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Abstract. Let Sy be a smooth and compact real variety given by a reduced
regular sequence of polynomiafs, .. ., f,. This paper is devoted to the
algorithmic problem of findingefficientlya representative point for each
connected component §§ . For this purpose we exhibit explicit polynomial
equations that describe the generic polar varietieS,ofThis leads to a
procedure which solves our algorithmic problem in time that is polynomial
in the (extrinsic) description length of the input equatigins . ., f, and in

a suitably introduced, intrinsic geometric parameter, calledégeeeof the

real interpretation of the given equation systé¢m. . ., f,.
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1 Introduction

The core of this paper consists in the exhibition of a system of canoni-
cal equations which describe locally the generic polar varieties of a given
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semialgebraiccomplete intersection manifolfly contained in the real—
dimensional affine spade™. This purely mathematical description of the
polar varieties allows the design of a new type of efficient algorithm (with
intrinsic complexity bounds), which computes, in case thats smooth
and compact, at least one representative point for each connected compo-
nent of Sy (the algorithm returns each such point in a suitable symbolic
codification). This new algorithm (and, in particular, its complexity) is the
main practical outcome of the present paper. Let us now briefly describe our
results.

Suppose that the real varies is compact and given by polynomial
equations of the following form:

(X, X)) == fp(Xy,...,Xp) =0,
wherep,n € N, p < n andfy,..., f, belong to the polynomial ring
Q[Xy,...,X,]inthe indeterminateX,, ..., X,, over the rational numbers

Q. Letd be a given natural number and assume that ferk < p the total
degreeleg f;. of the polynomialfy, is bounded byl. Moreover, we suppose
that the polynomialdi, .. ., f, form a regular sequence @[ X1, ..., X,
and that they are given by a division-free arithmetic circuit of dizénat
evaluates them in any given point of the real (or complexjlimensional
affine spac®” (or C ™). Further, we assume that the Jacobiaf, . . ., f,)
of the equation systery = --- = f, = 0 has maximal rank in any point of
So (thus, implicitly, we assume tha is smooth). LetVy := V(f1, ..., fp)
denote thedomplexalgebraic variety defined by the polynomigls. . ., f,
in the affine spac&€™. We denote the singular locus @fy by SingWj.
Moreover, let us suppose that the variablés . .., X,, are in generic
position with respect to the equation syst¢m. .., f,. Forl <i<n —p
let W; be thei—th formal (complex) polar varietgssociated with, (and
the variablesX,, ., ..., X;).
Further, letus denote the real counterpaitgby S; := W;NR"™. We call
S; thei—th formalreal polar variety associated with the real semialgebraic
variety Sy (and the variables(,,;, ..., X,,) . It turns out that the (locally)
closed set$V; \ SingW, (resp.S;) are either empty or complex (resp. real)
smooth manifolds of dimensian— (p + ). Moreover, forl <i <n — p,
one sees easily that

f/f//i = Wz‘ \ SingWo

is the i—th polar variety (in the usual sense) associated Withand the
variablesX,,;, ..., X, (here,WW; \ SingW, denotes th&-Zariski closure

in C™ of the quasi—affine variety; \ SingWW). For a precise definition of

the notion of formal polar varieties and of polar varieties in the usual sense
we refer to Section 2.
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Suppose that the real variefl is non—empty and satisfies our assump-
tions. In Theorem 2 of this paper we show that every real polar variety
S;i =W;NnR" 1 < i < n— p,isanon—-empty, smooth manifold of
dimensionn — p — ¢ containing at least one point of each connected compo-
nent of the real variety,. In particular, the real variety,_,, is a finite set
containing at least one representative point of each connected component
of Sp.

Under the same assumptions we show in Theorem 1 that far i <
n—pthe quasi—affine varietyy’; \ SingWj is alocally complete intersection
that satisfies the Jacobian criterion. More precisely, the quasi—affine variety
W;\ SingW, is asmooth manifold of codimensipr-i that can be described
locally by certain regular sequences consisting of the polynorfiials. , f,
andi many well-determineg-minors of the Jacobia#( f1, . .., f,) of the
fi,o o, fpIn partlcular the quasi—affine variely/,,_,, \ SmgWO is zero-

dimensional, whencéV, —p = Whp \ SingW. Thus W, _p IS a zero-
dimensional complex variety that contains a representative point of each
connected component of the real variéty

The practical outcome of Theorem 1 and Theorem 2 consists in the
design of an efficient algorithm (with intrinsic complexity bounds), which
adapts the elimination procedure for complex algebraic varieties developed
in [30] and [31] to the real case. Under the additional assumption that, for
anyl < k < p, the intermediate idedlf,, ..., fx) generated by, ..., fx
in Q[X1,...,X,] is radical, we shall apply this procedure to m(epﬁl)
well-determined equation systems of Theorem 1, which describe the zero-
dimensional algebraic variety’,,_, = W,,_, \ SingWW, locally. In order
to find at least one representative point for every connected component of
the real varietySy, we have just to run the procedure of [30] and [31] on all
these equation systems. Counting arithmetic operatiofg§san unit costs,
this can be done in sequential time

( " )L(nd5)0<1>,
p—1

where § is the following geometric invariant of the regular sequence

fla"'afk‘:
0 := max{max{deg V(f1,..., fr) \ SingWy|1 < k < p},

max{deg W;|1 < i <n — p}}

(here, deg V (fi,..., fr) \ Wp anddeg W; denote the geometric degree in
the sense of [37] of the corresponding algebraic varieties).

This is the content of Theorem 3 below. For any k& < p and any
1 < i < n — p the quantitys bounds the degree of the algebraic variety

V(fi,..., fx) \ SingW, and of the—th polar varietyV; = W; \ SingW.
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In [30] and [31] the quantitynax{deg V (fi,...,fi)|l < i < p}is
called the geometric degree (of tbemplexinterpretation) of the equation
systemfi,..., fp. In analogy to this terminology, we shall calthe geo-
metric degreeof the real interpretation of the equation systefn .. ., f,.

In view of the complexity result above we shall understand the parameter
9 as anintrinsic measure for the size of the real interpretation of the given
polynomial equation system. Nevertheless, the word "intrinsic” should be
interpreted with some caution in this context: observe that the complexity
parametet depends rather on the equatiofis. . ., f, and their order than
just on the varietyV; \ SingWj.

In order to make our complexity result more transparent we are going
now to exhibit, in terms of extrinsic parameters, some estimations for the
intrinsic system degre&

Let us writed; := deg f1,...,dp := deg f, and letD := d;---d,
denote the classicalé&out number of the polynomial systefy, ... ,fp
Then we have the following degree estimations for the complex algebraic

varietyWo = V(f1,..., fp)
deg?o < degWO < D < dp7

Sp denotes again th@-Zariski closure inC" of the real varietyS.

On the other hand, we conclude from Theorem 1 that, for eikety<
1 < n—p,the polar varietﬁ is defined by the initial systerfy, . . ., f, and
certainp—minors of the Jacobiai( f1, . . ., f,). Letus denote the maximum
degree of thesg-minors byc;. It turns out that for, any <i < n —p, the
polar varletyW is a codimension one subvariety WZ 1. Now one sees
easily that the quantityp; := D c; - - - ¢; represents a reasonable€But
number” of the variety/NVi and that this Bzout number satisfies the estimate
deg W; < D;. Putting all this together, we deduce the following estimate
for the intrinsic system degree

0 < Dy_p=Dcyr---cpp.

Observing that for anyi, 1 < i < n — p, the inequality
¢; <dy +---+d, — pholds, we find the estimations:

0 < D(dl 4+t dp _ p)n*p < dp(pd _ p)"fp < p"Pg",

In conclusion, our new real algorithm has a time complexity that is, in
worst case, polynomial in the '&out numberDc; - - - ¢,—,, of the zero—
dimensional polar varieth

Our complexity bounc( ) (ndd) O(1) depends on the intrinsic (geo-
metric, semantic) parametéland on the extrinsic (algebraic) parametérs
andn in a polynomialmanner, and it depends on the syntactic parameter
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L only linearly. In this sense one may consider our complexity bound as
intrinsic. Our real algorithm promises therefore to be practically applicable
to special equation systems with low value for the intrinsic parandeter

On the other handgven in worst caseur algorithmimprovesupon the
knownd°(™—time procedures for the algorithmic problem under consider-
ation, also in their most efficient versions [4], [5] (see also [3], [12], [19],
[39], [40], [41], [59], [60], [14], [13]). However, this distinction does not
become apparent when we measure complexities simply in tersharad
n (all mentioned algorithms have worst—case complexities of #ffj&)),
but it becomes clearly visible when we use th&ZBut number” just intro-
duced as complexity parameter. Only our new algorithm is polynomial in
this quantity. On the other hand, we are only able to reach our goal of algo-
rithmic efficiency by means of a strict limitation to a purely geometric point
of view. For the moment there is no hope that any of the standard questions
of real algebra (e.g. finding generators for the real radical of a polynomial
ideal or the formulation of an effective real Nullstellensatz) can be solved
within the complexity framework of this paper (compare [52], [7] and [8]).

