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1 Introduction

Let (A,m) be an equidimensional complete local noetherian ring and let
J ⊆ I be two ideals inA. Recall thatJ is called areductionof I if JIn =
In+1 for sufficiently largen. If J ⊆ I arem-primary andJ is a reduction of
I then it is well known and easy to see that the Hilbert-Samuel multiplicities
e(J,A) ande(I, A) are equal. By an important theorem of Rees [Ree] the
converse also holds:if J ⊆ I arem-primary ideals withe(J,A) = e(I, A)
thenJ is a reduction ofI.

Now assume thatJ ⊆ I are arbitrary ideals with the same radical
√
J =√

I. If J is a reduction ofI then we have alwayse(Jp, Ap) = e(Ip, Ap) for
all minimal primes ofI. However, the converse is not true, in general, as is
seen by simple counterexamples. Under an additional assumption E. Böger
[Boe] was able to prove a converse. To describe his result recall that the
analytic spreadl(J) is the dimension ofGJ(A)/mGJ(A), whereGJ(A)
denotes the associated graded ring. Then Böger’s theorem is as follows:let
J ⊆ I be arbitrary ideals ofA having the same radical. If the analytic
spreadl(J) is equal to the height ofJ and if e(Ip, Ap) = e(Jp, Ap) for all
minimal primes ofI thenJ is a reduction ofI.

There is an interesting generalization of Böger’s theoremwhich is essen-
tially due to Ulrich (see [FOV, 3.6]):let (A,m) be as above and letJ ⊆ I be
ideals. Then eitherht(JIn−1 : In) ≤ l(J) for all n ≥ 1, or J is a reduction
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of I. This shows in particular thatJ is a reduction ofI if and only if Jp is a
reduction ofIp for all prime idealsp with ht p = l(Jp).

In this paperwewill give a numerical characterization of reduction ideals
which generalizes B̈oger’s theorem to arbitrary idealsJ ⊆ I. For this we use
the j-multiplicity j(I, A) introduced in [AMa]. It is equal to the Hilbert-
Samuel multiplicity if the idealI is m-primary. In the general case we
can describe it in a geometric way roughly as follows: assume thatd :=
dimA > 0 and letp : Y → X be the blowing up ofX := SpecA
along the subschemeZ defined by the idealI. Consider the union, say,
E of all irreducible components of the exceptional setp−1(Z) that are
set-theoretically contained in the special fibrep−1(m). This is a projective
scheme overA/mn for somen. The(d− 1)-dimensional degree ofE is by
definition the multiplicityj(I, A); see Sect. 2 for further details.

With these notations the main result of this paper is as follows.

Theorem.LetJ ⊆ I be ideals in an equidimensional complete local noethe-
rian ring A. Then the following are equivalent.

1.J is a reduction ofI;
2. j(Jp, Ap) = j(Ip, Ap) for all prime idealsp ∈ SpecA;
3. j(Jp, Ap) ≤ j(Ip, Ap) for all prime idealsp ∈ SpecA.

Another somewhat technical generalization of Böger’s theorem using
Buchsbaum-Rimmultiplicities was obtained by Kleiman and Thorup [KT];
their results were recently considerably simplified by Simis and Ulrich.
However, this generalization does not give a complete numerical character-
ization of reduction ideals.

We add a few remarks about the contents of this paper. In Sect. 2 we
introduce somebasic notationsand facts about reductionsand thej-multipli-
city. In Sect. 3 we will derive the main theorem which we will prove more
generally in a module theoretic version, see 3.3.

2 Review of some known results

2.1 Let (A,m) be a local noetherian ring andI ⊆ A an arbitrary ideal.
Consider the associated graded ring

G := G(A) := GI(A) :=
⊕
n∈N

(In/In+1)Tn.

If M is a finiteA-module then the associated graded module

G(M) := GI(M) :=
⊕
n∈N

(InM/In+1M)Tn
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is a module overG(A) in a natural way, and its homogeneous components
are finite(A/I)-modules. We recall the following useful result; see [FOV,
1.2.19] for a proof.

Proposition 2.2 LetM ,M ′ be finitely generatedA-modules. Then the fol-
lowing hold.

