy H grad UHHl(Qg)d

therefore establishes (2.6) for= 2.

Estimate (2.6) holds fos = 2, according to the first step, and also for
s = 1, due to the definition of/;*. Thus, the general result follows from
an interpolation argument relying on the following remark [9, Chap. 1,
Théorme 13.1]: eacli’s—1(12,) is the domain in.2(§2) of a positive self-
adjoint operatotS,, and the differen, commute. O

Combining (2.5) with Proposition 2.4 leads to the a priori error estimate:
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Theorem 2.5 Assume that the solution of problem (2.1) belongs to
H® (2),1 < s < 2. There exists a constamt which neither depends
on h nor on the ratioamax/amin, SUch that the following error estimate
holds

L 2
(2.7) lu—uplla < c {Zh?(sl) ay || grad UIfrfsl(m)d} '
/=1

Combining Theorem 2.5 with the regularity result of Proposition 2.2
yields

Corollary 2.6 For any dataf in H~%(§2),0 < t < 1, the following con-
vergence holds

lim ||u — up|lo = 0.

h—0

This convergence result also holds in the standald(2)-norm but the
convergence seems to be faster in the energy norm. Moreover, Theorem 2.5
shows that the convergence rate may be improved when working with tri-
angulationsy;, such thaty, is small whemny, is large.

2.d A posteriori error analysis

As usual for a posteriori error estimates we assume from now onfthat
belongs taL?(£2). Given any elemenk in 7;,, we denote by the set of
all its edges, ifd = 2, resp. faces, itl = 3, that arenot containedn the
boundaryds?2. The union of allEx, K € Ty, is denoted by;,. With each
edge resp. face € &, we associate a unit vectar, orthogonal toe and
denote byg]. the jump of any piecewise continuous functipmcross: in
directionn,.

From the general results in [11, Sect. 3.2] we know that — up to higher
order perturbation terms — th&!-norm of the erron, — uy, is bounded
from below and from above by multiples of

> B\l fn A+ div (a grad u) |17
KeT,

D=

+ Z he || [ On, uple ||%2(e)

ecéy

Here,hx andh. denote the diameter of ande, respectively, and;, is
anyfinite element approximation gf corresponding t@7},. In the simplest
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case, f), is the L2-projection of f onto the space of piecewise constant
functions. The higher order terms refer to the elffer f;,. The crucial point

for the present analysis is that the multiplicative constants depend on the
ratio amax/amin- The results of [12] indicate that this annoying drawback
may perhaps be overcome by simultaneously passing to the energy norm
and replacing the weightsy andh,. by factors that appropriately take into
accountthe function. We therefore try to bound the energy ndfm-up, ||

of the error from above and below by

{ >t | fntdiv (o grad up) |72 k)

KeTy,

[

2
(2.8) + Z pre || e On up]e %Q(e)}

e€Ey

and to choose the weights, and . such that the corresponding multi-
plicative constants do not depend on the ratiQ.« /amin (even if the term
div (o grad uy) vanishes in this simple case, we keep it in view of the
extension to higher order finite elements).

We start with the lower bound of the error. From (2.1) we obtain for any
functionv in H}(2)

29) /Q ) grad (u —uy) - grad vdzx
2.9
/ flz dw—/a(m) grad uy, - grad vdez.
Q

Integration by parts elementwise yields

/ f(@)v(z) de —/a(w) grad uy, - grad v da
(%
Z (f +div (a(z) grad up))v da

(2.10) KeT, 7K

—Z/ x)Op, up), v dr.

eesy

Denote byV;,, Nk, andA/, the sets of all vertices of all elementsTp,
of a given elemenk’, and of a given edge or faegrespectively. With each
vertexz in \V;, we associate the corresponding nodal basis functiorit
is the unigue continuous, piecewise affine function that takes the valtie
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z and that vanishes at all other vertices. With every eleni€mind every
edge resp. face we associate the bubble functions

Y = (d+ )" ] ¢ and ¢ =d* [ -
ZGNK z€Ne

By transforming all quantities to the reference element and using the equiv-
alence of norms on finite dimensional spaces there, one can prove the fol-
lowing estimates [11, Lemma 3.3]

1
vl L2y < M || vy :
L2 (K)

[Wrvl ) < V2hi 0]l 22 ()

1
(2.11) lollrze) < s |[véo ;
L2(e)

[Veo (i) < Yahe 2’HUHL2
[Veoll 2k <’75h2HUHL2

Here, K is an arbitrary element, is an edge resp. face &, andv and
o are arbitrary polynomials of degree at mésn d resp.d — 1 variables.
The constantsy, ..., ~s only depend on the polynomial degréeand on
the shape parameter &f.

