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Abstract. In this paper we discuss the global behaviour of some connected
sets of solutions(λ, u) of a broad class of second order quasilinear elliptic
equations

−
N∑

α,β=1

aαβ(x, u(x),∇u(x))∂α∂βu(x) + b(x, u(x),∇u(x), λ) = 0 (1)

for x ∈ R
N whereλ is a real parameter and the functionu is required to

satisfy the condition

lim
|x|→∞

u(x) = 0. (2)

The basic tool is the degree for proper Fredholm maps of index zero in the
form due to Fitzpatrick, Pejsachowicz and Rabier. To use this degree the
problemmust be expressed in the formF : J×X → Y whereJ is an inter-
val,X andY are Banach spaces andF is aC1 map which is Fredholm and
proper on closed bounded subsets.We use the usual spacesX =W 2,p(RN )
andY = Lp(RN ). Then the main difficulty involves finding general con-
ditions onaαβ andb which ensure the properness ofF . Our approach to
this is based on some recent work where, under the assumption thataαβ and
b are asymptotically periodic inx as |x| → ∞, we have obtained simple
conditions which are necessary and sufficient forF (λ, ·) : X → Y to be
Fredholm and proper on closed bounded subsets ofX. In particular, the
nonexistence of nonzero solutions inX of the asymptotic problem plays
a crucial role in this issue. Our results establish the bifurcation of global
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branches of solutions for the general problem. Various special cases are also
discussed. Even for semilinear equations of the form

−∆u(x) + f(x, u(x)) = λu(x),

our results cover situations outside the scope of other methods in the litera-
ture.

1 Introduction

In this paper we discuss the global behaviour of some connected sets of
solutions(λ, u) of a second order quasilinear elliptic equation

−
N∑

α,β=1

aαβ(x, u(x),∇u(x))∂α∂βu(x) + b(x, u(x),∇u(x), λ) = 0 (3)

for x ∈ R
N . Hereλ is a real parameter and the functionu is required to

satisfy the condition

lim
|x|→∞

u(x) = 0.

In addition to the ellipticity of the matrix[aαβ ] of coefficients, we suppose
thatb(x, 0, λ) = 0 for all (x, λ) ∈ R

N+1. Thusu ≡ 0 is a solution of the
problem for everyλ ∈ R and our results deal with components of non-trivial
solutions bifurcating from this line of trivial solutions.

The programme for establishing results of this kind was laid down in
the fundamental work by Rabinowitz, [28] and [29]. It involves writing
the differential equation, together with the relevant boundary conditions,
as the set of zeros of the operatorF : R × X → Y , between function
spacesX andY and then using an appropriate topological degree to obtain
global properties of connected components of non-trivial solutions. For very
general elliptic equations on bounded domains, Sobolev or Hölder spaces
can be chosen in such a way that the classical degree of Leray and Schauder
can be used to obtain the desired results. However, even for the simplest
semilinear equations of the form

−∆u(x) + f(x, u(x)) − λu(x) = 0 (4)

on R
N , this framework fails since the equation cannot be expressed as a

compact perturbation of the identity. This fact is intimately related to the
presence of an essential spectrum for the linear operator−∆ + V where
V is a bounded potential. There are various ways of circumventing this
difficulty, including approximation by problems on bounded domains and
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the use of weighted Sobolev spaces, [4], [1], [12], [21], [36],[6] but we
prefer to use an extension of the Leray-Schauder degree since it seems
to yield the most general results under natural hypotheses. For ordinary
differential equations on[0,∞) this approach was first adopted in [33], [34]
and [35] using respectively the degree fork−set contractions and Galerkin
maps; and it was subsequently developed in various ways. Since these early
contributions there has been significant progress in constructing topological
degree theories, [18], [32],[21] and [36], which can be applied to problems
onunboundeddomains.Aparticularly attractiveandnatural option isoffered
by the degree for proper Fredholm maps of index zero which has been built
on the fundamental notion of parity, [10], [11] and [23], and it is this tool
which we shall exploit to deal with (3).

The degree for proper Fredholm maps of index zero was used in [16] to
deal with semilinear equations of the form (4) onR

N in the setting of stan-
dard Sobolev spaces. In that work it becomes clear that the main effort must
be devoted to finding conditions which ensure the properness of the cor-
responding differential operator between appropriate function spaces. The
maximum principle is used in [16] to establish properness for equations of
the form (4) forλ lying in an interval(−∞, β) below the essential spectrum
of the linearization atu = 0. The conclusions about global bifurcationwhich
follow from this are also confined to the interval(−∞, β). More recently
we have used a different approach which, for a broad class of quasilinear
elliptic equations of the form (3), gives conditions which are both necessary
and sufficient for the corresponding differential operator to be proper and
Fredholm between the relevant function spaces at a given value ofλ. It is
this work which we shall now exploit to derive global bifurcation results for
equations the form (3). Even for semilinear equations like (4), our results
go beyond the framework in [16] since they are not confined to intervals
below the essential spectrum of the linearization of (4) atu = 0. When
compared with previous work on quasilinear equations onR

N , we observe
that we deal with the general form of the equation and we do not require any
decay or integrability of the coefficients of the kind used in [6]. However,
in confining our attention to strictly elliptic equations, we exclude some
familiar examples of degenerate elliptic equations such as those involving
thep−Laplacian.

In [25] we consider the differential operator
F (λ, u)(x) =

−
N∑

α,β=1

aαβ(x, u(x),∇u(x))∂α∂βu(x) + b(x, u(x),∇u(x), λ) (5)

and we formulate conditions which are necessary and sufficient forF (λ, ·) :
Xp → Yp to be aC1 proper Fredholm map of index zero (the relevant
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definitions are given in Sect. 3) between the spacesXp = W 2,p(RN ) and
Yp = Lp(RN )wherep ∈ (N,∞). There are two reasons for choosing these
spaces :

(i) all elements ofXp vanish as|x| → ∞ and
(ii) we can ensure thatF (λ, u) ∈ Yp for all u ∈ Xp without imposing

restrictions on the growth of the functionsaαβ(x, ξ) andb(x, ξ, λ) as
|ξ| → ∞.
Furthermore, our results in Sect. 4, giving explicit conditions for glo-
bal bifurcation, do not depend upon the choice ofp within the range
(N,∞).

Our criteria for properness involve an asymptotic limit operatorF∞(λ, ·)
defined by

F∞(λ, u) =

−
N∑

α,β=1

a∞
αβ(x, u(x),∇u(x))∂α∂βu(x) + b∞(x, u(x),∇u(x), λ) (6)

where it is supposed that there are functionsa∞
αβ and b∞ which areN -

periodic inx onR
N such thatb∞(x, 0, λ) ≡ 0 and

lim
|x|→∞

{
aαβ(x, ξ) − a∞

αβ(x, ξ)
}

= lim
|x|→∞

{∂ξi
b(x, ξ, λ) − ∂ξi

b∞(x, ξ, λ)} = 0

for 1 ≤ α, β ≤ N andi = 0, 1, .., N . Roughly speaking (see Corollary 6.2
of [25] for a complete statement), if such an operatorF (λ, ·) : Xp → Yp
is C1, then it is a proper (on closed bounded sets) Fredholm map of index
zero provided that

(C1) there is an elementv ∈ X such that the bounded linear operator
DuF (λ, v) : Xp → Yp is Fredholm of index zero, and

(C2) if u ∈ Xp andF∞(λ, u) = 0, thenu = 0.
This characterization of quasilinear elliptic operators onR

N which are
proper on closed bounded sets and Fredholm of index zero is our starting
point for obtaining global bifurcation results. In deriving such conclusions
we should also formulate explicit conditions on the functionsaαβ and b
which imply that the above properties (C1) and (C2) hold. These conditions
should prove useful in other contextswhere the properness of the differential
operator is relevant.

The first step in the programme we have just sketched is to ensure that
the operatorF : R ×Xp → Yp has enough smoothness for the subsequent
discussion. For fixedλ, this is already dealt with in [25] so here we need
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only study the smoothness of the Nemytskii operatorB : R × Xp → Yp
defined by

B(λ, u)(x) = b(x, u(x),∇u(x), λ).

This is undertaken in Sect. 2.
The general results about global bifurcation are formulated in Sect. 3.

LetX andY be real Banach spaces. An open intervalJ is called admissible
for themapF : R×X → Y if the restriction ofF toJ×X is aC1−proper
Fredholmmap of index zero in the sense of Definition 2. For a pointλ0 ∈ J
across which the parity is equal to−1, Theorem 2 contains global informa-
tion which is available about the branch of solutions bifurcating from the
point(λ0, 0) in J ×X. In the context of the differential operator (5) and the
Sobolev spacesXp andYp, the relationship between admissible intervals
and the properties (C1) and (C2) introduced above is spelt out in Theorem
4. Having done this we can henceforth concentrate on the main problems
which have to be resolved in this paper, namely giving explicit conditions
which enable us to calculate the parity acrossλ0 and to verify that (C1) and
(C2) are satisfied.

In studying the parity and checking the condition (C1) we are essentially
concerned with linear differential operators, or one-parameter families of
them. Our paper [26] contains some results about theLp−spectral theory of
Schr̈odinger operators which we use in Sect. 3 to resolve these issues. Thus
Sect. 3 ends with two results about global bifurcation for the equation (3)
under the hypothesis that the condition (C2) is satisfied.

Themethodsavailable for checking the condition (C2) dependheavily on
the form of the differential operatorF∞. In Sect. 4 we have exploited three
different techniques which seem appropriate for meaningful situations. The
firstmethodhingeson themaximumprincipleand isapplicableprovided that
b∞(x, s, 0, λ)alwayshas thesamesignass. Thesecondapproach isbasedon
variational identities of the type found by Pohozaev, and further developed
in [8], [24], [17] and [37]. To use this method we require the differential
operatorF∞(λ, ·) to be autonomous and to have a variational structure.
Finally, if F∞(λ, ·) is a linear differential operator for eachλ ∈ J , spectral
theory can again be used to check the condition (C2). Each method leads to
a bifurcation theorem and they are formulated respectively as Theorems 7,
8 and 9. Some special cases make it easier to understand the different types
of equation covered by these results.

Section 5 is devoted to examples illustrating the general results. In Ex-
ample 1 we compare the first and second methods in the context of a family
of problems which includes the cases where the principal part ofF can be
either the Laplacian or the mean curvature operator. The Example 2 deals
with the case whereF∞(λ, ·) is a periodic Schr̈odinger operator. If the in-
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tervalJ lies in a spectral gap of this operator the first two methods do not
seem to be applicable.

