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1 Introduction

Let (A, m) be an equidimensional complete local noetherian ring and let
J C I be two ideals inA. Recall thatJ is called areductionof [ if JI™ =
I+ for sufficiently largen. If J C I arem-primary andJ is a reduction of
I thenitis well known and easy to see that the Hilbert-Samuel multiplicities
e(J, A) ande(I, A) are equal. By an important theorem of Rees [Ree] the
converse also hold#: J C I are m-primary ideals withe(J, A) = e(1, A)
then.J is a reduction off.

Now assume thaf C I are arbitrary ideals with the same radigal =
VI.1f Jis areduction of then we have alwaysJ,, A,) = e(Iy, Ap) for
all minimal primes ofl/. However, the converse is not true, in general, as is
seen by simple counterexamples. Under an additional assumpticiger B
[Boe] was able to prove a converse. To describe his result recall that the
analytic spread(J) is the dimension o7 ;(A)/mG ;(A), whereG ;(A)
denotes the associated graded ring. Thégd®'s theorem is as followset
J C I be arbitrary ideals ofA having the same radical. If the analytic
spreadi(J) is equal to the height of and ife(l,,, Ap) = e(Jp, Ap) for all
minimal primes of then.J is a reduction off.

There is an interesting generalization d@fg®r's theorem which is essen-
tially due to Ulrich (see [FOV, 3.6])et (A, m) be as above and let C I be
ideals. Then eithelit(J 171 : 1) < I(J)foralln > 1, or J is a reduction
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of I. This shows in particular that is a reduction of if and only if J, is a
reduction off,, for all prime idealsp with ht p = [(J,).

In this paper we will give a numerical characterization of reduction ideals
which generalizes &ger’s theorem to arbitrary idealsC I. For this we use
the j-multiplicity j(I, A) introduced in [AMa]. It is equal to the Hilbert-
Samuel multiplicity if the ideall is m-primary. In the general case we
can describe it in a geometric way roughly as follows: assumedthat
dimA > 0 and letp : Y — X be the blowing up ofX := Spec A
along the subschemg defined by the ideal. Consider the union, say,
E of all irreducible components of the exceptional get(Z) that are
set-theoretically contained in the special filpré' (m). This is a projective
scheme oveA /m" for somen. The(d — 1)-dimensional degree df is by
definition the multiplicity;j(Z, A); see Sect. 2 for further details.

With these notations the main result of this paper is as follows.

Theorem. LetJ C I beideals in an equidimensional complete local noethe-
rian ring A. Then the following are equivalent.

1. J is areduction of;

2.j(Jp, Ap) = j(Ip, Ap) for all prime idealsp € Spec A4;

3. j(Jp, Ap) < 5(Ip, Ap) for all prime idealsp € Spec A.

Another somewhat technical generalization @fg@r's theorem using
Buchsbaum-Rim multiplicities was obtained by Kleiman and Thorup [KT];
their results were recently considerably simplified by Simis and Ulrich.
However, this generalization does not give a complete numerical character-
ization of reduction ideals.

We add a few remarks about the contents of this paper. In Sect. 2 we
introduce some basic notations and facts about reductions afaribkipli-
city. In Sect. 3 we will derive the main theorem which we will prove more
generally in a module theoretic version, see 3.3.

2 Review of some known results

2.1 Let (A, m) be a local noetherian ring andC A an arbitrary ideal.
Consider the associated graded ring

G :=G(A) :=G(A) =PI/ 11"
neN
If M is a finite A-module then the associated graded module

G(M) := G(M) := U M/ M)T"
neN
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is @ module ovetz(A) in a natural way, and its homogeneous components
are finite(A/I)-modules. We recall the following useful result; see [FOV,
1.2.19] for a proof.

Proposition 2.2 Let M, M’ be finitely generatedi-modules. Then the fol-
lowing hold.

(@) If supp M’ C supp M then the support of7(M’) (as module over
G) is contained in the support ¥ ().

(b) Assume that7(M ) is equidimensional. Let € I be an element with
dim G(M)/z*G(M) < d, wherex* = zT denotes the initial form af in
G. Then the supports of the modult&s)//z M) andG(M)/x*G(M) are
equal.

Generalizing the well known notion of a reduction ideal we will say that
anidealJ C I forms areductionof (M, I) if

dim G (M) /(J*G1(M) + mG1(M)) = 0,

whereJ* denotes the initial ideal of, i.e. the ideal inZ generated by the
initial forms z* of degree 1 elements ih. Note that thery is generated by
atleastiy/ (/) := dim G;(M)/mG(M) elements.

