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Abstract. We prove a Ḧormander-type spectral multiplier theorem for a
sublaplacian onSU(2), with critical index determined by the Euclidean
dimension of the group. This result is the analogue forSU(2) of the result
for the Heisenberg group obtained by D. Müller and E.M. Stein and by
W. Hebisch.
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1. Introduction

Suppose thatX is a measure space, equipped with a measureµ, and thatL
is a self-adjoint positive definite operator onL2(X). ThenL has a spectral
resolution:

L =
∫ ∞

0
λ dEL(λ),

where theEL(λ) are spectral projectors. For any bounded Borel func-
tion F : [0,∞) → C, we define the operatorF (L) by the formula

F (L) =
∫ ∞

0
F (λ) dEL(λ).
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By the spectral theorem,F (L) is well defined and bounded onL2(X).
Spectral multiplier theorems give sufficient conditions onF under which
the operatorF (L) extends to a bounded operator onLp(X) for some range
of p. Once and for all, fix a nonzero cut-off functionη in the Schwartz
spaceS(R) supported inR+. Our theorem, like many, will be phrased in
terms of the “local Sobolev norm”

sup
t∈R+

∥∥η F(t)
∥∥
Hs

,

whereHs is the Sobolev space of orders, andF(t) is given by

F(t)(λ) = F (tλ) ∀λ ∈ [0,∞).

The main goal of this article is to prove a spectral multiplier theorem for
a sublaplacian onSU(2), the group of2 × 2 complex unitary matrices of
determinant1. Its Lie algebrasu(2) consists of the2 × 2 complex skew-
adjoint matrices of trace0. DefineX, Y , andZ in su(2) by

X =
(

0 1
−1 0

)
, Y =

(
0 i
i 0

)
, and Z =

(
i 0
0 −i

)
.(1.1)

These forma basis ofsu(2).We identifyX,Y andZ with the corresponding
left-invariant vector fields onSU(2), and defineL by the formula

L = −(X2 + Y 2).(1.2)

ThenL is a positive definite self-adjoint left-invariant second-order subel-
liptic differential operator onL2(SU(2)). The main result of this paper is
the following spectral multiplier theorem.

Theorem 1.1. Suppose thats > 3/2 and thatF : [0,∞) → C is a bounded
Borel function such that

sup
t∈[1,∞)

∥∥η F(t)
∥∥
Hs

< ∞.

ThenF (L) is ofweak type(1, 1)andboundedonLp(SU(2))when1<p<∞.

The subject of spectral multiplier theorems for differential operators is very
broad, and it is impossible togiveacompletebibliographyhere.We therefore
only mention work directly related to our results. We start with the standard
Laplace operator∆d onRd. Assume thats > d/2 and thatF : [0,∞) → C
satisfies the condition that

sup
t∈R+

∥∥η F(t)
∥∥
Hs

< ∞.(1.3)

Then L. Ḧormander’s multiplier theorem [19], specialised to the radial mul-
tipliers, shows that the operatorF (∆d) is of weak type(1, 1) and bounded



A spectral multiplier theorem 3

onLp(Rd) for p in (1,∞). The order of differentiability is optimal, in the
sense that, ifs < d/2, then we can find a functionF such that (1.3) holds
butF (∆d) is not of weak type(1, 1) (see [6]). Since this condition holds,
we say thatd/2 is thecritical index.

Now suppose thatL is a homogeneous sublaplacian on a stratified nilpo-
tent Lie group of homogeneous dimensiond. A. Hulanicki and E.M. Stein
[22] (see also [16, Theorem 6.25]) proved that if (1.3) holds for somes
in (3d/2 + 2,∞), thenF (L) is of weak type(1, 1) and bounded onLp

when1 < p < ∞. L. De Michele and G. Mauceri [12] improved this result
and proved that the same conclusions hold ifs > d/2 + 1. Next, M. Christ
[6], and independently Mauceri and S. Meda [23], proved that differentia-
bility of order greater thand/2 is sufficient; see also [30]. Then X.T. Duong
[13] proved that for some nilpotent groups of step2, the order of differentia-
bility required in themultiplier theorem is less thend/2. Finally, Müller and
Stein [25] proved that the Ḧormander multiplier theorem holds for some
generalised Heisenberg groups whens > n/2, wheren is the Euclidean
dimension of the group. Independently Hebisch [18] proved the same result
for all generalised Heisenberg groups. Müller and Stein [25] also proved
thatn/2 is the critical index.

At about the same time, spectral multiplier theorems on Lie groups of
polynomial growth were investigated by G. Alexopoulos [3]. In his result,
the required order of differentiability is connected with the volume growth
of the ballB(e, r) with centree and radiusr. More precisely, assume that
µ
(
B(x, r)

) ∼ rd whenr ≤ 1 andµ
(
B(x, r)

) ∼ rD whenr ≥ 1. Denote
by Λs(R) the space of Lipschitz (Ḧolder) continuous functions of orders.
If s > max(d,D)/2 andF : [0,∞) → C is bounded and satisfies the
condition that

sup
t∈R+

∥∥η F(t)
∥∥
Λs

< ∞,

thenF (L) is of weak type(1, 1) and is bounded onLp when1 < p < ∞.
Alexopoulos’ multiplier theorem, applied to the operator defined by (1.2),
yields a result which is weaker than Theorem 1.1; Alexopoulos’ method
requiresΛs for s > 2 instead ofHs for s > 3/2. In Sect. 3, we give an
alternative proof of Alexopoulos’ multiplier theorem. In fact we obtain a
more general version, valid not only in the Lie group setting, but also for
abstract operators with the finite speed propagation property.

As we see, the critical index in multiplier theorems is often determined
by the volume growth rate of the ball, or the dimension of the corresponding
semigroup (which at least in principle are the same—see [37]). For elliptic
operators the dimension of the corresponding semigroup coincides with
the Euclidean dimension of the underlying space. However, for subelliptic
operators, this semigroup dimension is strictly greater than the Euclidean
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dimension. Theorem 1.1 provides another example of a subelliptic operator
for which the critical index in the spectral multiplier theorem is determined
by theEuclidean dimension of the underlying space, not by the dimension of
the corresponding semigroup. So wemay view Theorem 1.1 as an extension
of themultiplier theorems of [18] and [25]. Note that the groups investigated
by [18] and [25] are all nilpotent of step2, whileSU(2) is simple. However,
in this context it is interesting to note the connection between theHeisenberg
group andSU(2) (see [26,27]).

Multiplier theorems on compact Lie groups, in particularSU(2), were
investigated byN.J.Weiss [39], R.R. Coifman andG.Weiss [10], J.-L. Clerc
[8,9], A. Bonami and Clerc [4], and others. However only the result of [10]
is applicable to subelliptic operators, and the multiplier theorem of [10] is
weaker then Theorem 1.1.

The proof of Theorem 1.1 has three main ingredients. First, using a
Caldeŕon–Zygmund type argument, we show in Theorem 3.3 that, in order
to prove a weak-type(1, 1) estimate for the operatorF (

√
L), it suffices to

show that

sup
r∈R+

sup
y∈X

∫
B(y,r)c

∣∣∣KF (1−Φ(r))(
√
L)(x, y)

∣∣∣ dµ(x) ≤ C,

whereKT is the kernel of the operatorT , andΦ(r) is a damping factor.
Next, in Lemma 3.4, we show how to estimate integrals outside a ball.
In Theorem 3.5, we show how one very simple Plancherel type estimate
may be combined with Theorem 3.3 and Lemma 3.4 to prove Alexopoulos’
multiplier theorem. As noted, this is a weaker result than Theorem 1.1. To
prove our main theorem, we need one more ingredient, namely a sharper
weighted Plancherel estimate, established in Sect. 4. In Sect. 5, we observe
that our Theorem 1.1 implies the result of Müller and Stein and of Hebisch
for the Heisenberg groupH1 by a contraction argument.

2. Preliminaries

The purpose of this section is to introduce some notation, describe the hy-
potheses underwhichwework, and prove a few lemmaswhichwill be useful
in our investigation of multiplier theorems.

2.1. Some notation

Assume that(X, ρ) is a metric space, equipped with a regular Borel mea-
sureµ. The Lebesgue spacesLp(X) are constructed relative to thismeasure.
LetB(y, r) denote the ball{x ∈ X : ρ(x, y) ≤ r}; B(y, r)c will denote its
complement inX.



A spectral multiplier theorem 5

Suppose thatT is a bounded operator fromLp(X) toLq(X). We write
‖T‖Lp→Lq for the usual operator norm ofT . If T is of weak type(1, 1), i.e.,
if

µ ({x ∈ X : |Tf(x)| > λ}) ≤ C
‖f‖L1

λ
∀λ ∈ R+ ∀f ∈ L1(X),

then we write‖T‖L1→L1,∞ for the least possible value ofC in the above
inequality; this is often called the “operator norm”, though in fact it is not a
norm.

If there is a locally integrable functionKT : X ×X → C such that

〈Tf1, f2〉 =
∫
X
Tf1 f2 dµ =

∫
X
KT (x, y) f1(y) f2(x) dµ(y) dµ(x)

for all f1 andf2 in Cc(X), then we say thatT is a kernel operatorwith
kernelKT . It is well known that ifT is bounded fromL1(X) to Lq(X),
whereq > 1, thenT is a kernel operator, and

‖T‖L1→Lq = sup
y∈X

‖KT (·, y)‖Lq ;

vice versa, if T is a kernel operator and the right hand side of the above
inequality is finite, thenT is bounded fromL1(X) toLq(X), even ifq = 1.

Given an operatorT fromLp(X) toLq(X), we write

suppKT ⊆ {(x, y) ∈ X ×X : ρ(x, y) ≤ r}
if 〈Tf1, f2〉 = 0 wheneverfn is in C(X) andsupp fn ⊆ B(xn, rn) when
n = 1, 2, andr1 + r2 + r < ρ(x1, x2). This definition makes sense even if
T is not a kernel operator, in the sense of the previous definition.