Although our main concern has been to obtain global bifurcation results
for quasilinear operators, our approach covers situations which appear to be
completely untouched even for semilinear equations of the type (4). This can
be illustrated in a very explicit wayby considering thenonlinearSchrödinger
equation,

−∆u(x) + V (x)u(x) + r(x) |u(x)|τ u(x) − λu(x) = 0. (7)

Referring to Case 1 of Example 1 in Sect. 5, we see that, when
lim|x|→∞ V (x) = V (∞) ∈ R, τ > 0 and lim|x|→∞ r(x) ≥ 0, the result
that we obtain concerning bifurcation forλ in the interval(−∞, V (∞))
coincides with what can be deduced from the work in [16] in this situa-
tion. The approach in [16] fails whenlim|x|→∞ r(x) < 0, whereas we can
still deal with this case, forλ in the interval(−∞, V (∞)), provided that
lim|x|→∞ V (x) = V (∞) ∈ R and the exponentτ is supercritical. In an
other direction, Examples 2 and 3 seem to be the first results about global
bifurcation in spectral gaps for such nonlinear Schrödinger equations when
τ > 0, lim|x|→∞ {V (x) − P (x)} = 0 for someN−periodic functionP
andlim|x|→∞ r(x) = 0.

Our results describe the global behaviour of some connected sets of
solutions of equation (3) for values ofλ lying in what we call an admissible
interval for the operator (5). This restriction arises because the degree theory
which underlies our whole approach is only available in such intervals. It is
natural to ask whether these branches of solutions in fact extend beyond an
admissible interval and what might be an appropriate tool for establishing
this. However, in some situations, one can show that the problem has no
solutions outside the admissible intervals. Example 3 inSect. 5 demonstrates
this in a particularly simple setting.

The variational identities which are used in Sect. 4.2 are established in
our paper [27] where we also give conditions ensuring that solutions of a
second order quasilinear equation onR

N decay exponentially as|x| → ∞.
In Sect. 6 we use the results in [27] to establish the exponential decay of
solutions of the equation (3) under appropriate conditions.

Finally, we wish to point out that, to avoid overburdening the exposition,
we have not used themost general form of the results in [25]. The hypothesis
(A) in Sect. 3 requires the limit operator (6) to beN−periodic inx. This
restriction could be relaxed by using the results of Sect. 7 in [25].
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2 Notation and definitions

We use the standard notation for the Lebesgue and Sobolev spaces. The
usual norm onW k,p(RN ) is denoted by‖·‖k,p withW 0,p(RN ) = Lp(RN )
and‖·‖0,p = |·|p.

Forp ∈ (N,∞), we set

Xp =W 2,p(RN ) andYp = Lp(RN ). (8)

ThenXp ⊂ C1(RN ) and there exists a constantC = C(N, p) such that

|u|∞ + |∇u|∞ ≤ C ‖u‖2,p for all u ∈ Xp. (9)

Furthermore

lim
|x|→∞

u(x) = 0 and lim
|x|→∞

∇u(x) = 0 (10)

for all u ∈ Xp.
All of these results are proved in Chapter IX of [3].

This section deals with the smoothness of some one parameter families
of Nemytskii operators fromXp into Yp for p ∈ (N,∞). Let f : R

N ×
R

N+1 → R andg : R
N ×R

N+2 → R. Foru ∈ Xp andλ ∈ R,we consider
the maps

u �→ f(·, u(·),∇u(·)) and(λ, u) �→ g(·, u(·),∇u(·), λ).
Using the notation

f : R
N × R

N+1 → R with (x, η) = (x, ξ0, ..ξN ) �−→ f(x, ξ0, ..ξN )

and

g : R
N × R

N+2 → R with (x, η) = (x, ξ0, ..ξN , λ) �−→ g(x, ξ0, ..ξN , λ),

we see that the variablesx andη playmarkedly different roleswhen deriving
the smoothness properties of the mapsu �→ f(·, u(·),∇u(·)) and(λ, u) �→
g(·, u(·),∇u(·), λ) from those of the functionsf andg. The terminology
“bundle map” provides a convenient way of handling this distinction where
x is the “base” variable andη is the “fiber” variable. Note that since we
require smoothness with respect tou andλ it is natural to treatλ as a fiber
variable.

Definition 1 A functionf : R
N × R

M → R is called an equicontinuous
C0− bundlemap iff is continuous and the collection

{
f(x, ·) : x ∈ R

N
}
is

equicontinuous atξ for everyξ ∈ R
M . For a positive integerk, we say that

f = f(x, η) is an equicontinuousCk
η−bundle map if the partial derivatives

Dα
η f exist and are equicontinuousC

0−bundle maps for all multi-indicesα
with |α| ≤ k.
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Remark 2.1If V ∈ C(RN )∩L∞(RN ) andg ∈ Ck(RM ) then the function
f(x, η) = V (x)g(η) is an equicontinuousCk

η−bundle map, as are finite
sums of such functions.

Remark 2.2EquicontinuousC0−bundle maps are uniformly equicontinu-
ousoncompact subsetsofR

M in the followingsense. Letf : R
N×R

M → R

be an equicontinuousC0−bundle map. Given a compact subsetK of R
M

andε > 0, there existsδ(K, ε) > 0 such that|f(x, ξ) − f(x, η)| < ε for
all x ∈ R

N andξ, η ∈ K with |ξ − η| < δ(K, ε). See Lemma 2.1 of [25].
We can now formulate the essential smoothness properties of the family

of quasilinear second order differential operators defined by (5) where the
functionsaαβ : R

N × R
N+1 → R andb : R

N × R
N+2 → R are bundle

maps having the following properties.

(B) Forα, β = 1, .., N , the functionaαβ = aβα : R
N × R

N+1 → R is
an equicontinuousC1

ξ−bundle map with
aαβ(·, 0) and∂ξi

aαβ(·, 0) ∈ L∞(RN ) for i = 0, 1, .., N. (11)

The functionb : R
N × R

N+2 → R is continuous and its partial derivatives
∂ξi
b, ∂λb, ∂λ∂ξi

b and∂ξi
∂λb exist and are continuous onRN ×R

N+2 for i =
0, 1, .., N . For eachλ ∈ R, b(·, λ) : R

N ×R
N+1 → R is an equicontinuous

C1
ξ−bundle map and∂λ∂ξi

b : R
N × R

N+2 → R is an equicontinuous

C0−bundlemap fori = 0, 1, .., N . Furthermore, for allx ∈ R
N andλ ∈ R,

b(x, 0, λ) = 0 (12)

and

∂ξi
b(·, 0, λ) and∂ξi

∂λb(·, 0, λ) ∈ L∞(RN ) for i = 0, .., N. (13)

Remark 2.3The hypothesis (B) ensures that∂λ∂ξi
b ≡ ∂ξi

∂λb for i =
0, 1, .., N and that

∂λb(x, 0, λ) = 0 for x ∈ R
N andλ ∈ R.

Furthermore, it is easy to deduce from (B) that, for eachλ ∈ R, ∂λb(·, λ) :
R

N × R
N+1 → R is an equicontinuousC1

ξ−bundle map.
Lemma 1 Letb satisfy the conditions in (B) and letW be a bounded subset
ofR ×Xp wherep ∈ (N,∞).
(i) There exists a constantM such that, fori = 0, 1, .., N ,

|∂λ∂ξi
b(x, u(x),∇u(x), λ)| ≤M for all x ∈ R

Nand(λ, u) ∈W.
(ii) Givenε > 0, there existsδ = δ(ε,W ) > 0 such that, fori = 0, 1, .., N ,

|∂λ∂ξi
b(x, u(x),∇u(x), λ) − ∂λ∂ξi

b(x, v(x),∇v(x), µ)| < ε
whenever(λ, u), (µ, v) ∈W and|λ− µ| + ‖u− v‖2,p < δ.
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Proof. There is a compact subsetK ofR× R
N×R such that(u(x),∇u(x),

λ) ∈ K for all x ∈ R
Nand(λ, u) ∈ W . The conclusions now follow from

the fact that∂λ∂ξi
b : R

N × R
N+2 → R is an equicontinuousC0−bundle

map fori = 0, 1, .., N , with ∂λ∂ξi
b(·, 0, λ) = ∂ξi

∂λb(·, 0, λ) ∈ L∞(RN )
by (13). (See Lemma 2.1 of [25].) �

Theorem 1 Fix p ∈ (N,∞) and consider the operatorF defined by (5)
under the hypothesis (B). ThenF ∈ C1(R×Xp, Yp) and the partial deriva-
tives (in the sense of Fréchet)DuDλF andDλDuF exist and are continuous
onR ×Xp. In particular,

[DuF (λ, 0)v](x) =

−
N∑

α,β=1

aαβ(x, 0)∂α∂βv(x) +
N∑
i=1

∂ξi
b(x, 0, λ)∂iv(x) + ∂ξ0b(x, 0, λ)v(x)

(14)

and

[DλDuF (λ, 0)v](x) = [DuDλF (λ, 0)v](x) (15)

=
N∑
i=1

∂λ∂ξi
b(x, 0, λ)∂iv(x) + ∂λ∂ξ0b(x, 0, λ)v(x).

for all v ∈ Xp. Furthermore, the mappingF (·, u) : R → Yp is equicontin-
uous with respect tou in bounded subsets ofXp.

Proof. For (λ, u) ∈ R ×Xp, set

B(λ, u)(x) = b(x, u(x),∇u(x), λ)
and

C(λ, u)(x) = ∂λb(x, u(x),∇u(x), λ).
It follows from Theorem 2.3 of [25] that

B(λ, ·) andC(λ, ·) ∈ C1(Xp, Yp)

for all λ ∈ R,with

DuB(λ, u)v = ∂ξ0b(·, u,∇u, λ)v +
N∑
i=1

∂ξi
b(·, u,∇u, λ)∂iv

and

DuC(λ, u)v = ∂ξ0∂λb(·, u,∇u, λ)v +
N∑
i=1

∂ξi
∂λb(·, u,∇u, λ)∂iv.
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Also, by Lemma 3.2 of [25]

F (λ, ·) ∈ C1(Xp, Yp) for all λ ∈ R

and (14) holds.
Next we show that

(a) B(·, u) andC(·, u) : R → Yp are equicontinuous with respect tou in
bounded subsets ofXp

and
(b) DuB(·, u) andDuC(·, u) : R → L(Xp, Yp) are equicontinuous with

respect tou in bounded subsets ofXp.

