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Abstract. We prove a Wrmander-type spectral multiplier theorem for a
sublaplacian or8U(2), with critical index determined by the Euclidean
dimension of the group. This result is the analoguesfor2) of the result
for the Heisenberg group obtained by DiNér and E.M. Stein and by
W. Hebisch.
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1. Introduction

Suppose thak is a measure space, equipped with a meaguaad thatl
is a self-adjoint positive definite operator 64(X ). ThenL has a spectral
resolution:

L= / NAEL(N),
0

where theE(\) are spectral projectors. For any bounded Borel func-
tion F': [0,00) — C, we define the operatdr (L) by the formula

F(L) = /OOO F(A)AEL(N).
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By the spectral theoren¥'(L) is well defined and bounded ab?(X).
Spectral multiplier theorems give sufficient conditions Brunder which
the operatof'( L) extends to a bounded operator Bf( X ) for some range
of p. Once and for all, fix a nonzero cut-off functionin the Schwartz
spaceS(R) supported ifR ™. Our theorem, like many, will be phrased in
terms of the “local Sobolev norm”

sup [0 Ee |,

whereH:; is the Sobolev space of orderandF(,) is given by

The main goal of this article is to prove a spectral multiplier theorem for
a sublaplacian 08U(2), the group of2 x 2 complex unitary matrices of
determinantl. Its Lie algebrasu(2) consists of th& x 2 complex skew-
adjoint matrices of trace. Define X, Y, andZ in su(2) by

01 01 1 0
an x= (%) vo (%) e z-(3%)

These form a basis efi(2). We identify X, Y andZ with the corresponding
left-invariant vector fields 08U(2), and definel by the formula

(1.2) L=—(X*+Y?).

ThenL is a positive definite self-adjoint left-invariant second-order subel-
liptic differential operator on.?(SU(2)). The main result of this paper is
the following spectral multiplier theorem.

Theorem 1.1. Suppose that > 3/2 and thatF': [0, 00) — Cisabounded
Borel function such that

< 00.

w 17 Fi| 1,

te(l,00
ThenF'(L)is ofweaktypé¢l, 1) and bounded oi? (SU(2)) whenl < p < cc.

The subject of spectral multiplier theorems for differential operators is very
broad, and itisimpossible to give acomplete bibliography here. We therefore
only mention work directly related to our results. We start with the standard
Laplace operatart; onR?. Assume that > d/2 and thatf”: [0, 0) — C
satisfies the condition that

(1.3) s [0 Fiol, < oo

Then L. Hbrmander’s multiplier theorem [19], specialised to the radial mul-
tipliers, shows that the operatéi{ 4,) is of weak type(1, 1) and bounded
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on LP(R%) for p in (1, 00). The order of differentiability is optimal, in the
sense that, if < d/2, then we can find a functiof’ such that (1.3) holds
but F'(A,) is not of weak typg1, 1) (see [6]). Since this condition holds,
we say thatl/2 is thecritical index

Now suppose that is a homogeneous sublaplacian on a stratified nilpo-
tent Lie group of homogeneous dimensi@rA. Hulanicki and E.M. Stein
[22] (see also [16, Theorem 6.25]) proved that if (1.3) holds for seme
in (3d/2 4+ 2,00), thenF(L) is of weak type(1,1) and bounded oriL?P
whenl < p < co. L. De Michele and G. Mauceri [12] improved this result
and proved that the same conclusions holdif d/2 + 1. Next, M. Christ
[6], and independently Mauceri and S. Meda [23], proved that differentia-
bility of order greater thad/2 is sufficient; see also [30]. Then X.T. Duong
[13] proved that for some nilpotent groups of siefhe order of differentia-
bility required in the multiplier theorem is less théf2. Finally, Miller and
Stein [25] proved that the dtmander multiplier theorem holds for some
generalised Heisenberg groups when- n/2, wheren is the Euclidean
dimension of the group. Independently Hebisch [18] proved the same result
for all generalised Heisenberg groupsuldr and Stein [25] also proved
thatn /2 is the critical index.

At about the same time, spectral multiplier theorems on Lie groups of
polynomial growth were investigated by G. Alexopoulos [3]. In his result,
the required order of differentiability is connected with the volume growth
of the ball B(e, r) with centree and radius-. More precisely, assume that
w(B(z,r)) ~ r*whenr < 1andu(B(z,r)) ~ r” whenr > 1. Denote
by As(R) the space of Lipschitz (6lder) continuous functions of order
If s > max(d,D)/2 and F': [0,00) — C is bounded and satisfies the
condition that

su F, %)

sup [ EFyl,y, < o0,
thenF'(L) is of weak typg(1, 1) and is bounded oi? whenl < p < cc.
Alexopoulos’ multiplier theorem, applied to the operator defined by (1.2),
yields a result which is weaker than Theorem 1.1; Alexopoulos’ method
requiresA; for s > 2 instead ofH, for s > 3/2. In Sect. 3, we give an
alternative proof of Alexopoulos’ multiplier theorem. In fact we obtain a
more general version, valid not only in the Lie group setting, but also for
abstract operators with the finite speed propagation property.

As we see, the critical index in multiplier theorems is often determined
by the volume growth rate of the ball, or the dimension of the corresponding
semigroup (which at least in principle are the same—see [37]). For elliptic
operators the dimension of the corresponding semigroup coincides with
the Euclidean dimension of the underlying space. However, for subelliptic
operators, this semigroup dimension is strictly greater than the Euclidean
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dimension. Theorem 1.1 provides another example of a subelliptic operator
for which the critical index in the spectral multiplier theorem is determined
by the Euclidean dimension of the underlying space, not by the dimension of
the corresponding semigroup. So we may view Theorem 1.1 as an extension
of the multiplier theorems of [18] and [25]. Note that the groups investigated
by [18] and [25] are all nilpotent of ste while SU(2) is simple. However,

in this contextitis interesting to note the connection between the Heisenberg
group andSU(2) (see [26,27]).

Multiplier theorems on compact Lie groups, in particutdf(2), were
investigated by N.J. Weiss [39], R.R. Coifman and G. Weiss [10], J.-L. Clerc
[8,9], A. Bonami and Clerc [4], and others. However only the result of [10]
is applicable to subelliptic operators, and the multiplier theorem of [10] is
weaker then Theorem 1.1.

The proof of Theorem 1.1 has three main ingredients. First, using a
Caldebn—Zygmund type argument, we show in Theorem 3.3 that, in order
to prove a weak-typél, 1) estimate for the operatd?(+/L), it suffices to
show that

sup Sup/
reRt yeX JB(y,r)c
where Kr is the kernel of the operatdf, and, is a damping factor.
Next, in Lemma 3.4, we show how to estimate integrals outside a ball.
In Theorem 3.5, we show how one very simple Plancherel type estimate
may be combined with Theorem 3.3 and Lemma 3.4 to prove Alexopoulos’
multiplier theorem. As noted, this is a weaker result than Theorem 1.1. To
prove our main theorem, we need one more ingredient, namely a sharper
weighted Plancherel estimate, established in Sect. 4. In Sect. 5, we observe
that our Theorem 1.1 implies the result ofiMer and Stein and of Hebisch
for the Heisenberg grouf; by a contraction argument.