Observe that, ifF is inL∞(R), then the adjoint of the operatorF (
√
L)

is F̄ (
√
L). This implies that, in order to prove thatF (

√
L) is of weak

type (1, 1) and bounded onLr(X) when1 < r < ∞, for all F is some
class of bounded functions which is closed under conjugation, it suffices to
prove thatF (

√
L) is of weak type(1, 1). ForF (

√
L) is bounded onL2(X)

by the spectral theorem, and the boundedness ofF (
√
L) on Lr(X) for r

in (1, 2) follows by interpolation and forr in (2,∞) by duality.

2.2. Hypotheses on the ambient spaceX

We make two assumptions about the measured metric space(X,µ, ρ).

Assumption 2.1.We suppose throughout that the “doubling condition”
holds, i.e., there exists a constantC such that

µ(B(x, 2r)) ≤ C µ(B(x, r)) ∀x ∈ X ∀r ∈ R+.
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Ford andD in [0,∞), we defineVd,D : R+ → R+ by the formula

Vd,D(t) =

{
td whent ≤ 1
tD whent ≥ 1.

We will also useVD,d, with the roles ofd andD reversed, in light of the
well-known principle that local and global behaviour in the spatial vari-
ables correspond to global and local behaviour respectively in the spectral
variables. Note thatVd,D(r) = VD,d(r−1)−1.

Assumption 2.2.We always suppose that there is a(d,D) regular weight
onX, by which we mean a nonnegative measurable functionw : X×X →
R+, possibly1, such that∫

B(y,r)
w−1(x, y) dµ(x) ≤ C Vd,D(r) ∀r ∈ R+ ∀y ∈ X.(2.1)

By Hölder’s inequality, this implies that∫
B(y,r)

|k(x, y)| dµ(x)

≤
(∫
B(y,r)

w−1(x, y) dµ(x)
)1/2

×
(∫
B(y,r)

|k(x, y)|2 w(x, y) dµ(x)
)1/2

≤ C

(
Vd,D(r)

∫
B(y,r)

|k(x, y)|2 w(x, y) dµ(x)
)1/2

.(2.2)

In particular, ifD = 0, then taking limits asr tends to∞ shows that∫
X

|k(x, y)| dµ(x) ≤ C

(∫
X

|k(x, y)|2 w(x, y) dµ(x)
)1/2

for all y in X, so that

‖T‖L1→L1 ≤ C sup
y∈X

(∫
X

|KT (x, y)|2 w(x, y) dµ(x)
)1/2

.(2.3)

2.3. Hypotheses on the operatorL

Let L be a self-adjoint positive definite operator onL2(X). We make two
assumptions throughout this paper aboutL.
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Assumption 2.3.We suppose thatL has the finite propagation speed prop-
erty:

suppKcos(t
√
L) ⊆ {(x, y) ∈ X ×X : ρ(x, y) ≤ t} ,

Assumption 2.4.We suppose that there is a constantC and a positive in-
tegerk such thatL satisfies the Sobolev-type estimate

‖f‖L∞ ≤ C µ
(
B(x, r)

)−1
∥∥∥(

1 + r2L
)k
f
∥∥∥
L1

for all f onX with support inB(x, r), for all x in X andr in R+.

We now give a well known and useful consequence of Assumption 2.3,
which goes back to [5].

Lemma 2.1. Assume that̂F is the Fourier transform of a bounded even
Borel functionF and thatsupp F̂ ⊆ [−r, r]. Then

suppKF (
√
L) ⊆ {(x, y) ∈ X ×X : ρ(x, y) ≤ r} .

Proof. If F is an even function, then by the Fourier inversion formula,

F (
√
L) =

1
2π

∫ ∞

−∞
F̂ (t) cos(t

√
L) dt.

But supp F̂ ⊆ [−r, r], so Lemma 2.1 follows from Assumption 2.3. ��

2.4. Even functions

The result of Lemma 2.1 is key to our work. In order to be able to use it,
we must deal with even functions onR rather than functions on[0,∞). Of
course, since the spectrum ofL is contained in[0,∞), the operatorF (

√
L)

depends only on the restriction ofF to this set.
We denote byB(R) the space of bounded even complex-valued Borel

functions onR, and byBR(R) the subspace ofB(R) of functions which
vanish outside[−R,R].

2.5. Plancherel type hypotheses

Given a functionF : R → C andR in R+, we denote byF(R) : R → C
the functionx �→ F (Rx).

Assumption 2.5. Throughout this paper, we will suppose that

sup
y∈X

(∫
X

∣∣∣KF (
√
L)(x, y)

∣∣∣2 w(x, y) dµ(x)
)1/2

≤ C VD,d(R)1/2
∥∥F(R)

∥∥
L∞ ,(2.4)

for all R in R+ and allF in BR(R), wherew is a(d,D) regular weight.
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Sometimes we will replace
∥∥F(R)

∥∥
L∞ with

∥∥F(R)
∥∥
Lp
, wherep is in [1,∞);

this is a stronger assumption.
WhenD = 0, Assumption 2.5 is equivalent (up to a change in constants)

to the apparently weaker assumption that

sup
y∈X

(∫
X

∣∣∣KF (
√
L)(x, y)

∣∣∣2 w(x, y) dµ(x)
)1/2

≤ C Nd/2
∥∥F(N)

∥∥
L∞ ,

for all N in Z+ and allF in BN (R). We sometimes suppose that this in-
equality holds when

∥∥F(N)
∥∥
L∞ is replaced by the mixed norm,

∥∥F(N)
∥∥
N,p

,
given by

‖G‖N,p =
(

1
N

N∑
i=1

(
sup

|λ|∈[ i−1
N
, i
N

]
|G(λ)|

)p)1/p

=
(

1
N

N∑
i=1

sup
|λ|∈[ i−1

N
, i
N

]
|G(λ)|p

)1/p

(2.5)

wherep is in [1,∞) andN is a positive integer; in this definition, to obtain
a norm, we must require thatsuppG ⊆ [−1, 1].

2.6. Examples

First, suppose thatw = 1, that the uniform ball size condition

C Vd,D(r) ≤ µ
(
B(x, r)

) ≤ C ′ Vd,D(r) ∀r ∈ R+ ∀x ∈ X

holds, and thatL satisfies the heat kernel estimate

‖exp(−tL)‖L1→L2 ≤ C Vd,D(t)−1/4 ∀t ∈ R+.(2.6)

Then forF in BR(R), we see that∥∥∥F (
√
L)

∥∥∥
L1→L2

≤
∥∥∥F (

√
L)eR

−2L
∥∥∥
L2→L2

∥∥exp(−R−2L)
∥∥
L1→L2

≤ C VD,d(R)1/2 ‖F‖L∞ ,

and Assumption 2.5 holds. Next, from the formulae

‖f‖L∞ ≤ ∥∥(1 + r2L)−m∥∥
L1→L∞

∥∥(1 + r2L)mf
∥∥
L1 ,

(I + r2L)−m =
1

Γ (m)

∫ ∞

0
e−t tm−1 exp(−tr2L) dt

and
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‖exp(−tL)‖L1→L∞ ≤ C Vd,D(t)−1/2 ∀t ∈ R+,

(which is a consequence of (2.6)), Assumption 2.4 follows. It is perhaps
worth pointing out that, when (2.6) holds, then Assumption 2.3 is equivalent
to having Gaussian bounds for the heat kernel—see [31] for more details.
Examples where these hypotheses hold include Lie groups of polynomial
growth.

Second, when the spaceX is a Lie group, andL is a left-invariant dif-
ferential operator, then the operatorF (

√
L) is given by convolution with a

kernel,K̃F (
√
L) say, i.e.,

F (
√
L)f(g) = f ∗ K̃F (

√
L)(g) =

∫
X
f(h) K̃F (

√
L)(h

−1g) dh,

and ∥∥∥F (
√
L)

∥∥∥
L1→L2

=
∥∥∥K̃F (

√
L)

∥∥∥
L2
.

The Plancherel formula for the commutative subalgebra ofL1(X) gen-
erated byL gives rise to a formula of the form∥∥∥K̃F (

√
L)

∥∥∥
L2

=
(∫ ∞

0
|F (λ)|2 dπ(λ)

)1/2

for somePlancherel measureπ (see, e.g., [6]). For a homogeneous sublapla-
cian on a homogeneous group of homogeneous dimensionQ, it is immediate
that dπ(λ) is a multiple ofλQ−1 dλ. Hence, in this case,∥∥∥F (

√
L)

∥∥∥
L1→L2

≤ C VQ,Q(R)1/2
∥∥F(R)

∥∥
L2 ,

for all F in BR(R). OnTn, the description of the Plancherel measure in-
volvesnumber theory, and for ageneral subelliptic operator onacompact Lie
group, one cannot be very specific about the Plancherel measure. However,
the case whereL is the Laplacian is covered in the next example.

Third, for a general positive definite elliptic pseudo-differential operator
on a compact manifold, Assumption 2.4 holds by general elliptic regularity
theory. Further, one has the Avakumovič–Agmon–Ḧormander theorem.

Theorem 2.2. LetL be a positive definite elliptic pseudo-differential oper-
ator of orderm on a compact manifoldX of dimensiond. Then∥∥∥χ[r−1,r)(L

1/m)
∥∥∥
L1→L2

≤ C r(d−1)/2 ∀r ∈ R+.(2.7)

Theorem 2.2 was proved by Hörmander in [21]; see also [1,2,20]. This
theorem has a useful corollary.

Corollary 2.3. LetL be a positive definite elliptic pseudo-differential op-
erator of order2 on a compact manifoldX of dimensiond. Then

∥∥∥F (
√
L)

∥∥∥
L1→L2

≤ C Nd/2
∥∥F(N)

∥∥
N,2 ∀N ∈ Z+ ∀F ∈ B(R)N .

