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Dedicated to Steve Smale

Abstract. LetS0 be a smooth and compact real variety given by a reduced
regular sequence of polynomialsf1, . . . , fp. This paper is devoted to the
algorithmic problem of findingefficientlya representative point for each
connected component ofS0 . For this purposeweexhibit explicit polynomial
equations that describe the generic polar varieties ofS0. This leads to a
procedure which solves our algorithmic problem in time that is polynomial
in the (extrinsic) description length of the input equationsf1, . . . , fp and in
a suitably introduced, intrinsic geometric parameter, called thedegreeof the
real interpretation of the given equation systemf1, . . . , fp.
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1 Introduction

The core of this paper consists in the exhibition of a system of canoni-
cal equations which describe locally the generic polar varieties of a given
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semialgebraiccomplete intersection manifoldS0 contained in the realn–
dimensional affine spaceRn. This purely mathematical description of the
polar varieties allows the design of a new type of efficient algorithm (with
intrinsic complexity bounds), which computes, in case thatS0 is smooth
and compact, at least one representative point for each connected compo-
nent ofS0 (the algorithm returns each such point in a suitable symbolic
codification). This new algorithm (and, in particular, its complexity) is the
main practical outcome of the present paper. Let us now briefly describe our
results.

Suppose that the real varietyS0 is compact and given by polynomial
equations of the following form:

f1(X1, . . . , Xn) = · · · = fp(X1, . . . , Xn) = 0,

wherep, n ∈ N, p ≤ n and f1, . . . , fp belong to the polynomial ring
Q[X1, . . . , Xn] in the indeterminatesX1, . . . , Xn over the rational numbers
Q. Letd be a given natural number and assume that for1 ≤ k ≤ p the total
degreedeg fk of the polynomialfk is bounded byd. Moreover, we suppose
that the polynomialsf1, . . . , fp form a regular sequence inQ[X1, . . . , Xn]
and that they are given by a division-free arithmetic circuit of sizeL that
evaluates them in any given point of the real (or complex)n–dimensional
affine spaceRn (orC n). Further, we assume that the JacobianJ(f1, . . . , fp)
of the equation systemf1 = · · · = fp = 0 has maximal rank in any point of
S0 (thus, implicitly, we assume thatS0 is smooth). LetW0 := V (f1, . . . , fp)
denote the (complex) algebraic variety definedby thepolynomialsf1, . . . , fp
in the affine spaceCn. We denote the singular locus ofW0 by SingW0.

Moreover, let us suppose that the variablesX1, . . . , Xn are in generic
position with respect to the equation systemf1, . . . , fp. For1 ≤ i ≤ n− p
letWi be thei–th formal (complex) polar varietyassociated withW0 (and
the variablesXp+i, . . . , Xn).

Further, let usdenote the real counterpart ofWi bySi :=Wi∩Rn.Wecall
Si thei–th formalreal polar variety associated with the real semialgebraic
varietyS0 (and the variablesXp+i, . . . , Xn) . It turns out that the (locally)
closed setsWi \SingW0 (resp.Si) are either empty or complex (resp. real)
smooth manifolds of dimensionn− (p+ i). Moreover, for1 ≤ i ≤ n− p,
one sees easily that

W̃i :=Wi \ SingW0

is the i–th polar variety (in the usual sense) associated withW0 and the
variablesXp+i, . . . , Xn (here,Wi \ SingW0 denotes theQ-Zariski closure
in Cn of the quasi–affine varietyWi \ SingW0). For a precise definition of
the notion of formal polar varieties and of polar varieties in the usual sense
we refer to Section 2.
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Suppose that the real varietyS0 is non–empty and satisfies our assump-
tions. In Theorem 2 of this paper we show that every real polar variety
Si = Wi ∩ Rn, 1 ≤ i ≤ n − p, is a non–empty, smooth manifold of
dimensionn−p− i containing at least one point of each connected compo-
nent of the real varietyS0. In particular, the real varietySn−p is a finite set
containing at least one representative point of each connected component
of S0.

Under the same assumptions we show in Theorem 1 that for1 ≤ i ≤
n−p the quasi–affine varietyWi\SingW0 is a locally complete intersection
that satisfies the Jacobian criterion. More precisely, the quasi–affine variety
Wi\SingW0 is a smoothmanifoldof codimensionp+i that canbedescribed
locally by certain regular sequences consisting of thepolynomialsf1, . . . , fp
andimany well–determinedp–minors of the JacobianJ(f1, . . . , fp) of the
f1, . . . , fp. In particular, the quasi–affine varietyWn−p \ SingW0 is zero-
dimensional, whencẽWn−p = Wn−p \ SingW0. ThusW̃n−p is a zero-
dimensional complex variety that contains a representative point of each
connected component of the real varietyS0.

The practical outcome of Theorem 1 and Theorem 2 consists in the
design of an efficient algorithm (with intrinsic complexity bounds), which
adapts the elimination procedure for complex algebraic varieties developed
in [30] and [31] to the real case. Under the additional assumption that, for
any1 ≤ k ≤ p, the intermediate ideal(f1, . . . , fk) generated byf1, . . . , fk
in Q[X1, . . . , Xn] is radical, we shall apply this procedure to thep

(
n

p−1

)
well–determined equation systems of Theorem 1, which describe the zero-
dimensional algebraic varietỹWn−p = Wn−p \ SingW0 locally. In order
to find at least one representative point for every connected component of
the real varietyS0, we have just to run the procedure of [30] and [31] on all
these equation systems. Counting arithmetic operations inQ at unit costs,
this can be done in sequential time(

n

p− 1

)
L(ndδ)O(1),

where δ is the following geometric invariant of the regular sequence
f1, . . . , fk:

δ := max{max{deg V (f1, . . . , fk) \ SingW0|1 ≤ k ≤ p},
max{deg W̃i|1 ≤ i ≤ n− p}}

(here,deg V (f1, . . . , fk) \W0 anddeg W̃i denote the geometric degree in
the sense of [37] of the corresponding algebraic varieties).

This is the content of Theorem 3 below. For any1 ≤ k ≤ p and any
1 ≤ i ≤ n − p the quantityδ bounds the degree of the algebraic variety
V (f1, . . . , fk) \ SingW0 and of thei–th polar varietỹWi =Wi \ SingW0.
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In [30] and [31] the quantitymax{deg V (f1, . . . , fi)|1 ≤ i ≤ p} is
called the geometric degree (of thecomplexinterpretation) of the equation
systemf1, . . . , fp. In analogy to this terminology, we shall callδ thegeo-
metric degreeof the real interpretation of the equation systemf1, . . . , fp.
In view of the complexity result above we shall understand the parameter
δ as anintrinsicmeasure for the size of the real interpretation of the given
polynomial equation system. Nevertheless, the word ”intrinsic” should be
interpreted with some caution in this context: observe that the complexity
parameterδ depends rather on the equationsf1, . . . , fp and their order than
just on the varietyW0 \ SingW0.

In order to make our complexity result more transparent we are going
now to exhibit, in terms of extrinsic parameters, some estimations for the
intrinsic system degreeδ.

Let us writed1 := deg f1, . . . , dp := deg fp and letD := d1 · · · dp
denote the classical B́ezout number of the polynomial systemf1, . . . , fp.
Then we have the following degree estimations for the complex algebraic
varietyW0 = V (f1, . . . , fp)

degS0 ≤ degW0 ≤ D ≤ dp,
S0 denotes again theQ-Zariski closure inCn of the real varietyS0.

On the other hand, we conclude from Theorem 1 that, for everyi, 1 ≤
i ≤ n−p, the polar varietỹWi is defined by the initial systemf1, . . . , fp and
certainp–minors of the JacobianJ(f1, . . . , fp). Let us denote themaximum
degree of thesep–minors byci. It turns out that for, any1 ≤ i ≤ n− p, the
polar varietyW̃i is a codimension one subvariety of̃Wi−1. Now one sees
easily that the quantityDi := D c1 · · · ci represents a reasonable ”Bézout
number” of the varietỹWi and that this B́ezout number satisfies the estimate
deg W̃i ≤ Di. Putting all this together, we deduce the following estimate
for the intrinsic system degreeδ:

δ ≤ Dn−p = Dc1 · · · cn−p.