KF(17¢(T>)(\E) (z,y)| du(x) < C,

2. Preliminaries

The purpose of this section is to introduce some notation, describe the hy-
potheses under which we work, and prove a few lemmas which will be useful
in our investigation of multiplier theorems.

2.1. Some notation

Assume that X, p) is a metric space, equipped with a regular Borel mea-
sureu. The Lebesgue spacés( X ) are constructed relative to this measure.
Let B(y, r) denote the bal{z € X : p(x,y) < r}; B(y,r)° will denote its
complement inX.
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Suppose thdl’ is a bounded operator froiP (X) to L(X). We write
| T|| ;.»—, 1« fOr the usual operator norm @. If T"is of weak typg(1,1), i.e.,
if
p{ze X |Tf(x)|>A}) < c”fLLl YAeR*  VfeL'(X),

then we write||T||;1_, ;1. for the least possible value 6f in the above
inequality; this is often called the “operator norm”, though in fact it is not a
norm.

If there is a locally integrable functioA'7: X x X — C such that

(T, fo) = /X Th o du = /X Kr(z,y) f1(y) Fa@) duy) du(z)

for all f; and f; in C.(X), then we say thal” is akernel operatorwith
kernel K. It is well known that if 7" is bounded fromZ!(X) to L4(X),
whereq > 1, thenT is a kernel operator, and

1T 1 pa = sup ([ K7 (- 9)ll 1o s
yeX

vice versaif T is a kernel operator and the right hand side of the above
inequality is finite, the" is bounded fron! (X) to L4(X), even ifg = 1.
Given an operatof’ from LP(X) to L?(X), we write

supp K7 C {(2,9) € X x X : p(x,y) <r}

if (T'f1, f2) = 0 wheneverf, is in C(X) andsupp f, C B(zy, ) When
n =1,2,andr; + ro +r < p(z1, z2). This definition makes sense even if
T is not a kernel operator, in the sense of the previous definition.

Observe that, i is in L>°(R), then the adjoint of the operatéi(+/L)
is F'(v/L). This implies that, in order to prove thdt(v/L) is of weak
type (1,1) and bounded od"(X) whenl < r < oo, for all ' is some
class of bounded functions which is closed under conjugation, it suffices to
prove thatF'(v/L) is of weak typg(1, 1). For F(v/L) is bounded ord.?(X)
by the spectral theorem, and the boundedness(afL) on L"(X) for r
in (1, 2) follows by interpolation and for in (2, co) by duality.

2.2. Hypotheses on the ambient space

We make two assumptions about the measured metric $page p).

Assumption 2.1. We suppose throughout that the “doubling condition”
holds, i.e., there exists a const&@nsuch that

w(B(xz,2r)) < Cu(B(x,r)) Vre X VreRT.
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Ford andD in [0, c0), we definel; p: Rt — R by the formula

t¢  whent <1
Vip(t) = =
4.0(?) {tD whent > 1.

We will also useVp 4, with the roles ofd and D reversed, in light of the
well-known principle that local and global behaviour in the spatial vari-
ables correspond to global and local behaviour respectively in the spectral
variables. Note thalty p(r) = Vp 4(r—1) 1.

Assumption 2.2. We always suppose that there i$da D) regular weight

on X, by which we mean a nonnegative measurable funatioX’ x X —
R, possiblyl, such that

(2.1) w (2, y) du(x) < CVyp(r) vre Rt Vye X.
B(yr)

By Holder’s inequality, this implies that
| 1)l duto)
B(y,r)

< </B(W) w™(z,y) du(@*)) v

X </B(ym) Ik(z, y)[? w(z, y) du(:c)> 1/2
@2 < 0<vd,D(r> /| et ot du(:c)>

1/2

In particular, if D = 0, then taking limits ag tends toco shows that

/X |k(z,y)| du(z) < C</X o, ) 2 w(z, ) du(m)>l/2

forall y in X, so that

1/2
(2.3) T 11 < Csup </ ‘KT(x,y)IQ w(z,y) du(x)) .
yeX X

2.3. Hypotheses on the operatbr

Let L be a self-adjoint positive definite operator 6A(X). We make two
assumptions throughout this paper abbut
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Assumption 2.3. We suppose thdt has the finite propagation speed prop-
erty:

SuPchos(t\/Z) C{(z,y) € X x X : p(x,y) < t},

Assumption 2.4. We suppose that there is a consté@hand a positive in-
tegerk such thatL satisfies the Sobolev-type estimate

1l < Cu(Blam) ™| (1+72L)" ]

Lt
for all f on X with supportinB(z,r), for all z in X andr in R*.

We now give a well known and useful consequence of Assumption 2.3,
which goes back to [5].

Lemma 2.1. Assume thaf is 'Ehe Fourier transform of a bounded even
Borel functionF' and thatsupp F' C [—r,r|. Then

supp Ky ) € {(@,y) € X x Xt p(z,y) <r}.
Proof. If F'is an even function, then by the Fourier inversion formula,

F(WVL) = % /00 F(t) cos(tV'L) dt.

Butsupp F' C [—r,r], so Lemma 2.1 follows from Assumption 2.3. O

2.4. Even functions

The result of Lemma 2.1 is key to our work. In order to be able to use it,
we must deal with even functions @ rather than functions off), oo). Of
course, since the spectrumbis contained if0, o), the operato# (/L)
depends only on the restriction 6fto this set.

We denote by3(R) the space of bounded even complex-valued Borel
functions onR, and byBr(R) the subspace d8(R) of functions which
vanish outsidé— R, R).

2.5. Plancherel type hypotheses

Given a functionf': R — C andR in R", we denote by(r: R = C
the functionz — F(Rx).

Assumption 2.5. Throughout this paper, we will suppose that

sup (/X‘KF(ﬁ>(w7y)‘2w(%y) du(w)>1/2

yeX
(2.4) < CVpa(R)? | Fimy| e »

for all Rin R* and allF in Bgr(R), wherew is a(d, D) regular weight.
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Sometimes we will replacgF | »
this is a stronger assumption.

WhenD = 0, Assumption 2.5 is equivalent (up to a change in constants)
to the apparently weaker assumption that

|| o With || Fig) || .- wherepisin[1, 00);

) 1/2
sup </ ‘KF(@)(x,y)) w(z,y) dM(:L")) < C NY? | Fw) || oo »
yeX X

for all N in Z* and allF' in By (R). We sometimes suppose that this in-
equality holds whet| F{ v |, .. is replaced by the mixed nori/ v

given by

)HN,p’

1 & p\ /P
6, = (5 (s 16w)’)
=1 ‘)‘|€[ N ’ﬁ]
1 N 1/p
_ i p
(2.5) = <NZ sup  [G(N)| >
=1 |/\|€[ N 7ﬁ]

wherepisin [1,00) and N is a positive integer; in this definition, to obtain
a norm, we must require thatipp G C [—1, 1].