In conclusion we may say that this paper establishes a new connection
between the algorithmic complexity of finding a representative set of real
solutions of a given polynomial equation system and the geometry of the
(complex) algebraic variety defined by this system. However, there is a price
to pay for that: this connection becomes only visible if we restrict ourselves
to reduced complete intersection systems that define smooth, compact real
varieties.

Our (algorithmic and mathematical) methods and results representa non—
obvious generalization of the main outcome of [1], where an intrinsic type
algorithm was designed for the problem of finding at least one representative
pointin each connected component of areal, compgutrsurfacgiven by
ann—variate, smooth polynomial equatigrof degreed > 2 with rational
coefficients (such that represents a regular equation of that hypersurface).
This is the particular case of codimensipr= 1 of the present paper, and
our setting leads to the complexity bouhénds)°™) proved in [1].

2 Polar varieties
2.1 Notations, notions and general assumptions

LetXy,..., X, beindeterminates (or variables) over the rational num@ers
and let polynomiald, ..., f, € Q[X1,..., X,] with1 < p < n be given.
LetC™ andR" denote thei—dimensional affine space over the complex and
the real numbers, respectively. We thitikto be equipped with th&-Zariski
topology, whereas, oR"™, we consider the strong topology. For any subset
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U C C" we denote itsQZariski—closure byU. By X := (X1,...,X,)

we denote the vector of variablé§,, ..., X,, and byx := (z1,...,z,)
any point of the affine spad@€™ or R™. We suppose that the polynomials
fi,..., fp form areducedregular sequence iQ[X1, ..., X,] (here "re-

duced” means that for anly< k < pthe ideal(fi, ..., fi) is radical). The
Jacobian of these polynomials is denoted by

0
J(fl»"'?fp) = |:8:)f(k]:| 1<k<p '

1<j<n

For any pointr € C™ we write

| 9fk
Kooyl = @)
1<j<n
for the Jacobian of the polynomiafs, ..., f, atx.
The common complex zeros of the polynomials. . ., f,, form an affine,
Q-definable subvariety df™, which we denote by

Wo =V (fi,..., fp) ={z € C"|fi(z) = ... = fp(z) = 0}.

Apointz € Wy =V (f1,..., fp) is said to benon—-singularor smooth(in

W) if the rank of the Jacobian df, . . ., f, in x is p. Otherwiser is called
asingularpoint of Wy. By SingW, we denote the set of all singular points
of Wy. Since we suppose that the idédl, . . ., f,) is radical, our notion

of a smooth point coincides with the usual one for algebraic varieties by
Jacobi’s criterion.

Remark 1If = € W, is smooth, then the hypersurfaces defined by the
polynomialsfi, ..., f, intersect transversally at the point

Definition 1 Foreveryi, 1 <1i < n—p,letA; denotethe setofallcommon
complex zeros of afi-minors of the Jacobiasi( f1,. .., f,) corresponding
to the columng1,...,p+ i — 1}. In other words 4, is the determinantal
variety defined by alb—minors of the submatrit?*" ' (f,.. ., f,) deter-
mined by the column§l, ..., p + i — 1} of the Jacobian/(fi,. .., f,).

We introduce the affine variety

W, :=WynN A
associated with the linear subspace@f, namely
XPHli= {2 € C"|Xppi() = ... = X,(2) = 0}

and callW; thei—th formal polar varietypf ;. By
Wi = W; \ SingWy

we denote thé-th polar variety(in the usual sense) of the varidily,.
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Remark 2 — Our definition of polar and formal polar variety depends rather
onthe regular sequenge, . . ., f, than on the algebraic variely,. The
ad hoc term "formal polar variety” is only used in this paper for the
purpose of clarification of our subsequent mathematical arguments.

— The index: reflects the expected codimension of the polar varigtyn
Wy. With respect to the ambient spaCg, the expected codimension of
ﬁvfi is p + i (see Theorem 1 below for a precise statement).

— According to our notation, the common zeros ofalininors of the Jaco-
bianJ(fi,..., fp) form the determinantal variet,,_,, 1. Obviously,
we haveSing Wy = Wy N An_p+1 = Wn—p—H-

— The formal polar varietiedV;, 1 < i < n — p, constitute a decreasing
sequence. In particular, we have

WooDW1D---DW; D DWp_p D Wy_py1 = Sing Wp.

The concept of polar variety goes back to J.—V. Poncelet. Its development
has a long history: Let us mention among others the contributions of F.
Severi, J. A. Todd, S. Kleiman, R. Piene, D. B,IB. Teissier, J.—P. Henry,

M. Merle ... (see e.g. [58] and the references quoted there).

2.2 Local description of the determinantal varieties

In this subsection we develop a succinct local description of the determinan-
tal varieties4;, 1 < i < n — p. The following general Exchange Lemma
will be our main tool for this description (this lemma is used in a similar
form in [32]). It describes an exchange relation between certain minors of a
given matrix.

Let A be a given(p x n)-matrix with entriesa;; from an arbitrary
commutative ring. Lef and & be any natural numbers with < n and
k < min{p, (}. Furthermore, lef; := (i1, ..., ;) be an ordered sequence
of k different elements from the finite set of natural numiérs . ., /} and
let M4 (1) := Ma(iq, ..., i) denote thé-minor of the matrixA built up
by the firstk rows and the columns, . . ., i;. Ifitis clear by the context what
is the matrixA, we shall just writeM (i1, ..., i) := M (1) := M4 (Ij).

Lemmal (Exchange Lemma)As before let a matrixd and natural num-
bersl andk be given, as well as two intersecting index dgts- (i1, . . ., ix)
andI;_1 = (ji,...,Jk—1)- Then, for suitable numbees € {1, —1} with
j € I\ I,_; we have the following identity:

M (L )M ()= Y & MLA\{GHM (I u{i}). ()
JELN\I—1
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Proof. Consider the followind (2k — 1) x (2k — 1))-matrix L with entries
from the given matrixA:

Ly(Iy)

kai(lk)

Li(Ip—1) | Li(Ix)

| Lie(Ik—1) | Li(Ix)

Here, for anyl < j < k, L; (I;) denotes the row vector of length
that we obtain selecting, from thieth row of the matrixA, thek elements
placed in the columng, = (i1,...,i). Similarly, L; (Ix_,) is obtained
from the j—th row of A selecting thé: — 1 elements placed in the columns
Ii1 = (J1s -+ s Jr—1)-

Now it is not difficult to verify the identity(x) by calculating the determi-
nantdet L of the quadratic matrixX via Laplace expansion in two different
ways. First, by expansion alet L according to the first — 1 columns of
L, we obtain the left-hand side 6f), disregarding the sign. Expansion of
det L according to the firsk — 1 rows of L leads to the right—hand side of
(%). This implies the identity ) for an appropriate choice of the signs

WIth]GIk\Ik,1 O
Let m € Q[Xy,...,X,] denote the(p — 1)-minor of the Jacobian
J(f1,--., fp) given by the firs{p — 1) rows and columns, i.e., let
o O f
m = det |:6X7:| ket .
1<j<p-1

We consider the determinantal variety outside of the hypersurface
V(m):={z € C" | m(z) =0}
and denote this localization Ky\;),,, i.e., we set
(A))m = A\ V(m).
From now on, forl <4y < --- <14, <n, let us denote by

M(iy, ... i)
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the polynomial inQ[X1, ..., X,,] defined as the—minor of the Jacobian
J(f1,-.., fp) built up by itsp rows and the columng, . .., i,. As before,
we denote by

M(iq, ..., ip)(x)
the specialization oM/ (i1, . .., 4,) in a given pointz € C".
Proposition 1 Let1 < i < n — p be arbitrarily fixed, and letn be the

(p — 1)-minor defined above. Then the determinantal varigtys locally
(i.e., outside of the hypersurfaégm)) described by theé polynomials

M@A,....p—1,p),,...,M(1,....p—1,p+i—1).
In other words, we have
(A = {z € C"| m(z) # 0, M(L,...,p—1,8)(x) =0,
Se{p,,p—i—z—l}},

whereM (1,...,p — 1, s) denotes, as above, tpe-minor of the Jacobian
J(f1,-.., fp) built up by the firsp — 1 columns and the—th column.