Fix an elemenfs and insert the function
wg = Y (frn +div (o grad up)) as a test-functiom in (2.9) and (2.10).
We then obtain

I.fn +div (o grad u)|[72 g
<32 [ -+ dv (a(e) grad ) wieda
=42 /Ka(m) grad (u —up) - grad wida
[ (= pwnde
<Al — unllasr 1wl + 2N F = Full 2o 1wl 2
<7 { o = e ol + 1 = Sl |

| fn +div (o grad ug)| 12k
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Here,|| - || o,k denotes the canonical restriction of the energy nori tand
a is the constant value of the functienon the elemeni. This estimate
implies that

prc || frnt div (o grad up)|| 2 ()

1
< Aiyeprchy afllu = unllae + il f = full2o)-

Hence,

N[ =

(2.12) P = hiag,

seems to be a reasonable choice in (2.8).

Next consider an arbitrary edge resp. faée &;,. Denote byK; and K»
the two elements which are adjacentet¢recall thate is not contained in
012). Inserting the functiomw, = 1. [a 0, us], as a test function in (2.9)
and (2.10), we conclude that

e Onounle 720y <75 / () On, un], wedr

=23/ ale) grad (u— ) - grad wida
KiUKo

2
+73 Z /K (f +div (o grad up)) wedz
i=1 @

2
<93 > { Il = oo, el
i=1

A+ fn 4 div (o grad up)|| 2, lwe [l L2k,

1 = Fullzocy lwell 2y §
1

2 1
<93 > { = wnllasre, vahe *oi,
=1

1
+| f + div (o grad up) || 2 (x,) 15he
1
1 = Fullzzgey 1502 1 Onctnl Nl

Combined with the previous estimate this implies that

2

1 1 _1 1
W2 0], 2y < €3 {ué b bad u— unllask,
=1

1 1
+udh2||f — fh!m(Ki)}-
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This suggests that
(2.13) fte = hea ! with ae = max{ag, , oK, }

may be a reasonable choice in (2.8).

We now try to prove that (2.8) with the choices (2.12) and (2.13) yields
the desired upper bounds on the error. For brevityuset u — wuy;. From
the definition (2.4) of the energy norm, we immediately conclude that

(2.14) lu — up||2 = / a(z) grad (u — uy) - grad wdex.
¢
Subtracting (2.1) and (2.3) we obtain Galerkin orthogonality
(2.15) VYwp, € Xy, / a(z) grad (v —uyp,) - grad wy, de = 0.
¢

Fix an arbitrary functiomwy, in X;,. Equations (2.9), (2.10), (2.14), and (2.15)
together with the Cauchy-Schwarz inequality then imply that

=l = Y [ (/v (ala) grad ) (w = w,) dz

KeTy,
—Z/ x) Op up|, (w—wp)dr
ecéy
< > p | +div (o grad us)ll 2 g llw = whll 2
KeTy

_1
+ >l H [ On,unl, | 22(e) e * lw — wh| L2 (e
e€ly,

< { D w1 fn +div (o grad us)[|72 4

KeTy

[

e€Ey

2
+ Z ,LLe H [a aneuh]e %2(6)}

KeTy, ee&y

1
2
{ Z p Jlw — wh||%2(1<) + Z pet flw — wh%%K)} :

Consequently, we will have achieved our goal once we can chogsech
that the approximation estimate

KeTy, ec&y,

1
2
(2.16) {ZMK =22 +Zu61wwhi2(m} < cllwlla
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holds with a constant that does not depend on the tatiQ / amin -

To realize this we modify the quasi-interpolation operator of [13] (the
operator of G&8ment [3] can be modified similarly). Given a vertein N},
we denote by, the support of the nodal basis functign. This is the union
of all elements that have as a vertex. With each vertexwe associate a
number/(z) in {1,..., L} such that

— z s contained in2,., and
— oy(.) is maximal among ally; such thatf?; containsz.

1
fode = [ vda
measg(w) J,

w

Denote by

the mean-value of a given functieron a given measurable sein R¢ with
positived-dimensional Lebesgue measutieas,(w). With this convention
we set

][ vde if z € 2
(2.17) -

Trzv - wzﬂﬂg(z)

0 if z €01

and define the quasi-interpolation operatpr L?(£2) — X}, by

(2.18) Ipv = Z (m.0)p,.

zENh

The operator}, differs from the operator introduced in [13] by the treatment
of vertices that are on the boundary of a subdomain. The following lemma
shows that takingv, equal tol,w realizes the desired estimate (2.16),
provided the partition into subdomains satisfies:

Hypothesis 2.7 For any two different subdomainfg, and (2;,, which share
at least one point, there is a connected path passing f&rto 2;, through
adjacent subdomains such that the functiois monotone along this path
(adjacent means that the corresponding subdomains share an edige 2f
or aface, ifd = 3).