(2.8)
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Proof. By the spectral theorem,∥∥∥F (
√
L)

∥∥∥
L1→L2

≤
( N∑
i=1

∥∥∥χ[i−1,i] F (
√
L)

∥∥∥2

L1→L2

)1/2

≤ CNd/2
∥∥F(N)

∥∥
N,2 ,

as required. ��
The importance of the estimate (2.7) for multiplier theorems was noted

byC.D. Sogge [32], who used it to establish the convergence of Rieszmeans
up to the critical exponent(d − 1)/2, see also [7]. The following theorem
appears to be due to A. Seeger and Sogge [29]; see also Hebisch [17].

Theorem 2.4. Suppose thatL is the Laplace–Beltrami operator on a com-
pact RiemannianmanifoldX of dimensiond. Assume thats > d/2 and that
F : [0,∞) → C is a bounded function such that

sup
t∈[1,∞)

∥∥η F(t)
∥∥
Hs

< ∞.

ThenF (
√
L) is ofweak type(1, 1)andboundedonLp(X)when1 < p < ∞.

This result is a consequence of Theorem 3.6 below and Corollary 2.3.
Theorem 2.4, applied to the Laplace operator on a compact Lie group,

gives a stronger result then Alexopoulos’ multiplier theorem. However, we
do not knowwhether the Avakumovič–Agmon–Ḧormander condition holds
for subelliptic operators. Hence Alexopoulos’ result gives the best known
result for a sublaplacian on a compact Lie group other thanSU(2).

2.7. The projectionEL(0)

In spectral multiplier theory, it is often necessary to consider the possibility
that the projectionEL(0) is nontrivial, and this paper is no exception.

Lemma 2.5. The projectionEL(0) is zero ifD > 0, and is bounded on all
the spacesLp(X) for p in [1,∞] if D = 0.

Proof. Observe that, for all small positiveε, we have

sup
y∈X

(∫
X

∣∣KEL(0)(x, y)
∣∣2 w(x, y) dµ(x)

)1/2

= sup
y∈X

(∫
X

∣∣∣Kχ{0}(
√
L)(x, y)

∣∣∣2 w(x, y) dµ(x)
)1/2

(2.9)
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≤ C VD,d(ε),

from Assumption 2.5. It follows that ifD > 0 thenEL(0) = 0.
If D = 0, then the left hand side of inequality (2.9) is bounded. Com-

bining this fact with (2.3), we see that

‖EL(0)‖L1→L1 ≤ sup
y∈X

∫
X

∣∣KEL(0)(x, y)
∣∣ dµ(x) ≤ C.

By duality and interpolation,EL(0) is bounded on all the spacesLp(X) for
p in [1,∞]. ��

2.8. Besov spaces

We will phrase our results in terms of Besov spaces. For the reader’s con-
venience, we recall the definitions here.

Fix [0, 1]-valued functionsφ0 andφ in S(R) supported in(−4, 4) and
(1, 4) respectively, such thatφ0(λ) +

∑
k∈Z+ φk(λ) = 1 in R, where

φk(λ) = φ(2−k|λ|) for k in Z+. Thenφ0 = 1 on [−2, 2] andsuppφj ⊆
[2j , 2j+2]∪ [−2j+2,−2j ] for j inN. We define the operatorsTφj onS ′(R)
by the formula

(TφjF )̂ = φjF̂ ,(2.10)

for j in N.
Fors inR+ andp andq in [1,∞], the Besov spaceBp,qs (R) is defined to

be the set of all locally integrable functionsF onR such that‖F‖Bp,qs < ∞,
where

‖F‖Bp,qs =
(∑
j∈N

2jsq
∥∥TφjF∥∥q

Lp

)1/q

if 1 ≤ q < ∞, with the usual modification ifq = ∞. ClearlyBp,qs (R) ⊆
Bp,q̄s̄ (R) if s > s̄ or if s = s̄ andq < q̄. It is known that the Besov space
Bp,qs (R) is “close to” the potential spaceW p

s (R) of functionsf in Lp(R)
such that∆s/2f also lies inLp(R), with the norm‖f‖W p

s
given by‖f‖Lp +∥∥∆s/2f∥∥

Lp
. In particular,B2,2

s (R) = Hs(R) andΛs(R) ⊆ B∞,∞
s (R).

See, e.g., [33, Chap. V] or [36, Chap. I and II] for more details.
Locally, Besov spaces are invariant under composition with diffeomor-

phisms. This means that it is equivalent to show thatF (
√
L) is bounded

fromLu(X) toLv(X) for all F such thatηF(R) is inB
p,q
s (R) for all R in

R+, and to show thatF (L) is bounded fromLu(X) toLv(X) for all F in
the same class.
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3. General multiplier theorems

We fix an even functionΦ in S(R) such thatΦ(0) = 1, whose Fourier trans-
form Φ̂ is supported in[−1, 1]; we letΦ(r) denote the dilated functionΦ(r· )
andΦ(l) denote thel th derivative ofΦ. For later purposes, note that for
any fixed odd positive integerk, we may assume thatΦ(l)(0) = 0 when
1 ≤ l ≤ k. It then follows that there is a constantC such that

max
{∣∣∣(Φ(r) − 1)(l)(x)

∣∣∣ : 1/4 ≤ x ≤ 1, 0 ≤ l ≤ k
}

≤ C
rk+1

1 + rk+1 ∀r ∈ R+.(3.1)

Indeed, becauseΦ is in S(R), it follows, for all x in R andr in R+, that if
l = 0, then ∣∣Φ(r)(x) − 1

∣∣ ≤ 1 + ‖Φ‖L∞ ,

while if l > 0, then∣∣∣(Φ(r) − 1)(l)(x)
∣∣∣ = rl

∣∣∣Φ(l)(rx)
∣∣∣ ≤ C rl(1 + |rx|)−l.

Further,Φ extends to an entire function inC of exponential type1, and we
may write

Φ(x) = 1 +
ck+1

(k + 1)!
xk+1 + . . . ∀x ∈ C,

where the coefficientscm are uniformly bounded; it is easy to use this fact
to show that ∣∣∣(Φ(r) − 1)(l)(x)

∣∣∣ ≤ C rk+1

when|x| ≤ 1 and0 < r ≤ 1.
The following lemma is crucial to our paper.

Lemma 3.1. WithΦ in S(R) chosen as above, the kernelKΦ(r)(
√
L) of the

self-adjoint operatorΦ(r)(
√
L) satisfies

suppKΦ(r)(
√
L) ⊆ {(x, y) ∈ X ×X : ρ(x, y) ≤ r} .

Further, if supp b ⊆ B(x, r), then for allq in [1,∞],∥∥∥Φ(r)(
√
L)b

∥∥∥
Lq

≤ C µ
(
B(x, 2r)

)−1/q′ ‖b‖L1 ∀r ∈ R+.

Proof. The first part of the lemma follows from Lemma 2.1.
Now we show that∥∥∥Φ(r)(

√
L)

∥∥∥
L1→L1

≤ C ∀r ∈ R+.(3.2)

Takef in L1(X). Then
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√
L)f

∥∥∥
L1

=
∫
X

∣∣∣∣∫
X
KΦ(r)(

√
L)(x, y)f(y) dµ(y)

∣∣∣∣ dµ(x)

≤
∫
X

∫
X

∣∣∣KΦ(r)(
√
L)(x, y)f(y)

∣∣∣ dµ(x) dµ(y)

≤ sup
y∈X

∫
X

∣∣∣KΦ(r)(
√
L)(x, y)

∣∣∣ dµ(x) ‖f‖L1

≤ sup
y∈X

(
Vd,D(r)

∫
X

∣∣∣KΦ(r)(
√
L)(x, y)

∣∣∣2 w(x, y) dµ(x)
)1/2

‖f‖L1 ,

by Fubini’s theorem and (2.2). We conclude that∥∥∥Φ(r)(
√
L)

∥∥∥
L1→L1

≤ sup
y∈X

(
Vd,D(r)

∫
X

∣∣∣KΦ(r)(
√
L)(x, y)

∣∣∣2 w(x, y) dµ(x)
)1/2

.(3.3)

An integration by parts shows that

Φ(r)(
√
L) =

∫ ∞

0
Φ(r

√
λ) dEL(λ)

= −Φ(r)(0)EL(0) −
∫ ∞

0

r

2
√
λ
Φ′(r

√
λ)

×
∫ ∞

0
χ[0,λ](λ

′) dEL(λ′) dλ

= −EL(0) −
∫ ∞

0

r

2
√
λ
Φ′(r

√
λ)χ[0,λ](L) dλ,

so

KΦ(r)(
√
L) = −KEL(0) −

∫ ∞

0

r

2
√
λ
Φ′(r

√
λ)Kχ[0,λ](L) dλ.(3.4)

Suppose thatD > 0, so thatEL(0) = 0, by Lemma2.5.We deduce from
formulae (3.3) and (3.4), Minkowski’s inequality, and the basic Plancherel
assumption Assumption 2.5 that∥∥∥Φ(r)(

√
L)

∥∥∥
L1→L1

≤ sup
y∈X

∫ ∞

0

∣∣∣∣ r

2
√
λ
Φ′(r

√
λ)

∣∣∣∣
×

(
Vd,D(r)

∫
X

∣∣∣Kχ[0,
√
λ](

√
L)(x, y)

∣∣∣2 w(x, y) dµ(x)
)1/2

dλ
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≤
∫ ∞

0

∣∣∣∣ r

2
√
λ
Φ′(r

√
λ)

∣∣∣∣ (
Vd,D(r)VD,d(

√
λ)

)1/2 dλ

=
∫ ∞

0

∣∣Φ′(rs)
∣∣ (
Vd,D(r)VD,d(s)

)1/2
r ds,

by a change of variable. Ifr ≤ 1, then this is at most∫ 1

0

∣∣Φ′(rs)
∣∣ rd/2sD/2r ds +

∫ ∞

1

∣∣Φ′(rs)
∣∣ rd/2sd/2r ds

≤
∫ 1

0

∣∣Φ′(rs)
∣∣ (rs)min(d/2,D/2)r ds

+
∫ ∞

1

∣∣Φ′(rs)
∣∣ (rs)d/2r ds

≤
∫ ∞

0

∣∣Φ′(rs)
∣∣ (rs)min(d/2,D/2)r ds

+
∫ ∞

0

∣∣Φ′(rs)
∣∣ (rs)max(d/2,D/2)r ds

=
∫ ∞

0

∣∣Φ′(t)
∣∣ (
td/2 + tD/2

)
dt

< ∞,

while if r ≥ 1, then we can show similarly that the same bound holds. Thus
(3.2) holds in this case.