Proof. It suffices to show that

(A)m D{z e C*|m(z) #0,M(1,...,p—1,5) =0,
se{p,...,p+i—1}}

holds.
Let z* € C™ be any point satisfying the conditions(z*) # 0 and
M(@1,...,p—1,s)(z*) = 0 for everys € {p,...,p+ i — 1}. We have
to verify that

M(iq,...,ip)(z") =0

holds for all ordered p—tuples (iy,...,i,) of elements of
{1,...,p+i—1}.

Applying the Exchange Lemma te» = M(1,...,p — 1) and
M((iq, ..., 1ip), we deduce the identity

m(x* )M (iq,...,ip)(z") =

> ej M ({ir, -, iph \{7}) ()M (1, p—1,5)(")
GE{it yeensip\{1,eep—1}
for suitable numbers; € {1, -1} withj € {i1,...,i,}\{1,...,p—1}.By
assumption we have (z*) # 0andM (1,...,p—1,7)(z*) =0forall j €
{p,...,p+i—1}. Thisimplies that:* belongs to the s&tA;),,. O
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Notation 2 In the sequel we shall simply writé/; for the p—minor
M(1,...,p—1,j) given by the firsp — 1 columns ofJ(fi, ..., f,) and
the columry € {p,...,n}.

Remark 3 — Proposition 1 implies that the codimension£f outside of
the hypersurfac& (m) is at most.

— Proposition 1 holds also for the determinantal varidty_,,; that de-
fines the singular locuSing Wy = W,,_,1 of the varietyi¥,. Hence,
for any pointz* € C” satisfying the conditionn(z*) # 0 and the
n — p + 1 equations

Mj(:c*) :07 ] € {pv-“vn}a

the Jacobia/(fi, ..., fp)(z*) becomes singular.

— Replacing the previously chosép — 1)-minor m by any other(p —
1)-minor of the Jacobiad(fi, ..., f,), the statement of Proposition 1
remains true mutatis mutandis.

2.3 Local description of the formal polar varieties

The aim of this subsection is to show the following fact:

Let the variablesX, ..., X, be in generic position with respect to the
polynomialsfi, ..., f,, and letrn be any(p — 1)—minor of the Jacobian
J(f1,..., fp). Inthis subsection we are going to show that any formal polar
varietyW;, 1 < i < n—p,isasmooth complete intersection variety outside
of the closed sebingWy U V(m). Moreover, we shall exhibit a reduced
regular sequence describing this variety outsid8ifgWy U V (m).

Asinthe previous subsection, lete Q[ X1, ..., X,] denotethép—1)—
minor of the Jacobiad (fi, ..., f,) built up by the first(p — 1) rows and
columns.

Let Y3,...,Y, be new variables and l&t := (Y7,...,Y},). For any
linear coordinate transformatioi = AY’, with A being aregulafn x n)—
matrix, we define the polynomials

G1(Y) := fi(AY),...,Gp(Y) := f(AY).
The Jacobian ofry, .. ., G, has the form

oG
J(Gl,...,Gp) = [8}/5:| ke = J(fh.. . 7fp)A.

1<j<n

Using a similar notation as before, we denote by

M(iy, ... i)



Efficient real elimination 125

the p—minor of the new Jacobiai(G1, ..., G)) that corresponds to the
columnsl < iy < -+ <ip <.

Moreover, we denote by/; thep—minorﬁ(l, ...,p—1,7) determined
by the fixed firstp — 1 columns of J(G, ..., G,) and the columnj e

{p,...,n}.
Forp < r,t < nletZ,., be a new indeterminate. Using the following
regular(n —p + 1) x (n — p + 1)—parameter matrix

1 0 0 -0

O

2= | Zptic1p Zpri-ipe1 - 1 :
Zpvip ZLptiptl Lptipri-1 1
. . .
| Znp  Znpt1 c Dnptricl Znpti Znprivl oo 1

we construct ar{n x n)—coordinate transformation matrit := A(Z),
which will enable us to prove the statement at the beginning of this subsec-
tion.

Forthe moment, letusfixan indéx< ¢ < n—p. We consider the formal
polar varietylV; outside of the hypersurfadé(m). Corresponding to our

choice ofi, the matrixZ may be subdivided into submatrices as follows:

Zy) Oin—p—i+1

Z = ,
ACRI/0

Here the matrixZ (9 is defined as

Zptip -+ Lptipri-1
AR
Lnp - Lnppri-i

andei) andZéi) denote the quadratic lower triangular matrices bordering
ZWin Z,andO; ,,_p_i11 isthei x (n — p — i + 1) zero matrix. Let
Ip—1 Op—1,i Op—1,n—p—i+1
A:=AZ) = Oip—1 Z%i) Oin—p—i+1
On—p-it1p1 2% 2%
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Here the submatrice. and O, s are unit or zero matrices, respectively,
of corresponding size, and®, z\" and Z{” are the submatrices of the
parameter matri introduced before. Thusi is a regular, parameter de-
pendentn x n)—coordinate transformation matrix.

Like the matrixZ, the matrixA contains

_(n=p)ln—p+1)
2

parametersZ, ; which we may specialize into any pointof the affine
spaceC?. For such a point € C* we denote the corresponding specialized
matrices byA(z), Z\"(z), Z{?(z) and 2 (2).
We consider now the coordinate transformation giverkby: AY with
A = A(Z) and calculate the Jacobial{G, ..., G,) with respect to the
new polynomialsGiy, ..., G, . Recall that the coordinate transformation
matrix A depends on our previous choice of the index i <n — p.
According to the structure of the coordinate transformation matrix
A(Z) we subdivide the Jacobiaf f1, . . ., f,) into three submatrices

Jﬁyth{UVWL
with

| Ofk | Ofk | Ofk
U= [3)(7] 1<k<p ’ V= [a)fj} 1<k<p ’ W= [8){1 1<k<p '
1<j<p-1 p<j<p+i-1 p+i<j<n
From the identity.J(G1,...,Gp) = J(f1,..., fp)A we deduce that our
new Jacobian is of the form:

0Gy,

J(G]_,...,Gp): |:a)/
J

] zhu@9+wﬂﬂwéﬂ.
1<k<p

1<j<n

We are interested in a local description of th¢h formal polar variety
W; = WpN A, outside of the hypersurfad&m), wherem is the fixed upper
left (p — 1)—minor of the Jacobiad(f1,. .., f,) (and also of its submatrix
U). Since the coordinate transformatioh= AY leaves the submatrii
unchanged, thép — 1)—minorm remains fixed under this transformation.
From Proposition 1 we know that the localized determinantal vafiaty,,,
is described by théequations

M,=0,...,My ;1 =0,

and by the conditiom#0. Thep—minorsM,, ..., M,;—; defining these
equations are built up by the submatiik V'] of the Jacobiad (f1,. .., f,).
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Under the coordinate transformatidiiZ) the matrix{U V] is changed into
the submatrix . ‘
U vz +wz®

of the JacobianJ(G1,...,G)p) and thep—minors M, ..., M, ;1 are
changed into the—minors

My, ..., My

of the matrix[ U vzY 4 WZ(Z')]. This implies the matrix identity

[Mp, ey MpJﬂ',l} = [Mp, e 7Mp+i71] Z{Z)—I- [Meri, ey Mn] Z(Z)(**)

For the previously chosen indéx< i < n — p, the coordinate transfor-
mationX = A(Z)Y induces the following morphism of affine spaces:

@, C"x C*— CP xC,
defined by

(z,2) s ®;(z, 2) == (fl(g;),...,fp(x),Mp(m), .. .,Mpﬂ-,l(x,z)) .

Consider an arbitrary point € C°. We denote byA? the determinantal
subvariety ofC™ defined by allp—minors of the matrix

[U V29 (z) + WzO (z)} (which is a submatrix of the new Jacobian
obtained by specializing the coefficients of the polynomdls. .., G,
into the pointz € C?#). Writing W7 := WyN A?, one sees immediately that
the zero fiber; ! (0) of the morphismd; contains the set

(WE)m = Wo N (A7 ).

In other words, for any arbitrarily chosen poing C?#, the zero fibefz’);1 (0)
of the morphism?; contains the transformed formal polar variétf, lo-
calized in the hypersurfadé(m) and expressed in the old coordinates.