2.6. Examples
First, suppose that = 1, that the uniform ball size condition
CVap(r) < p(B(z,r)) < C'Vyp(r) vre RT VzeX
holds, and thaL satisfies the heat kernel estimate
(26)  llexp(—tL)l| 12 < C V()" VieRY.
Then forF in Br(R), we see that
LG I LUk P
< CVpa(R)"? | F| o ,

L1512 HeXp(_RQL)HLI—w?

and Assumption 2.5 holds. Next, from the formulae

oo < Q472 L) 7™ 1y oo ([ 42 L)™ F| 11
(I4720)™™ = F(lm)/o e 't Lexp(—tr?L) dt

and
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llexp(—tL)|| 1100 < C Vap(t)~/? VteRT,

(which is a consequence of (2.6)), Assumption 2.4 follows. It is perhaps
worth pointing out that, when (2.6) holds, then Assumption 2.3 is equivalent
to having Gaussian bounds for the heat kernel—see [31] for more details.
Examples where these hypotheses hold include Lie groups of polynomial
growth.

Second, when the spacéis a Lie group, and is a left-invariant dif-
ferential operator, then the operatd(+/L) is given by convolution with a
kernel,f(F(f) say, i.e.,

F(VD)f(g) = £+ K /f (g,

and
HM\

iz HKF(‘E)‘ L2

The Plancherel formula for the commutative subalgebra'¢fX) gen-
erated byL gives rise to a formula of the form

= () P00 dm))m

for some Plancherel measurésee, e.g., [6]). For ahomogeneous sublapla-
cian on ahomogeneous group of homogeneous dimegkiibis immediate
that d7()\) is a multiple ofA®~! d\. Hence, in this case,

HF(\fL)HLI_w2 < CVoo(R)"? | Firll

for all F'in Br(R). OnT", the description of the Plancherel measure in-
volves numbertheory, and for a general subelliptic operator on acompact Lie
group, one cannot be very specific about the Plancherel measure. However,
the case wheré is the Laplacian is covered in the next example.

Third, for a general positive definite elliptic pseudo-differential operator
on a compact manifold, Assumption 2.4 holds by general elliptic regularity
theory. Further, one has the AvakumvAgmon—-Hrmander theorem.

|Rem)

Theorem 2.2. Let L be a positive definite elliptic pseudo-differential oper-
ator of orderm on a compact manifol&X of dimensiond. Then

(2.7) HX[T—I,T)(Ll/m)’ L

Theorem 2.2 was proved bydrmander in [21]; see also [1,2,20]. This
theorem has a useful corollary.

<Cord-b2  yre Rt

Corollary 2.3. Let L be a positive definite elliptic pseudo-differential op-
erator of order2 on a compact manifolX of dimensiond. Then

(2.8)
v

< CNY2|Fx VYN € Z* VF e BR)y

L172 )HN,Q
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Proof. By the spectral theorem,

N 2 1/2
TR ol RV
< ON? || Fiwy ||y
as required. .

The importance of the estimate (2.7) for multiplier theorems was noted
by C.D. Sogge [32], who used it to establish the convergence of Riesz means
up to the critical exponer(d — 1)/2, see also [7]. The following theorem
appears to be due to A. Seeger and Sogge [29]; see also Hebisch [17].

Theorem 2.4. Suppose thak is the Laplace—Beltrami operator on a com-
pact Riemannian manifold of dimensionl. Assume that > d/2 and that
F:[0,00) — Cis a bounded function such that

sup [ Flg ||, < oo
te[1,00) ‘

ThenF'(v/L)is ofweak typ¢l, 1) and bounded oi” (X ) whenl < p < occ.

This result is a consequence of Theorem 3.6 below and Corollary 2.3.
Theorem 2.4, applied to the Laplace operator on a compact Lie group,

gives a stronger result then Alexopoulos’ multiplier theorem. However, we

do not know whether the Avakuma#Agmon—Hirmander condition holds

for subelliptic operators. Hence Alexopoulos’ result gives the best known

result for a sublaplacian on a compact Lie group other 81a(2).

2.7. The projectiort', (0)

In spectral multiplier theory, it is often necessary to consider the possibility
that the projectiorZ;, (0) is nontrivial, and this paper is no exception.

Lemma 2.5. The projectionE',(0) is zero if D > 0, and is bounded on alll
the spaced.”(X) for pin [1,00] if D = 0.

Proof. Observe that, for all small positive we have

Sup([;Uﬁhmﬂ%yﬂ2w@%wdﬂﬁﬂ>U2

yeX

2.9) =wﬁévwm@mmwmmwmfﬂ

yeX
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S C VD,d(€)7

from Assumption 2.5. It follows that iD > 0 thenE(0) = 0.
If D = 0, then the left hand side of inequality (2.9) is bounded. Com-
bining this fact with (2.3), we see that

IEL(O) |1y < sup / K, o) ()| du(z) < C.
yeX JX

By duality and interpolationZ, (0) is bounded on all the spacég(X) for
pin[1,00]. O

2.8. Besov spaces

We will phrase our results in terms of Besov spaces. For the reader’s con-
venience, we recall the definitions here.

Fix [0, 1]-valued functionspy and¢ in S(R) supported in(—4, 4) and
(1,4) respectively, such thabo(A) + > ezt ox(A) = 1in R, where
dr(N) = ¢(27%|\]) for k in Z*. Thengy = 1 on [—2,2] andsupp ¢; C
[27,272] U [—2712, —27] for j in N. We define the operatof$,, onS’(R)
by the formula

(2.10) (T, F) = ¢,F,

for jin N.

Forsin R andp andgin [1, oc], the Besov spacB:*!(R) is defined to
be the set of all locally integrable functiofison R such thaf| F'|| gr.a < oo,
where

. 1/q
IFllpps = (3 27|17, P11,
JEN

if 1 < ¢ < oo, with the usual modification if = co. Clearly BY"Y(R)) C
BPY(R)if s > 5orif s = 5 andg < g. It is known that the Besov space
BPY(R) is “close to” the potential spad&? (R) of functionsf in LP(R.)
such thatA®/? f also lies inL?(R)), with the norm||f||W5 given by|| f1|;» +
|4%/2f|,,- In particular,B2*(R) = H,(R) andA,(R) C B (R).
See, e.g., [33, Chap. V] or [36, Chap. | and II] for more detalils.

Locally, Besov spaces are invariant under composition with diffeomor-
phisms. This means that it is equivalent to show thé&t/L) is bounded
from L*(X) to L¥(X) for all F such that)F| ) is in B{(R) for all Rin
R™, and to show that'(L) is bounded fron.*(X) to L¥(X) for all F in
the same class.
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3. General multiplier theorems

We fix an even functio® in S(R) such that?(0) = 1, whose Fourier trans-
form & is supported if—1, 1]; we letd,., denote the dilated functioB(r- )
and®() denote thd " derivative of®. For later purposes, note that for
any fixed odd positive intege¥, we may assume that")(0) = 0 when

1 <[ < k. It then follows that there is a constatitsuch that

max{‘(gﬁ(r) D)D) 1/4<2<1,0<1< k:}

1 .
Indeed, becausg is in S(R), it follows, for all z in R andr in R*, that if
[ =0, then
[Py (@) =1 S 1+ [1D] o
while if [ > 0, then
(@) — 1)O (@) =+

o0 (ra)| < Cr'(1 +ral) .

Further,@ extends to an entire function {d of exponential typd, and we
may write

_ Chk+1 k1
P(x)=1
(z) + (k+1)!1: + Vo € C,

where the coefficients,, are uniformly bounded; it is easy to use this fact
to show that

(@) — 1) (z)| < OrFH!

when|z| < 1and0 < r < 1.
The following lemma is crucial to our paper.