The idealJ will be called aminimal reductiorfor (M, I) if furthermore
J is generated by, (1) elements. IfA/m is infinite then this is equivalent
to J being minimal among the reductions(@¥/, I). Thus.J is a (minimal)
reduction of(A, I) if and only if it is a (minimal) reduction of in the
usual sense. It is well known that such minimal reductions always exist if
the residue fieldd /m is infinite (cf. also 2.9 below).

Observe that by Nakayama'’s lemrias a reduction of M, I) if and
only if

JI"M = I""'M  forn > 0.

For later use we note the following simple facts, see e.g. [FMa].

Lemma 2.3 Let M, N be finite A-modules. Then the following hold.
(@) J is a reduction of! if and only if the Rees modulB; (M) =
D,,~o 1" M is finite over the Rees ring; := P, -, J" of J.
(b) If supp N C supp M andJ is a reduction of M, I') thenJ is also
a reduction of( V, I).

Proof. For the convenience of the reader we repeat the simple argument. (a)
follows from the graded version of Nakayama’s lemma. In order to prove
(b), note that by 2.2 (a) the support@f (V) is contained in the support of
G(M). Hence

dim G (N)/J*G1(N) +mG(N) < dim G;(M)/J*G1(M) +mG (M)

and saJ is as well a reduction of N, I). O
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In order to be able to formulate the main results in an efficient way, we
need a generalization of the notions of height and analytic spread of an ideal
to the case of modules (see [FMa]). We call the number

htps I == min{dim M, | p € suppM NV (I)}
the M -heightof 1. Moreover, the number
l]y[([) := dim G[(M)/mG[(M)

is calledthe analytic spread ofM, I).

In the caseV/ = A we also write in brief(I) andht I instead of 4 (1),
ht 4 I, respectively. We need the following elementary properties of these
numbers.

Proposition 2.4 1. If N, M are A-modules wittsupp N C supp M then
lN(I) < lM(I) andhty I > htyy 1.

2.htp I < lp(I) < min{dim M, u(I)}, wherep(I) denotes the min-
imal number of generators for the ideal

3.1f Jisareductionof M, I) theniy;(I) = lp(J)andhtys I = htpy J.

Proof. The first part of (1) follows easily from 2.2 (a). Moreover, the in-
equalityht 5 I < htys I is immediate from the definition.

The remaining assertions (2), (3) are well known in case Aliat A
(see e.g. [FOV, 3.6.4]). In view of (1) this proves the propositiom.

2.5 Let(A, m) be alocal Noetherianring addC A anideal. Then one can
assign to every finited-module a generalized multiplicity(Z, M) which
was introduced in the cased = A by [AMa] and in the general case in
[FOV, Sect. 6.1]. Let us recall the definition of these multiplicities. Gzdie
as before the associated graded ringladndG(M ) the associated graded
module of M. Let I'G(M); := H(G(M);) denote the submodule of
elements supported an. Their direct sum

M) =P TaG(M)

320

is a graded>-submodule ofG (M) which has homogeneous components
of finite Iength Moreover, this module is annihilated by a sufficiently high
powerm”* of m and so may be considered as a module over the graded ring
G := G ®4 A/mF. Hence its multiplicitye(I'G(M)) := (G4, I'G(M))

is well defined, wher&' . is the ideal inG' of elements of positive degree.
For a numberl > dim M we set

. [ e(rG(M)) if d = dim TG(M)
Jall, M) := {o if d > dim I'G(M) .
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Moreover, we sef(I, M) := jaim ap (I, M). We note the following simple
facts which follow almost immediately from the definition.
1.5(I, M) # 0if and only if [5;(I) = dim M (see e.g. [FOV, 6.1.6
DD-
2. 1f dim M > 0 andI™M = 0 for somen thenj(I, M) = 0.
This number shares many properties of usual multiplicities. For instance,
we have the following result; see [FOV, 6.1.7].

Lemma 2.6 (Additivity) Let0 — M’ — M — M"” — 0 be an exact
sequence ofi-modules andl > dim M. Then

Ja(l, M) = ja(I, M) + ja(I, M").

What is also important in the following is the behaviouy einder taking
hyperplane sections; see [FOV, 6.1.10].

Proposition 2.7 Assume that: € I is an element satisfying the following
conditions.
1.dimG(M)/z*G(M) < d := dim M )
2. dimG(M)/(z*G(M) + mG(M)) < d — 1, whereG(M) denotes
the quotienG(M)/I'G(M).
Thenjd(I, M) + jdfl(I, Annjyy .’L‘) = jdfl(I, M/!L‘M)

Clearly, if ht; I > 0 then the above conditions (1), (2) are satisfied for
a sufficiently general element éf The following standard generic element
construction will provide such sufficiently generic elements.