Observing that for anyi, 1 ≤ i ≤ n − p, the inequality
ci ≤ d1 + · · · + dp − p holds, we find the estimations:

δ ≤ D(d1 + · · · + dp − p)n−p ≤ dp(pd− p)n−p < pn−pdn.

In conclusion, our new real algorithm has a time complexity that is, in
worst case, polynomial in the ”B́ezout number”Dc1 · · · cn−p of the zero–
dimensional polar varietỹWn−p.

Our complexity bound
(

n
p−1

)
L(ndδ)O(1) depends on the intrinsic (geo-

metric, semantic) parameterδ and on the extrinsic (algebraic) parametersd
andn in a polynomialmanner, and it depends on the syntactic parameter
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L only linearly. In this sense one may consider our complexity bound as
intrinsic. Our real algorithm promises therefore to be practically applicable
to special equation systems with low value for the intrinsic parameterδ.

On the other hand,even in worst caseour algorithmimprovesupon the
knowndO(n)–time procedures for the algorithmic problem under consider-
ation, also in their most efficient versions [4], [5] (see also [3], [12], [19],
[39], [40], [41], [59], [60], [14], [13]). However, this distinction does not
become apparent when we measure complexities simply in terms ofd and
n (all mentioned algorithms have worst–case complexities of typedO(n)),
but it becomes clearly visible when we use the ”Bézout number” just intro-
duced as complexity parameter. Only our new algorithm is polynomial in
this quantity. On the other hand, we are only able to reach our goal of algo-
rithmic efficiency by means of a strict limitation to a purely geometric point
of view. For the moment there is no hope that any of the standard questions
of real algebra (e.g. finding generators for the real radical of a polynomial
ideal or the formulation of an effective real Nullstellensatz) can be solved
within the complexity framework of this paper (compare [52], [7] and [8]).

In conclusion we may say that this paper establishes a new connection
between the algorithmic complexity of finding a representative set of real
solutions of a given polynomial equation system and the geometry of the
(complex) algebraic variety defined by this system. However, there is a price
to pay for that: this connection becomes only visible if we restrict ourselves
to reduced complete intersection systems that define smooth, compact real
varieties.

Our (algorithmicandmathematical)methodsand results representanon–
obvious generalization of the main outcome of [1], where an intrinsic type
algorithmwas designed for the problemof finding at least one representative
point in each connected component of a real, compacthypersurfacegiven by
ann–variate, smooth polynomial equationf of degreed ≥ 2 with rational
coefficients (such thatf represents a regular equation of that hypersurface).
This is the particular case of codimensionp = 1 of the present paper, and
our setting leads to the complexity boundL(ndδ)O(1) proved in [1].

2 Polar varieties

2.1 Notations, notions and general assumptions

LetX1, . . . , Xn be indeterminates (or variables) over the rational numbersQ

and let polynomialsf1, . . . , fp ∈ Q[X1, . . . , Xn] with 1 ≤ p ≤ n be given.
LetCn andRn denote then–dimensional affine space over the complex and
the real numbers, respectively.We thinkCn tobeequippedwith theQ-Zariski
topology, whereas, onRn, we consider the strong topology. For any subset



120 B. Bank et al.

U ⊂ Cn we denote itsQ-Zariski–closure byU . By X := (X1, . . . , Xn)
we denote the vector of variablesX1, . . . , Xn and byx := (x1, . . . , xn)
any point of the affine spaceCn or Rn. We suppose that the polynomials
f1, . . . , fp form a reducedregular sequence inQ[X1, . . . , Xn] (here ”re-
duced” means that for any1 ≤ k ≤ p the ideal(f1, . . . , fk) is radical). The
Jacobian of these polynomials is denoted by

J(f1, . . . , fp) :=
[
∂fk
∂Xj

]
1≤k≤p

1≤j≤n

.

For any pointx ∈ Cn we write

J(f1, . . . , fp)(x) :=
[
∂fk
∂Xj

(x)
]

1≤k≤p
1≤j≤n

for the Jacobian of the polynomialsf1, . . . , fp atx.
Thecommoncomplexzerosof thepolynomialsf1, . . . , fp formanaffine,

Q-definable subvariety ofCn, which we denote by

W0 := V (f1, . . . , fp) := {x ∈ Cn|f1(x) = . . . = fp(x) = 0}.
A point x ∈ W0 = V (f1, . . . , fp) is said to benon–singularor smooth(in
W0) if the rank of the Jacobian off1, . . . , fp in x is p. Otherwisex is called
asingularpoint ofW0. By SingW0 we denote the set of all singular points
of W0. Since we suppose that the ideal(f1, . . . , fp) is radical, our notion
of a smooth point coincides with the usual one for algebraic varieties by
Jacobi’s criterion.

Remark 1If x ∈ W0 is smooth, then the hypersurfaces defined by the
polynomialsf1, . . . , fp intersect transversally at the pointx.

Definition 1 For everyi, 1 ≤ i ≤ n−p, let∆i denote the set of all common
complex zeros of allp–minors of the JacobianJ(f1, . . . , fp) corresponding
to the columns{1, . . . , p+ i− 1}. In other words,∆i is the determinantal
variety defined by allp–minors of the submatrixJp+i−1

1 (f1, . . . , fp) deter-
mined by the columns{1, . . . , p+ i− 1} of the JacobianJ(f1, . . . , fp).

We introduce the affine variety

Wi :=W0 ∩∆i

associated with the linear subspace ofCn, namely

Xp+i−1 := {x ∈ Cn|Xp+i(x) = . . . = Xn(x) = 0}
and callWi thei–th formal polar varietyofW0. By

W̃i :=Wi \ SingW0

we denote thei–thpolar variety(in the usual sense) of the varietyW0.
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Remark 2 – Ourdefinitionof polar and formal polar variety depends rather
on the regular sequencef1, . . . , fp than on the algebraic varietyW0. The
ad hoc term ”formal polar variety” is only used in this paper for the
purpose of clarification of our subsequent mathematical arguments.

– The indexi reflects the expected codimension of the polar varietyW̃i in
W0. With respect to the ambient spaceCn, the expected codimension of
W̃i is p+ i (see Theorem 1 below for a precise statement).

– According to our notation, the common zeros of allp–minors of the Jaco-
bianJ(f1, . . . , fp) form the determinantal variety∆n−p+1. Obviously,
we haveSing W0 =W0 ∩∆n−p+1 =Wn−p+1.

– The formal polar varietiesWi, 1 ≤ i ≤ n − p, constitute a decreasing
sequence. In particular, we have

W0 ⊃W1 ⊃ · · · ⊃Wi ⊃ · · · ⊃Wn−p ⊃Wn−p+1 = Sing W0.

The concept of polar variety goes back to J.–V. Poncelet. Its development
has a long history: Let us mention among others the contributions of F.
Severi, J. A. Todd, S. Kleiman, R. Piene, D. T. Lê, B. Teissier, J.–P. Henry,
M. Merle ... (see e.g. [58] and the references quoted there).

2.2 Local description of the determinantal varieties

In this subsection we develop a succinct local description of the determinan-
tal varieties∆i, 1 ≤ i ≤ n − p. The following general Exchange Lemma
will be our main tool for this description (this lemma is used in a similar
form in [32]). It describes an exchange relation between certain minors of a
given matrix.

Let A be a given(p × n)-matrix with entriesaij from an arbitrary
commutative ring. Letl and k be any natural numbers withl ≤ n and
k ≤ min{p, l}. Furthermore, letIk := (i1, . . . , ik) be an ordered sequence
of k different elements from the finite set of natural numbers{1, . . . , l} and
letMA (Ik) :=MA(i1, . . . , ik) denote thek-minor of the matrixA built up
by the firstk rowsand the columnsi1, . . . , ik. If it is clear by the contextwhat
is the matrixA, we shall just writeM(i1, . . . , ik) :=M (Ik) :=MA (Ik).