(a) If suppM ′ ⊆ suppM then the support ofG(M ′) (as module over
G) is contained in the support ofG(M).

(b)Assume thatG(M) is equidimensional. Letx ∈ I be an element with
dimG(M)/x∗G(M) < d, wherex∗ = x̄T denotes the initial form ofx in
G. Then the supports of the modulesG(M/xM) andG(M)/x∗G(M) are
equal.

Generalizing the well known notion of a reduction ideal we will say that
an idealJ ⊆ I forms areductionof (M, I) if

dimGI(M)/(J∗GI(M) + mGI(M)) = 0,

whereJ∗ denotes the initial ideal ofJ , i.e. the ideal inG generated by the
initial formsx∗ of degree 1 elements inJ . Note that thenJ is generated by
at leastlM (I) := dimGI(M)/mGI(M) elements.

The idealJ will be called aminimal reductionfor (M, I) if furthermore
J is generated bylM (I) elements. IfA/m is infinite then this is equivalent
to J being minimal among the reductions of(M, I). ThusJ is a (minimal)
reduction of(A, I) if and only if it is a (minimal) reduction ofI in the
usual sense. It is well known that such minimal reductions always exist if
the residue fieldA/m is infinite (cf. also 2.9 below).

Observe that by Nakayama’s lemmaJ is a reduction of(M, I) if and
only if

JInM = In+1M for n � 0.

For later use we note the following simple facts, see e.g. [FMa].

Lemma 2.3 LetM ,N be finiteA-modules. Then the following hold.
(a) J is a reduction ofI if and only if the Rees moduleRI(M) :=⊕

n≥0 I
nM is finite over the Rees ringRJ :=

⊕
n≥0 J

n of J .
(b) If suppN ⊆ suppM andJ is a reduction of(M, I) thenJ is also

a reduction of(N, I).

Proof. For the convenience of the reader we repeat the simple argument. (a)
follows from the graded version of Nakayama’s lemma. In order to prove
(b), note that by 2.2 (a) the support ofGI(N) is contained in the support of
GI(M). Hence

dimGI(N)/J∗GI(N)+mGI(N) ≤ dimGI(M)/J∗GI(M)+mGI(M)

and soJ is as well a reduction of(N, I). 	
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In order to be able to formulate the main results in an efficient way, we
need a generalization of the notions of height and analytic spread of an ideal
to the case of modules (see [FMa]). We call the number

htM I := min{dimMp | p ∈ suppM ∩ V (I)}
theM -heightof I. Moreover, the number

lM (I) := dimGI(M)/mGI(M)

is calledthe analytic spread of(M, I).
In the caseM = A we also write in briefl(I) andht I instead oflA(I),

htA I, respectively. We need the following elementary properties of these
numbers.

Proposition 2.4 1. IfN ,M areA-modules withsuppN ⊆ suppM then
lN (I) ≤ lM (I) andhtN I ≥ htM I.

2. htM I ≤ lM (I) ≤ min{dimM,µ(I)}, whereµ(I) denotes the min-
imal number of generators for the idealI.

3. IfJ is a reductionof(M, I) thenlM (I) = lM (J)andhtM I = htM J .

Proof. The first part of (1) follows easily from 2.2 (a). Moreover, the in-
equalityhtN I ≤ htM I is immediate from the definition.

The remaining assertions (2), (3) are well known in case thatM = A
(see e.g. [FOV, 3.6.4]). In view of (1) this proves the proposition.	

2.5 Let (A,m) be a local Noetherian ring andI ⊆ A an ideal. Then one can
assign to every finiteA-module a generalized multiplicityj(I,M) which
was introduced in the caseM = A by [AMa] and in the general case in
[FOV, Sect. 6.1]. Let us recall the definition of thesemultiplicities. LetG be
as before the associated graded ring ofA andG(M) the associated graded
module ofM . Let ΓG(M)j := H0

m(G(M)j) denote the submodule of
elements supported onm. Their direct sum

ΓG(M) =
⊕
j≥0

ΓG(M)j

is a gradedG-submodule ofG(M) which has homogeneous components
of finite length. Moreover, this module is annihilated by a sufficiently high
powermk of m and so may be considered as a module over the graded ring
Ḡ := G ⊗A A/mk. Hence its multiplicitye(ΓG(M)) := e(Ḡ+, ΓG(M))
is well defined, wherēG+ is the ideal inḠ of elements of positive degree.
For a numberd ≥ dimM we set

jd(I,M) :=

{
e(ΓG(M)) if d = dimΓG(M)
0 if d > dimΓG(M) .
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Moreover, we setj(I,M) := jdim M (I,M).We note the following simple
facts which follow almost immediately from the definition.