Lemma 2.8 Assume that Hypothesis 2.7 is satisfied. For every funetion
in H(£2), every elemenk’, and every edge resp. facef K, the following
estimates hold

1
v — Tnvll 2 (k) < Clhll<04K12 [vllas Ak

lv — Ihv||L2(e) < C2h€§a€_§”v”a§Ae'



Elliptic equations with non-smooth coefficients 591

Here, A and A, denote the union of all elements that share at least one
vertex withK or e, respectively. The constantsandc; only depend on the
shape parameter ofy,.

Proof. We first consider an arbitrary elemeiit Since the nodal basis func-
tions form a partition of unity we have

lv=Tnoll Loy = || D p=(v —m0) <Y llpa(v=m0) | 2x0)-
ZGNK LQ(K) ZGNK

Consider a vertex that is not contained in the boundary of any subdomain
(including the boundary of?). From the Poinca&r (also called Bramble—
Hilbert) inequality and the regularity gf, we conclude that

= (v = m0) 2y < Mlv =m0l 2y < Nlv = 720l 20

_1
< cdiam(w,) ”U|H1(WZ) < dhgag? |v]lagw,
1

< ClhKa;(§||UHa;AK'

The constants andc’ only depend on the shape paramete7nfThey are
explicitly calculated in [13].

Next consider a vertex on the boundary?2. Sincer. v is equal to zero
and sincev vanishes or9f?2, the previous arguments remain valid using
the Friedrichs (also called Poinéaifriedrichs) inequality instead of the
Poincaé inequality.

Finally consider a vertex which is not on the boundéary but which is in
012y wherel(K) is such thati is contained inf2, . If /(K) = {(z)
the previous arguments remain valid with replaced byv. N 2.

If /(K) # ¢(z), we must argue differently. From the definition of we
now obtain

o2 (v — me)llzaiey = ||ios | 0 — ]l vda

L2(K)
<o, | v— ][ vdx
wzﬂQg(K) L2(K)
+ {2 ][ vdx — ][ vdx
wzﬂQg(K) wzﬁﬂg(z)
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The first term can be estimated exactly as before. Using the regulafity of
the second term may be estimated as follows

Vs ][ vdx — ][ vdx

wzﬁﬂg(K) wzﬂng(z) LZ(K)

= H(IDZHLQ(K) ][ vdx — ][ vdz

WzﬂQZ(K) wzﬂfll(z)

d
<chj ][ vdx — ][ vdx| .

WZmQé(K) wzﬁ(h(z)

Consider first the case where the subdom&ipg.) and(?,. are adjacent,
i.e. they share a common edgediE 2, or face, ifd = 3, which is labeled
e. Invoking the regularity off;, once more we obtain

da
2
hi ][ vdx — ][ vdx
wzﬂQg(K> wzﬂng(z)
1
< ch? ][ vdx — ][ vdx
wzﬂQg(K) wzﬂﬁg(z) L2(6)

1 1
< ché ][ vdx — v +chZ ||lv — ][ vdx
wzﬂQg(K) 12 (€) wzﬂ()az) L2(e)
Let k£ be any of the two indice& K') or ¢(z) and denote bys’ the element

which is adjacent te and contained if2;.. Invoking the trace theorem [13,
Lemma 3.2]

(2.19) lellr2e) < c {he_;||‘;0|L2(K’) + h§|¢|H1(K')}
we arrive at
he% v— ][ v <cX |lv— ][ vdx + helv| g (rr
wzN$2y, L2(e) wzN2 L2(K)

1
< dhra?|[v]laag-
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When the domaing,x and(?, . are not adjacent, by using Hypothesis
2.7, we introduce the domaing, which are on the path between them and
apply the same arguments to the difference meanvalues on each pair of
adjacent subdomains.

This establishes the first estimate of the lemma.

The second one is proven in exactly the same way observing that

d—1
le=llL2(e) < che?

and invoking the trace theorem (2.19). For the latter, the elefdedjacent
to e must be chosen such thatis maximal. O

Summarizing all results we obtain the following a posteriori error esti-
mates.

Theorem 2.9 Denote byak the constant value af on the elemenk’ in
Tn, and definen, as the largest of the tway such that the elemerdt is
adjacent to the edge resp. faeén &,. For any elemenf in 7, set

e = {hg(a[g | £+ div (o grad up)|22 )

N

1 -1 2
(2.20) +5 > hea II[aanEUh]eHLz(e)} :

eefi

Assume that Hypothesis 2.7 is satisfied. There exist constaaridc, which
only depend on the shape parametef/pfsuch that the estimates

D=

@21)  u—willa <erd 3 [k + Wk IS — fullZa)
KeTy,

and

(222) nk <ol llu—unlZwe + D Moaglf = fallfa
K'Cwgk

hold for all finite element approximations, of f, all elements, and all
values ofvax /amin. Here,wg denotes the union of all elements that share
an edge, il = 2, or a face, ifd = 3, with K.