Lemma 3.1. With® in S(R)) chosen as above, the kerrfél%(ﬁ) of the
self-adjoint operato@(r)(\/f) satisfies
supp Ko | (yzy) S 12, y) € X x X2 p(z,y) <7}
Further, ifsupp b C B(x,r), then for allg in [1, o],
|ee VDR < Cn(B2m) ™ ol v ert

Proof. The first part of the lemma follows from Lemma 2.1.
Now we show that

(3.2) “@(r)(ﬁ)‘ <C VreR*

L'—Lt ™

Takef in L'(X). Then
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|20 /D],

= [ V] Kar L(w,y)f(y)du(y)‘ aua)

/ / o (vm (@) f )] dia(e) du(y)
<sup | (Kaswz)(w)\ au(a) £

yeX

1/2
< sup (Vi) [ [y, o) o) aute)) 151

yeX

by Fubini’'s theorem and (2.2). We conclude that

|0/

L'—rt
2

1/2
63 s (Vi) [ [Ky, o] v @)

yeX

An integration by parts shows that

b,y (VL) = /0 m@(rﬁ) dEL(\)
=-9 / —(P’ (rvV/X)
x/o Xioa(N) dEL (V) dA

=—FL(0 / VA) X[ (L) dA,

SO

oo
’
34) Ky vp = Ko /0 2v/A (rVA) Koy ) A

Suppose thab > 0, sothatE',(0) = 0, by Lemma 2.5. We deduce from
formulae (3.3) and (3.4), Minkowski's inequality, and the basic Plancherel
assumption Assumption 2.5 that

H%W!

L'—L!

< sup ’ — @’ ‘
yeX

x<vd,D(r) /X ‘KX[M]( ﬁ)(m’y)rw(w) du(x)>1/2 X
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Y 1/2
S/o 'qu(rﬁ)’(vd’D(r)VD,d(ﬁ)) A
- /0 |®'(rs)| (Va,p(r) Via(s)) /?r ds,

by a change of variable. Hf < 1, then this is at most
/01 ’@'(Ts)} r4/2sP12p qs + /100 ’@'(Ts)} r42542 4
< /01 ‘(P/(rs)’ (rs)min(d/Q’D/z)r ds
+ /100 |®' (rs)]| (rs)¥?r ds
< /000 ‘@’(rs)} (rs)min(d/Q’D/Q)r ds
+ /OOO |®' (rs)]| (rs)max(d/2D/2);. 4

= /oo |/ (t)] (td/2 +tD/2) dt
0

< 00,

while if » > 1, then we can show similarly that the same bound holds. Thus
(3.2) holds in this case.

On the other hand, iD = 0, themﬁm(\/f) involves an extra term,
namely,E,(0), which is bounded o' (X ) by Lemma 2.5, and combining
this with the previous argument proves (3.2) in this case too.

To finish the proof of the lemma, taken L' (X) supported inB(z, r),
and let¥ be the functionr — (1 + z?)*®(z). Then¥, (VL) = (1 +
rQL)’@(T)(\E). The argument to prove (3.2) also shows that

H(1 + rQL)kqs(r)(\fL)}

=[[# /)

<C,
L'—Lt L1—Lt
so from Assumption 2.4, we deduce that

-1
|2 (VDR| < Cu(Ba,2m) " 0l
The general result follows fromélder’s inequality. O

We now recall the Caldén—Zygmund decomposition.

Theorem 3.2. There exist constants and k such that, for allf in L!(X)
andXin R* such that\ u(X) > [, |f| dpu, there exists a sequence of balls
{B(zp,n): n € N} and a decomposition of:
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f=g+b=g+) by

nelN
such that

@) [lgllzr < Cllfllz
(0) [lgllp < CA
(c) suppb, C B(zp,r,) forall nin N
(d) [y |bn] du < CAp(B(z,r)) forall nin N
(€) Ypen #(B(@n,n)) < CA [ |f] dps
(f) ZnEN XB(x,L,an) < k.
The proof is a variant of the standard arguments, for which see, e.g., [10,
p. 66] or [34, p. 8], and we omit it. The parameteis called thdevelof the
decomposition.

To prove that an operator is of weak ty@e 1), we usually use estimates
for the gradient of the kernel. The following theorem replaces the gradient
estimates in our setting (see [11,14,15, 17] for other variants of this).

Theorem 3.3. Suppose thak’ is in B(R), that|| F'|| ;.. < A, and that

(3.5) sup sup/
reR* yeX JB(y,r)c

Then

Kp(lqum)(ﬁ)(@”ay) du(r) < A.

< CA.

Ll [l

)

Proof. It is enough to prove that
K ({x : )F(\/E)f(ﬂf)‘ > 3)\}) < C’AHfﬂLl

forall fin L*(X) andX in R* such that\ u(X) > A [, |f] du.

Fix suchanf and\, and le{ B(zy,,7,): n € N}andf = g+>", .nbn
be the corresponding Calder—Zygmund sequence of balls and decomposi-
tion of f atlevel\/A. We define the “nearly good” and “very bad” functions
g andb by

§=> 4 VL, and b= (by— D, (VL)b).

neN neN

Thenf =g+ g+b, so{x : ‘F(\E)f(x)‘ > 3>\} is a subset of

{:U : ‘F(\FL)g(x)‘ > )\} U {:1: : ‘F(\/E)é(x)‘ > )\}
(3.6) U {x : ’F(\/Z)B(a;)) > )\}.

To estimate the measure of the first set, recall #(af'L) is bounded ori.?,
by spectral theory. Thus, by the Chebyshev inequality,
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\/» 2
a <{x ‘F(\FL)Q(@) > A}) < HF(;m’LZ’

_ IFIL llglz2

< calflu

: 2
sincellgllzz < CA[|fl[L: /A
To deal with the set involving similarly, it will suffice to show that

1121
< WAL
CA

H%@(rn)(\@)bn ; <

Now by Lemma 3.1,supp®,,\(VL)b, C B(zyn,2ry), and by the
Caldebn—Zygmund decomposition, no point &f belongs to more than
k balls B(zy,, 2ry,). Thus, by Lemma 3.1,

13" @6, (Vb ; <k |20, (VI
neN neN

16171
<C _—
2Bl )

A
<O 53 ol

neN

[EAl%!
A Y

S C//)\

as required.
It remains to deal with the third term in (3.6). Now

u({x Y F(1 =) (VI)ba(z)| > A})

neN
)| > /\}\ U B(J:n,2rn)>.

< Z SCn, 27‘n
neN

neN

sl {o

However, by the properties of the Cal@a~Zygmund decomposition and
hypothesis (3.5),

) F(1L =@, (VL) (2

neN

Z M(B(xn, 2rn)) <CA HfﬂLl,

neN
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and

n({o

CD) D F(1 =3, (V)b ()

> )\} \ U B(a:n,an))

neN neN
<1 / S F(1 = @) (VE)ba ()| dpi(a)
A JX\Upen Blan2r) | 5

| /\

A Z /X\B wn,m) QS(T"))(\FL)b"(x)‘ du(z)

Y Z 16 sup/ ‘KF(l—QS(Tn))(ﬁ)(x7y)’ dp(z)
nGN (y,rn)©
<oalflu,
as required. O

The next step is to estimate the expression (3.5). A key reduction in
the difficulty of the problem can be effected using the finite propagation
speed hypothesis (Assumption 2.3) and Fourier analysis. To formulate this,
we recall the definition of the Besov spabB&?(R) from Sect. 2.8 and the
mixed norm(|-||y, , from (2.5).