1. j(I,M) �= 0 if and only if lM (I) = dimM (see e.g. [FOV, 6.1.6
(1)]).

2. If dimM > 0 andInM = 0 for somen thenj(I,M) = 0.
This number sharesmany properties of usual multiplicities. For instance,

we have the following result; see [FOV, 6.1.7].

Lemma 2.6 (Additivity) Let0 → M ′ → M → M ′′ → 0 be an exact
sequence ofA-modules andd ≥ dimM . Then

jd(I,M) = jd(I,M ′) + jd(I,M ′′).

What is also important in the following is the behaviour ofj under taking
hyperplane sections; see [FOV, 6.1.10].

Proposition 2.7 Assume thatx ∈ I is an element satisfying the following
conditions.

1.dimG(M)/x∗G(M) < d := dimM
2. dim G̃(M)/(x∗G̃(M) + mG̃(M)) < d − 1, whereG̃(M) denotes

the quotientG(M)/ΓG(M).
Thenjd(I,M) + jd−1(I,AnnM x) = jd−1(I,M/xM).

Clearly, ifhtM I > 0 then the above conditions (1), (2) are satisfied for
a sufficiently general element ofI. The following standard generic element
construction will provide such sufficiently generic elements.

2.8 Let J ⊆ I be an ideal such thatJp is a reduction of(Mp, Ip) for
every primep �= m. Assume thatJ = (x1, . . . , xk) and letU1, . . . , Uk be
indeterminates. Consider

x :=
k∑

i=1

Uixi

as an element of the localization, sayA′, of A[U1, . . . , Uk] with respect
to the idealmA[U1, . . . , Uk]. SetM ′ := M ⊗A A′ andI ′ := IA′. Then
G(M ′) := GI′(M ′) ∼= G(M) ⊗A A′. This easily implies the following
simple fact.

1. j(I ′,M ′) = j(I,M).
The minimal (resp. associated) primes ofM ′ are just the primespA′ with
p ∈ MinM (resp.p ∈ AssM ). Therefore we have:

2.AnnM ′ x is concentrated onV (I ′).
The ringG′ := GI′(A′) is a localization ofG(A)[U1, . . . , Uk] andx∗ cor-
responds to the generic linear combination

∑
Uix

∗
i . SimilarlyG(M ′) and

the moduleG̃(M ′) introduced in 2.7 (2) are localizations ofG(M)[U1, . . . ,
Uk], G̃(M)[U1, . . . , Uk] respectively. Hence we have:
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3. The associated primes ofG(M ′) are the primespG′ with p ∈ Ass
G(M), and the associated primes ofG̃(M ′) are the primespG′ with p ∈
Ass G̃(M).

Lemma 2.9 Assume thatdepthI M > 0. Then the following hold.
1.x is not a zerodivisor onM ′.
2.AnnG(M ′) x

∗ is concentrated onV (J∗G′) ⊆ V (mG′) ∪ V (G′
+).

3. Assume moreover thatJ is a reduction of(M, I). Then we have
jd(I ′,M ′)=jd−1(I ′,M ′/xM ′), whered :=dimM . In particular, jd(JA′,
M ′)=jd−1(JA′,M ′/xM ′).

Proof. (1), (2) are an easy consequences of 2.8 (2), (3) respectively.
To prove the first part of (3) we note that the assumptions of 2.7 are

satisfied as follows easily from (2) and 2.8 (3). Hencejd(I ′,M ′) = jd−1(I ′,
M ′/xM ′). Applying this to the caseI = J , the second part also follows.

	

In the following, the base changeA → A′ will be suppressed, and we

will speak simply about sufficiently generic elements.
In the next section we will also need the following observation.