We are going now to analyze the rank of the Jacobian of the morphism
@; in an arbitrary point(z, z) € C" x C® with z € (W7?),,. Using the
subdivision of the parameter matinto the partsZ®, z\” andZ{" the
Jacobian/(®;) of the morphisn®; can be written symbolically as

oe, 06, 0, o,

TOI=10X 920 550 579)

%
2

We have
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9P, oP; | _
oxX 9z | —
J(fh ceey fp) Opm—p—i-i—l Op,n—p—i-i—l
M, M,
* [82p+i,p’ ce Ban] e O1,n—p—i+1
. . . . )
) 3]\7p+i—1 8Mp+i—1
I * Ol,nfpferl |:8Zp+7,',p+il S D1

where the columns correspond to the partial derivatives; afith respect
to the variables

Xiyeoy Xn, Zp+i,p7 RE) Zn,p7 SER) Zp—i—i,p—i—i—h s Zn,p—‘ri—l

(in this order). The entrie®,.; denote here zero matrices of corresponding
size and the row matrices labeled by fepresent the partial derivatives

with respect to the variableXy, . .., X,, of the minors)M,,, ...
These row matrices will be irrelevant for our considerations.

s Mpti-1.

Furthermore, the third submatr[x% of J(&;) can be written as
07,
Op,i-1 Op,i—2 0
M, M, .
0Zpt1,p’ "7 3Zp+i71,p] Ori-2 0
. 8A~/[p+l 8Mp ..
Ori1 OZprapr1’ "7 0Zpyio1pt1 0
. , oMy
01:1—1 0171—2 |:8Zp+i_1,p+i—2:|
O1,i—1 O1,i—2 0
0P,

and the last submatri{ of J(®;) is a zero matrix since thg—

075"
minorsiM,, ..., M,;_, are indepedent of the parameteis occurring in
the submatri%é’) of the coordinate transformation matui¥( 7).

Therefore, the Jacobiah(®;) is of full rankp+i wherever the submatrix
~ 09, 09,
I (i) := [8)( aZ(i)]
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is of full rank p + ¢. On the other hand, considering theow matrices

contained inJ(®;)forp <j<p+i—1
oM; OM;
0Zpyi;  0Zy;

)

we see that the representaties) of the transformeq}—minorsﬁj implies
the identity

OM; OM;
8Zp+]i7j"”’8Zn,]j = [ Mpyi,..., M,].
Thus, we obtain the representation
[ J(fis--5fp)  Opm—p—iti -+ Opn—p—it1 ]
j(diz) _ * [Mp+i, LMy Olmip,prl
i * O1,n—p—it+1 o [Mpyis .o, My

Since all entries of the submatri®;) of the Jacobiad/ (#;) belong to the
polynomial ringQ[ X7, . .., X, ], we see that the rank of the mattiX®; ) in
agivenpointz, z) € C" xC*withz € (W), depends only on the choice
of z. According to our localization outside of the hypersurfaten), let
us consider an arbitrary smooth poinof W, = V(fi, ..., f,) satisfying
the conditionn(z) # 0. Suppose that the submatrix®;)(z) is not of full
rank, i.e., that B

rk J(9;)(T) <p+i
holds. This latter inequality is valid if and only if alp—minors
My, ..., M, of the Jacobia/(f1,..., f,) vanish atz. Let Z € C* be
any parameter point such that the p@ir z) belongs to the fibed; *(0) of
the morphismd;. Since thep—-minorsM,, . .., M,;_1 of the transformed
Jacobian/(Gh, . .., Gp) must vanish atz, z), we deduce frongsx) that

0,...,0) = [My(), ..., Myyi1(7)] 217 (2)

holds (herPZfi) (2) denotes again the matrix obtained by specializing the
entries onfi) into the corresponding coordinates of the paing C¥%).
Because of the lower triangular form of the regular mafff)i(), the latter
matrix equation holds if and only if the conditions

Mpiia(Z) = -+ = Mp(Z) = 0.
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are satisfyied. Therefore, our assumptionstc@ndz imply m(z) # 0 and
M,(z) = --- = My(z) = 0. However, by Remark 3 this means that the
Jacobian/(f1, ..., fp)(Z) is singular. Hences is not a smooth point dfi,
i.e.,z € Sing Wy, which contradicts our assumption on

Now, suppose that we are given a pdiatz) € C™ x C* that belongs
to the fiber®; ' (0). Thenz belongs tolV,. Further, suppose thatis a
smooth point ofity outside of the hypersurfadé(m). Let us consider the
Zariski—open neighbourhodd of z consisting of all points: € C™ with
m(z) # 0andrk J(f1,..., fp) = p, i.e., we consider

U:=C"\ (Sing Wo UV (m)).
We are going to show that the restricted morphism
®;: UxC* = CPxC

is transversal to the origitn € CP x C'. )

In order to see this, consider an arbitrary pdintz) of U x C* that

satisfies the equatio®;(x,z) = 0. Thus,z belongs to/ N W, and is,
therefore, a smooth point &, which is outside of the hypersurfatdm).
By the preceding considerations on the rank of the Jacohi) it is clear
thatJ(&;) has the maximal rani + ¢ at (x, z). This means thatz, z) is a
regular point ofp;. Since(x, ») was an arbitrary pointab; ! (0)n (U xC*),
the claimed transversality has been shown.

Now, applying the Weak—Transversality—Theorem of Thom—Sard (see
e.g. [22]) to the diagram

o10)N(U xC?% «— C"xC*
N\ )
(CS

one concludes that there is a residual denseXsetf parameters € C*
for which transversality holds. This implies that, for every fixed (2;, the
transformed and localized formal polar variety

W7\ (Sing Wo UV (m))

is either empty or a smooth variety of codimensjo# i. This variety can
be described locally by the polynomials

A1), (X)), Mp(X,2),..., Myyi1(X, 2) (% % %)

that form a regular sequence outsideSef.g\Wy U V (m). Up to now, our
considerations concerned only the change of coordinates for an arbitrarily
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fixedl < i < n—p. However2 := ._7 £2; is a dense residual parameter
setinC* from which we can choose a simultaneous change of coordinates
forall 1 < ¢ < n — p. For every choicez € 2 andl < i < n —
p the transformed formal polar variety’? is, outside of the closed set
SingWy UV (m), a smooth complete intersection variety described by the
(local) regular sequende * ). One sees now easily that the affine space
R* contains a non—empty residual dense set of parametsush that the
conclusions above apply to the coordinate transformalion= A(z)Y.
Moreover,z can be chosen froif)®.

Taking into account Proposition 1 and Remark 3, we deduce the follow-
ing result from our argumentation:

Theorem 1 Let Wy = V(f1,..., fp) be a reduced complete intersection
variety given by polynomialf, . . ., f, inQ[X1, ..., X,,] and suppose that
the variablesXy, . . ., X,, are in generic position with respect 9, . . ., f,.

Further, letm be the upper lefp — 1)—minor of the Jacobiad (f1, ..., fp).
Then, every formal polar variefiyy/;, 1 < i < n — p, localized with respect
to the closed setingWWy U V(m), is either empty or a smooth variety of
codimensiomn + i that can be described by the equations

fla"'vfpuMpa"'aMp-‘ri—lv

wherelM;, p < j < p+i—1,isthep—minor of the Jacobiad (fi, ..., fp)
given by the columnk, ..., p — 1, j. Then the polynomials

ooy fps My, oo, Mpiiq
form a regular sequence outside ®fngWy U V(m) .

Remark 4Taking into account that the argumentation on the localization
with respect to the fixe@dp — 1)-minor m remains valid mutatis mutandis
for any other(p — 1)-minor 7 of the Jacobiaw/(fi, ..., f,), Theorem 1
can be restated for any fixégd — 1)—minor just by reordering of columns
and rows of the Jacobiah(fi, ..., f,).

2.4 Existence of real points in the polar varieties

Letfi,..., f, € Q[Xy,..., X,]beareducedregular sequence and letagain
Wy :=V(f1,..., fp) be the affine variety defined bfy, ..., f,. Consider
the real varietyS; := Wy N R™ and suppose that

(i) Spis nonempty and bounded (and hence compact),
(i) the JacobianJ(f1,..., fp)(z) is of maximal rank in all points: of
Sop (i.e., Sp is a smooth subvariety &" given by the reduced regular

sequence, ..., fp),
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(iii) the variablesXy,..., X,, are in generic position with respect to the
polynomialsfi, ..., fp.