Remark 2.10If Hypothesis 2.7 is violated, estimates (2.21) and (2.22) still
hold. But the constant; now depends on the rati®,,.x /amin, Since the
same now holds for the constants in Lemma 2.8. Note that a sufficient
condition for Hypothesis 2.7 to hold in the case of dimensiea 2 is that

at most 3 subdomain€, share a common point interior 1@ and that at
most 2 subdomaing, share a common point Gi?2.
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2.e Treatment of non scalar piecewise constant coefficients

Now, we consider problem (1.1) with a piecewise constant functiovith
valuesinthe space of square, symmetric, positive definite matrices otlorder
Denote byA, the constant value of on 2, and byAax (A¢) andApin (Ay)

the extremal eigenvalues df;. Set

Omin = 1r§n£i£L )\min(AE)y Omax = lrélfang )\max(Aé)v

K = Inax 7)\111&)((14[).
1<E<L Amin(Ar)
We are interested in the case whetg,x/amin IS large, but is of moderate
size. The case of a largeis treated in Sect. 3.

The variational formulation and the discrete problem are given by (2.1)
and (2.3) with the functiorx replaced by the functioml. Thanks to the
Lax-Milgram lemma, they both admit a unique solution for any data
H~1(£2). The regularity of the weak solution is as in Proposition 2.2. The
energy norm is given by (2.4) with the functienreplaced by the function
A.

Obviously, estimate (2.5) still holds in the present situation. With the
same definition of the operatdf;* and under the assumptions of Proposi-
tion 2.4, estimate (2.6), however, must be replaced by

L 2
a 2(s—1
v — If|lo < ¢ {Z 2 N pax (Ay) || grad v!i,sl(m)d} .
=1
Combining all this leads to the a priori error estimate: if the solution
of problem(1.1) belongs toH*({2), 1 < s < 2, there exists a constant
independent of. such that

L 2
2(s—1
(2.23) |Ju—uplla <c {Z he(s ) Amax(A¢) || grad uuqul(m)d} :
(=1
This estimate is optimal since, in contrast to Sect. 3, we are interested in the
case thak is of moderate size.
We now turn to a posteriori estimates. For a given elentérdf 75,

denote byA g the constant value ol on K and set now:

K = Amax(4K), Qe = max ag.
eCOK

Define the error estimatayy as in (2.20) with these definitions ofy and

a., and with the functiom replaced by the functiod. Then the arguments,
which led to Theorem 2.9, directly carry over and yield the same a posteriori
error estimates. The constarisandc, now, however, also depend on the
parametek.
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2.f Treatment of piecewise smooth coefficients

We now consider problem (1.1) with = «f wherea is a bounded and
piecewise twice continuously differentiable function. The relevant parame-
ters are now

— inf _ _ Q¢ max
Qemin = Inf a(x), apmax = sup a(z), K= max ——
€L €2 1<U<L O min
and
Omin = 1221[/ ¢ mins  ®max = 1r£€a§XL Q¢ max-

We are interested in the case that the ratiQ./amin iS large, but that the
guantityx is of moderate size.

The corresponding variational problem is as in Sect. 2.a. It again admits
a unique solution which has the same regularity properties as in Proposi-
tion 2.2. The corresponding energy norm is given by (2.4).

For the discrete problem we denote by

ag = ][ozdm

K

the mean-value of on K and by« the piecewise constant function that
takes the value;x on the elemeni(. The discrete problem then ind uy,
in X, such that

Vvh S Xh,
(2.24) / ap(x) grad uy, - grad vy, de :/ f(z)vp(z) de.
Q Q

Thanks to the Lax-Milgram lemma it admits a unique solution for any data
fin H=1(02).

The following observation is crucial for the subsequent analysisu}.et
be the solution of (2.24) and consider an arbitrary elemgim X;,. Since
grad uy and grad vy, are piecewise constant, the definitioncgf implies
that

/ a(z) grad uy, - grad vy, de
Q

(2.25) :/ ap(z) grad uy, - grad vy, de.
Q

Thanks to (2.25) the a priori error analysis of Sect. 2.c directly extends to
the present problem.