Notice that (a) and (b) together with the continuity ofB(λ, ·), C(λ, ·),
DuB(λ, ·) andDuC(λ, ·) at fixedλ show that themappingsB,C,DuB and
DuC are continuous with respect to(λ, u). Also, (a) implies the equiconti-
nuity ofF (·, u) claimed in the theorem.

Let V be a bounded subset ofXp. With no loss of generality, we shall
suppose thatV is convex and that0 ∈ V . Given any compact intervalI ⊂ R,
the setW = I × V is a bounded subset ofR × Xp. Consider(λ, u) and
(λ+ µ, u) ∈W . Then,

(a) B(λ+ µ, u)(x) −B(λ, u)(x)

=
∫ 1

0

d

dt
b(x, u(x),∇u(x), λ+ tµ)dt

= µ
∫ 1

0
∂λb(x, u(x),∇u(x), λ+ tµ)dt

= µ
∫ 1

0

∫ 1

0

d

ds
∂λb(x, su(x), s∇u(x), λ+ tµ)dsdt

= µ[
∫ 1

0

∫ 1

0
∂ξ0∂λb(x, su(x), s∇u(x), λ+ tµ)dsdt]u(x)

+ µ
N∑
i=1

[
∫ 1

0

∫ 1

0
∂ξi
∂λb(x, su(x), s∇u(x), λ+ tµ)dsdt]∂iu(x)

and so, by Lemma 1, there is a constantM such that

|B(λ+ µ, u)(x) −B(λ, u)(x)| ≤ |µ|M
{

|u(x)| +
N∑
i=1

|∂iu(x)|
}

for all x ∈ R
N . Thus

|B(λ+ µ, u) −B(λ, u)|p ≤ |µ|M
∣∣∣∣∣
{

|u| +
N∑
i=1

|∂iu|
}∣∣∣∣∣

p

≤ |µ|M ‖u‖2,p ≤ |µ|ML
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for some constantL and all(λ, u), (λ+ µ, u) ∈W .
Thisproves theequicontinuityof the functionsB(·, u)with respect tou ∈ V .

Similarly,

C(λ+ µ, u)(x) − C(λ, u)(x)

= ∂λb(x, u(x),∇u(x), λ+ µ) − ∂λb(x, u(x),∇u(x), λ)

=
∫ 1

0

d

ds
[∂λb(x, su(x), s∇u(x), λ+ µ)

−∂λb(x, su(x), s∇u(x), λ)]ds

=

{∫ 1

0
[∂ξ0∂λb(x, su(x), s∇u(x), λ+ µ)

−∂ξ0∂λb(x, su(x), s∇u(x), λ)]ds
}
u(x)

+
N∑
i=1

{∫ 1

0
[∂ξi
∂λb(x, su(x), s∇u(x), λ+ µ)

−∂ξi
∂λb(x, su(x), s∇u(x), λ)]ds

}
∂iu(x)

Givenε > 0, Lemma 1(ii) shows that there existsδ = δ(ε,W ) > 0 such
that

|∂ξi
∂λb(x, su(x), s∇u(x), λ+ tµ) − ∂ξi

∂λb(x, su(x), s∇u(x), λ)| < ε
(16)

for all i = 0, 1, .., N, x ∈ R
N , all s, t ∈ [0, 1] and all(λ, u), (λ + µ, u) ∈

W = I × V with |µ| < δ.
Using (16) witht = 1, we see that

|C(λ+ µ, u)(x) − C(λ, u)(x)| ≤ ε
{

|u(x)| +
N∑
i=1

|∂iu(x)|
}

for all x ∈ R
N and the equicontinuity ofC(·, u) follows from this estimate

as forB(·, u) above.
(b) Forv ∈ Xp,
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[DuB(λ+ µ, u)v −DuB(λ, u)v] (x)

= [∂ξ0b(x, u(x),∇u(x), λ+ µ) − ∂ξ0b(x, u(x),∇u(x), λ)] v(x)

+
N∑
i=1

[∂ξi
b(x, u(x),∇u(x), λ+ µ) − ∂ξi

b(x, u(x),∇u(x), λ)] ∂iv(x)

=
[∫ 1

0

d

dt
∂ξ0b(x, u(x),∇u(x), λ+ tµ)dt

]
v(x)

+
N∑
i=1

[∫ 1

0

d

dt
∂ξi
b(x, u(x),∇u(x), λ+ tµ)dt

]
∂iv(x)

= µ
[∫ 1

0
∂λ∂ξ0b(x, u(x),∇u(x), λ+ tµ)dt

]
v(x)

+µ
N∑
i=1

[∫ 1

0
∂λ∂ξi

b(x, u(x),∇u(x), λ+ tµ)dt
]
∂iv(x)

so, by Lemma 1,

|[DuB(λ+ µ, u)v −DuB(λ, u)v] (x)| ≤ |µ|M
{

|v(x)| +
N∑
i=1

|∂iv(x)|
}

for all x ∈ R
N where the constantM depends only onW . Thus

|[DuB(λ+ µ, u) −DuB(λ, u)] v|p ≤ |µ|M ‖v‖2,p ,

showing thatλ �→ DuB(λ, u) is equicontinuous with respect tou ∈ V .
Finally,

[DuC(λ+ µ, u)v −DuC(λ, u)v] (x)

= [∂ξ0∂λb(x, u(x),∇u(x), λ+ µ) − ∂ξ0∂λb(x, u(x),∇u(x), λ)]v(x)

+
N∑
i=1

[∂ξi
∂λb(x, u(x),∇u(x), λ+ µ)

−∂ξi
∂λb(x, u(x),∇u(x), λ)]∂iv(x)
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and the equicontinuity ofλ �→ DuC(λ, u) follows from (16) by similar
arguments to those used above.

We now show thatB is differentiable with respect toλ and thatDλB =
C. For this we fix(λ, u) ∈ R ×Xp and considerB(λ+ µ, u) −B(λ, u) −
µC(λ, u) where(λ, u), (λ+ µ, u) ∈W = I × V . Then

|B(λ+ µ, u) −B(λ, u) − µC(λ, u)|p
=

∣∣∣∣∫ 1

0

d

dt
b(·, u,∇u, λ+ tµ)dt− µ∂λb(·, u,∇u, λ)

∣∣∣∣
p

= |µ|
∣∣∣∣∫ 1

0
[∂λb(·, u,∇u, λ+ tµ) − ∂λb(·, u,∇u, λ)]dt

∣∣∣∣
p

≤ |µ|
{∫

RN

∫ 1

0
|∂λb(x, u(x),∇u(x), λ+ tµ)

−∂λb(x, u(x),∇u(x), λ)|p dtdx
}1/p

by Hölder’s inequality.
But, since∂λb(x, 0, λ+ tµ) ≡ 0,

∂λb(x, u(x),∇u(x), λ+ tµ) − ∂λb(x, u(x),∇u(x), λ)
=

∫ 1

0

d

ds
[∂λb(x, su(x), s∇u(x), λ+ tµ)

−∂λb(x, su(x), s∇u(x), λ)]ds
=

∫ 1

0
[∂ξ0∂λb(x, su(x), s∇u(x), λ+ tµ)

−∂ξ0∂λb(x, su(x), s∇u(x), λ)]u(x)ds

+
N∑
i=1

[∂ξi
∂λb(x, su(x), s∇u(x), λ+ tµ)

−∂ξi
∂λb(x, su(x), s∇u(x), λ)]∂iu(x)ds.

Givenε > 0, it now follows from (16) that there existsδ > 0 such that

|∂λb(x, u(x),∇u(x), λ+ tµ) − ∂λb(x, u(x),∇u(x), λ)|

< ε

{
|u(x)| +

N∑
i=1

|∂iu(x)|
}
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for all x ∈ R
N , all t ∈ [0, 1] and all(λ, u), (λ+ µ, u) ∈ W = I × V with

|µ| < δ. Hence
|B(λ+ µ, u) −B(λ, u) − µC(λ, u)|p

≤ ε |µ|
{∫

RN

∫ 1

0

{
|u(x)| +

N∑
i=1

|∂iu(x)|
}p

dtdx

}1/p

≤ ε |µ| ‖u‖2,p

showing that∂λB(λ, u) exists and is equal toC(λ, u).
From the properties ofB andC that have already been established we

deduce that

F ∈ C1(R×Xp, Yp) and thatDuDλF exists and is continuous

with DuDλF = DuC ∈ C(R×Xp, Yp).

Finally we show thatDuB is differentiable with respect toλ and that
DλDuB = DuC (whereDλDuF = DuDλF ). Forλ, µ ∈ R andu, v ∈
Xp,

[DuB(λ+ µ, u)v −DuB(λ, u)v − µDuC(λ, u)v] (x)

= µ

[∫ 1

0
∂λ∂ξ0b(x, u(x),∇u(x), λ+ tµ)dt

]
v(x)

+
N∑
i=1

[∫ 1

0
∂λ∂ξi

b(x, u(x),∇u(x), λ+ tµ)dt

]
∂iv(x)

− ∂ξ0∂λb(x, u(x),∇u(x), λ)v(x)

−
N∑
i=1

∂ξi
∂λb(x, u(x),∇u(x), λ)∂iv(x)}

= µ{
∫ 1

0
[∂λ∂ξ0b(x, u(x),∇u(x), λ+ tµ)

− ∂λ∂ξ0b(x, u(x),∇u(x), λ)]dtv(x)

+
N∑
i=1

∫ 1

0
[∂λ∂ξi

b(x, u(x),∇u(x), λ+ tµ)

− ∂λ∂ξi
b(x, u(x),∇u(x), λ)]dt∂iv(x)}.

Givenε > 0, it now follows from (16) that there existsδ > 0 such that∣∣∣∣ [DuB(λ+ µ, u)v −DuB(λ, u)v − µDuC(λ, u)v] (x)
µ

∣∣∣∣
≤ ε

{
|v(x)| +

N∑
i=1

|∂iv(x)|
}
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for all x ∈ R
N and for all(λ, u), (λ+ µ, u) ∈W with |µ| < δ. Thus∣∣∣∣ [DuB(λ+ µ, u) −DuB(λ, u) − µDuC(λ, u)] v

µ

∣∣∣∣
p

≤ ε
{

|v|p +
N∑
i=1

|∂iv|p
}

≤ ε ‖v‖2,p

and so∥∥∥∥ [DuB(λ+ µ, u) −DuB(λ, u) − µDuC(λ, u)]
µ

∥∥∥∥
L(Xp.Yp)

≤ ε

for all (λ, u), (λ+ µ, u) ∈W with |µ| < δ.
HenceDλDuB(λ, u) = DuC(λ, u). �

3 Properness and global bifurcation

In this section we formulate some general results about the bifurcation of
global branches of solutions for quasilinear equations onR

N .We beginwith
the abstract setting and then we use it to treat the equation (3).