Lemma 1 (Exchange Lemma)As before let a matrixA and natural num-
bersl andk be given, aswell as two intersecting index setsIk = (i1, . . . , ik)
andIk−1 = (j1, . . . , jk−1). Then, for suitable numbersεj ∈ {1,−1} with
j ∈ Ik \ Ik−1 we have the following identity:

M (Ik−1)M (Ik) =
∑

j∈Ik\Ik−1

εj M (Ik \ {j})M (Ik−1 ∪ {j}) . (∗)
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Proof.Consider the following((2k− 1) × (2k− 1))-matrixL with entries
from the given matrixA:

L :=



L1(Ik)

O
...

Lk−1(Ik)

L1(Ik−1) L1(Ik)
...

...

Lk(Ik−1) Lk(Ik)


.

Here, for any1 ≤ j ≤ k, Lj (Ik) denotes the row vector of lengthk
that we obtain selecting, from thej–th row of the matrixA, thek elements
placed in the columnsIk = (i1, . . . , ik). Similarly, Lj (Ik−1) is obtained
from thej–th row ofA selecting thek − 1 elements placed in the columns
Ik−1 = (j1, . . . , jk−1).
Now it is not difficult to verify the identity(∗) by calculating the determi-
nantdetL of the quadratic matrixL via Laplace expansion in two different
ways. First, by expansion ofdetL according to the firstk − 1 columns of
L, we obtain the left–hand side of(∗), disregarding the sign. Expansion of
detL according to the firstk − 1 rows ofL leads to the right–hand side of
(∗). This implies the identity(∗) for an appropriate choice of the signsεj ,
with j ∈ Ik \ Ik−1. ✷

Let m ∈ Q[X1, . . . , Xn] denote the(p − 1)–minor of the Jacobian
J(f1, . . . , fp) given by the first(p− 1) rows and columns, i.e., let

m := det
[
∂fk
∂Xj

]
1≤k≤p−1
1≤j≤p−1

.

We consider the determinantal variety∆i outside of the hypersurface

V (m) := {x ∈ Cn | m(x) = 0}

and denote this localization by(∆i)m, i.e., we set

(∆i)m := ∆i \ V (m).

From now on, for1 ≤ i1 ≤ · · · ≤ ip ≤ n, let us denote by

M(i1, . . . , ip)
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the polynomial inQ[X1, . . . , Xn] defined as thep–minor of the Jacobian
J(f1, . . . , fp) built up by itsp rows and the columnsi1, . . . , ip. As before,
we denote by

M(i1, . . . , ip)(x)

the specialization ofM(i1, . . . , ip) in a given pointx ∈ Cn.

Proposition 1 Let 1 ≤ i ≤ n − p be arbitrarily fixed, and letm be the
(p− 1)–minor defined above. Then the determinantal variety∆i is locally
(i.e., outside of the hypersurfaceV (m)) described by thei polynomials

M(1, . . . , p− 1, p), , . . . ,M(1, . . . , p− 1, p+ i− 1).

In other words, we have

(∆i)m := {x ∈ Cn| m(x) �= 0,M(1, . . . , p− 1, s)(x) = 0,
s ∈ {p, . . . , p+ i− 1}},

whereM(1, . . . , p − 1, s) denotes, as above, thep–minor of the Jacobian
J(f1, . . . , fp) built up by the firstp− 1 columns and thes–th column.

Proof. It suffices to show that

(∆i)m ⊃ {x ∈ Cn| m(x) �= 0,M(1, . . . , p− 1, s) = 0,
s ∈ {p, . . . , p+ i− 1}}

holds.
Let x∗ ∈ Cn be any point satisfying the conditionsm(x∗) �= 0 and
M(1, . . . , p − 1, s)(x∗) = 0 for everys ∈ {p, . . . , p + i − 1}. We have
to verify that

M(i1, . . . , ip)(x∗) = 0

holds for all ordered p–tuples (i1, . . . , ip) of elements of
{1, . . . , p+ i− 1}.

Applying the Exchange Lemma tom = M(1, . . . , p − 1) and
M(i1, . . . , ip), we deduce the identity

m(x∗)M(i1, . . . , ip)(x∗) =∑
j∈{i1,...,ip}\{1,...,p−1}

εj M ({i1, . . . , ip} \ {j}) (x∗)M(1, . . . , p−1, j)(x∗)

for suitable numbersεj ∈ {1,−1}with j ∈ {i1, . . . , ip}\{1, . . . , p−1}. By
assumptionwe havem(x∗) �= 0 andM(1, . . . , p−1, j)(x∗) = 0 for all j ∈
{p, . . . , p+ i− 1}. This implies thatx∗ belongs to the set(∆i)m. ✷
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Notation 2 In the sequel we shall simply writeMj for the p–minor
M(1, . . . , p − 1, j) given by the firstp − 1 columns ofJ(f1, . . . , fp) and
the columnj ∈ {p, . . . , n} .

Remark 3 – Proposition 1 implies that the codimension of∆i outside of
the hypersurfaceV (m) is at mosti.

– Proposition 1 holds also for the determinantal variety∆n−p+1 that de-
fines the singular locusSing W0 =Wn−p+1 of the varietyW0. Hence,
for any pointx∗ ∈ Cn satisfying the conditionm(x∗) �= 0 and the
n− p+ 1 equations

Mj(x∗) = 0, j ∈ {p, . . . , n},
the JacobianJ(f1, . . . , fp)(x∗) becomes singular.

– Replacing the previously chosen(p − 1)-minorm by any other(p −
1)-minor of the JacobianJ(f1, . . . , fp), the statement of Proposition 1
remains true mutatis mutandis.

2.3 Local description of the formal polar varieties

The aim of this subsection is to show the following fact:
Let the variablesX1, . . . , Xn be in generic position with respect to the

polynomialsf1, . . . , fp, and letm̃ be any(p − 1)–minor of the Jacobian
J(f1, . . . , fp). In this subsection we are going to show that any formal polar
varietyWi, 1 ≤ i ≤ n−p, is a smooth complete intersection variety outside
of the closed setSingW0 ∪ V (m̃). Moreover, we shall exhibit a reduced
regular sequence describing this variety outside ofSingW0 ∪ V (m̃).

As in theprevioussubsection, letm ∈ Q[X1, . . . , Xn]denote the(p−1)–
minor of the JacobianJ(f1, . . . , fp) built up by the first(p − 1) rows and
columns.

Let Y1, . . . , Yn be new variables and letY := (Y1, . . . , Yn). For any
linear coordinate transformationX = AY , withA being a regular(n× n)–
matrix, we define the polynomials

G1(Y ) := f1(AY ), . . . , Gp(Y ) := fp(AY ).

The Jacobian ofG1, . . . , Gp has the form

J(G1, . . . , Gp) :=
[
∂Gk

∂Yj

]
1≤k≤p
1≤j≤n

= J(f1, . . . , fp)A.

Using a similar notation as before, we denote by

M̃(i1, . . . , ip)
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the p–minor of the new JacobianJ(G1, . . . , Gp) that corresponds to the
columns1 ≤ i1 < · · · < ip ≤ n.

Moreover, we denote bỹMj thep–minorM̃(1, . . . , p−1, j) determined
by the fixed firstp − 1 columns ofJ(G1, . . . , Gp) and the columnj ∈
{p, . . . , n}.

For p ≤ r, t ≤ n let Zr,t be a new indeterminate. Using the following
regular(n− p+ 1) × (n− p+ 1)–parameter matrix

Z :=



1 0 0 · · · 0

Zp+1,p 1
...

...
... O ...

Zp+i−1,p Zp+i−1,p+1 · · · 1

Zp+i,p Zp+i,p+1 · · · Zp+i,p+i−1 1
...

...
...

...
... 0

Zn,p Zn,p+1 · · · Zn,p+i−1 Zn,p+i Zn,p+i+1 · · · 1


,

we construct an(n × n)–coordinate transformation matrixA := A(Z),
which will enable us to prove the statement at the beginning of this subsec-
tion.

For themoment, let us fix an index1 ≤ i ≤ n−p.We consider the formal
polar varietyWi outside of the hypersurfaceV (m). Corresponding to our
choice ofi, the matrixZ may be subdivided into submatrices as follows:

Z =

Z(i)
1 Oi,n−p−i+1

Z(i) Z
(i)
2

 .
Here the matrixZ(i) is defined as

Z(i) :=


Zp+i,p . . . Zp+i,p+i−1

. . . . . . . . .