Lemma 3.4. Suppose thatr: X x X — R* is nonnegative, and that
satisfies Assumption 2.3 (the finite propagation speed property).

@) If
sup</ ‘K rry‘ w(z,y) du(z ))1/2

yeX
(3.7) < CVpa(R)'? || Fmyl -

for all Rin R and all F in Bg(R), then for alls in R* there exists a
constant’, such that

sup (/
yeX B(y,r)c

Vp,a(R)Y/? H
" (1+7rR)s (E)

forall rand Rin Rt and all F in Bi(R).

(b) If
2 1/2
an{[ e o)

5 1/2
Ky )| 0l ante) )

(3.8)
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(3.9) <CON|[Fwlly,
forall Nin Z* and all F'in By (R.), then for all even functionsin S(R)

supported in—1, 1] and all s in R* there exists a constadt; ¢ such that
9 1/2
Keorm(an)| w(e ) du(o))

sup </
yeX B(y,r)c
Nd/2

< Cs,ﬁm [ Fa | e

(3.10)

forall »inR™, all Nin Z*, and all F in By(R).

Remark Observe that (2.6) implies (3.7) whete= 1 andp = oco. Other
Plancherel type inequalities imply other forms of (3.7) or (3.9).

Observe also that hypothesis (3.9) is a slightly weaker version of hy-
pothesis (3.7). The price we pay for the weaker hypothesis is a weaker
conclusion, in as much dsis replaced by x F'; this effectively damps the
kernel of the corresponding operator far away from the diagonal.

Proof. To prove (3.8), we fix- and R, such thatrR > 1, for otherwise
the result is trivial. Recall thapy and¢; in S(R) are [0, 1]-valued even
functions supported in—4, 4) and[2/,272] U [-2/72 —27] respectively.
Furthergo(A) +> ezt ¢k(A) = 1in R, andpy = 1 on[-2, 2]. We define
Y to bego( - /4r) andig to bedo( - /4rR). DefineTy, by (2.10) andl;,

andT, analogously, e.g(T,,F) = ¢F.
TakeF' in Br(R). First,supp ¢ C [—r,r], so from Lemma 2.1,

supp K, pyr) € {(#,9) € X x X2 p(a,y) <7},

hence

Kp(ﬁ) (z,y) = K[F_Twp](ﬁ) (2, y)

for all z, y such thaf(z,y) > r, and so

(3.11) < /B -

= </X ‘K[nmﬂ(ﬁ)(w,y)rw(%y) du(x)>1/2-

5 1/2
Ko wlen) duto))

Now

(812) F—TyF =) [¢jl(r-1)[F — TyF]
JEN
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= [do)(r1)[F — TyF] = Y [8)(n-1 Ty F.

jEZT

since ifj > 1, thensupp|¢;]p-1) C [-2/T?R, -2/ R]U[2/ R, 27" R], and
supp(F) C [~ R, R], so thaf{¢;] z—1)F" = 0. It follows that

</B(y,r)c
) 1/2
(3.13) < (/X‘KWO}(RI)[FTwF](‘E)@:’y)‘ w(x,y)du(a:))
) 1/2
+ XZ; </X ‘K[¢j](R71)T¢F(ﬁ)($7?/)‘ w(z,y) d,u(x)) ‘
je

To deal with the first term, recall thatupp(¢g) < [—4,4], so that
suppl¢o)(r-1) C [-4R,4R], and by hypothesis (3.7),

9 1/2
v | v due) )

) 1/2
< CVDd AR)'2||¢o[F — Ty Flr)||
< CVp.4(4R) 1/2 HF(R) — Ty, (R)HLp

- CVD,d(4R)1/2H > Ty, [T = Ty Fiy
neN

Now ¢n[1 — ¥o] = énl[l — ¢o( - /4rR)], and this is zero unles®®
2rR. Consequently/;, [I — T%]F(R) = 0 unlessn > Ny, whereNg
log,(2rR), and

2 1/2
< CVpa(AR)'? Y ||Ty, [T — Ty, |F,

e’

v

R)HLP

n>Ng
(3.14) <C'Vpa(R)'2 Y T, Fimyll
n>Ngp
< C'Vpa(R)V227M00 N 2 || Ty Fpy ||,
n>No

< C"Vpa(R)? (rR) ™ || Firy || goroe -

Now we treat the summed term in formula (3.13). Since
supp([qu}(R,l)TwF) - [—2J+2R, QJHR],
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Hypothesis (3.7) implies that

2 1/2
(/X ‘K[¢j}(3—1>T¢F(\E) (ﬂ%y)‘ w(z,y) d,u(:n))
@15) < CVoul? R |[[gs)inToFlaran)
< CVp a2 V2R (65T Fi )2+ [

S CVDd(R)l/Q 2max(d D)(.7+2)/2 2= (]+2 /p H¢]T1/JOFR HLP )

Choosel such that > max(d, D 25)/2 + 1. Then, sincep, is in S(R),

there exists a constant; such that¢0( ) < Ci(1+|s)~! forall sin R,
and so

4rR C
—_— Vs € R.
W) S graEay €
Thus, ift > 2, then
4T}{(h
Fir
‘TwOF(R) / | (1+ 47“R]s\
4rR
<26 HF(R)HLl (1+4rRJt — 1)
1

< 4G || Fr

)HLP (1+4rR|t — 1])I-1

It follows that

27 +2 1 1/p
||¢ijoF(R)HLp < 4G HF(R)HLP (/N (1+4rR|t — 1|)p(=1) dt)

1
(1+4rR|2 — 1))I1

(3.16) <4 |Fwy|,, 3"/ 207

Combining estimates (3.15) and (3.16) and the facttbatmax(d, D, 2s) /2
+ 1, we conclude that

2 1/2
(/‘ [¢5Two Fir)l (r—1 (ﬁ)(a},y)’ w(x,y)du(x))

< CVpu(R)V2 ) | 2mx @D =T |6, Ty Fiy |,
jEZT
<A4CCr(3/4) PV a(R)V2 || Fil L,
2max(d,D)(j+2)/2

% Z (11 4rR|2 — 1))

JEZT

JEZT
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(3.17) < C' || Fiy |l VDa(R)Y2 (rR) ™

Iz

Combining estimates (3.13), (3.14) and (3.17) proves (3.8).
To prove (3.10), we note thatdfipp F' C [N, N] thensupp(£ « F') C
[-N — 1, N + 1]. Further,

A1 1/p
18 e FO<lely ([ IFoP ax)

SO

1€ * F)aven |y,

1 N+1 1/p
:(N+1Z sup |£*F((N+1))\)|”>

=1 )\E[N+1’N+1]

lell [ ne o\
N+i1/”<z/ (A)‘pdk)

< H§HLP’ (BN)I/p H H
(N + 1)t/ Ly

(319 < C|Fwll,,-

Then hypothesis (3.9) implies that

9 1/2
(3.20) (/( P (VI ,.)‘ w(:c,y)du(az)> < CNY||Fu |,

for all positive integersV. In order to prove (3.10), we may assume that
rN > 1, since otherwise the matter is again trivial. We now repeat the proof
of (3.8), with F' replaced by = F' on the left hand side, an& replaced
by N.