We now turn to the a posteriori error analysis. Consider first the upper
boundonthe error. Thanksto (2.25) equations (2.9), (2.10), (2.14),and (2.15)
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remain unchanged. The arguments of Sect. 2.d, in particular Lemma 2.8,
therefore yield the following upper bound on the error

lu—unlla < e D Mgl fn+div (o grad us)[|72
KeTy,

N|=

1 _ 2
+§ Z heaenllax H [Oé 8”Euh]€”l/2(€) ’

ecli

where now

QO Kmax = SUp a(f‘c)a Qemax — IMaX OKmax-
z€K Kieefxk
The constant only depends on the shape parametef;gfbut not on the
ratio aumax / min -

In order to obtain an error estimator which is easy to compute and to be
able to derive lower bounds on the error, we introduce the discontinuous,
piecewise affine functior;, which, on a given elemer, is equal to the
L?-projection ofa onto the affine functions of’. Set

i = DO | fi+ AV (G grad un) 7
1
1 2
(2.26) +5 ZS: hegman 1[G On,un]l 720y 0
eclK

wheref;, is anyfinite element approximation gf. We then obtain the upper
bound

lu—uplla <c Z i + Z Wi el = thL2

KeTy, KeTy

+ 3 Baghddiv (o= Gn) grad uy)|2. )
KeTy,

N

(227) + Z h aemax H Q= ah) aﬂeuh] HL2

668}(

When replacing the quantitiesy, a., anda by agmax, Qemax, anday,
respectively, the arguments of Sect. 2.d immediately yield the following
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lower bound on the error

’F]K S CHU - uhHOGUJK +C Z h’K/O[K’mafo thL2 K’
K'Cwgk

NI

div ((a — @) grad up,)||72 k)

+ hK’aK’maxH

(228)  +c{ Y hetghax (@ = an) O unl |72

e€lK

It remains to bound the terms involving— &y, in (2.27) and (2.28).
Consider first an arbitrary elemeft. Sinceuy, is affine onk’, we con-
clude from standard error estimates that

[div ((v — @) grad up)llp2(xy < loo = anlwreo () lunl mox)
_1
(2.29) < chK\a|W2,oo(K) apl o Nunla;ks

where

OKmin = igff{oz(:c).
xT

Next consider an arbitrary edge resp. facend denote byx; and K»
the elements adjacent¢éoUsing a standard inverse estimate we then obtain

e — @) Aneunl, 2 < lov = @l ooy Bnerunl 2o
2

_1
< o= @l poe(e) Y che 2 Junlm k)
i=1

[\

11
< chhe QQKfminh%da’W?vOO(Ki)”UhHa;Ki‘

Observing that

2 2
Qemax < YR max

for i = 1,2 and taking into account the stability estimate

||'I,Lh||a é am1n||f||H I(Q)’

we thus arrive at the following result:



598 C. Bernardi, R. Vetirth

Theorem 2.11 Define the estimatajx by (2.26). Assume that Hypothesis
2.7 is satisfied. There exist constants. . ., ¢4, Which only depend on the
shape parameter dof;,, such that the estimates

[u—unlla < Z Nk + E hKO‘KmaXHf thLZ
KeTy KeTy,

1
(2.30) +C?O‘m}n“2 ;{neax {hKOZKmaX|OZ|W200 )} Wl -1(0

and

[N

Nk < c3 ||u - uh”i;w;{ + Z hK’aK’maXHf fh||L2 K’)
K'Cwgk

1
(2.31) +C4amm KmCaxK {hK’aK’max’aWQ o (K7 } | f 1l - 1)
hold for all finite element approximation, of f, all elementsk, and all
values ofoax / Omin-

Remark 2.12The previous analysis extends to higher order finite elements
of orderk > 2. In this case the function;, must be chosen as the?-
projection ofa onto the space of discontinuous, piecewise polynomials of
degree2k — 2. Moreover, when establishing (2.29), one has in addition to
invoke the inverse estimate

| Aunl 2y < chi lunlp (re)-

Of course, the case of non scalar, piecewise smooth coefficients can be
treated by combining the arguments of Sects. 2.e and 2.f.
3. Anisotropic coefficients

Inthis section we consider problem (1.1) with a constant, symmetric, positive
definite matrixA such that the ratio of its largest eigenvalhg. to its
smallest one\.,;,, is large. We want to derive a priori and a posteriori error
estimates which are independent of this ratio.

3.a Variational formulation and regularity

The variational formulation is standariihd v in H}(£2) such that

(3.1) Vv e HN ), / A grad v - grad vdax :/ f(z)v(x) de.
0 12
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Thanks to the Lax-Milgram lemma it admits a unique solution for any right-
hand sidef in H~1(£2). The solution enjoys the following regularity:

Proposition 3.1 Assume thaf belongs toL?(2). There is a real number
s > 1 such that the unique solution of probléf1) belongs taH *+1(£2) N
H(02). If 2is convexs is equal to 1 and

(3.2) lul 20y < Apinll 22 (2)-

Proof.Consider the transformatiah: R? — RIwith & = $(z) = A 2z
and denote by? the image of2 underd®. An elementary calculation shows
thatu is a solution of (3.1) ifand only ifi = qoqﬁ—l is aweak solution of the
Laplace equation of® with right-hand sidef = f o &~ and homogeneous
Dirichlet boundary conditions. Noting thékis convex if and only if the same
holds fors2, invoking standard regularity results for the Laplace equation on
2 [5], and transforming back t€, establishes the desired regularity result
for u.