2.8 Let J C I be an ideal such thaf, is a reduction of(M,, I,) for
every primep # m. Assume that/ = (z1,...,zx) and letUy, ..., U be
indeterminates. Consider i
xXr = Z Uixi
=1

as an element of the localization, say, of A[Uy,..., U] with respect
to the idealmy[Uy, ..., U|. SetM’ := M ®4 A’ andI’ := [ A’. Then
GM') .= Gp(M') = G(M) ®4 A’. This easily implies the following
simple fact.

Lj(I', M) = j(I,M).
The minimal (resp. associated) primesidf are just the primegA’ with
p € Min M (resp.p € Ass M). Therefore we have:

2. Annyp x is concentrated ol (I).
The ringG’ := G/ (A’) is a localization ofG(A)[Uy, . .., U] andz* cor-
responds to the generic linear combinatlo;z. Similarly G(M') and
the modulex (M) introduced in 2.7 (2) are localizations6{ M) [U7, . . .,

Uy, G(M)[Uy, ..., U] respectively. Hence we have:



210 H. Flenner, M. Manaresi

3. The associated primes 6f(M’) are the primepG’ with p € Ass
G (M), and the associated primes@f{A1’) are the primepG’ with p €
AssG(M).

Lemma 2.9 Assume thadlepth; M > 0. Then the following hold.

1.z is not a zerodivisor o/’

2. Anngpry ¥ is concentrated o (J*G') C V(mG') UV (GY,).

3. Assume moreover that is a reduction of(M,I). Then we have
Ja(I', M"Y =jq_1(I', M' JxM"), whered :=dim M. In particular, j4(JA’,
M')=jar(JA', M' [z M").

Proof. (1), (2) are an easy consequences of 2.8 (2), (3) respectively.
To prove the first part of (3) we note that the assumptions of 2.7 are
satisfied as follows easily from (2) and 2.8 (3). Hengd', M') = j,_1(I’,
M’ /xM'"). Applying this to the casé = J, the second part also follows.
0

In the following, the base changé — A’ will be suppressed, and we
will speak simply about sufficiently generic elements.
In the next section we will also need the following observation.

Proposition 2.10 Assume that/ is a reduction of(M, I'). Then we have

Proof. We proceed by induction od := dim M. Fordim M = 0 the

assertion is obvious. So assume that 0. We note first thaf is a reduction
of (M, I) if and only if it is a reduction of 1" M, I'). Moreover, by 2.5 (2)
Ja(I,M/I"M) = jq(J, M/I™M) = 0 and so, applying the additivity gf

to the exact sequence

0—I"M —- M — M/I"M — 0,

we have thatj(I,I"M) = j(I, M). The same argument yields that/,
I"M) = j(J, M). Therefore, replacing/ by I"" M ,n > 0, we may assume
thatdepth; M > 0. Take a sufficiently general element J (see 2.8 and
2.9).By 29 (3)(I,M) = jI,M/xM) andj(J, M) = j(J,M/xzM).
Applying the induction hypothesis the result followsa

3 The main result
The aim of this section is to prove the theorem stated in the introduction.

In the following let(A, m) be a local noetherian ring and [&f be a finite
A-module. The key step is the following lemma.
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Lemma3.1LetJ C I C m be ideals,M a formally equidimensional
A-module withdepth; M > 0 and assume that the following condition is
satisfied:

(%) Jp is areduction of M,, I,,) for all p # m.
Letz € J be sufficiently generic. Then

JI,M/xM) > j(I,M).

Moreover, if equality holds then the the modu@s(M)/x*G (M) and
Gr(M/zM) overG = G(A) have the same support.

Proof. We may assume that is complete. Consider the extended Rees ring

R:=Ri(A):=PI11" C AT, T,
nez

where as usual™ := A forn < 0. Similarly let
N:=R;(M) and N :=R;(M) withM = M/zM
denote the Rees modules associateti/tand M, respectively. Letting
N’ :=ker(N — N)
we consider the diagram
0 — N'(1) — N(1) — N(1) — 0
T*ll T*ll T*ll
0 N’ - N N 0.
This gives an exact sequence of cokernels

(1) 0— G :=N/T'N - GM) - G(M) -0,

whereG (M) = G;(M), G(M) = G;(M) are the associated graded mod-

ules. Denote the cokernel of the natural injectMng N’ by L. Using the
diagram

0 - N —"L N'(1) — L(1) — 0

Tll vt 1]

0—=NC-1) e N v L0

the snake-lemma yields an exact sequence

(2) 0—-U—=GM)(-1) =G =V =0,
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whereU, V are the kernel and cokernel ®f! : L(1) — L, respectively,
i.e. the sequence

(3) 0-U I IS L v o
is exact. It follows from (1) and (2) that

U = ker(G(M) 2 G(M))

(4) V = ker(G(M)/2TG(M) — G(M)).