Proposition 2.10 Assume thatJ is a reduction of(M, I). Then we have
j(J,M) = j(I,M).

Proof. We proceed by induction ond := dimM . For dimM = 0 the
assertion is obvious. So assume thatd > 0.We note first thatJ is a reduction
of (M, I) if and only if it is a reduction of(InM, I). Moreover, by 2.5 (2)
jd(I,M/InM) = jd(J,M/InM) = 0 and so, applying the additivity ofj
to the exact sequence

0 → InM → M → M/InM → 0,

we have thatj(I, InM) = j(I,M). The same argument yields thatj(J,
InM) = j(J,M). Therefore, replacingM byInM ,n � 0, wemayassume
thatdepthI M > 0. Take a sufficiently general elementx ∈ J (see 2.8 and
2.9). By 2.9 (3),j(I,M) = j(I,M/xM) andj(J,M) = j(J,M/xM).
Applying the induction hypothesis the result follows.	


3 The main result

The aim of this section is to prove the theorem stated in the introduction.
In the following let(A,m) be a local noetherian ring and letM be a finite
A-module. The key step is the following lemma.
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Lemma 3.1 Let J ⊆ I ⊆ m be ideals,M a formally equidimensional
A-module withdepthI M > 0 and assume that the following condition is
satisfied:

(∗) Jp is a reduction of(Mp, Ip) for all p �= m.
Letx ∈ J be sufficiently generic. Then

j(I,M/xM) ≥ j(I,M).

Moreover, if equality holds then the the modulesGI(M)/x∗GI(M) and
GI(M/xM) overG = GI(A) have the same support.

Proof. Wemay assume thatA is complete. Consider the extended Rees ring

R := RI(A) :=
⊕
n∈Z

InTn ⊆ A[T, T−1],

where as usualIn := A for n ≤ 0. Similarly let

N := RI(M) and N̄ := RI(M̄) with M̄ = M/xM

denote the Rees modules associated toM andM̄ , respectively. Letting

N ′ := ker(N → N̄)

we consider the diagram

0 ✲ N ′(1) ✲ N(1) ✲ N̄(1) ✲ 0

0 ✲ N ′
T −1

❄
✲ N

T −1

❄
✲ N̄

T −1

❄
✲ 0 .

This gives an exact sequence of cokernels

(1) 0 → G′ := N ′/T−1N ′ → G(M) → G(M̄) → 0 ,

whereG(M) = GI(M),G(M̄) = GI(M̄) are the associated graded mod-

ules. Denote the cokernel of the natural injectionN
xT
↪→ N ′ byL. Using the

diagram

0 ✲ N
xT✲ N ′(1) ✲ L(1) ✲ 0

0 ✲ N(−1)

T −1

❄
xT✲ N ′

T −1

❄
✲ L

T −1

❄
✲ 0

the snake-lemma yields an exact sequence

(2) 0 → U → G(M)(−1) → G′ → V → 0,
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whereU, V are the kernel and cokernel ofT−1 : L(1) → L, respectively,
i.e. the sequence

(3) 0 → U → L(1) T −1−→ L → V → 0

is exact. It follows from (1) and (2) that

(4) U = ker(G(M) xT→ G(M))
V = ker(G(M)/xTG(M) → G(M̄)).

Sincex is generic and(∗) is satisfied the kernel of the map

G(M)n−1
xT→ G(M)n, n � 0,

has support inm, see 2.9 (2). HenceUn has finite length forn � 0.
By the lemma of Artin-Rees the moduleL =

⊕
ν(xM ∩ IνM)/IνM

is annihilated byT−k for k � 0. HenceU , V andL have the same support.
It also follows thatVn andLn have finite length forn � 0. Applying the
functorΓ := H0

m to the sequence (2) in degreen gives that

(2)′ 0 → Un → ΓG(M)n−1 → Γ (G′)n → Vn → 0.

is exact forn � 0; note thatH0
m(Λ) = Λ andH i

m(Λ) = 0 for i ≥ 1 and
everyA-moduleΛ of finite length. ApplyingΓ to the sequence (1) in degree
n gives an exact sequence for alln

(1)′ 0 → Γ (G′)n → ΓG(M)n → ΓG(M̄)n.