In order to prove (3.2), assume first thi#® is smooth. Since? is as-
sumed to be convex, the curvatureds® is positive. An elementary calcu-
lation using integration by parts therefore implies that

(3.3) ‘a‘HQ(Q) < ”JE”L2((~Z)‘

Exhausting a convex polygon or polyhedron by smoothly bounded convex
domains, shows that (3.3) also holds for a convex polyhedral dofdain
Transforming back t@2 and observing that

_ 1, 1=
[ul 20y < Apin A0t (A) T[] 23y, det(A)7 (| fll 2y = 1/ 1|2
we derive (3.2) from (3.3). O

3.b The discrete problem

For the discrete problem we consider a fan(ily ), of admissible partitions

of (2 into triangles or tetrahedrén contrast to Sect. 2 we no longer require

that it is regular.Thus the aspect ratio of the elements is allowed to be large.
With the notation of Sect. 2, the discrete problem thefingt u;, in X},

such that

(3.4) Yu, € Xp, / A grad uy, - grad v, dx _/ f(x)vp(z) de.
Q I7;

Thanks to the Lax-Milgram lemma it has a unique solution.
The energy norm is now defined by

1
2

|v]la = || A2 grad vl 20y = {/QA grad v - grad wa}
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3.c A priori error analysis
We define am-dependent norm- |4 onR? by
(3.5) jxq = |A 2],

where| - | denotes the standard Euclidean normgdn Given any element
K in T, we set

(3.6) hak = sup |z —yla, pak =2sup inf |z —y|a.

z,yeK zeK yedK
WhenA is the identity matrix, these quantities reduce to the standard diam-
eter of K resp. the diameter of the largest ball inscribed iftdJsing these
definitions we obtain the following a priori error estimate:

Theorem 3.2 Assume that the solution of problem (3.1) belongs to
H? (2), 1 < s < 2. There exists a constart which neither depends
onh nor on the ratio\y,ax/Amin, SUch that the solution,, of (3.4) satisfies
the following error estimate

P R
(3.7) lu —uplla < c{max A’K} Atnax [ U] s (0)-

KeTn paK

Proof. From Céa’s lemma we conclude that

|lu —uplla < inf |Ju—vp 4.
v EXp

Since .
Julla < Nhax|ul ()

this proves (3.7) fos = 1. Thus it remains to establish (3.7) for the case
s = 2 since the general case then follows by interpolation. To this aim we
invoke the transformatio® which was introduced in the proof of Proposi-
tion 3.1. Itmaps the admissible partiti@p of {2 into the admissible partition

T = {#(K); K € Tp,} of 2. One easily checks that, = uj o &' is

the unique solution of the corresponding finite element discretization of the
Laplace equation ot with right-hand sidef = f o ! and homoge-
neous Dirichlet boundary conditions. Set= u o #~! and denote by,

the nodal interpolation operator correspondingjtoStandard interpolation
error estimates [1, Theorem 16.1] then imply that

inf JJu—wpla < JJu— (fhﬂ) 0|4
v EXp

= det(A)1[i = Zyii] 1 5
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where
2

inf |lu— vp|la < ¢ max K det(A)%\ﬁ\Hg(Q)
v €Xp, KeT, PR
hZ
< ¢max K Amax|t| g2 (0)-
KeTn P

Hereh ;. andp - denote the diameter & and the diameter of the largest ball

inscribed intok, respectively, both measured with the standard Euclidean
norm. Consider an arbitrary elemefit of 7;. By definition there is an
elementK of 7;, with K = &(K). Recalling the definitions ob and of

| - |4, we conclude that

- - _1
hip= sup |z —gy|= sup |[A"2(xz —y)|=hax
z yek z,yeK

pr =2sup inf | —g|=2sup inf \A*%(m —y)| = pak.
zeK yedK z€K yedK

This establishes (3.7) for the case- 2. O

Estimate (3.7) shows thatax <7, ha,x/pa,x Should be of ordet or,
equivalently, that the partitiof, of £2 should be uniform. SiNC&max /Amin
is assumed to be large, this means that the partifiomust be anisotropic
with an anisotropy correctly aligned with. This is illustrated by the fol-
lowing example.

Example 3.3We consider problem (1.1) in the unit square with

=0 1)

and a partitiori/;, which consists of right-angled triangles with short sides
parallel to the coordinate axes having respective lengthand i, and
longest sides parallel to the line= y. Figure 2 shows the domainig and
2 with the corresponding partitions. An elementary calculation yields

PN NS R ]

Since the function

. V1422
z
1+2z—+V1+22

attains its minimum at = 1, this shows that the partitiofy, is optimal if
he = e2h,,.
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Q

/

Fig. 2. Domains(2 and(2 = &(12)

3.d A posteriori error analysis

The transformation technique used in the proof of Theorem 3.2 suggests
that we may obtain a good a posteriori error estimator for problem (3.4) by
correctly transforming an error estimator for the discretization of the Laplace
eqguation onf2. Since the partitions may be anisotropic, we should look for
an estimator which is suitable for isotropic and anisotropic partitions as well.
This is satisfied by the estimator introduced in [6, 7].