On the other hand, ifD = 0, thenΦ(r)(
√
L) involves an extra term,

namely,EL(0), which is bounded onL1(X) by Lemma 2.5, and combining
this with the previous argument proves (3.2) in this case too.

To finish the proof of the lemma, takeb in L1(X) supported inB(x, r),
and letΨ be the functionx �→ (1 + x2)kΦ(x). ThenΨ(r)(

√
L) = (1 +

r2L)kΦ(r)(
√
L). The argument to prove (3.2) also shows that∥∥∥(1 + r2L)kΦ(r)(

√
L)

∥∥∥
L1→L1

=
∥∥∥Ψ(r)(

√
L)

∥∥∥
L1→L1

≤ C,

so from Assumption 2.4, we deduce that∥∥∥Φ(r)(
√
L)b

∥∥∥
L∞

≤ Cµ
(
B(x, 2r)

)−1 ‖b‖L1 .

The general result follows from Ḧolder’s inequality. ��
We now recall the Calderón–Zygmund decomposition.

Theorem 3.2. There exist constantsC andk such that, for allf in L1(X)
andλ inR+ such thatλµ(X) >

∫
X |f | dµ, there exists a sequence of balls

{B(xn, rn) : n ∈ N} and a decomposition off :
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f = g + b = g +
∑
n∈N

bn

such that

(a) ‖g‖L1 ≤ C ‖f‖L1

(b) ‖g‖L∞ ≤ C λ
(c) supp bn ⊆ B(xn, rn) for all n in N
(d)

∫
X |bn| dµ ≤ Cλµ

(
B(x, r)

)
for all n in N

(e)
∑
n∈N µ

(
B(xn, rn)

) ≤ C λ−1 ∫
X |f | dµ

(f)
∑
n∈N χB(xn,2rn) ≤ k.

The proof is a variant of the standard arguments, for which see, e.g., [10,
p. 66] or [34, p. 8], and we omit it. The parameterλ is called thelevelof the
decomposition.

To prove that an operator is of weak type(1, 1), we usually use estimates
for the gradient of the kernel. The following theorem replaces the gradient
estimates in our setting (see [11,14,15,17] for other variants of this).

Theorem 3.3. Suppose thatF is inB(R), that‖F‖L∞ ≤ A, and that

sup
r∈R+

sup
y∈X

∫
B(y,r)c

∣∣∣KF (1−Φ(r))(
√
L)(x, y)

∣∣∣ dµ(x) ≤ A.(3.5)

Then ∥∥∥F (
√
L)

∥∥∥
L1→L1,∞

≤ CA.

Proof. It is enough to prove that

µ
({

x :
∣∣∣F (

√
L)f(x)

∣∣∣ ≥ 3λ
})

≤ CA
‖f‖L1

λ

for all f in L1(X) andλ in R+ such thatλµ(X) > A
∫
X |f | dµ.

Fix such anf andλ, and let{B(xn, rn) : n ∈ N} andf = g+
∑
n∈N bn

be the correspondingCalderón–Zygmund sequence of balls and decomposi-
tion off at levelλ/A. We define the “nearly good” and “very bad” functions
g̃ andb̃ by

g̃ =
∑
n∈N

Φ(rn)(
√
L)bn and b̃ =

∑
n∈N

(
bn − Φ(rn)(

√
L)bn

)
.

Thenf = g + g̃ + b̃, so
{
x :

∣∣∣F (
√
L)f(x)

∣∣∣ ≥ 3λ
}
is a subset of{

x :
∣∣∣F (

√
L)g(x)

∣∣∣ ≥ λ
}

∪
{
x :

∣∣∣F (
√
L)g̃(x)

∣∣∣ ≥ λ
}

∪
{
x :

∣∣∣F (
√
L)b̃(x)

∣∣∣ ≥ λ
}
.(3.6)

To estimate themeasure of the first set, recall thatF (
√
L) is bounded onL2,

by spectral theory. Thus, by the Chebyshev inequality,
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µ
({

x :
∣∣∣F (

√
L)g(x)

∣∣∣ ≥ λ
})

≤

∥∥∥F (
√
L)g

∥∥∥2

L2

λ2

≤ ‖F‖2
L∞ ‖g‖2

L2

λ2

≤ CA
‖f‖L1

λ
,

since‖g‖2
L2 ≤ C λ ‖f‖L1 /A.

To deal with the set involving̃g similarly, it will suffice to show that∥∥∥∑
n∈N

Φ(rn)(
√
L)bn

∥∥∥2

L2
≤ C λ

‖f‖L1

A
.

Now by Lemma 3.1,suppΦ(rn)(
√
L)bn ⊆ B(xn, 2rn), and by the

Caldeŕon–Zygmund decomposition, no point ofX belongs to more than
k ballsB(xn, 2rn). Thus, by Lemma 3.1,∥∥∥∑

n∈N

Φ(rn)(
√
L)bn

∥∥∥2

L2
≤ k

∑
n∈N

∥∥∥Φ(rn)(
√
L)bn

∥∥∥2

L2

≤ C
∑
n∈N

‖bn‖2
L1

µ
(
B(xn, rn)

)
≤ C ′ λ

A

∑
n∈N

‖bn‖L1

≤ C ′′λ
‖f‖L1

A
,

as required.
It remains to deal with the third term in (3.6). Now

µ

({
x :

∣∣∣∣∑
n∈N

F (1 − Φ(rn))(
√
L)bn(x)

∣∣∣∣ ≥ λ

})
≤

∑
n∈N

µ
(
B(xn, 2rn)

)
+µ

({
x :

∣∣∣∣∑
n∈N

F (1 − Φ(rn))(
√
L)bn(x)

∣∣∣∣ ≥ λ

} ∖ ⋃
n∈N

B(xn, 2rn)
)
.

However, by the properties of the Calderón–Zygmund decomposition and
hypothesis (3.5), ∑

n∈N

µ
(
B(xn, 2rn)

) ≤ CA
‖f‖L1

λ
,
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and

µ

({
x :

∣∣∣∣∑
n∈N

F (1 − Φ(rn))(
√
L)bn(x)

∣∣∣∣ ≥ λ

} ∖ ⋃
n∈N

B(xn, 2rn)
)

≤ 1
λ

∫
X\⋃

n∈NB(xn,2rn)

∣∣∣∣∑
n∈N

F (1 − Φ(rn))(
√
L)bn(x)

∣∣∣∣ dµ(x)

≤ 1
λ

∑
n∈N

∫
X\B(xn,2rn)

∣∣∣F (1 − Φ(rn))(
√
L)bn(x)

∣∣∣ dµ(x)

≤ 1
λ

∑
n∈N

‖bn‖L1 sup
y∈X

∫
B(y,rn)c

∣∣∣KF (1−Φ(rn))(
√
L)(x, y)

∣∣∣ dµ(x)

≤ CA
‖f‖L1

λ
,

as required. ��
The next step is to estimate the expression (3.5). A key reduction in

the difficulty of the problem can be effected using the finite propagation
speed hypothesis (Assumption 2.3) and Fourier analysis. To formulate this,
we recall the definition of the Besov spaceBp,qs (R) from Sect. 2.8 and the
mixed norm‖·‖N,p from (2.5).

Lemma 3.4. Suppose thatw : X × X → R+ is nonnegative, and thatL
satisfies Assumption 2.3 (the finite propagation speed property).
(a) If

sup
y∈X

(∫
X

∣∣∣KF (
√
L)(x, y)

∣∣∣2 w(x, y) dµ(x)
)1/2

≤ C VD,d(R)1/2
∥∥F(R)

∥∥
Lp
,(3.7)

for all R in R+ and all F in BR(R), then for alls in R+ there exists a
constantCs such that

sup
y∈X

(∫
B(y,r)c

∣∣∣KF (
√
L)(x, y)

∣∣∣2 w(x, y) dµ(x)
)1/2

≤ Cs
VD,d(R)1/2

(1 + rR)s
∥∥F(R)

∥∥
Bp,∞s

(3.8)

for all r andR in R+ and allF in BR(R).
(b) If

sup
y∈X

(∫
X

∣∣∣KF (
√
L)(x, · )

∣∣∣2 w(x, y) dµ(x)
)1/2
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≤ C Nd/2
∥∥F(N)

∥∥
N,p

(3.9)

for all N in Z+ and allF in BN (R), then for all even functionsξ in S(R)
supported in[−1, 1] and alls in R+ there exists a constantCs,ξ such that

sup
y∈X

(∫
B(y,r)c

∣∣∣Kξ∗F (
√
L)(x, y)

∣∣∣2 w(x, y) dµ(x)
)1/2

≤ Cs,ξ
Nd/2

(1 + rN)s
∥∥F(N)

∥∥
Bp,∞s

(3.10)

for all r in R+, all N in Z+, and allF in BN (R).

Remark.Observe that (2.6) implies (3.7) wherew = 1 andp = ∞. Other
Plancherel type inequalities imply other forms of (3.7) or (3.9).