Further, letC be any connected component of the compactSgeand
letb := (a1,...,ap—1,ap,...,an—1,a,) € C be alocally maximal point
of the last coordinaté&,, in the non—empty compact s€t c Sy. Without
loss of generality we may assume that the upper(jeft 1)—minorm of
the Jacobia/(f1,.. ., f,) does not vanish ih (by our assumptions there
must be &p — 1)-minor of J(fi, ..., f,) not vanishing ab). In any local
parametrization af atb the variableX,, cannot be anindependent variable,
sinceX,, attains a local maximum it (a,, is this local maximum). Hence,
without loss of generality we may assume that the local parametrization of
Sp in b has the following form: there exists an openiget R"~? containing
the pointa := (ay, ..., an—1), and a continuously differentiable function

o:U > RP o= (901,'--,9%71»%%)

such that
€Tl = §01(l’p, L) $n—1)7 cey Ip—1 = Qpp—l(l‘pu L) xn—1)7
Ty = On(Tpy .o, Tn-1)
holds for anyr = (z,, ..., zn—1) € U. With respect to this local parametri-

zation, the polynomialg;,, 1 < k < p, induce real valued functions of the
form: B
fk(Xp; ey Xn—l) =

fk(@l(Xpa . ,Xn_l), . ,gop_l(X:m e 7Xn—1)7
Xp, Ce 7Xn717 Spn(Xpa Ce >Xn71))-
For everyl < k < p, and every < j < n — 1, one has the identity

Ofx  0fr | Ofx Op1 Ofi Opp—1, Ofi Opn
_ =0 (1
0X, ~ 0X, axi0x, " Tax, ox, Tox,ox, 0 W

in the open set.
Considering thép x p)—matrix

ofr df1 df1
0x, 0X,—1 00X,
B :: ------------------------ ?
Ofp Ofp  Ofp
L aXl aprl a)(n i
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and observing thaB is regular i/, we obtain from (1) that

991 %(m)
X, X,
_ det B(z) | = (4di BY(@) | @)
Opp—1 Afp-1
a)p(j aﬁ(j (@)
Oon of,
L 09X ] i 37;3'(:6) 1

holds for anyz € U (hereAdj B denotes the adjoint matrix of the matrix
B). As b is a locally maximal point ofX,,, we have that

Opn, _
e (a)=0

holds for everyp < j < n — 1. Thus, equation (2) implies

Of Ofp

Bln1) () 53 e

(0) +---+ B(n,p) (b) (0) =0 ®3)
for everyp < 5 < n —1 (here forl < k < p we denote the entry of the
adjoint matrixAdj B at the cross point of the-th column and the last row
by B(n, k)). Taking into account the particular form of the matfsx the

equation system (3) means that

[ on of . Of . |
X, b ... 9X, (b) e (b)
det | L =0 @
Oy Ofp Ofp
L 00X, ®) - 0Xp—1 (®) 0X; (®) _
holds for everyp < j < n — 1. Using our notations for the-minors of the
JacobianJ(f1,. .., fp), we reinterprete now the equations (4) as
M, (b)=...= M, ;1 (b) =0.

Sincem(b) # 0 holds by assumption, Proposition 1 implies thiaelongs to
the localized determinantal variety,,—,).,. Therefore, we have e W, N
(Ap—p)m, 1.e., the lastformal polar variety’,,,, contains the poirit. Onthe
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other handb is a nonsingular point dfiy and belongs therefore Wn_p =
Wi—p \ SingW. ThusWn_p is a non—empty set of dimension zero that
contains the real poirit of the arbitrarily chosen connected componént
of the real varietySy. In particularp € W,,_, "R™ C W; NR" = S, holds
foranyl <i<n —p.

These considerations imply the following result:

Theorem 2 LetW, := V(f1,..., fp) beasin Theorem 1. If the real variety
So := Wy N R™ is non—empty, bounded and smooth, and if the variables
Xi,..., X, areingeneric position with respectf, . . ., f,,theneveryreal
formal polar varietyS; = W;NR", 1 < i < n—p, isanon—empty, smooth
manifold of dimension — (p + ¢) and contains at least one representative
point of each connected component of the real varigty

3 Real equation solving

The geometric results of Section 2 allow us to design a new efficient proce-
dure that finds at least one representative pointin each connected component
of a given smooth, compact, real complete intersection variety.

This procedure will be formulated in the algorithmic (complexity) model
of (division-free) arithmetic circuits and networks (arithmetic-boolean cir-
cuits) over the rational numbeg.

Roughly speaking, a division-free arithmetic circdioverQ is an al-
gorithmic device that supports a step by step evaluation of certain (output)
polynomials belonging t@[X1, ..., X,], say fi,..., fp,. Each step ofs
corresponds either to an input froky, .. ., X, to a constant (circuit pa-
rameter) fromQ or to an arithmetic operation (addition/subtraction or mul-
tiplication). We represent the circyitby a labelleddirected acyclic graph
(dag) The size of this dag measures the sequential time requirements of the
evaluation of the output polynomiafs, . . ., f, performed by the circuif.

A (division-free) arithmetic network ovep is nothing else but an arith-
metic circuit that additionally contains decision gates comparing rational
values or checking their equality, and selector gates depending on these
decision gates.

Arithmetic circuits and networks represent non—uniform algorithms, and
the complexity of executing a single arithmetic operation is always counted
at unit cost. Nevertheless, by means of well known standard procedures our
algorithms will always be transposable to the unifarmndombit model
and they will be practically implementable as well. All this can be done in
the spirit of the general asymptotic complexity bounds stated in Theorem 3
below.

Let us also remark that the depth of an arithmetic circuit (or network)
measures thparallel time of its evaluation, whereas its size allows an al-
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ternative interpretation as "number of processors”. In this context we would
like to emphasize the particularimportance of counting oolyscalamrith-

metic operations (i.e.,only essential multiplications), talkilinear oper-
ations (in particular, additions/subtractions) for cost—free. This leads to the
notion of nonscalar size and depth of a given arithmetic circuit or net@ork

It can be easily seen that the nonscalar size determines essentially the total
size of 8 (which takes into account all operations) and that the nonscalar
depth dominates the logarithms of degree and height of the intermediate
results ofg.

An arithmetic circuit (or network) becomes a sequential algorithm when
we play a so—callegebble gamen it. By means of pebble games we are
able to introduce a natural space measure in our algorithmic model and
along with this, a new, more subtle sequential time measure. If we play a
pebble game on a given arithmetic circuit, we obtain a so—caliexdght
line program (slp) In the same way we obtain@mputation tredrom a
given arithmetic network. For more details on our complexity model we
refer to [11], [25], [26], [45], [53], [38] and especially to [33] (where also
the implementation aspect is treated).

In the next Theorem 3 we are going to consider families of polynomials
fi,..., fp belonging taQ[ X7, . . ., X,,], for which we arrange the following
assumptions and notations:

() fi,..., [, formaregular sequence @ X1,. .., X,],

(i) foreveryl < k < ptheideal(fy,..., fr) generated by, ..., fx in
Q[Xy,...,X,]isradical and defines a subvariety@f of dimension
n — k that we denote by}, := V(f1,..., fr).

(iii) the variablesXy,..., X,, are in generic position with respect to the
polynomialsfi, ..., fp.

Let Wy := {x € C"|fi(z) = --- = fp(x) = 0} and denote byingWy

the singular locus ofVy. For1 < i < n — p let W; be thei—th formal

polar variety associated withy and the variablex,;, ..., X, and let

W; .= W; \ SingW, be thei—th polar variety oM in the usual sense (see
Section 2 for precise definitions). Further, for< £ < p we shall write
Vi := Vi \ SingWy. We call

§ = max{max{deg Vj,|1 < k < p}, max{deg W;|1 < i < n — p}}

the degree(of the real interpretationdf the polynomial equation system

fi,..., fp- Finally, let us make the following assumption:
(iv) the specialized Jacobian(fi, ..., f,)(x) has maximal rank in any
pointz of Sy := Wy NR" = {z € R"|fi(z) = --- = fp(z) = 0}

andS is a bounded semialgebraic set (herf;gis empty or a smooth,
compact real manifold of dimension— p; see Section 2 for details).
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Theorem 3 Let n,p,d,d, L and ¢ be natural numbers witld > 2 and
p < n.There exists an arithmetic netwokkoverQ of size( " ) L(nd5)°™)
and nonscalar depti®(n(log nd + ¢) log 6) with the following property:
Let f1,..., f, be a family ofn—variate polynomials of a degree at mast
and assume thafy, ..., f, are given by a division—free arithmetic circuit
g in Q[Xy,...,X,] of sizeL and nonscalar deptlf. Suppose that the
polynomialsfi, ..., f, satisfy the conditions (i), (ii), (iii) and (iv) above.
Further, suppose that the degree of the real interpretation of the polynomial
systemfi, ..., f, is bounded by (let us now freely use the notations just
introduced before).