In order to describe this estimator we need some additional notation.
Recall that a™ always refers to transformed quantities@n

In two dimensions we enumerate the vertié¢gs P, P, of a given tri-
angleK such that:

— PP is the longest edge,
— PyP; is the shortest one.

Denote by:

- ﬁ
— p1 the vectorP, P, o .
— p2 the vector perpendicular t8, P; pointing to Ps.

Sethij( = ’ﬁzl andhmin’k = min{th(, hQ,f(} = hQ,f(;

In three dimensions we enumerate the vertiBgs . ., P; of a given tetra-
hedron such that:

— PyP is the longest edge,

— the triangleA Py P, P, has the largest area of the two triangles adjacent
to Popl,

— PyP, is the shortest edge af Py P, P».
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We define three vectogs, . . ., p3 as follows:
B =
- p1= PPy

— po is the vector in the plang, P, P, which is perpendicular t&, P, and
which points toP;

— ps is the vector which is perpendicular to the plaRgP; P, and which
points toP;.

Sethl. = |I~71’ andhmin,f( = min{hl e h2 e hBR} = h3f(.
Given any edge resp. fagewe denote byK: the element off;, which is

adjacent ta and which has minimat_ . ~. Set

huming = h h = dmeag(K:)/meag_1(é).

min, Kz’

Note that the quantityr; is calledhz in [6,7].
Given any elemenk in 73, set

N[

1 -1 i
(3.8) 5 2 P B8) Buciinlz 2

éeé‘k

Here,f = f o &~! andy, = uj, o &' are as in the proof of Theorem 3.2.
Given any functionp in H'(2) set

1/2

d
KeT, =1

This function is calledmatching functionin [6,7]. If the partition7}, is
regular in the sense of Sect. 2, this function is bounded from above by the
shape parameter of the partitip. Recall that the latter quantity is equal
to max e, ha,kx/pa,x and that this one is of orderif and only if 7, is
regular.

With this notation we obtain from [6, Theorem 3.4] the following a
posteriori error estimates for the Laplace equatioon

’fl, — ’ZLh‘Hl(_@) S C1 ml(ﬂ - aha 771)

Z ﬁ?%'{'hinn,knf_fhuf?(k) )
KeTn
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(39) g <ecqla—nliney+ D ki wllf = Al g

K’CwK

Here, f;, is anyfinite element approximation gf corresponding td7,. The
constantg; andcs neither depend oh nor on any shape parameterif.
Estimate (3.9) suggests that the quant'rﬂgsmay be well suited for our

purposes. Recalling thiit. — up || 4 = det( ) |a— Uh\Hl (o) We therefore
define for any elemerk’ in 7;,

K = det(A)T (k).
Next, we wantto expresg, by quantities which only refer to the element
K and which do not resort to the transformatidn
We start with the weights. Denote [#, . .. P; the vertices of a glven
elementK such that they are the pre- |mages of the vertifgs . .
which correspond tdd = ¢(K) and which are defined as above. In two
dimensions, we immediately conclude that

|Po — Pi|la = max |P; — Pj|a,
0<i<;<2

(310) hmin,@(K) - hA,min,K = inf |P2 - y|A-
yePy Py

In three dimensions, we observe that, among two faces of a tetrahedron
sharing an edge, that face has maximal area which has the maximal height
above the common edge. Hence, we conclude that

|Po — Pifa = o nax |P; — Pjla,
inf |Po—yla= max inf |P;—y|a
yEPyP1 ‘ ‘ 2<i<3 yEPyP1 | ’ ’ ’

(311) hmin,@(K) - hA,min,K = inf ‘PS - y‘A‘
yEAPyP Py

Given an edge resp. faeein &, denote byK,. the element adjacent
which has minimaha min, x and set
(3.12) ht = dmeasy(K.)/measy_1(e).

Note thath is the height ofi(, abovee measured in th&uclideannorm
and that it isnot b expressed in quantities referringdo

Next, we consider the element residuals. From the transformation rule
we immediately obtain

1 = ~
det(A) 1 hyin o)l fo + At 2@k
= ha mink || fo + div (A grad u)| 2
Now we turn to the edge resp. face residuals. We need a technical lemma.
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Lemma 3.4 The following identity holds for any edge resp. fade &;, and
e=d(e):

(3.13) O = 2241 ot 4) 4 - A grad u.