Observe also that hypothesis (3.9) is a slightly weaker version of hy-
pothesis (3.7). The price we pay for the weaker hypothesis is a weaker
conclusion, in as much asF is replaced byξ ∗F ; this effectively damps the
kernel of the corresponding operator far away from the diagonal.

Proof. To prove (3.8), we fixr andR, such thatrR > 1, for otherwise
the result is trivial. Recall thatφ0 andφj in S(R) are [0, 1]-valued even
functions supported in(−4, 4) and[2j , 2j+2] ∪ [−2j+2,−2j ] respectively.
Further,φ0(λ)+

∑
k∈Z+ φk(λ) = 1 inR, andφ0 = 1 on [−2, 2]. We define

ψ to beφ0( · /4r) andψ0 to beφ0( · /4rR). DefineTφj by (2.10) andTψ
andTψ0 analogously, e.g.,(TψF )̂ = ψF̂ .

TakeF in BR(R). First,suppψ ⊆ [−r, r], so from Lemma 2.1,
suppKTψF (

√
L) ⊆ {(x, y) ∈ X ×X : ρ(x, y) ≤ r} ,

hence

KF (
√
L)(x, y) = K[F−TψF ](

√
L)(x, y)

for all x, y such thatρ(x, y) > r, and so(∫
B(y,r)c

∣∣∣KF (
√
L)(x, y)

∣∣∣2 w(x, y) dµ(x)
)1/2

(3.11)

≤
(∫
X

∣∣∣K[F−TψF ](
√
L)(x, y)

∣∣∣2 w(x, y) dµ(x)
)1/2

.

Now

F − TψF =
∑
j∈N

[φj ](R−1)[F − TψF ](3.12)



A spectral multiplier theorem 19

= [φ0](R−1)[F − TψF ] −
∑
j∈Z+

[φj ](R−1)TψF,

since ifj ≥ 1, thensupp[φj ](R−1) ⊆ [−2j+2R,−2jR]∪ [2jR, 2j+2R], and
supp(F ) ⊆ [−R,R], so that[φj ](R−1)F = 0. It follows that(∫

B(y,r)c

∣∣∣KF (
√
L)(x, y)

∣∣∣2 w(x, y) dµ(x)
)1/2

≤
(∫
X

∣∣∣K[φ0](R−1)[F−TψF ](
√
L)(x, y)

∣∣∣2 w(x, y) dµ(x)
)1/2

(3.13)

+
∑
j∈Z+

(∫
X

∣∣∣K[φj ](R−1)TψF (
√
L)(x, y)

∣∣∣2 w(x, y) dµ(x)
)1/2

.

To deal with the first term, recall thatsupp(φ0) ⊆ [−4, 4], so that
supp[φ0](R−1) ⊆ [−4R, 4R], and by hypothesis (3.7),(∫

X

∣∣∣K[φ0](R−1)[F−TψF ](
√
L)(x, y)

∣∣∣2 w(x, y) dµ(x)
)1/2

≤ C VD,d(4R)1/2
∥∥φ0[F − TψF ](R)

∥∥
Lp

≤ C VD,d(4R)1/2
∥∥F(R) − Tψ0F(R)

∥∥
Lp

= C VD,d(4R)1/2
∥∥∥∑
n∈N

Tφn [I − Tψ0 ]F(R)

∥∥∥
Lp
.

Now φn[1 − ψ0] = φn[1 − φ0( · /4rR)], and this is zero unless2n ≥
2rR. Consequently,Tφn [I − Tψ0 ]F(R) = 0 unlessn ≥ N0, whereN0 =
log2(2rR), and(∫

X

∣∣∣K[φ0](R−1)[F−TψF ](
√
L)(x, y)

∣∣∣2 w(x, y) dµ(x)
)1/2

≤ C VD,d(4R)1/2
∑
n≥N0

∥∥Tφn [I − Tψ0 ]F(R)
∥∥
Lp

≤ C ′ VD,d(R)1/2
∑
n≥N0

∥∥TφnF(R)
∥∥
Lp

(3.14)

≤ C ′ VD,d(R)1/2 2−N0s
∑
n≥N0

2ns
∥∥TφnF(R)

∥∥
Lp

≤ C ′′ VD,d(R)1/2 (rR)−s ∥∥F(R)
∥∥
Bp,∞s

.

Now we treat the summed term in formula (3.13). Since
supp([φj ](R−1)TψF ) ⊆ [−2j+2R, 2j+2R],
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Hypothesis (3.7) implies that(∫
X

∣∣∣K[φj ](R−1)TψF (
√
L)(x, y)

∣∣∣2 w(x, y) dµ(x)
)1/2

≤ C VD,d(2j+2R)1/2
∥∥[[φj ](R−1)TψF ](2j+2R)

∥∥
Lp

(3.15)

≤ C VD,d(2j+2R)1/2
∥∥[φjTψ0F(R)](2j+2)

∥∥
Lp

≤ C VD,d(R)1/2 2max(d,D)(j+2)/2 2−(j+2)/p ∥∥φjTψ0F(R)
∥∥
Lp
.

Choosel such thatl > max(d,D, 2s)/2 + 1. Then, sinceφ0 is in S(R),
there exists a constantCl such that̂φ0(s) ≤ Cl(1 + |s|)−l for all s in R,
and so

ψ̂0(s) ≤ 4rRCl
(1 + 4rR|s|)l ∀s ∈ R.

Thus, if t ≥ 2, then∣∣Tψ0F(R)(t)
∣∣ ≤ ∫

R

∣∣F(R)(t− s)
∣∣ 4rRCl

(1 + 4rR|s|)l ds

≤ 2Cl
∥∥F(R)

∥∥
L1

4rR
(1 + 4rR|t− 1|)l

≤ 4Cl
∥∥F(R)

∥∥
Lp

1
(1 + 4rR|t− 1|)l−1 .

It follows that∥∥φjTψ0F(R)
∥∥
Lp

≤ 4Cl
∥∥F(R)

∥∥
Lp

(∫ 2j+2

2j

1
(1 + 4rR|t− 1|)p(l−1) dt

)1/p

≤ 4Cl
∥∥F(R)

∥∥
Lp

31/p 2j/p
1

(1 + 4rR|2j − 1|)l−1 .(3.16)

Combiningestimates (3.15)and (3.16)and the fact thatl > max(d,D, 2s)/2
+ 1, we conclude that∑
j∈Z+

(∫
X

∣∣∣K[φjTψ0F(R)](R−1)(
√
L)(x, y)

∣∣∣2 w(x, y) dµ(x)
)1/2

≤ C VD,d(R)1/2
∑
j∈Z+

2max(d,D)(j+2)/2 2−(j+2)/p ∥∥φjTψ0F(R)
∥∥
Lp

≤ 4C Cl (3/4)1/p VD,d(R)1/2
∥∥F(R)

∥∥
Lp

×
∑
j∈Z+

2max(d,D)(j+2)/2

(1 + 4rR|2j − 1|)l−1
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≤ C ′ ∥∥F(R)
∥∥
Lp
VD,d(R)1/2 (rR)−s.(3.17)

Combining estimates (3.13), (3.14) and (3.17) proves (3.8).
To prove (3.10), we note that ifsuppF ⊆ [−N,N ] thensupp(ξ ∗F ) ⊆

[−N − 1, N + 1]. Further,

|ξ ∗ F (λ)| ≤ ‖ξ‖Lp′

(∫ λ+1

λ−1

∣∣F (λ′)
∣∣p dλ′

)1/p

,(3.18)

so ∥∥(ξ ∗ F )(N+1)
∥∥
N+1,p

=
(

1
N + 1

N+1∑
i=1

sup
λ∈[ i−1

N+1 ,
i

N+1 ]
|ξ ∗ F ((N + 1)λ)|p

)1/p

≤ ‖ξ‖Lp′

(N + 1)1/p

(N+1∑
i=1

∫ i+1

i−2

∣∣F (λ′)
∣∣p dλ′

)1/p

≤ ‖ξ‖Lp′ (3N)1/p

(N + 1)1/p
∥∥F(N)

∥∥
Lp

≤ C
∥∥F(N)

∥∥
Lp
.(3.19)

Then hypothesis (3.9) implies that(∫
X

∣∣∣Kξ∗F (
√
L)(x, · )

∣∣∣2 w(x, y) dµ(x)
)1/2

≤ C Nd/2
∥∥F(N)

∥∥
Lp

(3.20)

for all positive integersN . In order to prove (3.10), we may assume that
rN > 1, since otherwise thematter is again trivial. We now repeat the proof
of (3.8), withF replaced byξ ∗ F on the left hand side, andR replaced
byN .

The argument leading to (3.11) shows that(∫
B(y,r)c

∣∣∣Kξ∗F (
√
L)(x, y)

∣∣∣2 w(x, y) dµ(x)
)1/2

≤
(∫
X

∣∣∣Kξ∗[F−TψF ](
√
L)(x, y)

∣∣∣2 w(x, y) dµ(x)
)1/2

.