Definition 2 LetX andY be real Banach spaces and consider a function
F ∈ C1(J × X,Y ) whereJ is an open interval. LetP (λ, u) = λ be the
projection ofR ×X ontoR. We say thatJ is an admissible interval forF
provided that
(i) for all (λ, u) ∈ J×X, the bounded linear operatorDuF (λ, u) : X → Y
is a Fredholm operator of index zero
and
(ii) for any compact subsetK of Y and any closed bounded subsetW of
R ×X such that

inf J < inf PW ≤ supPW < supJ,

F−1(K) ∩W is a compact subset ofR ×X.

The conditions (i) and (ii) specify the appropriate versions of Fredholm-
ness and properness which underlie the topological degree defined in [23].
That degree is based on the notion of the parity, denoted byπ (A(λ) : λ ∈
[a, b]), of a continuous path,λ �→ A(λ), of bounded linear Fredholm op-
erators of index zero fromX into Y . For such a path, a parametrix is any
continuous functionB : [a, b] → GL(Y,X) such thatB(λ)A(λ) : X → X
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is a compact perturbation of the identity for eachλ ∈ [a, b]. If A(a) and
A(b) ∈ GL(X,Y ), the parity of the pathA on [a, b] is defined by

π (A(λ) : λ ∈ [a, b]) = dLS(B(a)A(a))dLS(B(b)A(b))

wheredLS denotes the Leray-Schauder degree. This definition is justi-
fied by showing that a parametrix always exists and thatdLS(B(a)A(a))
dLS(B(b)A(b)) is independent of the choice of parametrixB. In some cir-
cumstances the parity can be expressed in a form which is easier to check
directly. In formulating our bifurcation theorems for (3)we shall only use the
following criterion. LetL(X,Y ) denote the Banach space of all bounded
linear operators fromX into Y and let the kernel and range of a linear
operatorT be denoted bykerT and rgeT , respectively.

Proposition 1 LetA : [a, b] → L(X,Y ) be a continuous path of bounded
linear operators having the following properties.

(i) A ∈ C1 ([a, b], L(X,Y )).
(ii) A(λ) : X → Y is a Fredholm operator of index zero for allλ ∈ [a, b].
(iii) There existsλ0 ∈ (a, b) such that

A′(λ0)[ker A(λ0)] ⊕ rgeA(λ0) = Y

in the sense of a topological direct sum.
Then there existsε > 0 such that[λ0 − ε, λ0 + ε] ⊂ [a, b],

A(λ) ∈ GL(X,Y ) for all λ ∈ [λ0 − ε, λ0) ∪ (λ0, λ0 + ε]

and

π (A(λ) : λ ∈ [λ0 − ε, λ0 + ε]) = (−1)k

wherek = dim kerA(λ0).

Proof. See Proposition 2.1 of [9] and Theorem 6.18 of [10].
Note that for any continuous pathA : [a, b] → L(X,Y ) and anyλ0 ∈

(a, b) such thatA(λ) ∈ GL(X,Y ) for all λ ∈ [a, b]\ {λ0}, the parity
π (A(λ) : λ ∈ [λ0 − ε, λ0 + ε]) is the same for allε > 0 provided that
[λ0 − ε, λ0 + ε] ⊂ [a, b]. This quantity is called the parity of the pathA
acrossλ0. The preceding proposition provides one way of calculating the
parity acrossλ0.

We can now state the main result about global bifurcation which can be
derived using the above notions.

Theorem 2 Let X and Y be real Banach spaces and consider a func-
tion F ∈ C1(J × X,Y ) whereJ is an open interval which is admissi-
ble for F . Suppose thatλ0 ∈ J and that there existsε > 0 such that
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[λ0−ε, λ0+ε] ⊂ J ,DuF (λ, 0) ∈ GL(X,Y ) for λ ∈ [λ0−ε, λ0+ε]\ {λ0}
andπ (DuF (λ, 0), [λ0 − ε, λ0 + ε]) = −1. LetZ = {(λ, u) ∈ J × X :
u �= 0 andF (λ, u) = 0} and letC denote the connected component of
Z ∪ {(λ0, 0)} containing(λ0, 0). ThenC has at least one of the following
properties.

(i) C is unbounded.
(ii) The closure ofC contains a point(λ1, 0)whereλ1 ∈ J\[λ0−ε, λ0+ε]

andDuF (λ1, 0) /∈ GL(X,Y ).
(iii) The closure ofPC intersects the boundary ofJ .

The above statements refer toZ andC with the metric inherited from
R ×X. The basic procedure for proving a result like this is to suppose that
C has none of the properties stated in the conclusion and then to derive a
contradiction using the properties of whatever degree is available. Using the
degree for proper Fredholm maps, variants of this result appear as Theorem
6.1 of [23] and Theorem 7.2 of [11]. In those resultsJ = R so the property
(iii) in the conclusion can be dropped. The form stated above can be proved
using the degree defined in [23]. Note that, if we assume thatC does not
have the property (iii), the open setΩ used in the proof of Theorem 6.1 of
[23] can be chosen so that

inf J < inf PC ≤ supPC < supJ

and then the properties of the degree lead to a contradiction in the usual way.
See Theorem 7.2 of [11], for example.

Clearly the interest of this result hinges on the extent to which the parity
can be calculated and sharp explicit conditions found for admissible in-
tervals. The relationship between the parity and the spectral/transversality
properties of the linearization ofF has been thoroughly investigated [10]
and, in the context of quasilinear equations, Theorem 1 enables us to ex-
ploit these results in a straight forward way. For a broad class of quasilinear
elliptic operators onRN we have characterized in [25] the Fredholm and
properness properties which determine admissible intervals.

For the rest of this sectionwefixp ∈ (N,∞)andconsider thedifferential
operatorF : R × Xp → Yp defined by (5) under the assumption (B). By
Theorem 1 this already ensures thatF ∈ C1(R ×Xp, Yp). Our next results
deal with a situation where the parity of the pathλ �→ DuF (λ, 0) across
a valueλ0 can be determined in a relatively explicit way. They use the
following assumption (L) which ensures thatDuF (λ, 0) has a particularly
simple form. More general behaviour atu = 0 can be handled provided
that the asymptotic behaviour required for the discussion of properness is
assumed and we shall return to this in due course.
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(L) There is a (constant) positive definite matrix[Aαβ ] such that

aαβ(x, 0) = Aαβ = Aβα for all x ∈ R
N

and

∂ξαb(x, 0, λ) = 0 for all x ∈ R
N andλ ∈ R

for all α, β = 1, .., N ,

Under the hypotheses (B) and (L), it follows from Theorem 1 that

[DuF (λ, 0)v](x)

= −
N∑

α,β=1

Aαβ∂α∂βv(x) + ∂ξ0b(x, 0, λ)v(x)

which can be reduced to the form

[DuF (λ, 0)v](x) = −∆v(x) + ∂ξ0b(x, 0, λ)v(x) (17)

by a linear change of the variablex. In this case the parity can be calculated
from the spectral properties of the operator−∆ + ∂ξ0b(x, 0, λ) using the
results we obtained in [26]. Let us fix some notation and terminology which
will be used henceforth.

We refer to [7] for the notions of spectrum, discrete spectrum and es-
sential spectrum of an unbounded self-adjoint operator acting on a Hilbert
space. The discrete spectrum consists of the isolated points in the spectrum
which are eigenvalues of finite multiplicity. Those points in the spectrum
which do not belong to the discrete spectrum form the essential spectrum.

In [26] we discussed the Fredholm properties of the operator−∆+V in
Lp(RN ) for a class of potentials admitting singularities. To deal with (17) it
is sufficient to recall the following special case which appears as Theorem
1 in [26].

Theorem 3 Let V ∈ L∞(RN ). ThenS2 = −∆ + V : W 2,2(RN ) ⊂
L2(RN ) → L2(RN ) is a self-adjoint operator whose spectrum and discrete
spectrum are denoted byσ andσd respectively. Forp ∈ (1,∞), consider
also the operatorSp :W 2,p(RN ) → Lp(RN ) defined by

Spu = (−∆+ V )u for u ∈W 2,p(RN ).

For everyp ∈ (1,∞), the following conclusions are valid.

(i) Sp − λI :W 2,p(RN ) → Lp(RN ) is an isomorphism ifλ /∈ σ,
whereas, ifλ ∈ σd, then

(ii) Sp − λI : W 2,p(RN ) → Lp(RN ) is a Fredholm operator of index
zero,
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(iii) ker (Sp − λI) = ker (S2 − λI), and
(iv) Lp(RN ) =ker(Sp−λI)⊕ rge(Sp−λI)where⊕denotesa topological

direct sum.

We now use this result to discuss the parity of the pathλ �→ DuF (λ, 0).

Lemma 2 Suppose that the conditions (B) and (L) are satisfiedandconsider
λ0 ∈ R such that0 does not belong to the essential spectrum of the self-
adjoint operator−∆+ ∂ξ0b(x, 0, λ0) : X2 ⊂ Y2 → Y2. Letp ∈ (N,∞).

(i) ThenDuF (λ0, 0) : Xp → Yp is a Fredholm operator of index zero.
(ii) Furthermore, if

either∂λ∂ξ0b(·, 0, λ0) ≥ 0 but �≡ 0 onR
N ,

or ∂λ∂ξ0b(·, 0, λ0) ≤ 0 but �≡ 0 onR
N ,

then there existsε > 0 such thatDuF (λ, 0) ∈ GL(Xp, Yp) for all
λ ∈ [λ0 − ε, λ0 + ε]\ {λ0} and

π(DuF (λ, 0), [λ0 − ε, λ0 + ε]) = (−1)k

wherek = dim ker[−∆+ ∂ξ0b(x, 0, λ0)].

Remark 3.1By Theorem 3(iii), the kernel of the linear operator−∆ +
∂ξ0b(x, 0, λ) : Xp → Yp does not depend on the choice ofp ∈ (1,∞).