The algorithm represented by the arithmetic netwdflstarts from the
circuit 3 as input and decides first whether the complex varigty_,, is

empty. If this is not the case, thgm_p is a zero—dimensional complex vari-
ety and the network/ produces an arithmetic circuit i of asymptotically
the same size and nonscalar depti\aswhich represents the coefficients of
n+1 univariate polynomialg, p1, . . ., p, € Q[X,,] satisfying the following
conditions: .

degqg = # Wn—pv

max{degpi|l <k <n} <deggq,

Wop = {(p1(w), ..., pa(w))|u € C, q(u) = 0}.
Moreover, the algorithm represented by the arithmetic netwdridlecides
whether the seltV,,_, N R™ is empty. In this case we concludg = Wy N

R™ = (). Otherwise, the network/ produces at most Wn,p < ¢4 sign
sequences belonging to the get1,0,1} such that these sign sequences
encode the real zeros of the polynomjdla la Thom” ([18]). In this way,
namely by means of the Thom encoding of the real zergsiofl by means
of the polynomialg, . . ., p,, the arithmetic network/ describes the finite,
non—empty set

Wh—p NR™ = {(p1(w),...,pn(u))|u € R, ¢(u) = 0},

which contains at least one representative point for each connected compo-
nent of the real variety

So = {w €R"|fi(z) = - = fy(x) = O}

Proof. We shall freely use the notations of Section 2. Any selection of
indicesl < i1 < --- < i < nandl < j,k < p determines g—
minor M (iq,...,i,) and a(p — 1)-minor m(i1, ..., ,; j, k) of the Ja-
cobianJ(fi,..., fp) in the following way: M (i1, ..., ,) is the determi-
nant of the(p x p)—submatrix ofJ(f1,..., f,) with columnsiy, ..., i,
andm(iy,...,ip; j, k) is the determinant of the matrix obtained from the
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former one deleting the row numbgrand the column numbey,. There
are p*()) such possible selections. Let us fix one of them, say=

. ip = p;j = p,k := p. Then, using the notations of Section
2, we havem(ii, ..., ip;j,k) = m, M(i1,...,ip) = M,. Let us ab-
breviateg := mM,. From our assumptions of1, oo fp and Theorem

1 and Theorem 2 of Section 2 we deduce the following facts: For any
1 < i < n — pthe polynomialsfi, ..., f,, My, ..., Mp+;—1 have degree

at mostpd. They generate the trivial ideal or form a regular sequence in
the localizedQ-algebraQ[ X1, ..., X,]4. In either case the ideal generated
by fi,.. o, fos Mp, ..., Mpri—1InQ[X1,. .., X,], is radical and defines a
complex variety that is empty or of degree

deg(W; \ V(g)) < deg(W; \ SingWy) = deg W; < 6.

Moreover, by assumption, the polynomigls, ..., f, form a regular se-
quence inQ[Xy,. .., X,], and for eachl < k£ < p the ideal generated by
fi,.., fr inQ[X4,...,X,], is radical and defines a complex variety of
degree

deg (Vi \ V(g)) < deg Vi < 6.
One sees easily that the polynomidls. . ., f,, M,, ..., M,_; andg can
be evaluated by a division—free arithmetic circuit of sizel + »°) and
nonscalar deptl®(logn + ¢). Applying now, for eachl < i < n — p,
the algorithm underlying [30], Proposition 18 in its rational version [31],
Theorem 19 to the system

flzoa--'vfp:O>Mpzov"'aMerifl:O?g?éO
we are able to check whether the particular system
fI:Oa"'vfp:O7Mp:Ow"’Mn—l:Omg?éO

has a solution irC™. If this is the case, then this system defines a zero—
dimensional algebraic set, namél,_,,\ V' (g), and the algorithm produces
an arithmetic circuify in Q that represents the coefficientsof 1 univariate
polynomialsg, p1, . . ., b, € Q[X,] satisfying the following conditions:

deg @ = # (Wi—p \ V(9)),
max{deg pr|1 < k < n} < degq,
Wip \V(g) ={(P1(w), ..., pn(u))|u € C,q(u) = 0}.
The algorithm is represented by an arithmetic network of size
L(nds)°M and nonscalar depth(n(log nd+-£) log §), and the circuity has

asymptotically the same size and nonscalar depth. Running this procedure
for each selection < i; < --- < i, < nandl < j,k < pwe obtain an
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arithmetic network\j of sizep?(7) L(nds)°™) = (,",) L(nds)°") and
nonscalar deptl®(n(lognd + ¢)logd), which decides Whetheﬁfn_p:
Wa—p \ SingWy is empty. Suppose that this is not the case. Thgrde-

scribes locally the variety/,,_,,, which is now zero-dimensional. Each local

description ofi¥/,,_,, contains an arithmetic circuit representation of the co-
efficients of the minimal polynomial of the variabl€, with respect to
the corresponding local piece @f,,_,, . Moreover, one easily obtains the
same type of information for any linear forid; + X,, and any variable

X; with 1 < ¢ < n. One multiplies now all minimal polynomials of the
variable X,, obtained in this way. Making this product squarefree (see e.g
[45], Lemma 12) one obtains the polynomigbf the statement of Theo-
rem 3. Doing the same thing for the minimal polynomials of each linear
form X; + X,, and each variabl&; with 1 < i < n, yields by means

of [45], Lemma 26, the polynomialsy, ..., p, of the statement of Theo-
rem 3. All this can be done by means of an arithmetic netwdrkwhich
extends\y and has asympotically the same size and nonscalar depth. The
desired arithmetic network/ is now obtained fromV; in the same way

as in the proof [1], Theorem 8, namely as follows: applying the main al-
gorithm of [9] or [61] and adding suitable comparison gates for rational
numbers, we extend/; to a new arithmetical networl/ of asymptoti-
cally the same size and depth, such thatlecides whether the univariate
polynomialg has a real zero. If this is the case, the netwbtlenumerates
the existing real zeros af, encoding themd la Thom” ([18]). If¢ has no
real zero we conclud§, = (). Otherwise, the network/ encodes all real
zeros ofg by means offW,,_,, < ¢ sign sequences belonging to the set
{—1,0, 1}. This encoding and the polynomials, . . ., p,, describe now the
setW,—p, NR" = {(p1(u),...,pn(u))|lu € R,q(u) = 0} that contains a
representative point for each connected componef of O

Remark 5(i) Using the refined algorithmic techniques of [38] or [33] itis
not too difficult to see that for inputg, . . . , f,, represented by straight—
line programs of lengtii” and spacé the arithmetic network/ can be
converted into an algebraic computation tree which solves the algorith-
mic problem of Theorem 3 in tim@((T'dn? +n°)5% log? § log? log §)
and spac®(Sdné?).

(i) The smooth, compact hypersurface case (with= 1) of Theorem 3
corresponds exactly to [1], Theorem 8.

(i) Let J(f1,...,f,)T denote the transposed matrix of the Jacobian
J(f1,..., fp) of the polynomialsfi, . .., f, in the statement of Theo-
rem 3 and let

D=det J(f1,- ., o) I (f1,- - fp)T.
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From the well-known Cauchy-Binet formula one deduces easily that,
with the notations of Section 2, the identity

D= > det® Miy, ... i)

1<i1<-<ip<n

holds. Replacing now, in the statement and the proof of Theorem 3 for
1 <i < n — p, the polar varietyV; by W, := W, \ V(D) and the
parametep by

§ := max{max{deg V;|1 < k < p},max{degﬁ\/ill <i<n-p}}
one obtains a somewhat improved complexity result, since’ holds.

Let us now suppose that the polynomidls. .., f, € Q[X1,..., X,]
satisfy the conditions (i), (ii), (iii), (iv) above. Unfortunately, the complexity
parameters of Theorem 3 is strongly related to tleemplexdegrees of
the polar varietiesﬁVvl,...,Wn_p of Wo = {z € C"|fi(z) = --- =
fp(z) = 0} and not to theireal degrees. Under some additional algorithmic
assumptions, which we are going to explain below, we may replace the
complexity parameter by a smaller one that measures only the real degrees

of the polar varietiedVy, ..., W,_,. We shall call this new complexity
parameter theeal degreeof the equation systerfy, .. ., f, and denote it
by 6*.

Let1 < k£ < p and let us consider the decomposition of the interme-
diate variety17k into irreducible components with respect to tezariski
topology ofC™ sayf/;€ = C1U---UCs. We call an irreducible component
Cr, 1 <r <s, realif C. NR™ contains a smooth point @f,.. The union
of all real irreducible components of, is called thereal part of V;, and
denoted byV;*. We calldeg V;* thereal degreeof the intermediate variety
V. Similarly, we introduce for every < ¢ < n — p the real parfV; of

the polar varietﬁ/i and its real degreéeg W;*. Finally, we define theeal
degree of the equation systein .. ., f, as

0% := max{max{deg V;'|1 < k < p}, max{deg W;*|1 <i <n—p}}.