& ~

measy_1(€)

Proof. We treat separately the casés- 2 andd = 3.
Inthe case = 2, denote by'a vector thathas the same lengtle ds parallel
to e, and satisfieget(n. , €) > 0. The vector is defined correspondingly
with ¢ instead ofe. Set
0 1
P (_1 0) |

PBPT = det(B) B™*

Since

for any regular, symmetric matri of order2, we obtain

On,Up, = ng - grad ay,

= measl(é)_ng~ Az grad uy,
“1pA=3¢. A2 grad uy,
PTpé. Az grad uy,

*1measl(e)det(A)*% Azn, - Az grad uy

T2
_1
2

— det(A)_% ne - A grad uy,.

In the casel = 3, we choose two different edgesand 3 of the facee.
Denote bya and E two vectors that are parallel o and 3, have the same
length asyandg, and satisfylet(@ , §, n.) > 0. Seta = &(a), § = &(6),
and denote by and3 the corresponding vectors. Denoting fyhe vector
product inR3, we then get

8néﬂh =Mng - grad Up,

= measy <o:2 X 5)71 <5 X 5) A3 grad uy,

—

— meas; (é x 5>_1 (A-%a x A-%E) . A~% A grad up,.

Denote bya!, ..., a3 the columns ofA~> and bye', ..., 3 the standard
unit vectors ofR3. SinceA~> is symmetric and since the mapping

z,y,z—x-(yxz)=det(z, y, 2)
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is an alternating trilinear form oR?, we conclude that
Z e'ajfra’ - (af x a”)
1<4,5,k<3

= det(A)"z d x .

—

A3 (A—% dx A3 5)

We therefore obtain

_ measz(?i X ﬁ?) det(A)—Q ne - A grad uy,
measy (& X 3)

— e82() yoi(A)Em, - A grad u,
meass (€)

which concludes the proof.0

With the help of (3.13) we may rewrite the edge resp. face residuals as
follows

1
det(A) 1 hmin,@(K) <h$(e)>

_1
2

[&w@a4¢@)L%ﬂ@)

N |=

measg_1(e)
= hA,min,K 1 T
ha(e) measy_1(P(e)) det(A)2
|[ne - A grad uh]eHL?(e) .
Since
dmeasy(P(K)) = hé(e) measy_1(P(e)),

dmeasy(K) = ht measq_1(e),

measq(K) = det(A)? measy(d(K)),
this yields the identity

_1
2

1
det(A)2 Pnin (k) (hé(e))

{8%(&)114 2 || L2(a(e))

_1
= haminr(hE) 2 ||[n.- A grad un)ell 2 (e -

Finally, we consider the matching function. Denotely;, . . . , px q the
pre-images ofthe vectogs, . . . , pg. Without resorting to the transformation
@, these can be computed as follows:
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— pk,1 Is parallel toF, P; and points taP;

— pk,2 liesin the planePy P P, is A~1-orthogonal topx 1 and points to
P;

—ifd=3:pgsis A~1-orthogonal to the plan&, P, P, and points taPs.

Here, A~ !-orthogonality of two vectors andy means thai - A~y = 0.
From these properties we conclude that

p;i - grad uy, = pr; - grad uy,.
This yields
(3.14) 7 (i — an, Tn)

2

d

—2 -1

=0 >N ko grad (u—un)|3age ¢ e —unllyt
KeTy, i=1

Since the vectorspg; are mutually A~'-orthogonal and satisfy
|pK,’L|A S hA,maxyK W|th

(315) th,max,K = ;225;( |£l: - y|A7

the right-hand side of (3.14) can be bounded by

}{nea%i hA,max,K/hA,min,K'

Summarizing all these results, we arrive at the following a posteriori
error estimate:

Theorem 3.5 Define the quantitieB s i, x andhl as in(3.10) —(3.12)
and set

Nk = th,min,K”fh +div (4 grad Uh)”%2(1()

N |=

-1

1
(316) 45 > M (he) e A grad wpl, |2

e€fK
Then the following a posteriori error estimates hold

llu —uplla < c1mi(u—up, Tp)

N|=

(3.17) S [+ Wil — fullZagr)
KeTy
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and

(3.18) nx<ca lu—unlhw+ D Wi min s llf = fall72 (e
K'Cwgk

Here, f, is any finite element approximation picorresponding td/;,. The
constants; andcs neither depend oh, nor on any shape parameterdf,
nor on the ratioAyax/Amin- The termm; (u — up, Tr), given by

2

d
mi(u — up, Th) = Z Z hK?min,KHpK,i - grad (u — uh)H%Q(K)
KEeTy, i=1

(3.19) |lu — uh||;‘1,

is bounded from above byax ke, hA max, ik /PA min, kK With AA max i de-
fined in(3.15).

Estimates (3.17) and (3.18) are fully optimal, in the sense that the con-
stants are independent &f,.x/Amin fOr an appropriate but not standard
choice of the family of triangulations.
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