Znp . . . Zn,p+i−1

 ,
andZ(i)

1 andZ(i)
2 denote the quadratic lower triangular matrices bordering

Z(i) in Z, andOi,n−p−i+1 is thei× (n− p− i+ 1) zero matrix. Let

A := A(Z) :=


Ip−1 Op−1,i Op−1,n−p−i+1

Oi,p−1 Z
(i)
1 Oi,n−p−i+1

On−p−i+1,p−1 Z(i) Z
(i)
2

 .
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Here the submatricesIr andOr,s are unit or zero matrices, respectively,

of corresponding size, andZ(i), Z
(i)
1 , andZ

(i)
2 are the submatrices of the

parameter matrixZ introduced before. Thus,A is a regular, parameter de-
pendent(n× n)–coordinate transformation matrix.

Like the matrixZ, the matrixA contains

s :=
(n− p)(n− p+ 1)

2

parametersZr,t which we may specialize into any pointz of the affine
spaceCs. For such a pointz ∈ Cs we denote the corresponding specialized
matrices byA(z), Z(i)

1 (z), Z(i)
2 (z) andZ(i)(z).

We consider now the coordinate transformation given byX = AY with
A = A(Z) and calculate the JacobianJ(G1, . . . , Gp) with respect to the
new polynomialsG1, . . . , Gp . Recall that the coordinate transformation
matrixA depends on our previous choice of the index1 ≤ i ≤ n− p.

According to the structure of the coordinate transformation matrixA =
A(Z) we subdivide the JacobianJ(f1, . . . , fp) into three submatrices

J(f1, . . . , fp) =
[
U V W

]
,

with

U :=
[
∂fk
∂Xj

]
1≤k≤p

1≤j≤p−1

, V :=
[
∂fk
∂Xj

]
1≤k≤p

p≤j≤p+i−1

, W :=
[
∂fk
∂Xj

]
1≤k≤p

p+i≤j≤n

.

From the identityJ(G1, . . . , Gp) = J(f1, . . . , fp)A we deduce that our
new Jacobian is of the form:

J(G1, . . . , Gp) =
[
∂Gk

∂Yj

]
1≤k≤p
1≤j≤n

=
[
U V Z

(i)
1 +WZ(i) WZ

(i)
2

]
.

We are interested in a local description of thei–th formal polar variety
Wi =W0∩∆i outsideof thehypersurfaceV (m), wherem is the fixedupper
left (p− 1)–minor of the JacobianJ(f1, . . . , fp) (and also of its submatrix
U ). Since the coordinate transformationX = AY leaves the submatrixU
unchanged, the(p − 1)–minorm remains fixed under this transformation.
FromProposition 1 we know that the localized determinantal variety(∆i)m

is described by thei equations

Mp = 0, . . . ,Mp+i−1 = 0,

and by the conditionm�=0. Thep–minorsMp, . . . ,Mp+i−1 defining these
equations are built up by the submatrix[U V ] of the JacobianJ(f1, . . . , fp).
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Under the coordinate transformationA(Z) thematrix[U V ] is changed into
the submatrix [

U V Z
(i)
1 +WZ(i)

]
of the JacobianJ(G1, . . . , Gp) and thep–minorsMp, . . . ,Mp+i−1 are
changed into thep–minors

M̃p, . . . , M̃p+i−1

of the matrix
[
U V Z

(i)
1 +WZ(i)

]
. This implies the matrix identity[

M̃p, . . . , M̃p+i−1

]
= [Mp, . . . ,Mp+i−1]Z

(i)
1 + [Mp+i, . . . ,Mn]Z(i).(∗∗)

For the previously chosen index1 ≤ i ≤ n− p, the coordinate transfor-
mationX = A(Z)Y induces the following morphism of affine spaces:

Φi : Cn × Cs → Cp × Ci,

defined by

(x, z) �→ Φi(x, z) :=
(
f1(x), . . . , fp(x), M̃p(x, z), . . . , M̃p+i−1(x, z)

)
.

Consider an arbitrary pointz ∈ Cs. We denote by∆z
i the determinantal

subvariety ofCn defined by allp–minors of the matrix[
U V Z

(i)
1 (z) +WZ(i)(z)

]
(which is a submatrix of the new Jacobian

obtained by specializing the coefficients of the polynomialsG1, . . . , Gp

into the pointz ∈ Cs). WritingW z
i :=W0 ∩∆z

i , one sees immediately that
the zero fiberΦ−1

i (0) of the morphismΦi contains the set

(W z
i )m :=W0 ∩ (∆z

i )m.

In otherwords, for anyarbitrarily chosenpointz ∈ Cs, the zero fiberΦ−1
i (0)

of the morphismΦi contains the transformed formal polar varietyW z
i , lo-

calized in the hypersurfaceV (m) and expressed in the old coordinates.
We are going now to analyze the rank of the Jacobian of the morphism

Φi in an arbitrary point(x, z) ∈ Cn × Cs with x ∈ (W z
i )m. Using the

subdivision of the parameter matrixZ into the partsZ(i), Z
(i)
1 andZ(i)

2 , the
JacobianJ(Φi) of the morphismΦi can be written symbolically as

J(Φi) =

[
∂Φi

∂X

∂Φi

∂Z(i)

∂Φi

∂Z
(i)
1

∂Φi

∂Z
(i)
2

]
.

We have
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[
∂Φi
∂X

∂Φi

∂Z(i)

]
=

J(f1, . . . , fp) Op,n−p−i+1 · · · Op,n−p−i+1

∗
[

∂M̃p

∂Zp+i,p
, . . . ,

∂M̃p

∂Znp

]
· · · O1,n−p−i+1

...
...

...
...

∗ O1,n−p−i+1 · · ·
[

∂M̃p+i−1
∂Zp+i,p+i−1

, . . . ,
∂M̃p+i−1
∂Zn,p+i−1

]


,

where the columns correspond to the partial derivatives ofΦi with respect
to the variables

X1, . . . , Xn, Zp+i,p, . . . , Zn,p, . . . , Zp+i,p+i−1, . . . , Zn,p+i−1

(in this order). The entriesOr,t denote here zero matrices of corresponding
size and the row matrices labeled by ”∗” represent the partial derivatives
with respect to the variablesX1, . . . , Xn of the minorsM̃p, . . . , M̃p+i−1.
These row matrices will be irrelevant for our considerations.

Furthermore, the third submatrix

[
∂Φi

∂Z
(i)
1

]
of J(Φi) can be written as



Op,i−1 Op,i−2 · · · 0[
∂M̃p

∂Zp+1,p
, . . . ,

∂M̃p

∂Zp+i−1,p

]
O1,i−2 · · · 0

O1,i−1

[
∂M̃p+1

∂Zp+2,p+1
, . . . ,

∂M̃p

∂Zp+i−1,p+1

]
· · · 0

...
...

...
...

O1,i−1 O1,i−2 · · ·
[

∂M̃p+i−1
∂Zp+i−1,p+i−2

]
O1,i−1 O1,i−2 · · · 0


and the last submatrix

[
∂Φi

∂Z
(i)
2

]
of J(Φi) is a zero matrix since thep–

minorsM̃p, . . . , M̃p+i−1 are indepedent of the parametersZr,t occurring in

the submatrixZ(i)
2 of the coordinate transformation matrixA(Z).

Therefore, the JacobianJ(Φi) is of full rankp+iwherever the submatrix

J̃(Φi) :=
[
∂Φi

∂X

∂Φi

∂Z(i)

]
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is of full rank p + i. On the other hand, considering thei row matrices
contained inJ̃(Φi) for p ≤ j ≤ p+ i− 1[

∂M̃j

∂Zp+i,j
, . . . ,

∂M̃j

∂Zn,j

]
,

we see that the representation(∗∗) of the transformedp–minorsM̃j implies
the identity [

∂M̃j

∂Zp+i,j
, . . . ,

∂M̃j

∂Zn,j

]
= [Mp+i, . . . ,Mn] .

Thus, we obtain the representation

J̃(Φi) =


J(f1, . . . , fp) Op,n−p−i+1 · · · Op,n−p−i+1

∗ [Mp+i, . . . ,Mn] · · · O1,n−p−i+1
...

...
...

...