Proof. The first statement follows immediately from Theorem 3 withV =
∂ξ0b(·, 0, λ). To show that the parity acrossλ0 is well-defined and equal to
(−1)k it suffices, by Proposition 1 withA(λ) = DuF (λ, 0), to prove that

DλDuF (λ0, 0)[kerDuF (λ0, 0)] ⊕ rgeDuF (λ0, 0) = Yp.

Under the additional assumptions of part (ii), suppose first that

u ∈ DλDuF (λ0, 0)[kerDuF (λ0, 0)] ∩ rgeDuF (λ0, 0).

Then there existv, w ∈ Xp such that

u = ∂λ∂ξ0b(x, 0, λ0)v = −∆w + ∂ξ0b(x, 0, λ0)w
and−∆v + ∂ξ0b(x, 0, λ0)v = 0.

By Theorem 3(iii),v ∈ Xq for all q ∈ (1,∞) and so

0 =
∫

RN

[−∆v + ∂ξ0b(x, 0, λ0)v]wdx

=
∫

RN

v[−∆w + ∂ξ0b(x, 0, λ0)w]dx

=
∫

RN

∂λ∂ξ0b(x, 0, λ0)v2dx



104 P.J. Rabier, C.A. Stuart

from which it follows that ∂λ∂ξ0b(x, 0, λ0)v2 = 0 on R
N . But,

since∂λ∂ξ0b(·, 0, λ0) is either nonnegative or nonpositive, this implies that
∂λ∂ξ0b(x, 0, λ0) = 0 or v(x) = 0 at each point. Thus,∂λ∂ξ0b(·, 0, λ0)v =
0, that is,u = 0. This shows thatDλDuF (λ0, 0)[kerDuF (λ0, 0)]∩rge
DuF (λ0, 0) = {0}.

Since we already know from part (i) thatDuF (λ0, 0) is a Fredholm
operator of index zero, it remains to show thatdimDλDuF (λ0, 0)[kerDu

F (λ0, 0)] = k.ButDλDuF (λ0, 0)[kerDuF (λ0, 0)] = {∂λ∂ξ0b(x, 0, λ0)v :
v ∈ kerDuF (λ0, 0)} is a closed subspace ofYp whose dimension cannot
exceed that ofkerDuF (λ0, 0).

If v ∈ kerDuF (λ0, 0) and∂λ∂ξ0b(·, 0, λ0)v = 0, the hypothesis that
∂λ∂ξ0b(·, 0, λ0) is not identically 0 shows that there is a non-empty open
setΩ ⊂ R

N such thatv ≡ 0 onΩ and so, by (17) and the unique con-
tinuation principle (see Theorem C.9.1 of [31] for example),v ≡ 0 on
R

N . This shows that the multiplication by∂λ∂ξ0b(·, 0, λ0) is one-to-one
onkerDuF (λ0, 0) and hence thatdimDλDuF (λ0, 0)[kerDuF (λ0, 0)] =
k = dim kerDuF (λ0, 0) and the proof is complete. �

The following condition characterizes a frequently occurring situation
in which the intervalJ becomes a gap in the essential spectrum of a Schrö-
dinger operator.

(LL) The condition (L) is satisfied and there is a constantc �= 0 such
that

∂λ∂ξ0b(x, 0, λ) = c for all x ∈ R
N andλ ∈ R.

When (B) and (LL) are satisfied we can and shall suppose (by redefining
λ) that there exists a functionV ∈ C(RN ) ∩ L∞(RN ) such that

∂ξ0b(x, 0, λ) = V (x) − λ for all x ∈ R
N andλ ∈ R.

In this case

DuF (λ, 0)v = (−∆+ V )v − λv (18)

where−∆+ V : X2 ⊂ Y2 → Y2 is a self-adjoint operator.

Corollary 1 Let the conditions (B) and (LL) be satisfied and letp ∈
(N,∞). Consider an open intervalJ ⊂ R\σe whereσe denotes the es-
sential spectrum of the self-adjoint operator−∆ + V : X2 ⊂ Y2 → Y2.
ThenDuF (λ, 0) : Xp → Yp is a Fredholm operator of index zero for all
λ ∈ J . If λ0 ∈ J is an eigenvalue of odd multiplicity of−∆ + V : X2 ⊂
Y2 → Y2 there existsε > 0 such thatDuF (λ, 0) ∈ GL(Xp, Yp) for all
λ ∈ [λ0 − ε, λ0 + ε]\ {λ0} andπ(DuF (λ, 0), [λ0 − ε, λ0 + ε]) = −1.
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Proof. This follows immediately from Lemma 2. �
We now turn to the more substantial problem of determining admissible

intervals for an operator of the form (5). For this we introduce assump-
tions concerning its ellipticity and asymptotic behaviour as|x| → ∞. The
asymptotic behaviour plays a crucial role in ensuring the properness ofF ,
but as we shall see it also implies thatDuF (λ, 0) : Xp → Yp is a Fredholm
operator of index zero without requiring the special structure assumed in
condition (L).

(E) The operatorF is strictly elliptic in the sense that there exists a
continuous function,ν : R

N × R
N+1 → (0,∞), such that

N∑
α,β=1

aαβ(x, ξ)ηαηβ ≥ ν(x, ξ) |η|2

for all η ∈ R
N and(x, ξ) ∈ R

N × R
N+1.

(A) There exist equicontinuousC0−bundle mapsa∞
αβ = a∞

βα : R
N ×

R
N+1 → R for α, β = 1, .., N and an equicontinuousC1

η−bundle map
b∞ : R

N × R
N+2 → R such thatb∞(x, 0, λ) ≡ 0 and

lim
|x|→∞

[aαβ(x, ξ) − a∞
αβ(x, ξ)] = lim

|x|→∞
[∂ξi
b(x, ξ, λ) − ∂ξi

b∞(x, ξ, λ)]

= 0

uniformly for (ξ, λ) in bounded subsets ofRN+2, where1 ≤ α, β ≤ N
andi = 0, 1, .., N . Furthermore,a∞

αβ(·, ξ) andb∞(·, ξ, λ) : R
N → R are

N−periodic onRN in the sense that, for someT = (T1, .., TN )with Ti > 0
for all i = 1, .., N ,

a∞
αβ(x1, ..., xi + Ti, ..., xN , ξ) = a∞

αβ(x1, ..., xN , ξ)

and

b∞(x1, ..., xi + Ti, ..., xN , ξ, λ) = b∞(x1, ..., xN , ξ, λ)

for all (x, ξ, λ) ∈ R
N × R

N+2 andi = 1, .., N.

Under the assumptions (B) and (A) we define a differential operator,
F∞, by (6).

Theorem 4 Let the conditions (B), (E) and (A) be satisfied. Choosep ∈
(N,∞) and consider the operatorF : R × Xp → Yp defined by (5). An
open intervalJ is admissible forF provided that for allλ ∈ J ,
(i) the linear differential operatorDuF (λ, 0) : Xp → Yp is Fredholm of

index zero and
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(ii) {u ∈ Xp : F∞(λ, u) = 0} = {0} .
Remark 3.2The assumptions (B) and (A) imply thatF∞(λ, u) ∈ Yp for all
(λ, u) ∈ R ×Xp and thatF∞(λ, 0) = 0 for all λ ∈ R.

Proof. By Theorem 1 we already know thatF ∈ C1(R × Xp, Yp) so we
need only prove that the condition (ii) in Definition 2 is satisfied. With this
in mind, letK be a compact subset ofYp andW a closed bounded subset
of R ×Xp such that

inf J < inf PW ≤ supPW < supJ.

Consider an arbitrary sequence{(λn, un)} ⊂ F−1(K) ∩ W . We only
have to prove that{(λn, un)} contains a convergent subsequence. Since
{F (λn, un)} ⊂ K there existλ ∈ J, v ∈ K and a subsequence such that

λni → λ andvni = F (λni , uni) → v strongly inYp.

Now

F (λ, uni) = F (λ, uni) − F (λni , uni) + F (λni , uni)

Since{uni} is a bounded subset ofXp, the equicontinuity ofF (·, u) for u in
bounded subsets ofXp (Theorem 1) shows that|F (λ, uni) − F (λni , uni)|p
→ 0 and hence we have thatF (λ, uni) → v strongly inYp. But by Theorem
6.1 of [25] the restriction ofF (λ, ·) : Xp → Yp to closed bounded subsets of
Xp is proper. Since{uni} is a bounded subset ofXp, this implies that{uni}
has a subsequence converging to an elementu in Xp. Hence{(λni , uni)}
has a subsequence converging to(λ, u) as required. �

Lemma2andCorollary 1 furnishexplicit assumptionson theoperator (5)
ensuring that condition (i) of Theorem 4 is satisfied. Assumptions implying
condition (ii) can be derived in various ways depending on the form of the
equationF∞(λ, u) = 0. As explained in the Introduction, we demonstrate
three different approaches to doing this. Before doing so we show how the
condition (i) can be verified by using properties of the asymptotic limit even
when the operator (5) does not have the property (L).

First of all we recall fromSect. 6of [25] that, although theassumption (A)
does not guarantee the differentiability of the operatorF∞ : R×Xp → Yp,
it does imply thatF∞(λ, ·) : Xp → Yp is differentiable (in the sense of
Fréchet) at0 with

DuF
∞(λ, 0)v

= −
N∑

α,β=1

a∞
αβ(·, 0)∂α∂βv +

N∑
α=1

∂ξαb
∞(·, 0, λ)∂αv + ∂ξ0b

∞(·, 0, λ)v
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for all v ∈ Xp andλ ∈ R.
We note thatDuF

∞(λ, 0) is a linear second order differential operator with
continuousN−periodic coefficients. In [25], Lemma 6.6 and Remark 6.2
describe some situations where it is a Fredholm operator of index zero. The
following assumption isolates a particularly agreeable situation.

(L∞) There is a (constant) positive definite matrix
[
A∞

αβ

]
such that

a∞
αβ(x, 0) = A∞

αβ = A∞
βα for all x ∈ R

N

and

∂ξαb
∞(x, 0, λ) = 0 for all x ∈ R

N andλ ∈ R

for 1 ≤ α, β ≤ N .

Remark 3.3When this condition is satisfiedwe can assume thatA∞
αβ = δαβ

for 1 ≤ α, β ≤ N (by making a linear change of variable) and hence

DuF
∞(λ, 0)v = −∆v + ∂ξ0b

∞(·, 0, λ)v
for v ∈ Xp andλ ∈ R.