The argument leading to (3.11) shows that

(/ ’K *[F—Ty FI(VL (z,v) ‘ w(z,y) du(z )>1/2-

The analogue of formula (3.12) is

§x [F =Ty F] = & ([po](v—) [ = Ty F)

= > Ex ([l v [Ty F),

jez+
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and so
</B(y7r)“
2 1/2
= </ ‘Kf*([¢0](N—1)[F—TwF])(ﬁ)(xvy)} w(z,y) du(:z:))

321) + ) (/ ‘ ex((s) -1y T F)(m(w,y)rw(x,y) du(x)>l/2-

JEZT

9 1/2
corm@)] vz dute))

To deal with the first term, observe thatpp([¢o](nv-—1)[F — Ty F]) <
[-4N,4N], so that, by estimate (3.20),

2 1/2
</X ‘KE*([¢01(N_1)[F—TwF])(ﬁ)(iU’Z/)‘ w(z,y) du(x)>

< CNY2||go[F = Ty Flow) |
< C'NY2(rN)” HF<N>HBM’

by the argument leading to (3.14).
Now we treat the summed term in formula (3.21). Since
supp([¢;](v-1) Ty F) C [-27T2N, 272N,
the estimate (3.20) implies that

9 1/2
(/X‘KE*([%'](NI)TwF)(ﬁ)(x’y)‘ w(x,y)d,u(:v))

< C (2N |65 Tp Fvy)2r+2)| 0 -

These terms may be estimated and summed as before, and (3.10) follows.
This ends the proof of Lemma 3.4. a

Now we show how to use Theorem 3.3 and Lemma 3.4 to prove a general
multiplier theorem. Assumptions 2.1, 2.2, 2.3 and 2.4 are all needed.

Theorem 3.5. Suppose that > max(d, D)/2, and that

sup</ ‘K wy‘ w(z,y) dp(z )>1/2

yeX
(3.22) <CVpa(B)"? | Fi | -
forall RinR* andall F'in Bi(R). Then for all bounded Borel functiod$
such thatsup;cg+ [|11 Fiy)|| gpe < o0, the operatorF(v'L) is of weak
type(1, 1) and is bounded o”(X) for all r in (1, co); further,

(3.23) HF(\WL)] S C<t§§)+ I Fip || g + IIF\ILoo>-
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Remarklf we takep equal tooo andw equal tol, then we obtain Alexopou-
los’ multiplier theorem. Indeed, Assumption 2.5 is (3.22) witkequal to
oo. Recall that the Lipschitz spack is included in the Besov spads™™°,
so that our result implies the result formulated in [3].

Proof. By the remark at the end of Sect. 2.1, it suffices to prove the weak
type(1,1) estimate (3.23). In light of Theorem 3.3, it suffices to prove that

sup | [ Keacagpwm (@) @) <€ sup fInFoll g
By Lemma 3.4,
9 1/2
([ |erwnen] v i)
B(y,r)°
1/2
(3.29 < P | Fe g

forall  andR in R™, all y in X, and allF" in Bg(R). Our first step is to

show that
/B(yﬂ")c

(3.25) < Cy (14 rR)y™™ D2 | Fpy || o

rvD) (T y)’ dp()

for all r and R in R*, all y in X, and all ¥ in Bg(R). To prove this,
we first suppose thatkR > 1. Fix y in X and write A; for the annulus
{z € X : 2Fr < p(z,y) < 2811} . Then, by the Cauchy—Schwarzinequal-
ity and the definition ofd, D) regular weights (2.1),

/B(yn“)

<Z/

keN

< ([ wt@ndue )"

keN

U

<) (VCLD(?HIT)/

keN B(y,2kr)e

K ) (:9)] du(a)

F(f € y)‘ dp(z)

2 1/2
F(m(%y)‘ w(ﬂff,y)du(x)) :

Now
Vd7D(2k+17‘) = Vd,D (2k+1TR/R>
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< @RIV p(RTY) = (28 R) D vp 4(R) T,

and so, from the last two inequalities and (3.24),

/B(yn") :

<CZ

keN
< C; (1 + TR)max(d,D)/2fs HF(R)

KF@(x,y)\ du()

TR max(d,D)/2
oy Wl

HBqu )

proving (3.25) in this case. WherR < 1, we define the annulii;, using
R~!instead ofr, and write A for the set{z € X: r < p(z,y) < R'}.
Then

/B(yﬂ")c

@20 < [ |rmie| duta) + 3 [ [Krymie)] dutoy

K py)(:9)] da(z)

the additional integral is treated in the same way as the integrals over the
annuli A, and the general case of (3.25) follows.

Choose an even functianin S(R)) supported irf1/4, 1] U [-1/4, —1]
such that

d w@'A)=1 VAeRT,

neZ

and letw,, denote the functiow(27"-). Then

F(1-¢ =Y waF(1 =) (VL).
neZz
From (3.25),
sup K., x,y)| du(x
yeX/B(y,r)c F-ave) (9] dA(2)

= SUp/ Keur- T,y ‘ du(z
%y@f Blyrye ! “nfd %)(xﬁ))( )| dp()

< CS Z(l + 2nT)maX(d’D)/27S HwnF(l - SZS(T))(Qn)
nez

ngq .

Now for any Besov spacBY?(R), if k is an integer greater thanthen

leon F (L = Do)l om | s
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o L= Pwlem |4, e

(see [36, Corollary 4.2.2]), and from inequality (3.1),

5 -C (znr)k—i-l
10 =2l lLanan <€ T3 gy

It follows that
e K - z,y du(x
yGX/B(yr) FQ ¢<r>)(ﬁ)( )) ()

p)k+

s¢ Z 1+ ( 2n T3 @y U F 2 | T et

< CSHP [lwnF ]2 || g
neZ s

as required to prove the theorem. a

Our next general theorem relates to the case wliere- 0. Again,
Assumptions 2.1, 2.2, 2.3 and 2.4 are all needed.

Theorem 3.6. Suppose thaD = 0, thats > max(d/2,1/p), and that
¢ < min(p, 2). Suppose also that

5 1/2
(3.27) (/X‘KF(m(x,.)‘ w(a:,y)du(:c)> < ON2|Fuly,

for all positive integersV and all F'in By (R). Then for all bounded Borel
functionsF such thatup,cg+ || Fig) || gr.a < o0, the operatorF (VL) is

of weak typg1, 1) and is bounded od” (X)) for all  in (1, oo); further,

(3.28) HF(\/Z)]

e €50 [0z + 1P )
Remark.In light of (3.27) and (2.3)F(V/L) is bounded onl.!(X) if F

is bounded andupp F' is compact. Thus we can replace the supremum in
(3.28) bysup,~.7 ||1 Fiy) || go. for any finiteT.

Proof. Without loss of generality, we may assume that oo, since other-

wise the result is a consequence of the previous theorem. As in the previous
theorem, it suffices to prove the weak tyfie1) estimate (3.28). Choose

in S(R) which is even and has supportinl, 1], and such thaf(o) =

andg(l) (0) =0if 1 <1 < k— 1 for some even positive integérgreater
thans. By Lemma 3.4,

</B(y,r)c

5 1/2
cerm(@ )| wlen) dute))
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Vp,a(R)"
< Y e

forallr andRin Rt and allF in Bi(R).
By repeating the proof of the previous theorem, we may easily show that

sup /
yeX J B(y,r)°¢
forall r andR in R™ and allF"in Br(R), and hence deduce that

- ruvn)

eor(v) (@ )| dule) < Co1+ TRY2 | Fiy | g

< C sup HnF

L1— L1 teR+ Hqu~

To complete the proof, we will show that

HF g*F(fo))

Ll—IL1 = Ctselégr HnF(t)HBg’#I .