∗ O1,n−p−i+1 · · · [Mp+i, . . . ,Mn]

 .

Since all entries of the submatrix̃J(Φi) of the JacobianJ(Φi) belong to the
polynomial ringQ[X1, . . . , Xn], we see that the rank of the matrixJ(Φi) in
a given point(x, z) ∈ Cn×Cs with x ∈ (W z

i )m depends only on the choice
of x. According to our localization outside of the hypersurfaceV (m), let
us consider an arbitrary smooth pointx̃ ofW0 = V (f1, . . . , fp) satisfying
the conditionm(x̃) �= 0. Suppose that the submatrix̃J(Φi)(x̃) is not of full
rank, i.e., that

rk J̃(Φi)(x̃) < p+ i

holds. This latter inequality is valid if and only if allp–minors
Mp+i, . . . ,Mn of the JacobianJ(f1, . . . , fp) vanish atx̃. Let z̃ ∈ Cs be
any parameter point such that the pair(x̃, z̃) belongs to the fiberΦ−1

i (0) of
the morphismΦi. Since thep–minorsM̃p, . . . , M̃p+i−1 of the transformed
JacobianJ(G1, . . . , Gp) must vanish at(x̃, z̃), we deduce from(∗∗) that

[0, . . . , 0] = [Mp(x̃), . . . ,Mp+i−1(x̃)] Z
(i)
1 (z̃)

holds (hereZ(i)
1 (z̃) denotes again the matrix obtained by specializing the

entries ofZ(i)
1 into the corresponding coordinates of the pointz̃ ∈ Cs).

Because of the lower triangular form of the regular matrixZ(i)
1 , the latter

matrix equation holds if and only if the conditions

Mp+i−1(x̃) = · · · =Mp(x̃) = 0.
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are satisfyied. Therefore, our assumptions onx̃ andz̃ implym(x̃) �= 0 and
Mp(x̃) = · · · = Mn(x̃) = 0. However, by Remark 3 this means that the
JacobianJ(f1, . . . , fp)(x̃) is singular. Hence,̃x is not a smooth point ofW0,
i.e., x̃ ∈ Sing W0, which contradicts our assumption onx̃.

Now, suppose that we are given a point(x̄, z) ∈ Cn × Cs that belongs
to the fiberΦ−1

i (0). Then x̄ belongs toW0. Further, suppose that̄x is a
smooth point ofW0 outside of the hypersurfaceV (m). Let us consider the
Zariski–open neighbourhood̃U of x̄ consisting of all pointsx ∈ Cn with
m(x) �= 0 andrk J(f1, . . . , fp) = p, i.e., we consider

Ũ := Cn \ (Sing W0 ∪ V (m)) .

We are going to show that the restricted morphism

Φi : Ũ × Cs → Cp × Ci

is transversal to the origin0 ∈ Cp × Ci.
In order to see this, consider an arbitrary point(x, z) of Ũ × Cs that

satisfies the equationΦi(x, z) = 0. Thus,x belongs toŨ ∩ W0 and is,
therefore, a smooth point ofW0, which is outside of the hypersurfaceV (m).
By the preceding considerations on the rank of the JacobianJ(Φi) it is clear
thatJ(Φi) has the maximal rankp+ i at (x, z). This means that(x, z) is a
regular point ofΦi. Since(x, z)wasanarbitrary point ofΦ−1

i (0)∩ (Ũ×Cs),
the claimed transversality has been shown.

Now, applying the Weak–Transversality–Theorem of Thom–Sard (see
e.g. [22]) to the diagram

Φ−1
i (0) ∩ (Ũ × Cs) ↪→ Cn × Cs

↘ ↓
Cs

one concludes that there is a residual dense setΩi of parametersz ∈ Cs

for which transversality holds. This implies that, for every fixedz ∈ Ωi, the
transformed and localized formal polar variety

W z
i \ (Sing W0 ∪ V (m))

is either empty or a smooth variety of codimensionp + i. This variety can
be described locally by the polynomials

f1(X), . . . , fp(X), M̃p(X, z), . . . , M̃p+i−1(X, z) (∗ ∗ ∗)

that form a regular sequence outside ofSingW0 ∪ V (m). Up to now, our
considerations concerned only the change of coordinates for an arbitrarily
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fixed1 ≤ i ≤ n−p. However,Ω :=
⋂n−p

i=1 Ωi is a dense residual parameter
set inCs from which we can choose a simultaneous change of coordinates
for all 1 ≤ i ≤ n − p. For every choicez ∈ Ω and 1 ≤ i ≤ n −
p the transformed formal polar varietyW z

i is, outside of the closed set
SingW0 ∪ V (m), a smooth complete intersection variety described by the
(local) regular sequence(∗ ∗ ∗). One sees now easily that the affine space
Rs contains a non–empty residual dense set of parametersz such that the
conclusions above apply to the coordinate transformationX = A(z)Y .
Moreover,z can be chosen fromQs.

Taking into account Proposition 1 and Remark 3, we deduce the follow-
ing result from our argumentation:

Theorem 1 LetW0 = V (f1, . . . , fp) be a reduced complete intersection
variety given by polynomialsf1, . . . , fp inQ[X1, . . . , Xn] and suppose that
the variablesX1, . . . , Xn are in generic position with respect tof1, . . . , fp.
Further, letm be the upper left(p−1)–minor of the JacobianJ(f1, . . . , fp).
Then, every formal polar varietyWi, 1 ≤ i ≤ n− p, localized with respect
to the closed setSingW0 ∪ V (m), is either empty or a smooth variety of
codimensionp+ i that can be described by the equations

f1, . . . , fp,Mp, . . . ,Mp+i−1,

whereMj , p ≤ j ≤ p+ i−1, is thep–minor of the JacobianJ(f1, . . . , fp)
given by the columns1, . . . , p− 1, j. Then the polynomials

f1, . . . , fp,Mp, . . . ,Mp+i−1

form a regular sequence outside ofSingW0 ∪ V (m) .

Remark 4Taking into account that the argumentation on the localization
with respect to the fixed(p − 1)-minorm remains valid mutatis mutandis
for any other(p − 1)-minor m̃ of the JacobianJ(f1, . . . , fp), Theorem 1
can be restated for any fixed(p − 1)–minor just by reordering of columns
and rows of the JacobianJ(f1, . . . , fp).

2.4 Existence of real points in the polar varieties

Letf1, . . . , fp ∈ Q[X1, . . . , Xn]bea reduced regular sequenceand let again
W0 := V (f1, . . . , fp) be the affine variety defined byf1, . . . , fp. Consider
the real varietyS0 :=W0 ∩ Rn and suppose that

(i) S0 is nonempty and bounded (and hence compact),
(ii) the JacobianJ(f1, . . . , fp)(x) is of maximal rank in all pointsx of

S0 (i.e.,S0 is a smooth subvariety ofRn given by the reduced regular
sequencef1, . . . , fp),
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(iii) the variablesX1, . . . , Xn are in generic position with respect to the
polynomialsf1, . . . , fp.

Further, letC be any connected component of the compact setS0, and
let b := (a1, . . . , ap−1, ap, . . . , an−1, an) ∈ C be a locally maximal point
of the last coordinateXn in the non–empty compact setC ⊂ S0. Without
loss of generality we may assume that the upper left(p − 1)–minorm of
the JacobianJ(f1, . . . , fp) does not vanish inb (by our assumptions there
must be a(p − 1)–minor ofJ(f1, . . . , fp) not vanishing atb). In any local
parametrization ofS0 atb the variableXn cannot bean independent variable,
sinceXn attains a local maximum inb (an is this local maximum). Hence,
without loss of generality we may assume that the local parametrization of
S0 in b has the following form: there exists an open setU ⊂ Rn−p containing
the pointa := (ap, . . . , an−1), and a continuously differentiable function

ϕ : U → Rp , ϕ := (ϕ1, . . . , ϕp−1, ϕn)

such that

x1 = ϕ1(xp, . . . , xn−1), . . . , xp−1 = ϕp−1(xp, . . . , xn−1),

xn = ϕn(xp, . . . , xn−1)

holds for anyx = (xp, . . . , xn−1) ∈ U . With respect to this local parametri-
zation, the polynomialsfk, 1 ≤ k ≤ p, induce real valued functions of the
form:

f̃k(Xp, . . . , Xn−1) :=

fk(ϕ1(Xp, . . . , Xn−1), . . . , ϕp−1(Xp, . . . , Xn−1),

Xp, . . . , Xn−1, ϕn(Xp, . . . , Xn−1)).