Lemma 3 Suppose that the conditions (B), (A) and (L∞) are satisfied and
considerλ0 ∈ R such that the self-adjoint operator,S(λ0) : X2 ⊂ Y2 →
Y2, defined by

S(λ0)v = −∆v + ∂ξ0b
∞(·, 0, λ0)v for v ∈ X2

is an isomorphism. Letp ∈ (N,∞).

(i) DuF (λ0, 0) : Xp → Yp is a Fredholm operator of index zero.
(ii) Let {ϕi ∈ Xp : i = 1, .., k} and {ψi ∈ Yq : i = 1, .., k} be bases for

kerDuF (λ0, 0) and ker [DuF (λ0, 0)]∗ respectively, withk = dim
kerDuF (λ0, 0) and 1

p + 1
q = 1. Then

det
[∫

RN

ψi {DλDuF (λ0, 0)ϕj} dx
]

�= 0 (19)

if and only if

DλDuF (λ0, 0) [kerDuF (λ0, 0)] ⊕ rgeDuF (λ0, 0) = Yp. (20)

When (19) is satisfied there existsε > 0 such thatDuF (λ, 0) ∈
GL(Xp, Yp) for all λ ∈ [λ0 − ε, λ0 + ε]\ {λ0} and

π (DuF (λ, 0), [λ0 − ε, λ0 + ε]) = (−1)k.
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Remark 3.4This result gives the same conclusions as Lemma 2 without
requiringDuF (λ, 0) to be a formally symmetric differential operator. Note
that when the conditions (B), (E), (A) and (L) are satisfied then so is (L∞)
with A∞

αβ = Aαβ . We also observe that, since∂ξ0b
∞(·, 0, λ0) is anN−

periodic function,S(λ0) is an isomorphism if and only if0 does not belong
to its essential spectrum. (See Theorem 5.4 of Chapter 3 in [2].) More-
over when there exists a continuousN− periodic functionP such that
∂ξ0b

∞(x, 0, λ0) ≡ P (x) − λ0, S(λ0) = −∆ + P − λ0 and it is an iso-
morphism if and only ifλ0 does not belong to the spectrum of theN−
periodic Schr̈odinger operator−∆+ P . Thus a result analogous to Corol-
lary 1 can easily be formulated. In particular, when the condition (LL) is
satisfied with∂ξ0b(x, 0, λ) ≡ V (x)−λ, the condition (L∞) is also satisfied
and∂ξ0b

∞(x, 0, λ0) ≡ P (x) − λ whereP is a continuousN−periodic
function. Sincelim|x|→∞ {V (x) − P (x)} = 0, it follows that the essen-
tial spectrum of the Schrödinger operator−∆ + V : X2 ⊂ Y2 → Y2
is equal to the whole spectrum of theN−periodic Schr̈odinger operator
−∆+ P : X2 ⊂ Y2 → Y2 (see [2]).

Proof. (i) It follows from Theorem 3(ii) and (iii), withV = ∂ξ0b
∞(·, 0, λ0),

thatDuF
∞(λ0, 0) ∈ GL(Xp, Yp).

There is a constantτ > 0 such that

N∑
α,β=1

A∞
αβξαξβ ≥ τ |ξ|2 for all ξ ∈ R

N

and so, by (A), there is a constantz > 0 such that

N∑
α,β=1

aαβ(x, 0)ξαξβ ≥ τ

2
|ξ|2 for all ξ ∈ R

N

provided that|x| ≥ z. Using (E), we see that there is a constantτ0 > 0 such
that

N∑
α,β=1

aαβ(x, 0)ξαξβ ≥ τ0 |ξ|2 for all x, ξ ∈ R
N .

It now follows from Lemma 6.5 in [25] thatDuF (λ0, 0) : Xp → Yp is a
Fredholm operator of index zero.

(ii) SinceDuF (λ0, 0) : Xp → Yp is a Fredholm operator of index zero,
rgeDuF (λ0, 0) is a closed subspace ofYp and hence

rgeDuF (λ0, 0) = {w ∈ Yp : ψ(w) = 0 for all ψ ∈ ker [DuF (λ0, 0)]∗}
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where[DuF (λ0, 0)]∗ : [Yp]∗ → [Xp]
∗. Hence

rgeDuF (λ0, 0) =
{
w ∈ Yp :

∫
RN

ψiwdx = 0 for i = 1, .., k
}

when we make the usual identification of[Yp]
∗ with Yq.

Suppose first that

DλDuF (λ0, 0) [kerDuF (λ0, 0)] ⊕ rgeDuF (λ0, 0) = Yp.

This impliesdimDλDuF (λ0, 0) [kerDuF (λ0, 0)]=codim rgeDuF (λ0, 0)
= k and soDλDuF (λ0, 0)must be one-to-one onkerDuF (λ0, 0). Further-
more, ifw ∈ kerDuF (λ0, 0) and

∫
RN ψi [DλDuF (λ0, 0)]wdx = 0 for

i = 1, .., k, thenDλDuF (λ0, 0)w = 0. SinceDλDuF (λ0, 0) is one-to-one
on kerDuF (λ0, 0), this means thatw = 0, and, expressingw in the form∑k

j=1 αjϕj using the basis{ϕj ∈ Xp : j = 1, .., k}, we conclude that
k∑

j=1

Mijαj = 0 for i = 1, .., k

implies thatα = (α1, .., αk) = 0 where

Mij =
∫

RN

ψi [DλDuF (λ0, 0)]ϕjdx.

ThusdetM �= 0 whereM denotes the(k× k)−matrix with elementsMij .
Conversely, suppose thatdetM �= 0. ThenMα = 0 implies thatα = 0
and so, ifw ∈ kerDuF (λ0, 0) and

∫
RN ψi [DλDuF (λ0, 0)]wdx = 0 for

i = 1, .., k, we can conclude thatw = 0. This shows that

DλDuF (λ0, 0) [kerDuF (λ0, 0)] ∩ rgeDuF (λ0, 0) = {0} .
But it also means that, ifw ∈ kerDuF (λ0, 0) and[DλDuF (λ0, 0)]w = 0,
thenw = 0. ThusDλDuF (λ0, 0) is one-to-one onkerDuF (λ0, 0) and
so dimDλDuF (λ0, 0) [kerDuF (λ0, 0)] = dim kerDuF (λ0, 0) = k =
codim rgeDuF (λ0, 0). This proves the equivalence of (19) and (20).

As in the proof of Lemma 2, the proof is completed by appealing to
Proposition 1. �

Combining the above results we obtain the following rather general bi-
furcation theorem.

Theorem 5 Let the conditions (B),(E),(A) and (L∞) be satisfied. Choose
p ∈ (N,∞) and consider the operatorF : R × Xp → Yp defined by (5).
Suppose thatJ is an open interval having the following properties.

(a) For all λ ∈ J, {u ∈ Xp : F∞(λ, u) = 0} = {0}.
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(b) For all λ ∈ J , the self-adjoint operator−∆ + ∂ξ0b
∞(·, 0, λ) : X2 ⊂

Y2 → Y2 is an isomorphism.
(c) There is a pointλ0 ∈ J such thatdim kerDuF (λ0, 0) is odd and the

condition (19) is satisfied.

LetC denote the connected component ofZ ∪ {(λ0, 0)} containing(λ0, 0)
whereZ = {(λ, u) ∈ J ×Xp : u �= 0 andF (λ, u) = 0} andZ∪{(λ0, 0)}
has themetric inherited fromR×Xp. ThenC hasat least oneof the following
properties.

(i) C is an unbounded subset ofJ ×Xp.
(ii) The closure ofC in J ×Xp contains a point(λ1, 0) whereλ1 �= λ0.
(iii) The closure of{λ : (λ, u) ∈ C for someu ∈ Xp} intersects the bound-

ary ofJ .

Proof. By the hypothesis (b) and Lemma 3(i),DuF (λ, 0) : Xp → Yp
is a Fredholm operator of index zero for allλ ∈ J . Using this and the
hypothesis (a), it follows from Theorem 4 that the intervalJ is admissible
for F . Finally, the assumption (c) and Lemma 3(ii) show that all of the
hypotheses of Theorem 2 are satisfied byF : R ×Xp → Yp and the result
follows. �
Theorem 6 Let the conditions (B),(E),(A) and (LL) be satisfied with

∂ξ0b(x, 0, λ) = V (x) − λ.
Choosep ∈ (N,∞) and consider the operatorF : R ×Xp → Yp defined
by (5). Suppose thatJ is an open interval having the following properties.

(a) For all λ ∈ J, {u ∈ Xp : F∞(λ, u) = 0} = {0}.
(b) J ⊂ R\σe, whereσe denotes the essential spectrum of the self-adjoint

operator−∆+ V : X2 ⊂ Y2 → Y2.
(c) λ0 ∈ J is an eigenvalue of odd multiplicity of−∆+ V : X2 ⊂ Y2 →

Y2.

LetC denote the connected component ofZ ∪{(λ0, 0)} containing(λ0, 0).
The conclusion of Theorem 5 holds.

Remark 3.5It follows from (LL) and (A) that (L∞) is also satisfied with

∂ξ0b
∞(x, 0, λ) = P (x) − λ

whereP is a continuousN−periodic function such that
lim

|x|→∞
{V (x) − P (x)} = 0.

As was pointed out in the Remark 3.4,J ⊂ R\σe ⇐⇒ J ⊂ R\Σ whereΣ
denotes the spectrum of the self-adjoint operator−∆+P : X2 ⊂ Y2 → Y2.

Proof. Using Corollary 1 and Theorem 4 this follows from Theorem 2.�



Quasilinear elliptic equations onRN 111

4 Special cases

In this section we give more explicit assumptions on the functionsaαβ and
b which imply that the hypotheses of Theorem 5 are satisfied.

4.1 Using the maximum principle

The maximum principle can be used to establish the condition (ii) of Theo-
rem 4 provided that the functionsa∞

αβ andb
∞ have the following properties.

(Mλ) There exists a continuous functionν : R
N+1 → (0,∞) such that

N∑
α,β=1

a∞
αβ(x, s, 0)ηαηβ ≥ ν(x, s) |η|2 for all η ∈ R

N

and for all(x, s) ∈ R
N+1 and

b∞(x, s, 0, λ)s > 0 for all (x, s) ∈ R
N+1 with s �= 0.