Suppose thaV isin Z™, thatsupp G C [~ N, N], and thaq]G(N)HBp,q
< oo. We claim thasupp|G — { * G] C [-N — 1, N + 1], and that

329) G —&x Clivinllyyr, < CWNV+ D7 (G [ g

Assuming this claim for the moment, then the theorem follows. Indeed,
write H,, for ¢, F — & * (¢ F); thenF — £« F = Y Hy. Since
supp H,, C [-2"F2 — 1,2"+2 4 1], it follows from (2.3) and (3.27) that

1/2
< K,
LlaLl_ng)I;(/ ’ wy‘ w(z,y)du(x )>

< C'(272 4 1)4/2 H Jemt2in)llgnsagy -

/D)

and from our claim it then follows that

|PVE) — ¢+ PV

L'—L!
5{
< ZN C'2"2 + D)2 |[[gnF — €+ (dnF)2n241)lynra s,
ne
< Z C/ 2n+2 d/2 (2n+2 + 1) H[%F}@"“H)HBW
neN
<G sup [l Fig|l gy

as required.
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To prove our claim (3.29), we writ¢ for the function onR. defined by
the condition that

C=(1-&)-7.

Observe first that

1/p
(3.30) (Z sup ](*H\p> <C|H|,  VHeL’R).
icz teli—1.]

Indeed, Fourier analysis shows thatt)| < Ci[t|*"! when|t| < 1 and
|C(t)] < Colt|*~*—1 when|t| > 1. Therefore we may writgas - ;. (;(-—
Jj), wheresupp ¢; C [—1,1] and}_ .z [|Gjll»» < oo (this is where we
require thats > 1/p). The argument of (3.18) and (3.19) then shows that
(3.30) holds.

The proof of our claim (3.29) is now straightforward. Indeed,

|G — €G]

N+1) HN+1p
1 N+1 1/p
:<N+1Z sup r[G—g*G]<<N+1>t>|p)
i=1 te[N+17N+l]
o0 1/p
< (X s [eeIGor)
i — oo tE[i—1,1]

where( is as above an(:IIG)A =1 \SCA}. Therefore, by (3.30),
(G — &« Gl yir, SCO + )P\
<CWN+ DGl
<SCWN 417Gl gpa

since||IG|, < C|G| gra wheng < min(p, 2) (see, e.g., [33, p. 155]).
This proves our claim and hence the theorem. a

4. Spectral multipliers on SU(2)

The Euler angles are the usual coordinatesstii2). However, to study
the operator. defined by (1.2) it is much more convenient to use another
coordinate system, which we now describe.

Let B be the ball inR? of radiusw/2 and centre). For (x,y,2) €
B x [—m, 7], we write

U (z,y,z) = exp(zX + yY) exp(22),

where X, Y, Z are defined by (1.1). Next, we write = rcosf andy =
rsin #, and defined by the formula



28 M. Cowling, A. Sikora

O(r,0,z) =¥ (z,y, 2).

Now we compute the operatarin the coordinates given k. First we note
that

0 ey cosr  e?sinr
exp(zX +yY) = exp <_e—z‘6r 0 ) = <_€_i9 sinr cosr )

and

[

Zcosr

e cosr et0=2) gin p
exp(zX +yY)exp(zZ) = <_€i(02) sinr e > :

Now

exp(zX + yY) exp(tX)

< cosrcost — ePsinrsint cosrsint + ePsinr cost )
= —if —if

—cosrsint — e~ "sinrcost cosrcost —e sinrsint
and
exp(zX + yY) exp(tY)
_ (cosrcost+ie?sinrsint icosrsint + e sinrcost
icosrsint — e sinrcost cosrcost — ie?? sinrsint )
Further,

exp(zX + yY) exp(2Z) exp(tX)
= exp(zX + yY) exp(tAd.z X) exp(zZ).

It follows that

X = cos(—0 + 2z) O + sin(—0 + 2z)(tan (0, + Jg) + cotr Jy),
Y = —sin(2z — 0)0, + cos(2z — ) (tanr (9, + Jg) + cotr dp).
Thus (see [27])X2 + Y2 is equal to

4.1)
9% 4 (cotr — tanr) 8, + cot? r 93 + 20p(0, + 0p) + tan’r (9, + 0p)>.

Note thatZ commutes withdy. This implies that the convolution kernel
KF(\@ associated to a function of the sublaplacian is independefit of
Further, we also note that = 9, and that Haar measukdy is given by the
formula

4.2) dg = sin(2r(g)) drdf d=.

For future purposes, observe that, for a smooth function [0, 7 /2],
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w/2
/0 o(r) ((Z)”(T) + (cotr — tanr) ¢’(T)) sin(2r) dr
/2
= /0 (qb(r) sin(2r)) ¢ (r)dr
" r) &' (r) (cos® r — sin? r) dr
2 [ ( )d
w/2
— /0 (gb(r) sin(2r)),gb’(r) dr
/2
+2 ; o(r) @' (r) cos(2r) dr
/2

=— /O7T sin(2r) ¢/ ()% dr
(4.3) <0.

We recall briefly the representation theorySif(2); see, e.g., [35] or
[38] for more details. The action §U(2) on C? induces an action,
on the spacé{; of homogeneous polynomials of degre@ two complex
variables. The obvious basis for this space is composed of the polynomials
z{zé’], wherej = 0, 1, ..., [. The operatordr(Z) is represented by a
diagonal matrix in this basis, with entriesl, i(2 —1), ... ,im, ... ,il; the
integerm is known as aveight The operator- dn(X? + Y2 + Z?) acts
as the scalal(l + 2) on #,;, whencedn (L) acts by multiplying vectors of
weightm by (I + 2) — m?2. In particular, this implies that

(4.4)

Lo e an= 3= @en]rviaes—mf

(IL,m)eA

)

whereA is the set of all(l,m) in N x Z such thatm| < [ andl — m is
even, and (as beforés)’F(\/D denotes the convolution kernel of the operator

F(VL).
Let 1" be the measure dU(2) given by
W =5 | Flep(zz)e M de VS € CSU).

-7
Thenm; (™) is the projection onto the vectors of weighinh #;. Thisimplies
thatthe operatar; (KF(\E) « 1) annihilates all the weight vectors of weight

different fromn, and multiplies vectors of weightby F'(\/I(I + 2) — n?2).
The next lemma is the new ingredient needed for the proof of Theorem 1.1.
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Lemma 4.1. Suppose thalV is in Z™, that ' is in By (R), and thata is
n (0,1). Then

Loy [ @) F@I" dg < ON' = [F

Proof. We writng(ﬁ) for KF(\E) « 1. By Fourier series,

/SU@)IIN(F(\E)(W “dh = Z/ ’Kn (h)

Fix NV in ZT. We writeS for the integer interval—N/2, N/2) N Z, and
T for its complement ir%, i.e.,Z \ (—N/2,N/2). Forn in S, we use the
simple estimate that

2
‘ r(h)® dh.