For every1 ≤ k ≤ p, and everyp ≤ j ≤ n− 1, one has the identity

∂f̃k
∂Xj

=
∂fk
∂Xj

+
∂fk
∂X1

∂ϕ1

∂Xj
+ . . .+

∂fk
∂Xp−1

∂ϕp−1

∂Xj
+
∂fk
∂Xn

∂ϕn

∂Xj
= 0 (1)

in the open setU .
Considering the(p× p)–matrix

B :=



∂f1
∂X1

. . .
∂f1
∂Xp−1

∂f1
∂Xn

. . . . . . . . . . . . . . . . . . . . . . . .

∂fp
∂X1

. . .
∂fp
∂Xp−1

∂fp
∂Xn


,
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and observing thatB is regular inU , we obtain from (1) that

−detB(x)



∂ϕ1

∂Xj

...

∂ϕp−1

∂Xj

∂ϕn

∂Xj


= (Adj B)(x)



∂f1
∂Xj

(x)

...

∂fp−1

∂Xj
(x)

∂fp
∂Xj

(x)


(2)

holds for anyx ∈ U (hereAdj B denotes the adjoint matrix of the matrix
B). As b is a locally maximal point ofXn, we have that

∂ϕn

∂Xj
(a) = 0

holds for everyp ≤ j ≤ n− 1. Thus, equation (2) implies

B(n, 1) (b)
∂f1
∂Xj

(b) + · · · +B(n, p) (b)
∂fp
∂Xj

(b) = 0 (3)

for everyp ≤ j ≤ n − 1 (here for1 ≤ k ≤ p we denote the entry of the
adjoint matrixAdj B at the cross point of thek–th column and the last row
by B(n, k)). Taking into account the particular form of the matrixB, the
equation system (3) means that

det



∂f1
∂X1

(b) . . .
∂f1
∂Xp−1

(b)
∂f1
∂Xj

(b)

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

∂fp
∂X1

(b) . . .
∂fp
∂Xp−1

(b)
∂fp
∂Xj

(b)


= 0 (4)

holds for everyp ≤ j ≤ n− 1. Using our notations for thep–minors of the
JacobianJ(f1, . . . , fp), we reinterprete now the equations (4) as

Mp (b) = . . . =Mn−1 (b) = 0.

Sincem(b) �= 0 holds by assumption, Proposition 1 implies thatb belongs to
the localized determinantal variety(∆n−p)m. Therefore, we haveb ∈W0 ∩
(∆n−p)m, i.e., the last formal polar varietyWn−p contains thepointb.On the
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other hand,b is a nonsingular point ofW0 and belongs therefore tõWn−p =
Wn−p \ SingW0. ThusW̃n−p is a non–empty set of dimension zero that
contains the real pointb of the arbitrarily chosen connected componentC
of the real varietyS0. In particular,b ∈ W̃n−p ∩ Rn ⊂Wi ∩ Rn = Si holds
for any1 ≤ i ≤ n− p.

These considerations imply the following result:

Theorem 2 LetW0 := V (f1, . . . , fp) be as in Theorem1. If the real variety
S0 := W0 ∩ Rn is non–empty, bounded and smooth, and if the variables
X1, . . . , Xn are ingeneric positionwith respect tof1, . . . , fp, thenevery real
formal polar varietySi =Wi ∩Rn, 1 ≤ i ≤ n−p, is a non–empty, smooth
manifold of dimensionn− (p+ i) and contains at least one representative
point of each connected component of the real varietyS0.

3 Real equation solving

The geometric results of Section 2 allow us to design a new efficient proce-
dure that finds at least one representative point in each connected component
of a given smooth, compact, real complete intersection variety.

This procedurewill be formulated in the algorithmic (complexity)model
of (division-free) arithmetic circuits and networks (arithmetic-boolean cir-
cuits) over the rational numbersQ.

Roughly speaking, a division-free arithmetic circuitβ overQ is an al-
gorithmic device that supports a step by step evaluation of certain (output)
polynomials belonging toQ[X1, . . . , Xn], sayf1, . . . , fp. Each step ofβ
corresponds either to an input fromX1, . . . , Xn, to a constant (circuit pa-
rameter) fromQ or to an arithmetic operation (addition/subtraction or mul-
tiplication). We represent the circuitβ by a labelleddirected acyclic graph
(dag). The size of this dag measures the sequential time requirements of the
evaluation of the output polynomialsf1, . . . , fp performed by the circuitβ.

A (division-free) arithmetic network overQ is nothing else but an arith-
metic circuit that additionally contains decision gates comparing rational
values or checking their equality, and selector gates depending on these
decision gates.

Arithmetic circuits and networks represent non–uniform algorithms, and
the complexity of executing a single arithmetic operation is always counted
at unit cost. Nevertheless, by means of well known standard procedures our
algorithms will always be transposable to the uniformrandombit model
and they will be practically implementable as well. All this can be done in
the spirit of the general asymptotic complexity bounds stated in Theorem 3
below.

Let us also remark that the depth of an arithmetic circuit (or network)
measures theparallel time of its evaluation, whereas its size allows an al-
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ternative interpretation as ”number of processors”. In this context we would
like to emphasize theparticular importanceof countingonlynonscalararith-
metic operations (i.e.,only essential multiplications), takingQ-linear oper-
ations (in particular, additions/subtractions) for cost–free. This leads to the
notion of nonscalar size and depth of a given arithmetic circuit or networkβ.
It can be easily seen that the nonscalar size determines essentially the total
size ofβ (which takes into account all operations) and that the nonscalar
depth dominates the logarithms of degree and height of the intermediate
results ofβ.

An arithmetic circuit (or network) becomes a sequential algorithm when
we play a so–calledpebble gameon it. By means of pebble games we are
able to introduce a natural space measure in our algorithmic model and
along with this, a new, more subtle sequential time measure. If we play a
pebble game on a given arithmetic circuit, we obtain a so–calledstraight
line program (slp). In the same way we obtain acomputation treefrom a
given arithmetic network. For more details on our complexity model we
refer to [11], [25], [26], [45], [53], [38] and especially to [33] (where also
the implementation aspect is treated).

In the next Theorem 3 we are going to consider families of polynomials
f1, . . . , fp belonging toQ[X1, . . . , Xn], for which we arrange the following
assumptions and notations:

(i) f1, . . . , fp form a regular sequence inQ[X1, . . . , Xn],
(ii) for every 1 ≤ k ≤ p the ideal(f1, . . . , fk) generated byf1, . . . , fk in

Q[X1, . . . , Xn] is radical and defines a subvariety ofCn of dimension
n− k that we denote byVk := V (f1, . . . , fk).

(iii) the variablesX1, . . . , Xn are in generic position with respect to the
polynomialsf1, . . . , fp.

LetW0 := {x ∈ Cn|f1(x) = · · · = fp(x) = 0} and denote bySingW0
the singular locus ofW0. For 1 ≤ i ≤ n − p let Wi be thei–th formal
polar variety associated withW0 and the variablesXp+i, . . . , Xn, and let
W̃i :=Wi \ SingW0 be thei–th polar variety ofW0 in the usual sense (see
Section 2 for precise definitions). Further, for1 ≤ k ≤ p we shall write
Ṽk := Vk \ SingW0. We call

δ := max{max{deg Ṽk|1 ≤ k ≤ p},max{deg W̃i|1 ≤ i ≤ n− p}}
the degree(of the real interpretation)of the polynomial equation system
f1, . . . , fp. Finally, let us make the following assumption:

(iv) the specialized JacobianJ(f1, . . . , fp)(x) has maximal rank in any
point x of S0 := W0 ∩ Rn = {x ∈ Rn|f1(x) = · · · = fp(x) = 0}
andS0 is a bounded semialgebraic set (hence,S0 is empty or a smooth,
compact real manifold of dimensionn− p; see Section 2 for details).
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Theorem 3 Let n, p, d, δ, L and 0 be natural numbers withd ≥ 2 and
p ≤ n. ThereexistsanarithmeticnetworkN overQof size

(
n

p−1

)
L(ndδ)O(1)

and nonscalar depthO(n(log nd + 0) log δ) with the following property:
Let f1, . . . , fp be a family ofn–variate polynomials of a degree at mostd
and assume thatf1, . . . , fp are given by a division–free arithmetic circuit
β in Q[X1, . . . , Xn] of sizeL and nonscalar depth0. Suppose that the
polynomialsf1, . . . , fp satisfy the conditions (i), (ii), (iii) and (iv) above.
Further, suppose that the degree of the real interpretation of the polynomial
systemf1, . . . , fp is bounded byδ (let us now freely use the notations just
introduced before).