The analogue of formula (3.12) is

ξ ∗ [F − TψF ] = ξ ∗ ([φ0](N−1)[F − TψF ])

−
∑
j∈Z+

ξ ∗ ([φj ](N−1)[TψF ]),
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and so(∫
B(y,r)c

∣∣∣Kξ∗F (
√
L)(x, y)

∣∣∣2 w(x, y) dµ(x)
)1/2

≤
(∫
X

∣∣∣Kξ∗([φ0](N−1)[F−TψF ])(
√
L)(x, y)

∣∣∣2 w(x, y) dµ(x)
)1/2

+
∑
j∈Z+

(∫
X

∣∣∣Kξ∗([φj ](N−1)TψF )(
√
L)(x, y)

∣∣∣2 w(x, y) dµ(x)
)1/2

.(3.21)

To deal with the first term, observe thatsupp([φ0](N−1)[F − TψF ]) ⊆
[−4N, 4N ], so that, by estimate (3.20),(∫

X

∣∣∣Kξ∗([φ0](N−1)[F−TψF ])(
√
L)(x, y)

∣∣∣2 w(x, y) dµ(x)
)1/2

≤ C Nd/2
∥∥φ0[F − TψF ](N)

∥∥
Lp

≤ C ′ Nd/2 (rN)−s ∥∥F(N)
∥∥
Bp,∞s

,

by the argument leading to (3.14).
Now we treat the summed term in formula (3.21). Since

supp([φj ](N−1)TψF ) ⊂ [−2j+2N, 2j+2N ],
the estimate (3.20) implies that(∫

X

∣∣∣Kξ∗([φj ](N−1)TψF )(
√
L)(x, y)

∣∣∣2 w(x, y) dµ(x)
)1/2

≤ C (2j+2N)d/2
∥∥[φjTψ0F(N)](2j+2)

∥∥
Lp
.

These terms may be estimated and summed as before, and (3.10) follows.
This ends the proof of Lemma 3.4. ��

Nowwe showhow to use Theorem3.3 and Lemma3.4 to prove a general
multiplier theorem. Assumptions 2.1, 2.2, 2.3 and 2.4 are all needed.

Theorem 3.5. Suppose thats > max(d,D)/2, and that

sup
y∈X

(∫
X

∣∣∣KF (
√
L)(x, y)

∣∣∣2 w(x, y) dµ(x)
)1/2

≤ C VD,d(R)1/2
∥∥F(R)

∥∥
Lp
,(3.22)

for all R inR+ and allF inBR(R). Then for all bounded Borel functionsF
such thatsupt∈R+

∥∥η F(t)
∥∥
Bp,∞s

< ∞, the operatorF (
√
L) is of weak

type(1, 1) and is bounded onLr(X) for all r in (1,∞); further,∥∥∥F (
√
L)

∥∥∥
L1→L1,∞

≤ C

(
sup
t∈R+

∥∥η F(t)
∥∥
Bp,∞s

+ ‖F‖L∞

)
.(3.23)
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Remark.If we takep equal to∞ andw equal to1, then we obtain Alexopou-
los’ multiplier theorem. Indeed, Assumption 2.5 is (3.22) withp equal to
∞. Recall that the Lipschitz spaceΛs is included in the Besov spaceB

∞,∞
s ,

so that our result implies the result formulated in [3].

Proof. By the remark at the end of Sect. 2.1, it suffices to prove the weak
type(1, 1) estimate (3.23). In light of Theorem 3.3, it suffices to prove that

sup
y∈X

∫
B(y,r)c

∣∣∣KF (1−Φ(r))(
√
L)(x, y)

∣∣∣ dµ(x) ≤ C sup
t∈R+

∥∥η F(t)
∥∥
Bp,qs

.

By Lemma 3.4,(∫
B(y,r)c

∣∣∣KF (
√
L)(x, y)

∣∣∣2 w(x, y) dµ(x)
)1/2

≤ Cs
VD,d(R)1/2

(1 + rR)s
∥∥F(R)

∥∥
Bp,qs

(3.24)

for all r andR in R+, all y in X, and allF in BR(R). Our first step is to
show that ∫

B(y,r)c

∣∣∣KF (
√
L)(x, y)

∣∣∣ dµ(x)

≤ Cs (1 + rR)max(d,D)/2−s ∥∥F(R)
∥∥
Bp,qs

(3.25)

for all r andR in R+, all y in X, and allF in BR(R). To prove this,
we first suppose thatrR > 1. Fix y in X and writeAk for the annulus{
x ∈ X : 2kr < ρ(x, y) ≤ 2k+1r

}
. Then, by theCauchy–Schwarz inequal-

ity and the definition of(d,D) regular weights (2.1),∫
B(y,r)c

∣∣∣KF (
√
L)(x, y)

∣∣∣ dµ(x)

≤
∑
k∈N

∫
Ak

∣∣∣KF (
√
L)(x, y)

∣∣∣ dµ(x)

≤
∑
k∈N

(∫
Ak

w−1(x, y) dµ(x)
)1/2

×
(∫
Ak

∣∣∣KF (
√
L)(x, y)

∣∣∣2 w(x, y) dµ(x)
)1/2

≤
∑
k∈N

(
Vd,D(2k+1r)

∫
B(y,2kr)c

∣∣∣KF (
√
L)(x, y)

∣∣∣2 w(x, y) dµ(x)
)1/2

.

Now

Vd,D(2k+1r) = Vd,D(2k+1rR/R)
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≤ (2k+1rR)max(d,D) Vd,D(R−1) = (2k+1rR)max(d,D) VD,d(R)−1,

and so, from the last two inequalities and (3.24),∫
B(y,r)c

∣∣∣KF (
√
L)(x, y)

∣∣∣ dµ(x)

≤ Cs
∑
k∈N

(2k+1rR)max(d,D)/2

(1 + 2krR)s
∥∥F(R)

∥∥
Bp,qs

≤ C ′
s (1 + rR)max(d,D)/2−s ∥∥F(R)

∥∥
Bp,qs

,

proving (3.25) in this case. WhenrR ≤ 1, we define the annuliAk using
R−1 instead ofr, and writeA for the set

{
x ∈ X : r < ρ(x, y) ≤ R−1

}
.

Then∫
B(y,r)c

∣∣∣KF (
√
L)(x, y)

∣∣∣ dµ(x)

≤
∫
A

∣∣∣KF (
√
L)(x, y)

∣∣∣ dµ(x) +
∑
k∈N

∫
Ak

∣∣∣KF (
√
L)(x, y)

∣∣∣ dµ(x);(3.26)

the additional integral is treated in the same way as the integrals over the
annuliAk and the general case of (3.25) follows.

Choose an even functionω in S(R) supported in[1/4, 1] ∪ [−1/4,−1]
such that ∑

n∈Z

ω(2nλ) = 1 ∀λ ∈ R+,

and letωn denote the functionω(2−n·). Then

F (1 − Φ(r))(
√
L) =

∑
n∈Z

ωnF (1 − Φ(r))(
√
L).

From (3.25),

sup
y∈X

∫
B(y,r)c

∣∣∣KF (1−Φ(r))(
√
L)(x, y)

∣∣∣ dµ(x)

≤
∑
n∈Z

sup
y∈X

∫
B(y,r)c

∣∣∣KωnF (1−Φ(r))(
√
L))(x, y)

∣∣∣ dµ(x)

≤ Cs
∑
n∈Z

(1 + 2nr)max(d,D)/2−s ∥∥ωnF (1 − Φ(r))(2n)
∥∥
Bp,qs

.

Now for any Besov spaceBp,qs (R), if k is an integer greater thans, then∥∥[ωnF (1 − Φ(r))](2n)
∥∥
Bp,qs
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≤ C
∥∥[ωnF ](2n)

∥∥
Bp,qs

∥∥[1 − Φ(r)](2n)
∥∥
Λk([1/4,1])

(see [36, Corollary 4.2.2]), and from inequality (3.1),∥∥[1 − Φ(r)](2n)
∥∥
Λk([1/4,1])

≤ C
(2nr)k+1

1 + (2nr)k+1 .

It follows that

sup
y∈X

∫
B(y,r)c

∣∣∣KF (1−Φ(r))(
√
L)(x, y)

∣∣∣ dµ(x)

≤ C
∑
n∈Z

(2nr)k+1

1 + (2nr)k+1 (1 + 2nr)max(d,D)/2−s ∥∥[ωnF ](2n)
∥∥
Bp,qs

≤ C sup
n∈Z

∥∥[ωnF ](2n)
∥∥
Bp,qs

,

as required to prove the theorem. ��
Our next general theorem relates to the case whereD = 0. Again,

Assumptions 2.1, 2.2, 2.3 and 2.4 are all needed.

Theorem 3.6. Suppose thatD = 0, that s > max(d/2, 1/p), and that
q ≤ min(p, 2). Suppose also that(∫

X

∣∣∣KF (
√
L)(x, · )

∣∣∣2 w(x, y) dµ(x)
)1/2

≤ C Nd/2
∥∥F(N)

∥∥
N,p

(3.27)

for all positive integersN and allF in BN (R). Then for all bounded Borel
functionsF such thatsupt∈R+

∥∥η F(t)
∥∥
Bp,qs

< ∞, the operatorF (
√
L) is

of weak type(1, 1) and is bounded onLr(X) for all r in (1,∞); further,∥∥∥F (
√
L)

∥∥∥
L1→L1,∞

≤ C

(
sup
t∈R+

∥∥η F(t)
∥∥
Bp,∞s

+ ‖F‖L∞

)
.(3.28)

Remark.In light of (3.27) and (2.3),F (
√
L) is bounded onL1(X) if F

is bounded andsuppF is compact. Thus we can replace the supremum in
(3.28) bysupt>T

∥∥η F(t)
∥∥
Bp,∞s

for any finiteT .

Proof. Without loss of generality, we may assume thatp < ∞, since other-
wise the result is a consequence of the previous theorem. As in the previous
theorem, it suffices to prove the weak type(1, 1) estimate (3.28). Chooseξ
in S(R) which is even and has support in[−1, 1], and such that̂ξ(0) = 1
andξ̂(l)(0) = 0 if 1 ≤ l ≤ k − 1 for some even positive integerk greater
thans. By Lemma 3.4,(∫

B(y,r)c

∣∣∣Kξ∗F (
√
L)(x, y)

∣∣∣2 w(x, y) dµ(x)
)1/2
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≤ Cs
VD,d(R)1/2

(1 + rR)s
∥∥F(R)

∥∥
Bp,qs

for all r andR in R+ and allF in BR(R).
By repeating the proof of the previous theorem, wemay easily show that

sup
y∈X

∫
B(y,r)c

∣∣∣Kξ∗F (
√
L)(x, y)

∣∣∣ dµ(x) ≤ Cs(1 + rR)d/2−s ∥∥F(R)
∥∥
Bp,qs

for all r andR in R+ and allF in BR(R), and hence deduce that∥∥∥ξ ∗ F (
√
L)

∥∥∥
L1→L1,∞

≤ C sup
t∈R+

∥∥η F(t)
∥∥
Bp,qs

.