Now, we are going to restate the main outcome of Theorem 3 in terms of
the new complexity parametét. For this purpose we have to include the
following two subroutines in our algorithmic model:

— the first subroutine we need is a factorization algorithm for univariate
polynomials overQ. In the bit complexity model the problem of fac-
torizing univariate polynomials ove® is known to be of polynomial
time complexity [51], whereas in the arithmetic model we are consider-
ing here this question is more intricate [27]. In the extended complexity
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model we are going to consider here, the cost of factorizing a univariate
polynomial of degreeD overQ (given by its coefficients) is accounted
asDOW),

— the second subroutine allows us to discard non-real irreducible com-
ponents of the occurring complex polar varieties. This second sub-
routine starts from a straight-line program for a single polynomial in
Q[X1, ..., X,] as input and decides whether this polynomial has a real
zero (however, without actually exhibiting it if there is one). Again this
subroutine is taken into account at polynomial cost.

We call an arithmetic network ovép extendedf it contains extra nodes
corresponding to the first and second subroutine.

Modifying our algorithmic model in this way, we are able to formulate
the following complexity result, which generalizes [1], Theorem 12 and
improves the complexity outcome of our previous Theorem 3.

Remark 6Letn, p, d, 6*, L and/ be natural numbers wiith > 2 andp < n.
There exists an extended arithmetic netwafk over Q of size (pfl) X

L(nds*)°(") with the following property: Letfy, . . ., f, be a family ofn—
variate polynomials of a degree at masand assume that, ..., f, are
given by a division—free arithmetic circuit in Q[ X}, ..., X,,] of size L.
Suppose that the polynomiafs, . . ., f,, satisfy the conditions (i), (ii), (iii),
and (iv) contained in the formulation of Theorem 3. Let us now freely use
the notations introduced in the present section. Assume that the real variety
So = {z € R"|fi(z) = --- = fp(x) = 0} is not empty and that the real
degree of the polynomial systefy, . . ., f, is bounded by*. The algorithm
represented by the arithmetic netwdvk starts from the circuiff as input
and decides first whether the complex varigty_, is empty. If this is not
the case, theW’;_ , is a zero—dimensional complex variety and the network
N* produces an arithmetic circuit i@ of asymptotically the same size
as N*,which represents the coefficients of+ 1 univariate polynomials
a3, ...,k € Q[X,] satisfying the conditions

degq” = # W,_,,
max{degp;|l <k <n} <degq",

Wip = A{i(w), ..., pp(u))|u € C,¢"(u) = 0}.

Each ovef irreducible component of the complex variéty;_, contains at

least one real point characterized by an irreducible factor of the polynomial
q*. The algorithm represented by the netwavk returns all these points

in a codification a la Thom”. Moreover, the non-empty dét;_, N R"
contains at least one representative point for each connected component of
the real varietySy.
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The proof of this Remark is a straight—forward adaptation of the argu-
ments of the proof of [1], Theorem 12 (which treats only the hypersurface
case withp := 1) to the arguments of Theorem 3 above. Therefore, we omit
this proof.

Let us finally observe that the practical relevance of the complexity out-
come of Remark 6 is highly hypothetical, because it depends on the strong
assumption that extended arithmetical networks are realizable by perfor-
mant, programmable algorithms. Nevertheless, by means of Remark 6, we
wish to underline the importance of the search for efficient procedures that
realize the first and second subroutine introduced as extra nodes in our com-
plexity model of extended arithmetic networks.

References

1. Bank, B.; Giusti, M.; Heintz, J.; Mbakop, G.M. Polar varieties, real equation solving
and data structures: The hypersurface case. J. CompleiNo.1, 5-27, (1997), Best
Paper Award J. Complexity 1997

2. Bank, B.; Giusti, M.; Heintz, J.; Mandel, R.; Mbakop, G. M.: Polar Varieties and Effi-
cient Real Equation Solving: The Hypersurface Case. Proceedings of the 3rd Confer-
ence Approximation and Optimization in the Caribbean, in: Aportaciones Msdieas,
Mexican Society of Mathematics, J. Bustamante, M. A. Jimenez et al.(eds.) (1998)

3. A.l. Barvinok: Feasibility testing for systems of real quadratic equations, Manuscript,
Royal Institute of Technology, Stockholm (1991)

4. S. Basu, R. Pollack, M.-F. Roy: On the Combinatorial and Algebraic Complexity of
Quantifier Elimination. J. ACMI3, No. 6, 1002—-1045,(1996)

5. S.Basu, R. Pollack, M.-F. Roy: Complexity of computing semi-algebraic descriptions
of the connected components of a semialgebraic set. Proceedings of ISSAC '98, Gloor,
Oliver (ed.), Rostock, Germany, August 13-15, 1998. New York, NY: ACM Press.
25-29 (1998)

6. W. Baur, V. Strassen: The complexity of partial derivatives, Theoret. CompuRZci.
317-330 (1982)

7. E. Becker, R. Neuhaus: Computation of real radicals of polynomial ideals. Computa-
tional Algebraic Geometry (Nice 1992), 1-20, Progr. Math. 109, Bitdder Boston,
Boston MA, (1993)

8. E. Becker, J. Schmidt: On the real Nullstellensatz. Algorithmic algebra and number
theory (Heidelberg, 1997), 173-185, Springer Berlin (1999)

9. M. Ben-Or, D. Kozen, J. Reif: The complexity of elementary algebra and geometry, J.
Comput. Syst. Sci32, 251-264 (1986)

10. B. Buchberger, Ein algorithmisches Kriteriuiir tlie Losbarkeit eines algebraischen
Gleichungssystems, Aequationes mét371-383 (1970)

11. P. Birgisser, M. Clausen, M. A. Shokrollahi Algebraic complexity theory. With the
collaboration of Thomas Lickteig. Grundlehren der Mathematischen Wissenschaften.
315. Berlin: Springer. XXIIl, 618 (1997)

12. L. Blum, F. Cucker, M. Shub, S. Smale, Complexity and real computation. Foreword
by Richard M. Karp. New York, NY: Springer. XVI, 453 p. (1997)

13. J. F. Canny: Some Algebraic and Geometric Computations in PSPACE, Proc. 20th
ACM Symp. on Theory of Computing (1988) 460-467



142

14.

15.

16.

17.

18.

19.

20.

21.

22.

23.

24.

25.

26.

27.

28.

29.

30.

31.

32.

33.

B. Bank et al.

J. F. Canny, |. Z. Emiris: Efficient Incremental Algorithms for the Sparse Resultant and
the Mixed Volume, J. Symb. Compw0, No.2, 117-149 (1995)

L. Caniglia, A. Galligo, J. Heintz: Some new effectivity bounds in computational ge-
ometry, Proc. AAECC-6, T. Mora, ed. , Springer LNCS, 357, 131-152 (1989)

A. L. Chistov: Polynomial-time computation of the dimension of components of alge-
braic varieties in zero-characteristic, Preprint Univegd#aris XII (1995)

A. L. Chistov, D. J. Grigor'ev: Subexponential time solving systems of algebraic equa-
tions , LOMI Preprints E-9-83, E-10-83, Leningrad (1983)

M. Coste, M.-F. Roy: Thom’s Lemma, the coding of real algebraic numbers and the
computation of the topology of semialgebraic sets, J. Symbolic CorBpli21-130
(1988)

F. Cucker, S. Smale: Complexity estimates depending on condition and round-of error,
Bilardi, Gianfranco (ed.) etal., Algorithms —ESA '98. 6th annual European symposium,
Venice, Italy, August 24—26, 1998. Proceedings. Berlin: Springer. Lect. Notes Comput.
Sci. 1461 115-126 (1998)

J.-P. Dedieu, Estimations for the Separation Number of a Polynomial System, J. Sym-
bolic Comp.24, 683-693 (1997)

J.-P. Dedieu, Approximate Solutions of Numerical Problems, Condition Number Anal-
ysis and Condition Number Theorems, Lectures in Applied Mathematics, Vol. 32,
263-283 (1996)

M. Demazure, Catastrophes et bifurcations, Ellipses, Paris (1989)

A. Dickenstein, N. Fitchas, M. Giusti, C. Sessa : The membership problem of unmixed
ideals is solvable in single exponential time, Discrete Applied Mathem3&ics3-94
(2991)