Remark 4.1It follows from this that∂ξ0b
∞(x, 0, λ) ≥ 0 for all x ∈ R

N .

Theorem 7 Let the conditions (B),(E) and (A) be satisfied and letp ∈
(N,∞). Suppose thatJ is an open interval such that (Mλ) is satisfied for
all λ ∈ J .
(i) Suppose that the condition (L∞) is satisfied and that the operator
S(λ)= −∆+∂ξ0b

∞(·, 0, λ) : X2 → Y2 is an isomorphism for allλ ∈
J . ThenJ is an admissible interval for the operatorF : R×Xp → Yp
defined by (5) and the conclusion of Theorem 5 is valid in this con-
text at any pointλ0 ∈ J such thatdim kerDuF (λ0, 0) is odd and the
condition (19) is satisfied withλ = λ0.

(ii) If the condition (LL) is satisfied with∂ξ0b(x, 0, λ) ≡ V (x) − λ, then
J ⊂ (−∞, ω) whereω ≡ lim inf |x|→∞ V (x) andJ is an admissible
interval for theoperatorF : R×Xp → Yp definedby (5). Furthermore,
for every eigenvalueλ0 ∈ J of odd multiplicity of−∆ + V : X2 ⊂
Y2 → Y2 the conclusion of Theorem 5 is valid in this context.

Remark 4.2Under the hypotheses of part (ii), there exists a continuous
N−periodic functionP such thatlim|x|→∞ {V (x) − P (x)} = 0 and
∂ξ0b

∞(x, 0, λ) ≡ P (x) − λ. Thusω = inf
{
P (x) : x ∈ R

N
}
and so the

condition (Mλ) implies thatλ ≤ ω for all λ ∈ J . But J is open so in fact
J ⊂ (−∞, ω). Furthermore, by Remark 3.4, the essential spectrum,σe, of
the Schr̈odinger operator−∆ + V : X2 ⊂ Y2 → Y2 is equal to the whole
spectrum of theN−periodic Schr̈odinger operator−∆+ P : X2 ⊂ Y2 →
Y2 and soJ ⊂ R\σe.
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Proof. Using Theorem 5 for part (i) and Theorem 6 for part (ii), we need
only prove that if(λ, u) ∈ J ×Xp andF∞(λ, u) = 0 thenu = 0.

Suppose that(λ, u) ∈ J ×Xp and that

−
N∑

α,β=1

a∞
αβ(x, u(x),∇u(x))∂α∂βu(x) + b∞(x, u(x),∇u(x), λ) = 0

for almost allx ∈ R
N . Recalling (9) and (10), we setM = sup {u(x) :

x ∈ R
N
}
andΩ =

{
x ∈ R

N : u(x) =M
}
. The continuity ofu implies

thatΩ is a closed subset ofRN . Suppose thatM > 0. Sinceu ∈ C1(RN )
and lim|x|→∞ u(x) = 0, Ω is non-empty and bounded and there exists
x0 ∈ Ω such that∇u(x0) = 0. (In fact,∇u(x) = 0 for all x ∈ Ω.) Thus
b∞(x0,M, 0, λ) > 0 by assumption (Mλ) and so there existsε, ν > 0 such
thatb∞(x, u(x),∇u(x), λ) > 0 and

N∑
α,β=1

a∞
αβ(x, u(x),∇u(x))ηαηβ ≥ ν |η|2 for all η ∈ R

N

for all x ∈ B(x0, ε) = {x : |x− x0| < ε}. Hence
N∑

α,β=1

cαβ(x)∂α∂βu(x) > 0 for all x ∈ B(x0, ε)

wherecαβ(x) = a∞
αβ(x, u(x),∇u(x)) and it follows from the maximum

principle, Theorem 9.6 of [13], thatu(x) =M for all x ∈ B(x0, ε). Hence
if M > 0 we find thatΩ is a non-empty subset ofRN which is both
open and closed. But this implies thatΩ = R

N , contradicting the fact
that Ω is bounded. HenceM ≤ 0, and a similar argument shows that
inf

{
u(x) : x ∈ R

N
} ≥ 0. Thusu = 0 and the proof is complete. �

4.2 Using variational identities

When the condition (Mλ) is not satisfied, an alternative is offered under
the following conditions which ensure that all solutions of the equation
F∞(λ, u) = 0, with u ∈ Xp for somep > N , satisfy an integral identity of
the type found by Pohozaev. Under appropriate conditions this can be used
to show thatu = 0. We refer to Sect. 5 and 6 of our paper [27] for these
results.

(V) There exist two functions

Q = Q(ξ) ∈ C3(RN+1) andg = g(ξ0, λ) ∈ C1(R2)
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such that

a∞
αβ(x, ξ) = ∂ξα∂ξβ

Q(ξ) and

b∞(x, ξ, λ) = ∂ξ0Q(ξ) −
N∑

α=1

ξα∂ξα∂ξ0Q(ξ) + g(ξ0, λ)

for all x ∈ R
N , ξ = (ξ0, ξ1, ..ξN ) andλ ∈ R. Furthermore,

Q(ξ0, 0) = ∂ξ0Q(ξ0, 0) = 0 for all ξ0 ∈ R, (21)

∂ξαQ(0) = 0 for α = 1, ..., N,

and there exists a continuous functionν : R
N+1 → (0,∞) such that

N∑
α,β=1

∂ξα∂ξβ
Q(0)ηαηβ ≥ ν(ξ) |η|2

for all η ∈ R
N andξ ∈ R

N+1.

Remark 4.3The condition (V) means that the equationF∞(λ, u) = 0 has
the variational form

−
N∑

α=1

∂α {∂ξαQ (u(x),∇u(x))} + ∂ξ0Q (u(x),∇u(x)) + g(u(x), λ) = 0

(22)

associated with the formal Euler-Lagrange equation of the functional∫
RN

{
Q (u(x),∇u(x)) +

∫ u(x)

0
g(s, λ)ds

}
dx.

Under the assumption (V) and the condition (23) introduced belowwe show
in Theorem 5.2 of [27] that any solution,u ∈ Xp for somep ∈ (N,∞), of
the equation (22) satisfies the following energy identity,∫

RN

N∑
α=1

∂ξαQ (u,∇u) ∂αu+ ∂ξ0Q (u,∇u)u+ g(u, λ)dx = 0,

and Pohozaev identity,∫
RN

N∑
α=1

∂ξαQ (u,∇u) ∂αudx =

N

∫
RN

{
Q (u(x),∇u(x)) +

∫ u(x)

0
g(s, λ)ds

}
dx.
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Remark 4.4As is shown in Sect. 5 of [27], the properties ofQ required in
(21) involve no real restriction. If they are not satisfied, they canbe recovered
by replacingQ by

Q̃(ξ) = Q(ξ) −Q(ξ0, 0) −
N∑

α=1

∂ξαQ(0)ξα

andg by

g̃(ξ0, λ) = g(ξ0, λ) + ∂ξ0Q(ξ0, 0),

sinceQ̃ andg̃ generate the same functionsa∞
αβ andb

∞asQ andg.

Remark 4.5If the conditions (B),(A) and (V) are satisfied then so is (L∞)
with A∞

αβ = ∂ξα∂ξβ
Q(0). Thus we can suppose that

DuF
∞(λ, 0) = −∆+ ∂ξ0b

∞(·, 0, λ)
where∂ξ0b

∞(·, 0, λ) is equal to the constant∂ξ0g(0, λ). If, in addition, the
condition (LL) is satisfied with∂ξ0b(x, 0, λ) ≡ V (x) − λ, thenV (∞) =
lim|x|→∞ V (x) exists and∂ξ0b

∞(·, 0, λ) ≡ V (∞) − λ.
Theorem 8 Let the conditions (B), (E), (A) and (V) be satisfied and let
p ∈ (N,∞). Consider an open intervalJ such that,

(a) g(0, λ) = 0 and∂ξ0g(0, λ) > 0 for all λ ∈ J, (23)

(b) there existsa ∈ R such that

NQ(ξ) ≥ (a+ 1)
N∑

α=1

ξα∂ξαQ(ξ) + aξ0∂ξ0Q(ξ) for all ξ ∈ R
N+1 (24)

and

N

∫ s

0
g(t, λ)dt ≥ ag(s, λ)s for all (s, λ) ∈ R × J. (25)

(i) The following properties hold:
The operatorS(λ) = −∆ + ∂ξ0b

∞(·, 0, λ) : X2 → Y2 is an isomor-
phism for allλ ∈ J andJ is an admissible interval for the operator
F : R×Xp → Yp defined by (5). The conclusion of Theorem 5 is valid
in this context at any pointλ0 ∈ J such thatdim kerDuF (λ0, 0) is
odd and the condition (19) is satisfied withλ = λ0.
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(ii) If inaddition thecondition (LL) is satisfiedwith∂ξ0b(x, 0, λ) ≡ V (x)−
λ, then the condition (23) is satisfied if and only ifλ < V (∞) =
lim|x|→∞ V (x). If so, J = (−∞, V (∞)) is an admissible interval
for the operatorF : R ×Xp → Yp defined by (5) provided that (24)
and (25) are satisfied, and the conclusion of Theorem 5 is valid in this
context at any eigenvalueλ0 ∈ J of−∆+ V : X2 ⊂ Y2 → Y2 which
has odd multiplicity.

Remark 4.6The condition (V) restricts the applicability of this result to
cases where the differential operatorF∞ has no explicit dependence on the
variablex. In particular, the condition (23) means that∂ξ0b

∞(x, 0, λ) =
∂ξ0g(0, λ) > 0 for all x ∈ R. Since the spectrum of−∆ : X2 ⊂ Y2 → Y2
is the interval[0,∞), it follows that−∆ + ∂ξ0b

∞(·, 0, λ) : X2 → Y2 is
an isomorphism whenever (23) holds. When (LL) is satisfied the condition
(23) becomesV (∞)−λ > 0. In this case, the essential spectrum,σe, of the
Schr̈odinger operator−∆+ V : X2 ⊂ Y2 → Y2 is the interval[V (∞),∞)
and soR\σe is an admissible interval.
Proof. The conditions (B),(E),(A) and (V) imply that the condition (L∞)
is also satisfied. Furthermore, by the above remark,−∆ + ∂ξ0b

∞(·, 0, λ) :
X2 → Y2 is an isomorphism for allλ ∈ J . Thus, using Theorem 5 for part
(i) and Theorem 6 for part (ii), we need only show that if(λ, u) ∈ J ×Xp

andF∞(λ, u) = 0 thenu = 0. This follows from Corollary 6.1 in [27].�

4.3 Using asymptotic linearity

In Theorems 7(ii) and 8(ii) the admissible interval lies below the essential
spectrum of the linearization about the trivial solution. We now present a
situation where there is global bifurcation in gaps of the essential spectrum
of this linearization.