To complete the proof, we will show that∥∥∥F (
√
L) − ξ ∗ F (

√
L)

∥∥∥
L1→L1

≤ C sup
t∈R+

∥∥η F(t)
∥∥
Bp,qs

.

Suppose thatN is inZ+, thatsuppG ⊆ [−N,N ], and that
∥∥G(N)

∥∥
Bp,qs

< ∞. We claim thatsupp[G− ξ ∗G] ⊆ [−N − 1, N + 1], and that∥∥[G− ξ ∗G](N+1)
∥∥
N+1,p ≤ C (N + 1)−s ∥∥G(N+1)

∥∥
Bp,qs

.(3.29)

Assuming this claim for the moment, then the theorem follows. Indeed,
write Hn for φnF − ξ ∗ (φnF ); thenF − ξ ∗ F =

∑
n∈NHn. Since

suppHn ⊆ [−2n+2 − 1, 2n+2 + 1], it follows from (2.3) and (3.27) that∥∥∥Hn(√L)
∥∥∥
L1→L1

≤ C sup
y∈X

(∫
X

∣∣∣KHn(
√
L)(x, y)

∣∣∣2 w(x, y) dµ(x)
)1/2

≤ C ′(2n+2 + 1)d/2
∥∥[Hn](2n+2+1)

∥∥
2n+2+1,p

,

and from our claim it then follows that∥∥∥F (
√
L) − ξ ∗ F (

√
L)

∥∥∥
L1→L1

≤
∑
n∈N

∥∥∥Hn(√L)
∥∥∥
L1→L1

≤
∑
n∈N

C ′(2n+2 + 1)d/2
∥∥[φnF − ξ ∗ (φnF )](2n+2+1)

∥∥
2n+2+1,p

≤
∑
n∈N

C ′(2n+2 + 1)d/2 (2n+2 + 1)−s ∥∥[φnF ](2n+2+1)
∥∥
Bp,qs

≤ C sup
t∈R+

∥∥η F(t)
∥∥
Bp,qs

,

as required.
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To prove our claim (3.29), we writeζ for the function onR defined by
the condition that

ζ̂ =
(
1 − ξ̂

) | · |−s .
Observe first that(∑

i∈Z

sup
t∈[i−1,i]

|ζ ∗H|p
)1/p

≤ C ‖H‖Lp ∀H ∈ Lp(R).(3.30)

Indeed, Fourier analysis shows that|ζ(t)| ≤ C1|t|s−1 when |t| ≤ 1 and
|ζ(t)| ≤ C2|t|s−k−1 when|t| ≥ 1. Thereforewemaywriteζ as

∑
j∈Z ζj(·−

j), wheresupp ζj ⊆ [−1, 1] and
∑
j∈Z ‖ζj‖Lp′ < ∞ (this is where we

require thats > 1/p). The argument of (3.18) and (3.19) then shows that
(3.30) holds.

The proof of our claim (3.29) is now straightforward. Indeed,∥∥[G− ξ ∗G](N+1)
∥∥
N+1,p

=
(

1
N + 1

N+1∑
i=1

sup
t∈[ i−1

N+1 ,
i

N+1 ]
|[G− ξ ∗G]((N + 1)t)|p

)1/p

≤ (N + 1)−1/p
( ∞∑
i=−∞

sup
t∈[i−1,i]

|ζ ∗ IG(t)|p
)1/p

,

whereζ is as above and(IG)̂ = | · |sĜ. Therefore, by (3.30),∥∥[G− ξ ∗G](N+1)
∥∥
N+1,p ≤ C (N + 1)−1/p ‖IG‖Lp

≤ C (N + 1)−s ∥∥I[G(N+1)]
∥∥
Lp

≤ C (N + 1)−s ∥∥G(N+1)
∥∥
Bp,qs

,

since‖IG‖Lp ≤ C ‖G‖Bp,qs whenq ≤ min(p, 2) (see, e.g., [33, p. 155]).
This proves our claim and hence the theorem. ��

4. Spectral multipliers onSU(2)

The Euler angles are the usual coordinates onSU(2). However, to study
the operatorL defined by (1.2) it is much more convenient to use another
coordinate system, which we now describe.

Let B be the ball inR2 of radiusπ/2 and centre0. For (x, y, z) ∈
B × [−π, π], we write

Ψ(x, y, z) = exp(xX + yY ) exp(zZ),

whereX,Y, Z are defined by (1.1). Next, we writex = r cos θ andy =
r sin θ, and defineΦ by the formula
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Φ(r, θ, z) = Ψ(x, y, z).

Nowwe compute the operatorL in the coordinates given byΦ. First we note
that

exp(xX + yY ) = exp
(

0 eiθr
−e−iθr 0

)
=

(
cos r eiθ sin r

−e−iθ sin r cos r

)
and

exp(xX + yY ) exp(zZ) =
(

eiz cos r ei(θ−z) sin r
−e−i(θ−z) sin r e−iz cos r

)
.

Now

exp(xX + yY ) exp(tX)

=
(

cos r cos t− eiθsin r sin t cos r sin t + eiθsin r cos t
− cos r sin t− e−iθsin r cos t cos r cos t− e−iθsin r sin t

)
and

exp(xX + yY ) exp(tY )

=
(

cos r cos t + ieiθ sin r sin t i cos r sin t + eiθ sin r cos t
i cos r sin t− eiθ sin r cos t cos r cos t− ieiθ sin r sin t

)
.

Further,

exp(xX + yY ) exp(zZ) exp(tX)
= exp(xX + yY ) exp(tAdzZX) exp(zZ).

It follows that

X = cos(−θ + 2z) ∂r + sin(−θ + 2z)(tan r(∂z + ∂θ) + cot r ∂θ),
Y = − sin(2z − θ)∂r + cos(2z − θ)(tan r(∂z + ∂θ) + cot r ∂θ).

Thus (see [27]),X2 + Y 2 is equal to

∂2
r + (cot r − tan r) ∂r + cot2 r ∂2

θ + 2∂θ(∂z + ∂θ) + tan2 r (∂z + ∂θ)2.
(4.1)

Note thatL commutes with∂θ. This implies that the convolution kernel
K̃F (

√
L) associated to a function of the sublaplacian is independent ofθ.

Further, we also note thatZ = ∂z and that Haar measuredg is given by the
formula

dg = sin(2r(g)) dr dθ dz.(4.2)

For future purposes, observe that, for a smooth functionφ on [0, π/2],



A spectral multiplier theorem 29

∫ π/2

0
φ(r)

(
φ′′(r) + (cot r − tan r)φ′(r)

)
sin(2r) dr

=
∫ π/2

0

(
φ(r) sin(2r)

)
φ′′(r) dr

+2
∫ π/2

0
φ(r)φ′(r)

(
cos2 r − sin2 r

)
dr

= −
∫ π/2

0

(
φ(r) sin(2r)

)′
φ′(r) dr

+2
∫ π/2

0
φ(r)φ′(r) cos(2r) dr

= −
∫ π/2

0
sin(2r)φ′(r)2 dr

≤ 0.(4.3)

We recall briefly the representation theory ofSU(2); see, e.g., [35] or
[38] for more details. The action ofSU(2) on C2 induces an actionπl
on the spaceHl of homogeneous polynomials of degreel in two complex
variables. The obvious basis for this space is composed of the polynomials
zj1z
l−j
2 , wherej = 0, 1, . . . , l. The operatordπ(Z) is represented by a

diagonal matrix in this basis, with entries−il, i(2− l), . . . , im, . . . , il; the
integerm is known as aweight. The operator−dπ(X2 + Y 2 + Z2) acts
as the scalarl(l + 2) onHl, whencedπ(L) acts by multiplying vectors of
weightm by l(l + 2) −m2. In particular, this implies that

∫
SU(2)

∣∣∣K̃F (
√
L)(h)

∣∣∣2 dh =
∑

(l,m)∈Λ
(l + 1)

∣∣∣F (
√
l(l + 2) −m2)

∣∣∣2 ,(4.4)

whereΛ is the set of all(l,m) in N × Z such that|m| ≤ l andl − m is
even, and (as before)̃KF (

√
L) denotes the convolution kernel of the operator

F (
√
L).

Let µn be the measure onSU(2) given by

µn(f) =
1

2π

∫ π

−π
f(exp(zZ)) e−inz dz ∀f ∈ C(SU(2)).

Thenπl(µn) is theprojectiononto the vectors ofweightn inHl. This implies
that theoperatorπl(K̃F (

√
L)∗µn)annihilatesall theweight vectors ofweight

different fromn, andmultiplies vectors of weightn byF (
√
l(l + 2) − n2).

The next lemma is the new ingredient needed for the proof of Theorem 1.1.
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Lemma 4.1. Suppose thatN is in Z+, thatF is in BN (R), and thatα is
in (0, 1). Then∫

SU(2)

∣∣∣K̃F (
√
L)(g)

∣∣∣2 |r(g)|α dg ≤ CN4−α ∥∥F(N)
∥∥2
N,p

.

Proof. We writeK̃n
F (

√
L)

for K̃F (
√
L) ∗ µn. By Fourier series,∫

SU(2)

∣∣∣K̃F (
√
L)(h)

∣∣∣2 r(h)α dh =
∑
n∈Z

∫
SU(2)

∣∣∣K̃n
F (

√
L)(h)

∣∣∣2 r(h)α dh.