Sincez is generic andx) is satisfied the kernel of the map

G(M)p 1 B G(M),, n>0,

has support im, see 2.9 (2). HencE,, has finite length forn > 0.

By the lemma of Artin-Rees the module= @, (zM N IYM)/I" M
is annihilated by’ ~* for k& >> 0. Hencel/, V andL have the same support.
It also follows thatV,, and L,, have finite length for > 0. Applying the
functorI" := H? to the sequence (2) in degreeives that

(2) 0—-U,—TIGM)p_1— I'(G)y—V,—0.

is exact forn > 0; note thatH?(A) = A andH (A) = 0 fori > 1 and
everyA-moduleA of finite length. Applyingl” to the sequence (1) in degree
n gives an exact sequence for all

(1) 0—I'(G"Np = T'GM), — T'G(M),.
Thus the corresponding Hilbert functions satisfy the inequality
(5) Hreony(n) > Hrgon(n) — Hrer(n)
for all n. By (2)’ we have fom > 0 that

Hregr(n) = Hrgony(n — 1) + Hy(n) — Hy(n).
Inserting this into (5) gives
(6) Hpqan(n) > AHrgorn(n) — Hy (n) + Hy(n),

whereA is the difference operator, i.AH(n) = H(n) — H(n — 1) fora
function H : Z — R. The sequence (3) yields

HU(n) — Hv(n) = HL(TL + 1) — HL(TL) = AHL(TL + 1).
Combining this with (6) we finally get
(") Hpgany(n) > AHpgony(n) + AHp(n + 1) > AHpgrn (n)
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for n > 0. Comparing the coefficients of highest degree the first part of the
lemma follows.

Now assume thgt(l, M /xM) = j(I,M).By (7)AH(n+1),n > 0,
is necessarily a polynomial of degree at mést 3, whered := dim M.
Therefore

dim (L) = dim I'(U) = dim (V) < d — 2,

i.e. the kernel ofxT : G(M) — G(M) has support inV/(G4) U X,
wheredim X < d — 2. In particular,dim ker(zT : G(M) — G(M)) <
dim G(M). Hence 2.2(b) implies that the modul@s)M /=M ) andG (M) /
x*G (M) have the same support, as requiredl

Lemma 3.2 LetJ C I C mbeidealsM a finite formally equidimensional
A-module and assume that conditipf) of 3.1 is satisfied. Then

J(J, M) = (I, M).

Proof. We may assume that is complete. We proceed by induction on
d := dim M. Fordim M = 0 the assertion is obvious. So assume that
d > 0. With the same argument as in the proof of 2.10 we may repléce
by I" M, n > 0, and are thus reduced to the case thath; M/ > 0. Then

a sufficiently general elementc J is not a zero divisor foid. Applying

3.1 and the induction hypothesis we get the following chain of inequalities:

§(J, M) = j(J, M/aM) > j(I, M/zM) > j(I, M).
This gives the result. O

We can now prove a module theoretic version of the theorem stated in
the introduction.

Theorem 3.3 Let (A, m) be a local noetherian ring and/ a formally
equidimensional finited-module. Let/ € I C m be ideals. Then the
following is equivalent.

1. J is areduction of M, I).

2. j(Jp, My) = j(Ip, M,) for all prime idealsp € Spec A.

3.j(Jp, My) < j(Iy, My) for all prime idealsp € Spec A.

Proof. The implication(1) = (2) follows from 2.10, and2) = (3) is
trivial. To show(3) = (1) we may assume that is complete. We proceed
by induction ondim M. If dim M = 0 then the assertion is obvious. So
assume in the following thatim M > 0. As in the proof of 2.10 we can
reduce to the case thépth; M = depth; M > 0. Take now a sufficiently
generic element in J (see 2.8 and 2.9). By induction hypothesis condition
(x) of 3.1 is satisfied and so

(1) j(I,M/QZM)ZJ(I,M)ZJ(J,M)ZJ(J,M/.I'M),
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where the last equality follows from 2.9 (3). Conditigy) of 3.1 also implies
thatJ, is a minimal reduction fof(M /x M), I,,) for all primesp # m. Us-
ing the induction hypothesig, is a reduction of M /=M, I'). By definition
this means that

Gr(M/xM)/J*Gr(M/xM) +mGr(M/zM)

has dimension zero. Moreover by 2.10 all inequalities in (1) are equali-
ties. Hence by 3.1 the modulés (M /xM) andGr(M)/z*G (M) have

the same support. It follows thét;(M)/J*G (M) + mG(M) also has
dimension zero, as requiredOd
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