Thus the corresponding Hilbert functions satisfy the inequality

(5) HΓG(M̄)(n) ≥ HΓG(M)(n) − HΓG′(n)

for all n. By (2)’ we have forn � 0 that

HΓG′(n) = HΓG(M)(n − 1) +HV (n) − HU (n).

Inserting this into (5) gives

(6) HΓG(M̄)(n) ≥ ∆HΓG(M)(n) − HV (n) +HU (n),

where∆ is the difference operator, i.e.∆H(n) = H(n) − H(n − 1) for a
functionH : Z → R. The sequence (3) yields

HU (n) − HV (n) = HL(n+ 1) − HL(n) = ∆HL(n+ 1).

Combining this with (6) we finally get

(7) HΓG(M̄)(n) ≥ ∆HΓG(M)(n) +∆HL(n+ 1) ≥ ∆HΓG(M)(n)
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for n � 0. Comparing the coefficients of highest degree the first part of the
lemma follows.

Now assume thatj(I,M/xM) = j(I,M). By (7)∆HL(n+1),n � 0,
is necessarily a polynomial of degree at mostd − 3, whered := dimM .
Therefore

dimΓ (L) = dimΓ (U) = dimΓ (V ) ≤ d − 2,

i.e. the kernel ofxT : G(M) → G(M) has support inV (G+) ∪ Σ,
wheredimΣ ≤ d − 2. In particular,dimker(xT : G(M) → G(M)) <
dimG(M). Hence 2.2(b) implies that themodulesG(M/xM) andG(M)/
x∗G(M) have the same support, as required.	

Lemma 3.2 LetJ ⊆ I ⊆ m be ideals,M a finite formally equidimensional
A-module and assume that condition(∗) of 3.1 is satisfied. Then

j(J,M) ≥ j(I,M).

Proof. We may assume thatA is complete. We proceed by induction on
d := dimM . For dimM = 0 the assertion is obvious. So assume that
d > 0. With the same argument as in the proof of 2.10 we may replaceM
by InM , n � 0, and are thus reduced to the case thatdepthI M > 0. Then
a sufficiently general elementx ∈ J is not a zero divisor forM . Applying
3.1 and the induction hypothesis we get the following chain of inequalities:

j(J,M) = j(J,M/xM) ≥ j(I,M/xM) ≥ j(I,M).

This gives the result. 	

We can now prove a module theoretic version of the theorem stated in

the introduction.

Theorem 3.3 Let (A,m) be a local noetherian ring andM a formally
equidimensional finiteA-module. LetJ ⊆ I ⊆ m be ideals. Then the
following is equivalent.

1.J is a reduction of(M, I).
2. j(Jp,Mp) = j(Ip,Mp) for all prime idealsp ∈ SpecA.
3. j(Jp,Mp) ≤ j(Ip,Mp) for all prime idealsp ∈ SpecA.

Proof. The implication(1) ⇒ (2) follows from 2.10, and(2) ⇒ (3) is
trivial. To show(3) ⇒ (1) we may assume thatA is complete. We proceed
by induction ondimM . If dimM = 0 then the assertion is obvious. So
assume in the following thatdimM > 0. As in the proof of 2.10 we can
reduce to the case thatdepthI M = depthJ M > 0. Take nowa sufficiently
generic elementx in J (see 2.8 and 2.9). By induction hypothesis condition
(∗) of 3.1 is satisfied and so
(1) j(I,M/xM) ≥ j(I,M) ≥ j(J,M) = j(J,M/xM),
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where the last equality follows from2.9 (3). Condition(∗)of 3.1 also implies
thatJp is a minimal reduction for((M/xM)p, Ip) for all primesp �= m. Us-
ing the induction hypothesis,J is a reduction of(M/xM, I). By definition
this means that

GI(M/xM)/J∗GI(M/xM) + mGI(M/xM)

has dimension zero. Moreover by 2.10 all inequalities in (1) are equali-
ties. Hence by 3.1 the modulesGI(M/xM) andGI(M)/x∗GI(M) have
the same support. It follows thatGI(M)/J∗GI(M) + mGI(M) also has
dimension zero, as required.	
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