FixN in Z+. We writeS for the integer interval(−N/2, N/2)∩Z, and
T for its complement inZ, i.e.,Z \ (−N/2, N/2). Forn in S, we use the
simple estimate that∫

SU(2)

∣∣∣K̃n
F (

√
L)(h)

∣∣∣2 r(h)α dh ≤
∫

SU(2)

∣∣∣K̃n
F (

√
L)(h)

∣∣∣2 dh.(4.5)

For n in T , we use a more subtle estimate. From (4.1), (4.2), and (4.3), it
follows that, for a smooth functionf onSU(2), if ∂θf = 0 andPnf = f ,
then

〈Lf, f〉 ≥ n2 ‖f tan r‖2
L2

and so
〈Lαf, f〉 ≥ n2α ‖f tanα r‖2

L2

whenα is in [0, 1]. Indeed, for any quadratic formsA andB, if A ≥ B ≥ 0
thenAα ≥ Bα for all α in [0, 1]. Hence∫

SU(2)

∣∣∣K̃n
F (

√
L)(h)

∣∣∣2 r(h)α dh ≤
∫

SU(2)

∣∣∣K̃n
F (

√
L)(h)

∣∣∣2 tanα r(h) dh

≤ 1
nα

〈Lα/2K̃n
F (

√
L), K̃

n
F (

√
L)〉(4.6)

=
1
nα

∥∥∥Lα/4K̃n
F (

√
L)

∥∥∥2

L2

=
1
nα

∥∥∥K̃n
G(

√
L)

∥∥∥2

L2
,

whereG(λ) = λα/2F (λ).
Define the regionsHk, S andT by the formulae

Hk =
{

(x, y) ∈ R2 : ((k − 1)2 + y2 + 1)1/2 − 1 < x

≤ (k2 + y2 + 1)1/2 − 1
}
,

S =
{

(x, y) ∈ R2 : |y| < �N/2 , |y| ≤ x ≤ (N2 + y2 + 1)1/2 − 1
}
,
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T =
{

(x, y) ∈ R2 : |y| ≥ �N/2 , |y| ≤ x ≤ (N2 + y2 + 1)1/2 − 1
}
.

The integer lattice points inS andT will be denoted byΣ andT respectively,
andT+ will denote the subset ofT in the first quadrant. The “bottom right
hand corner” ofT+, which is also the “top right hand corner” ofS, is the
point (u, v), wherev = �N/2 andu = (N2 + �N/2 2 + 1)1/2 − 1.

By virtue of (4.5) and (4.4),∑
n∈S

∫
SU(2)

∣∣∣K̃n
F (

√
L)(h)

∣∣∣2 r(h)α dh

≤
∑

(l,n)∈Σ
(l + 1)

∣∣∣F(√
l(l + 2) − n2

)∣∣∣2

=
N∑
k=0

∑
(l,n)∈Σ∩Hk

(l + 1)
∣∣∣F(√

l(l + 2) − n2
)∣∣∣2

≤
N∑
k=0

∑
(l,n)∈Σ∩Hk

(l + 1) sup
t∈[k−1,k]

|F (t)|2

≤ N ‖F‖2
N,2 max

0≤k≤N

∑
(l,n)∈Σ∩Hk

(l + 1).(4.7)

To estimate
∑

(l,n)∈Σ∩Hk(l + 1), observe that the liney = n meetsHk in
a segment of length(√

k2 + n2 + 1 − 1
)
−

(√
(k − 1)2 + n2 + 1 − 1

)
< 2.

Thus at any fixed height, there are atmost two points ofΛ insideHk. Further,
if (x, y) ∈ S, then

x + 1 < u + 1 < 2N,

and so ∑
(l,n)∈Σ∩Hk

(l + 1) ≤
�N/2�−1∑

n=−�N/2�+1

4N ≤ 4N2;

combining this with (4.7) shows that∑
n∈S

∫
SU(2)

∣∣∣K̃n
F (

√
L)(h)

∣∣∣2 r(h)α dh ≤ 4N3 ‖F‖2
N,2 .

Similarly, by virtue of (4.6) and (4.4),∑
n∈T

∫
SU(2)

∣∣∣K̃n
F (

√
L)(h)

∣∣∣2 r(h)α dh
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≤
∑

(l,n)∈T

(l + 1)

(
l(l + 2) − n2

)α/2
|n|α

∣∣∣F(√
l(l + 2) − n2

)∣∣∣2
≤ 4

∑
(l,n)∈T

(l + 1)1−α(l(l + 2) − n2)α/2 ∣∣∣F(√
l(l + 2) − n2

)∣∣∣2 ,
since, if(x, y) ∈ T , then3|y| ≥ x and|y| ≥ 1, so that4|y| ≥ x + 1. Thus,
by the argument to prove (4.7),∑

n∈T

∫
SU(2)

∣∣∣K̃n
F (

√
L)(h)

∣∣∣2 r(h)α dh

≤ 4
N∑
k=1

∑
(l,n)∈T∩Hk

(l + 1)1−α(l(l + 2) − n2)α/2
∣∣∣F(√

l(l + 2) − n2
)∣∣∣2

≤ 4
N∑
k=1

kα
∑

(l,n)∈T∩Hk
(l + 1)1−α

∣∣∣F(√
l(l + 2) − n2

)∣∣∣2
≤ 4Nα+1 ‖F‖2

N,2 max
1≤k≤N

∑
(l,n)∈T∩Hk

(l + 1)1−α.(4.8)

To prove the lemma, it therefore remains to show that, if1 ≤ k ≤ N , then∑
(l,n)∈T∩Hk

(l + 1)1−α ≤ C N3−2α.(4.9)

Observe that, ifh ≥ 0, then the liney = x − 2h meetsHk in the line
segmentLh,k, where

(k − 1)2 < (x + 1)2 − (x− 2h)2 − 1 ≤ k2.

This inequality implies that
(k − 1)2 + 4h2

4h + 2
< x ≤ k2 + 4h2

4h + 2
,

so the number of points inΛ ∩ Lh,k is at most(2k − 1)/(4h + 2). It also
implies that

(2h + 1)(2x− 2h + 1) = (x + 1)2 − (x− 2h)2 ≤ k2 + 1,

whence, for(x, y) in Lh,k,

2x + 1 ≤ k2 + 1
2h + 1

+ 2h.

Using these facts, inequality (4.8), and symmetry, we conclude that
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(l,n)∈T∩Hk

(l + 1)1−α = 2
∑

(l,n)∈T+∩Hk
(l + 1)1−α

≤ 2
�(u−v)/2�∑
h=0

2k − 1
4h + 2

(
k2 + 1
2h + 1

+ 2h
)1−α

≤ 2
�(u−v)/2�∑
h=0

(
k3−2α

(2h + 1)2−α +
k

(2h + 1)α

)

≤ 2
�(u−v)/2�∑
h=0

(
N3−2α

(2h + 1)2−α +
N

(2h + 1)α

)
≤ CαN

3−2α,

asα ∈ [0, 1). This ends the proof of (4.9) and Lemma 4.1. ��
Proof of Theorem 1.1.Takeρ to be the left-invariant control distance asso-
ciated with the sublaplacianL onSU(2); in cylindrical coordinates, this is
equivalent to the left-invariant metricρ′ defined by the condition

ρ′(h, e) = (r(h)4 + z(h)2)1/4 ∀h ∈ SU(2).

Assumption 2.1 (the doubling condition) holds for the control metric, as for
all sublaplacians on groups of polynomial growth.

Fix α in [0, 1), and define the weightw by the conditionw(x, y) =
w̃(y−1x), where, in cylindrical coordinates,

w̃(h) = r(h)α.

It is easy to check Assumption 2.2 for this weight. Assumption 2.3 holds for
the operatorL and metricρ; see [24,31]. Finally, Assumption 2.4 follows
from the standard estimates for the heat kernel associated toL onSU(2); see
[28,37]. Togetherwith Lemma4.1,we thus haveall the conditions necessary
to apply Theorem 3.6, and Theorem 1.1 is proved.

5. Remarks and comments on the Heisenberg group

LetH1 be the Heisenberg group andLH1 be the homogeneous sublaplacian
onH1, see, e.g., [25]. It is shown in [27] (see the proposition on p. 587 and
the theorem on p. 574) that if the operatorL is defined by (1.2) then∥∥∥F (

√
LH1)

∥∥∥
Lp(H1)→Lp(H1)

≤ C lim sup
t→0

‖F (tL)‖Lp(SU(2))→Lp(SU(2))

for anyp in [1,∞). Thus from Theorem 1.1, we get the following corollary.

Corollary 5.1. Suppose thats > 3/2 and thatF : R → C is a continuous
function such that
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sup
t∈R+

∥∥η F(t)
∥∥
Hs

< ∞.

ThenF (
√
LH1) is bounded onLp(H1) when1 < p < ∞.

This gives an alternative proof of the spectral multiplier theorem for Heisen-
berg group of Hebisch and of M̈uller and Stein. In [25], it is shown that
Corollary 5.1 is sharp, in the sense that it is false for anys < 3/2. It follows
that Theorem 1.1 is sharp as well. Finally we note that the proof of [25] may
be extended to show the following result.

Theorem 5.2. Suppose thatG is a direct product of the formG1× . . .×Gk,
where each factorGj is a Heisenberg groupHnj , a Euclidean groupRnj ,
or SU(2), and thatL is a sumL1 + . . . + Lk of sublaplaciansLj onGj .
If s > (1/2) dimG andF is bounded andsupt∈R+

∥∥η F(t)
∥∥
Hs

< ∞, then

F (
√
L) is of weak type(1, 1) and is bounded onLp(G) when1 < p < ∞.
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20. L. Hörmander, On the Riesz means of spectral functions and eigenfunction expansions

for elliptic differential operators, pp. 155–202 in: Some Recent Advances in the Basic
Sciences, Vol. 2. Yeshiva University, New York, 1966
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