I. Z. Emiris: On the Complexity of Sparse Elimination, Report No. UCB/CSD-94/840,
Univ. of California (1994)

J. von zur Gathen: Parallel arithmetic computations: A survey. Mathematical foun-
dations of computer science, Proc. 12th Symp., Bratislava/Czech. 1986, Lect. Notes
Comput. Sci233 93-112 (1986). MSC 1991

J. von zur Gathen: Parallel linear algebra. In J. Reif, editor Synthesis of parallel algo-
rithmns. Morgan Kaufmann (1993)

J. von zur Gathen, G. Seroussi: Boolean circuits versus arithmetic circuits, Information
and Computatior91, (1), 142—-154 (1991)

M. Giusti, J. Heintz: La@termination des points ises et de la dimension d’une va#@
algébrique peut se faire en temps polynomial, In Computational Algebraic Geometry
and Commutative Algebra , Proceedings of the Cortona Conference on Computational
Algebraic Geometry and Commutative Algebra, D. Eisenbud and L. Robbiano, eds.,
Symposia Matematica, vol. XXXIV, Istituto Nazionale di Alta Matematica, Cambridge
University Press (1993)

M. Giusti, J. Heintz, J.E. Morais, L.M. Pardo: When polynomial equation systems can
be “solved” fast? in Proc. 11th International Symposium Applied Algebra, Algebraic
Algorithms and Error—Correcting Codes, AAECC-11, Paris 1995, G. Cohen, M.Giusti
and T. Mora, eds., Springer LNCS, 948, 205-231 (1995)

M. Giusti, J. Heintz, J.E. Morais, J. Morgenstern, L.M. Pardo: Straight-line programs
in Geometric Elimination Theory, J. Pure Appl. Algebra, 124, No.1-3, 101-146 (1998)
M. Giusti, J. Heintz, K. Egele, J. E. Morais, J. L. Moria, L. M. Pardo: Lower Bounds

for Diophantine Approximations, J. Pure and Applied Alg7& 118 277-317 (1997)

M. Giusti, J.P. Henry: Minorations de nombres de Milnor, Bull. Soc. Mathl®8,
17-45 (1980)

M. Giusti, G. Lecerf, B. Salvy: A Gbner Free Alternative for Polynomial System
Solving, submitted to J. of Complexity (1999)



Efficient real elimination 143

34.

35.

36.

37.

38.

39.

40.

41.

42.

43.

44.

45.

46.

47.

48.

49.

50.

51.

52.

53.

54.

55.

56.

M. Golubitsky, V. Guillemin: Stable Mappings and their Singularities, Springer-Verlag,
New York (1986)

D. Grigor’ev: Complexity of deciding Tarski Algebra, J. Symbolic Compu65-108
(1987)

D. Grigor’ev, N. Vorobjov: Solving Systems of Polynomial Inequalities in Subexpo-
nential Time, J. Symbolic Comput. J. Symb. Comf@,tNo.1/2, 37-64 (1988)

J. Heintz: Fast quantifier elimination over algebraically closed fields, Theoret. Comp.
Sci. 24, 239-277 (1983)

J. Heintz, G. Matera, A. Waissbein: On the time—space complexity of geometric elim-
ination procedures, submitted to AAECC (1999)

J. Heintz, M.—F. Roy, P. Solé&snOn the complexity of semialgebraic sets, Proc. In-
formation Processing 89 (IFIP 89) San Francisco 1989, G.X.Ritter, ed., North-Holland
(1989) 293-298

J. Heintz, M.—F. Roy, P. Sol@&sznComplexié du principe de Tarski-Seidenberg, C. R.
Acad. Sci. Paris , t. 309,&8ie |, 825-830 (1989)

J. Heintz, M—F. Roy and P. SolérSur la complexi du principe de Tarski-Seidenberg,
Bull. Soc. math. Francé,8, 101-126 (1990)

J. Heintz, C.P. Schnorr: Testing polynomials which are easy to compute, Proc. 12th
Ann. ACM Symp. on Computing (1980) 262—268; also in Logic and Algorithmic. An
International Symposium held in Honour of Ernst Specker , Monographie No.30,de
I'Enseignement de Ma#matiques, Gerve, 237—254 (1982)

J. Heintz, R. Withrich : An efficient quantifier elimination algorithm for algebraically
closed fields of any characteristic, SIGSAM Bull. , vol.,9, No. 4 (1975)

G. Hermann: Die Frage der endlich vielen Schritte in der Theorie der Polynomideale,
Math. Ann.95, 736-788 (1926)

T. Krick, L.M. Pardo: A Computational Method for Diophantine Approximation, in:
Algorithms in Algebraic Geometry and Applications, MEGA'94 (L. Gonzales-Vega
and T. Recio, eds.) Progress in Mathematics, 143, 193—-254, Riddn, Basel, (1996)

T. Krick, L.M. Pardo: Une approche informatique pour I'approximation diophantienne,
C. R. Acad. Sci. Paris, t. 318£8e |, no. 5, 407-412 (1994)

S. Lang: Diophantine Geometry , Interscience Publishers John Wiley & Sons, New
York, London (1962)

D.Lazard: Algbre lireaire suf [ X1, . . ., X, ] etélimination, Bull. Soc. Math. France,
105, 165-190 (1977)

D. Lazard : Rsolution des sy8mes déquations algbriques, Theor. Comp. Sdi5,
77-110 (1981)

D. T. L&, B. Teissier: Vaétes polaires locales et classes de Chern degtearsin-
gulieres, Annals of Mathematidd 4, 457-491 (1981)

A. K. Lenstra, H. W. Lenstra Jr., L. Lagz: Factoring polynomials with rational coef-
ficients, Math. Ann261, 534-543 (1982)

H. Lombardi: Une borne sur les dégmpour les Taoemes des&os Eel effectif. in M.
Coste, L. Malk and M.—F. Roy (eds) Real Algebraic Geometry, Rennes 1991, Lecture
Notes in Mathematics, Vol. 1524, pp 323-345, Springer Berlin, (1992)

G. Matera: Probabilistic algorithms for geometric elimination. Appl. Algebra Eng.
Commun. Comput. 9, No.6, 463-520 (1999)

G. M. Mbakop: Effiziente &sung reller polynomialer Gleichungssysteme. Dissertaion,
Math.—Nat. Fak.ll, Humboldt—Universit zu Berlin (1999)

M. Milnor: On the Betti numbers of real algebraic varieties, Proc. Amer. Math. Soc.
15, 275-280 (1964)

J. Morgenstern: How to compute fast a function and all its derivativepuBlication

No. 49, Universié de Nice (1984)



144

57.

58.

59.

60.

61.

62.

63.

64.

65.

66.

67.

68.

B. Bank et al.

L.M. Pardo: How lower and upper complexity bounds meet in elimination theory,
in Proc. 11th International Symposium Applied Algebra, Algebraic Algorithms and
Error—Correcting Codes, AAECC-11, Paris 1995, G. Cohen, M.Giusti and T. Mora,
eds., Springer LNCS, 948, 33-69 (1995)

R. Piene: Polar classes of singular varieties, Ann. sdintorm. Sup. 4.6&xie, t.11,
247-276 (1978)

J. Renegar: A faster PSPACE algorithm for the existential theory of the reals, Proc. 29th
Annual IEEE Symposium on the Foundation of Computer Science (FOCS), 291295,
(1988)

J. Renegar: On the Computational Complexity and Geometry of the first Order theory
of the Reals. J. of Symbolic Comput., 13(3), 255-352 (1992)

M.-F. Roy, A. Szpirglas: Complexity of computation with real algebraic numbers, J.
Symbolic Computatl0, 39-51 (1990)

A. Seidenberg: Constructions in Algebra, Transactions Amer. Math1884@73-313
(1974)

M. Shub, S. Smale: Complexity of Bezout's theorem I: Geometric aspects, J. Amer.
Math. Soc6, 459-501 (1993)

M. Shub, S. Smale: Complexity of Bezout's theorem Il: Volumes and probabilities,
in Proceedings Effective Methods in Algebraic Geometry, MEGA92 Nice, 1992, F.
Eyssette and A. Galligo, eds. Progress in Mathematics, Vol. 109, &idér, Basel,
(1993) 267-285

M. Shub, S. Smale: Complexity of Bezout’s theorem l1I: Condition number and packing,
J. of Complexity9, 4-14, (1993)

M. Shub, S. Smale: Complexity of Bezout's theorem IV: Probability of Success, Ex-
tensions, SIAM J. Numer. Anal33, No.1, 128-148 (1996)

M. Shub, S. Smale: Complexity of Bezout’s theorem V: Polynomial time, Theoretical
Comp. Sci133(1994)

P. Solerd: Complejidad de conjuntos semialgebraicos. Thesis Univ. de Buenos Aires
(1989)