2
‘ dh.

~ 2 ~
n (6% < n
(4.5) /SUm‘KF(m(h)( r(h) dh_/SU(2) ‘KF(m(h)

Forn in T, we use a more subtle estimate. From (4.1), (4.2), and (4.3), it
follows that, for a smooth functioyi onSU(2), if 9pf = 0 and P, f = f,
then

(Lf, f) >n?| f tanr]7.
and so
(LOf, ) > n® || f tan® 7|7

whena isin [0, 1]. Indeed, for any quadratic forméandB,if A> B >0
thenA“ > B“ for all «in [0, 1]. Hence

- 2 ~ 2
K" h rhadhg/ K" h)| tan®r(h)dh
/SU(Q)‘ Fom®)] (0 o [Ebemy®)] tanr(h)
1 a/2 on on
(4.6) < SWLOPRE K on)
1 - 2
_ a/d n
ono L KF(\E)’B
_ 1
-

whereG(\) = A*/2F()\).
Define the regiong{,, S andT by the formulae

Hk:{(x,y) eR%: (k—12+*+1) 2 -1<u2
< (k2+y2+1)1/2—1},

S={(e.y) e RE g < [N/2), Jyl o< (N +y? + )21},



A spectral multiplier theorem 31

T= {(w,y) ceR%: |y| > [N/2], Jy| <2< (N2+y2+1)1/2_1}_

The integer lattice points il andT will be denoted by andT respectively,
andT* will denote the subset dF in the first quadrant. The “bottom right
hand corner” of'™, which is also the “top right hand corner” &f, is the
point (u, v), wherev = [N/2] andu = (N? + [N/2]? + 1)/2 — 1

By virtue of (4.5) and (4.4),

2
/ Ko )‘ r(h)® dh
nes

< > a+nr( l(l+2)—n2)‘2

(I,n)ed

:fj 3 (l+1)‘F<\/Z(l+2)—n2)’2
k=0 (I,n)eXnHy
N

IN

Y. U+ suwp [F@)P
XN, telk—1,k]

k=0 (1,n)
(4.7) SN|F|y max > (I+1).

0<k<N
(I,;n)€XNHy

To estimate) ; ,,yexnp, (I + 1), observe that the ling = n meetsH, in
a segment of Iength

(\/k2+n2+1—1>—(\/(k—1)2+n2+1—1)<2.

Thus at any fixed height, there are at most two pointsioside H;.. Further,
if (x,y) € S, then

z+1<u+1<2N,

and so
[N/2]-1
Y @+1< ) 4N <AN%
(I,n)EXNHy n=—[N/2]+1

combining this with (4.7) shows that
Z/ ’KF(f ‘ (h)* dh < AN® | F|3 .

Similarly, by virtue of (4.6) and (4.4),

Z/SU ‘K” ) r(h)* dh

neT
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< 3 ey U (i)
(Il,;n)eT

<4 Y U+ (11+2) —n? “/2\F(\/m)]2,
(I;n)eT

since, if(xz,y) € T, then3|y| > = and|y| > 1, so thatd|y| > = + 1. Thus,
by the argument to prove (4.7),

>

neT u@)

342 Y )+ 2) - n?)

k=1 (I,n)eTNH}

‘F( 0+2) - n2) ‘2

N
<4k > (4t

k=1 (I,n)eTNHy

< Oé+1 1—
(4.8) ANT Py max >0 (L4 1)
(I,n)eTNHy

‘K” ()| r(h)* dh

F( (l+2) - nQ)‘Q

To prove the lemma, it therefore remains to show that,<f £ < N, then

(4.9) Y+ oNtRe
(I,n)eTNHy

Observe that, i > 0, then the liney = = — 2h meetsH,, in the line
segment’;, ;,, where

(k=12 < (z+1)? = (z—2n)? -1 < k>
This inequality implies that
(k —1)% + 4n* k?* + 4h?
—F <z —7Fr,
4h + 2 4h + 2
so the number of points il N Ly, i, is at most(2k — 1)/(4h + 2). It also
implies that
(2h +1)(2z —2h+ 1) = (z +1)* — (z — 2h)* < k* + 1,
whence, for(z, y) in Ly, 1,
k2 +1
2h +
Using these facts, inequality (4.8), and symmetry, we conclude that

2r+1< +2h.
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oo+ ptte=2 > g+t

(I,n)eTNHy (L,m)eT+NHy

(u—v)/2] ) 1—a
% —1/k2+1
<2 2h
= hz;) Ah + 2 <2h i )

[(u—v)/2] 320 k
<
=2 hz_% <(2h+ 0 " @ht 1)&)

[(u—v)/2] ( N372a N )

<2
- hz:; (2h +1)2-« * (2h + 1)

S Ca N3—20j’
asa € [0, 1). This ends the proof of (4.9) and Lemma 4.1. 0

Proof of Theorem 1.1ITakep to be the left-invariant control distance asso-
ciated with the sublaplaciah on SU(2); in cylindrical coordinates, this is
equivalent to the left-invariant metrj¢ defined by the condition

p(h,e) = (r(h)* + z(R))Y*  Vh e SU(2).

Assumption 2.1 (the doubling condition) holds for the control metric, as for
all sublaplacians on groups of polynomial growth.
Fix « in [0,1), and define the weight) by the conditionw(z,y) =
w(y~1x), where, in cylindrical coordinates,
w(h) =r(h).

Itis easy to check Assumption 2.2 for this weight. Assumption 2.3 holds for
the operator, and metricp; see [24,31]. Finally, Assumption 2.4 follows
from the standard estimates for the heat kernel associaledii8U(2); see
[28,37]. Together with Lemma 4.1, we thus have all the conditions necessary
to apply Theorem 3.6, and Theorem 1.1 is proved.

5. Remarks and comments on the Heisenberg group

LetH, be the Heisenberg group ang, be the homogeneous sublaplacian
onHy, see, e.g., [25]. Itis shown in [27] (see the proposition on p. 587 and
the theorem on p. 574) that if the operafois defined by (1.2) then

|FOVT) |, < OISR IFGL oty rsue)

foranypin [1, c0). Thus from Theorem 1.1, we get the following corollary.

Corollary 5.1. Suppose that > 3/2 and thatF': R — C is a continuous
function such that
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F .
S0 [ Fey 1, < o0

ThenF(v/Ly, ) is bounded orl.”(H;) whenl < p < oo.

This gives an alternative proof of the spectral multiplier theorem for Heisen-
berg group of Hebisch and of Mler and Stein. In [25], it is shown that
Corollary 5.1 is sharp, in the sense that it is false for ary 3 /2. It follows

that Theorem 1.1 is sharp as well. Finally we note that the proof of [25] may
be extended to show the following result.

Theorem 5.2. Suppose that is a direct product of the forré'; x . .. x Gy,
where each facto; is a Heisenberg groufl,,;, a Euclidean groufR"/,
or SU(2), and thatL is a sumL; + ... + L of sublaplaciang.; on G;.
If s > (1/2) dim G and F'is bounded andup, g+ ||n Fi1) HH < oo, then

F(V/L) is of weak typd1, 1) and is bounded ofi?(G) whenl < p < oc.
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