The algorithm represented by the arithmetic networkN starts from the
circuit β as input and decides first whether the complex varietyW̃n−p is

empty. If this is not the case, theñWn−p is a zero–dimensional complex vari-
ety and the networkN produces an arithmetic circuit inQ of asymptotically
the same size and nonscalar depth asN , which represents the coefficients of
n+1 univariate polynomialsq, p1, . . . , pn ∈ Q[Xn] satisfying the following
conditions:

deg q = # W̃n−p,

max{deg pk|1 ≤ k ≤ n} < deg q,

W̃n−p = {(p1(u), . . . , pn(u))|u ∈ C, q(u) = 0}.
Moreover, the algorithm represented by the arithmetic networkN decides
whether the set̃Wn−p ∩ Rn is empty. In this case we concludeS0 = W0 ∩
Rn = ∅. Otherwise, the networkN produces at most# W̃n−p ≤ δ sign
sequences belonging to the set{−1, 0, 1} such that these sign sequences
encode the real zeros of the polynomialq ” à la Thom” ([18]). In this way,
namely by means of the Thom encoding of the real zeros ofq and by means
of the polynomialsp1, . . . , pn, the arithmetic networkN describes the finite,
non–empty set

W̃n−p ∩ Rn = {(p1(u), . . . , pn(u))|u ∈ R, q(u) = 0},
which contains at least one representative point for each connected compo-
nent of the real variety

S0 = {x ∈ Rn|f1(x) = · · · = fp(x) = 0}.

Proof. We shall freely use the notations of Section 2. Any selection of
indices1 ≤ i1 < · · · < ip ≤ n and 1 ≤ j, k ≤ p determines ap–
minor M(i1, . . . , ip) and a(p − 1)–minorm(i1, . . . , ip; j, k) of the Ja-
cobianJ(f1, . . . , fp) in the following way:M(i1, . . . , ip) is the determi-
nant of the(p × p)–submatrix ofJ(f1, . . . , fp) with columnsi1, . . . , ip,
andm(i1, . . . , ip; j, k) is the determinant of the matrix obtained from the
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former one deleting the row numberj and the column numberik. There
are p2

(
n
p

)
such possible selections. Let us fix one of them, sayi1 :=

1, . . . , ip := p; j := p, k := p. Then, using the notations of Section
2, we havem(i1, . . . , ip; j, k) = m, M(i1, . . . , ip) = Mp. Let us ab-
breviateg := mMp. From our assumptions onf1, . . . , fp and Theorem
1 and Theorem 2 of Section 2 we deduce the following facts: For any
1 ≤ i ≤ n − p the polynomialsf1, . . . , fp,Mp, . . . ,Mp+i−1 have degree
at mostpd. They generate the trivial ideal or form a regular sequence in
the localizedQ-algebraQ[X1, . . . , Xn]g. In either case the ideal generated
by f1, . . . , fp,Mp, . . . ,Mp+i−1 in Q[X1, . . . , Xn]g is radical and defines a
complex variety that is empty or of degree

deg(Wi \ V (g)) ≤ deg(Wi \ SingW0) = deg W̃i ≤ δ.
Moreover, by assumption, the polynomialsf1, . . . , fp form a regular se-
quence inQ[X1, . . . , Xn]g and for each1 ≤ k ≤ p the ideal generated by
f1, . . . , fk in Q[X1, . . . , Xn]g is radical and defines a complex variety of
degree

deg (Vk \ V (g)) ≤ deg Ṽk ≤ δ.
One sees easily that the polynomialsf1, . . . , fp,Mp, . . . ,Mn−1 andg can
be evaluated by a division–free arithmetic circuit of sizeO(L + n5) and
nonscalar depthO(log n + 0). Applying now, for each1 ≤ i ≤ n − p,
the algorithm underlying [30], Proposition 18 in its rational version [31],
Theorem 19 to the system

f1 = 0, . . . , fp = 0, Mp = 0, . . . ,Mp+i−1 = 0, g �= 0

we are able to check whether the particular system

f1 = 0, . . . , fp = 0, Mp = 0, . . . ,Mn−1 = 0, g �= 0

has a solution inCn. If this is the case, then this system defines a zero–
dimensional algebraic set, namelyWn−p\V (g), and the algorithmproduces
an arithmetic circuit̄γ inQ that represents the coefficients ofn+1 univariate
polynomialsq̄, p̄1, . . . , p̄n ∈ Q[Xn] satisfying the following conditions:

deg q̄ = # (Wn−p \ V (g)),

max{deg p̄k|1 ≤ k ≤ n} < deg q̄,

Wn−p \ V (g) = {(p̄1(u), . . . , p̄n(u))|u ∈ C, q̄(u) = 0}.
The algorithm is represented by an arithmetic network of size
L(ndδ)O(1) andnonscalar depthO(n(log nd+0) log δ), and the circuit̄γ has
asymptotically the same size and nonscalar depth. Running this procedure
for each selection1 ≤ i1 < · · · < ip ≤ n and1 ≤ j, k ≤ p we obtain an
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arithmetic networkN0 of sizep2
(
n
p

)
L(ndδ)O(1) =

(
n

p−1

)
L(ndδ)O(1) and

nonscalar depthO(n(log nd + 0) log δ), which decides whether̃Wn−p=
Wn−p \ SingW0 is empty. Suppose that this is not the case. ThenN0 de-
scribes locally the varietỹWn−p, which is now zero-dimensional. Each local
description of̃Wn−p contains an arithmetic circuit representation of the co-
efficients of the minimal polynomial of the variableXn with respect to
the corresponding local piece of̃Wn−p . Moreover, one easily obtains the
same type of information for any linear formXi + Xn and any variable
Xi with 1 ≤ i < n. One multiplies now all minimal polynomials of the
variableXn obtained in this way. Making this product squarefree (see e.g
[45], Lemma 12) one obtains the polynomialq of the statement of Theo-
rem 3. Doing the same thing for the minimal polynomials of each linear
form Xi + Xn and each variableXi with 1 ≤ i < n, yields by means
of [45], Lemma 26, the polynomialsp1, . . . , pn of the statement of Theo-
rem 3. All this can be done by means of an arithmetic networkN1, which
extendsN0 and has asympotically the same size and nonscalar depth. The
desired arithmetic networkN is now obtained fromN1 in the same way
as in the proof [1], Theorem 8, namely as follows: applying the main al-
gorithm of [9] or [61] and adding suitable comparison gates for rational
numbers, we extendN1 to a new arithmetical networkN of asymptoti-
cally the same size and depth, such thatN decides whether the univariate
polynomialq has a real zero. If this is the case, the networkN enumerates
the existing real zeros ofq, encoding them ”̀a la Thom” ([18]). Ifq has no
real zero we concludeS0 = ∅. Otherwise, the networkN encodes all real
zeros ofq by means of#W̃n−p ≤ δ sign sequences belonging to the set
{−1, 0, 1}. This encoding and the polynomialsp1, . . . , pn describe now the
setW̃n−p ∩ Rn = {(p1(u), . . . , pn(u))|u ∈ R, q(u) = 0} that contains a
representative point for each connected component ofS0. ✷

Remark 5(i) Using the refined algorithmic techniques of [38] or [33] it is
not too difficult to see that for inputsf1, . . . ,fp represented by straight–
line programs of lengthT and spaceS the arithmetic networkN can be
converted into an algebraic computation tree which solves the algorith-
mic problem of Theorem 3 in timeO((Tdn2 +n5)δ3 log3 δ log2 log δ)
and spaceO(Sdnδ2).

(ii) The smooth, compact hypersurface case (withp := 1) of Theorem 3
corresponds exactly to [1], Theorem 8.

(iii) Let J(f1, . . . , fp)T denote the transposed matrix of the Jacobian
J(f1, . . . , fp) of the polynomialsf1, . . . , fp in the statement of Theo-
rem 3 and let

D := detJ(f1, . . . , fp)J(f1, . . . , fp)T .
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From the well–known Cauchy–Binet formula one deduces easily that,
with the notations of Section 2, the identity

D =
∑

1≤i1<···<ip≤n

det2 M(i1, . . . , ip)

holds. Replacing now, in the statement and the proof of Theorem 3 for
1 ≤ i ≤ n − p, the polar varietỹWi by Ŵi := Wi \ V (D) and the
parameterδ by

δ̂ := max{max{deg Ṽk|1 ≤ k ≤ p},max{deg Ŵi|1 ≤ i ≤ n− p}}
one obtains a somewhat improved complexity result, sinceδ̂ ≤ δ holds.

Let us now suppose that the polynomialsf1, . . . , fp ∈ Q[X1, . . . , Xn]
satisfy the conditions (i), (ii), (iii), (iv) above. Unfortunately, the complexity
parameterδ of Theorem 3 is strongly related to thecomplexdegrees of
the polar varieties̃W1, . . . , W̃n−p of W0 = {x ∈ Cn|f1(x) = · · · =
fp(x) = 0} and not to theirrealdegrees. Under some additional algorithmic
assumptions, which we are going to explain below, we may replace the
complexity parameterδ by a smaller one that measures only the real degrees
of the polar varieties̃W1, . . . , W̃n−p. We shall call this new complexity
parameter thereal degreeof the equation systemf1, . . . , fp and denote it
by δ∗.

Let 1 ≤ k ≤ p and let us consider the decomposition of the interme-
diate varietyṼk into irreducible components with respect to theQ-Zariski
topology ofCn sayṼk = C1 ∪ · · · ∪Cs. We call an irreducible component
Cr, 1 ≤ r ≤ s, real if Cr ∩ Rn contains a smooth point ofCr. The union
of all real irreducible components of̃Vk is called thereal part of Ṽk and
denoted byV ∗

k . We calldeg V ∗
k the real degreeof the intermediate variety

Ṽk. Similarly, we introduce for every1 ≤ i ≤ n − p the real partW ∗
i of

the polar varietỹWi and its real degreedegW ∗
i . Finally, we define thereal

degree of the equation systemf1, . . . , fp as

δ∗ := max{max{deg V ∗
k |1 ≤ k ≤ p},max{degW ∗

i |1 ≤ i ≤ n− p}}.
Now, we are going to restate the main outcome of Theorem 3 in terms of

the new complexity parameterδ∗. For this purpose we have to include the
following two subroutines in our algorithmic model:

– the first subroutine we need is a factorization algorithm for univariate
polynomials overQ. In the bit complexity model the problem of fac-
torizing univariate polynomials overQ is known to be of polynomial
time complexity [51], whereas in the arithmetic model we are consider-
ing here this question is more intricate [27]. In the extended complexity
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model we are going to consider here, the cost of factorizing a univariate
polynomial of degreeD overQ (given by its coefficients) is accounted
asDO(1).

– the second subroutine allows us to discard non-real irreducible com-
ponents of the occurring complex polar varieties. This second sub-
routine starts from a straight-line program for a single polynomial in
Q[X1, . . . , Xn] as input and decides whether this polynomial has a real
zero (however, without actually exhibiting it if there is one). Again this
subroutine is taken into account at polynomial cost.

We call an arithmetic network overQ extendedif it contains extra nodes
corresponding to the first and second subroutine.

Modifying our algorithmic model in this way, we are able to formulate
the following complexity result, which generalizes [1], Theorem 12 and
improves the complexity outcome of our previous Theorem 3.

Remark 6Letn, p, d, δ∗, L and0 be natural numbers withd ≥ 2 andp ≤ n.
There exists an extended arithmetic networkN ∗ overQ of size

(
n

p−1

) ×
L(ndδ∗)O(1) with the following property: Letf1, . . . , fp be a family ofn–
variate polynomials of a degree at mostd and assume thatf1, . . . , fp are
given by a division–free arithmetic circuitβ in Q[X1, . . . , Xn] of sizeL.
Suppose that the polynomialsf1, . . . , fp satisfy the conditions (i), (ii), (iii),
and (iv) contained in the formulation of Theorem 3. Let us now freely use
the notations introduced in the present section. Assume that the real variety
S0 = {x ∈ Rn|f1(x) = · · · = fp(x) = 0} is not empty and that the real
degree of the polynomial systemf1, . . . , fp is bounded byδ∗. The algorithm
represented by the arithmetic networkN ∗ starts from the circuitβ as input
and decides first whether the complex varietyW ∗

n−p is empty. If this is not
the case, thenW ∗

n−p is a zero–dimensional complex variety and the network
N ∗ produces an arithmetic circuit inQ of asymptotically the same size
asN ∗,which represents the coefficients ofn + 1 univariate polynomials
q∗, p∗1, . . . , p∗n ∈ Q[Xn] satisfying the conditions

deg q∗ = #W ∗
n−p,

max{deg p∗k|1 ≤ k ≤ n} < deg q∗,

W ∗
n−p = {(p∗1(u), . . . , p

∗
n(u))|u ∈ C, q∗(u) = 0}.

EachoverQ irreducible component of the complex varietyW ∗
n−p contains at

least one real point characterized by an irreducible factor of the polynomial
q∗. The algorithm represented by the networkN ∗ returns all these points
in a codification ”̀a la Thom”. Moreover, the non–empty setW ∗

n−p ∩ Rn

contains at least one representative point for each connected component of
the real varietyS0.
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The proof of this Remark is a straight–forward adaptation of the argu-
ments of the proof of [1], Theorem 12 (which treats only the hypersurface
case withp := 1) to the arguments of Theorem 3 above. Therefore, we omit
this proof.

Let us finally observe that the practical relevance of the complexity out-
come of Remark 6 is highly hypothetical, because it depends on the strong
assumption that extended arithmetical networks are realizable by perfor-
mant, programmable algorithms. Nevertheless, by means of Remark 6, we
wish to underline the importance of the search for efficient procedures that
realize the first and second subroutine introduced as extra nodes in our com-
plexity model of extended arithmetic networks.
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Boston MA, (1993)

8. E. Becker, J. Schmidt: On the real Nullstellensatz. Algorithmic algebra and number
theory (Heidelberg, 1997), 173–185, Springer Berlin (1999)

9. M. Ben-Or, D. Kozen, J. Reif: The complexity of elementary algebra and geometry, J.
Comput. Syst. Sci.32, 251–264 (1986)

10. B. Buchberger, Ein algorithmisches Kriterium für die Lösbarkeit eines algebraischen
Gleichungssystems, Aequationes math.4, 371–383 (1970)

11. P. B̈urgisser, M. Clausen, M. A. Shokrollahi Algebraic complexity theory. With the
collaboration of Thomas Lickteig. Grundlehren der Mathematischen Wissenschaften.
315. Berlin: Springer. XXIII, 618 (1997)

12. L. Blum, F. Cucker, M. Shub, S. Smale, Complexity and real computation. Foreword
by Richard M. Karp. New York, NY: Springer. XVI, 453 p. (1997)

13. J. F. Canny: Some Algebraic and Geometric Computations in PSPACE, Proc. 20th
ACM Symp. on Theory of Computing (1988) 460–467



142 B. Bank et al.

14. J. F. Canny, I. Z. Emiris: Efficient Incremental Algorithms for the Sparse Resultant and
the Mixed Volume, J. Symb. Comput.20, No.2, 117–149 (1995)

15. L. Caniglia, A. Galligo, J. Heintz: Some new effectivity bounds in computational ge-
ometry, Proc. AAECC-6, T. Mora, ed. , Springer LNCS, 357, 131–152 (1989)

16. A. L. Chistov: Polynomial-time computation of the dimension of components of alge-
braic varieties in zero-characteristic, Preprint Universtité Paris XII (1995)
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