Theorem 9 Let the conditions (B), (E), (A) and (LL) be satisfied and let
p ∈ (N,∞). Suppose that there is anN−periodic functionP ∈ C(RN )
such that

lim
|x|→∞

{V (x) − P (x)} = 0 (26)

and that

a∞
αβ(x, ξ) = δαβ andb∞(x, ξ, λ) = {P (x) − λ} ξ0 (27)

for all (x, ξ, λ) ∈ R
N × R

N+2 with ξ = (ξ0, ξ1, .., ξN ). Consider an open
intervalJ ⊂ R\σe and an eigenvalueλ0 ∈ J of odd multiplicity of−∆+
V : X2 ⊂ Y2 → Y2. ThenJ is an admissible interval for the operator
F : R ×Xp → Yp defined by (5) and the conclusion of Theorem 5 is valid
in this context.
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Remark 4.7By Remark 3.4, the essential spectrum,σe, of the operator
−∆ + V : X2 ⊂ Y2 → Y2 is equal to the entire spectrum,Σ, of the
periodic Schr̈odinger operator,−∆+ P : X2 ⊂ Y2 → Y2.

Proof. Using Theorem 6 we need only show that if(λ, u) ∈ J × Xp and
F∞(λ, u) = 0 thenu = 0.

Suppose that(λ, u) ∈ J ×Xp and that

−∆u+ {P − λ}u = 0.

It follows from Theorem 3 thatu ∈ X2.
However, as is well-known ([2] Theorem 5.4 of Chapter 3), the spectrum

Σ of the periodic Schr̈odinger operator−∆+P : X2 ⊂ Y2 → Y2, contains
no eigenvalues and sou = 0. �

5 Examples

The following examples illustrate the use of the general results.
Example 1Form ≥ 1/2, consider the equation

− div
{(

1 + |∇u(x)|2
)m−1 ∇u(x)

}
+

u(x) {V (x) + r(x) |u(x)|τ}
{

1 + |∇u(x)|2
}γ − λu(x) = 0

whereτ > 0, γ ≥ 0 andV, r ∈ C(RN ) with

lim
|x|→∞

V (x) = V (∞) and lim
|x|→∞

r(x) = r(∞)

for some constantsV (∞), r(∞) ∈ R.
Setting

aαβ(x, ξ) = [1 +
∣∣ξ∣∣2]m−1

{
δαβ + 2(m− 1)

ξαξβ

1 +
∣∣ξ∣∣2

}

and

b(x, ξ, λ) = ξ0 {V (x) + r(x) |ξ0|τ}
{

1 +
∣∣ξ∣∣2}γ − λξ0

for (x, ξ, λ) ∈ R
N × R

N+2 with ξ = (ξ0, ξ) whereξ0 ∈ R andξ ∈ R
N , it

is easy to see that the conditions (B), (E), (A) and (LL) are all satisfied with

DuF (λ, 0)v = −∆v + [V − λ]v
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and

F∞(λ, u) = −div
{(

1 + |∇u|2
)m−1 ∇u

}
+

u {V (∞) + r(∞) |u(x)|τ}
{

1 + |∇u|2
}γ − λu

for u, v ∈ Xp.
The restrictionm ≥ 1/2 is required to ensure that the ellipticity condition
(E) is satisfied.

The essential spectrum,σe, of the operator−∆+V : X2 ⊂ Y2 → Y2 is
the interval[V (∞),∞) and the intervalJ = R\σe contains an eigenvalue
of odd multiplicity if and only ifΛ < V (∞) where

Λ = inf

{∫
RN |∇u|2 + V u2∫

RN u2 : u ∈ X2 andu �= 0

}
.

IndeedΛ is a simple eigenvalue in this case. (See Theorem 3.4 of [2], for
example.)
Since

b∞(x, s, 0, λ)s = [V (∞) − λ+ r(∞) |s|τ ]s2

we see that the condition (Mλ) is satisfied provided that

λ < V (∞) andr(∞) ≥ 0.

If r(∞) < 0, there are no valuesofλatwhich the condition (Mλ) is satisfied.
However, whenγ = 0, the condition (V) is satisfied with

Q(ξ) =
1

2m

{(
1 +

∣∣ξ∣∣2)m − 1
}

and

g(ξ0, λ) = [V (∞) − λ]ξ0 + r(∞) |ξ0|τ ξ0.
It is easy to check that the inequality (24) is true for any constant

a ≤
{

N
2 − 1 if 1/2 ≤ m ≤ 1

N
2m − 1 if m > 1

whereas, ifλ < V (∞) andr(∞) < 0, the inequality (25) holds for any
a ∈ [ N

τ+2 ,
N
2 ]. It follows that a constanta can be chosen so that (24) and

(25) hold simultaneously provided that

λ < V (∞), r(∞) < 0 and
{
N ≥ 3 and 1

τ+2 ≤ 1
2 − 1

N if 1/2 ≤ m ≤ 1
N > 2m and 1

τ+2 ≤ 1
2m − 1

N if m > 1.
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Also ∂ξ0b
∞(x, 0, λ) ≡ V (∞) − λ and the condition (23) is satisfied if and

only if λ < V (∞).
Having verified these properties of Example 1, we can now draw the fol-
lowing conclusions.

Using Theorem 7(ii) we see thatJ = (−∞, V (∞)) is an admissible
interval provided that

λ < V (∞) andr(∞) ≥ 0.

If

γ = 0, λ < V (∞) andr(∞) < 0,

Theorem 8(ii) shows thatJ = (−∞, V (∞)) is an admissible interval pro-
vided that {

N ≥ 3 and 1
τ+2 ≤ 1

2 − 1
N if 1/2 ≤ m ≤ 1

N > 2m and 1
τ+2 ≤ 1

2m − 1
N if m > 1.

Ineitherof thesesituations there isglobal bifurcation in thesenseofTheorem
2 from every eigenvalue of odd multiplicity of−∆ + V : X2 ⊂ Y2 → Y2
in the intervalJ = (−∞, V (∞)).

Case 1Settingm = 1 andγ = 0 in the above example we obtain the
semilinear nonlinear Schrödinger equation

−∆u(x) + V (x)u(x) + r(x) |u(x)|τ u(x) − λu(x) = 0

which can be treated by the discussion in [16]. The results in [16] require
thatβ > −∞ where

β = inf
C≥0

β(C) andβ(C) = lim
R→∞

inf
|x|≥R and|s|≤C

{V (x) + r(x) |s|τ} .

If r(∞) ≥ 0, thenβ = V (∞)andwe recover the sameconclusionas in [16].
If r(∞) < 0, thenβ = −∞and theapproachused in [16] fails.However, the
discussion in Example 1 using Theorem 8(ii) shows thatJ = (−∞, V (∞))
is still an admissible interval whenr(∞) < 0 provided that we are in the
super-critical case whereN ≥ 3 andτ ≥ 4

N−2 .

Case 2Settingm = 1/2 in the above example we obtain a nonlinear
perturbation of the mean curvature equation

− div


∇u(x)√(

1 + |∇u(x)|2
)
 +

u(x) {V (x) + r(x) |u(x)|τ}
{

1 + |∇u(x)|2
}γ − λu(x) = 0.
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As in Case 1, the intervalJ = (−∞, V (∞)) is an admissible interval
provided that

eitherr(∞) ≥ 0

or r(∞) < 0, γ = 0, N ≥ 3 andτ ≥ 4
N − 2

.

Example 2Consider the equation

−∆u(x) + [P (x) + q(x) − λ]u(x) + r(x)B(u(x),∇u(x), λ) = 0

whereP, q, r ∈ C(RN ) with P anN−periodic function and
lim

|x|→∞
q(x) = lim

|x|→∞
r(x) = 0.

Also,

B ∈ C1(RN+2) with B(0, λ) = 0 and∇ξB(0, λ) = 0

for all λ ∈ R.
The conditions (B), (E), (A) and (LL) are clearly satisfied with

DuF (λ, 0)v = −∆v + [P + q − λ]v
and

F∞(λ, u) = −∆u+ [P − λ]u.
Thus the conditions (26) and (27) are satisfied.

LetΣ denote thespectrumof theperiodicSchrödingeroperator−∆+P :
X2 ⊂ Y2 → Y2 and consider an open intervalJ ⊂ R\Σ. By Theorem 9
there is global bifurcation in the sense of Theorem 2 from every eigenvalue
of odd multiplicity of−∆+ [P + q] : X2 ⊂ Y2 → Y2 in the intervalJ .

Remark 5.1Criteria ensuring the existence of eigenvalues in spectral gaps
for perturbations of a periodic Schrödinger operator can be found in [19]
and [14]. In the caseN = 1, we can obtain much more precise information
about branches of solutions.

Example 3Consider the differential equation

−u′′(x) + [P (x) + q(x) − λ]u(x) + r(x)C(u(x), u′(x))u(x) = 0

whereP, q, r ∈ C(R) and

C ∈ C1(R2) with C(0) = 0.
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Furthermore,P is periodic,q �≡ 0 does not change sign,

lim
|x|→∞

q(x) = lim
|x|→∞

r(x) = 0,∫ ∞

−∞
x2 |q(x)| dx <∞ and

∫ ∞

−∞
|xr(x)| dx <∞.

Except in some rare and completely determined cases, [30] page 175,
the spectrum,Σ, of the operator−u′′ + Pu : X2 ⊂ Y2 → Y2 consists of a
countable number of disjoint closed intervals and

R\Σ = (−∞, b0) ∪∞
i=1 (ai, bi)

where the sequences,{ai}∞
i=1 and{bi}∞

i=0, are such that

−∞ < b0, lim
i→∞

bi = ∞ andbi < ai+1 < bi+1 for all i = 0, 1..

By Theorem 2.2 of [38], there existsi0 such that, for alli ≥ i0, the operator
−u′′ + [P + q]u : X2 ⊂ Y2 → Y2 has exactly one eigenvalue,λi, in
the intervalJi = (ai, bi). Furthermoreλi is a simple eigenvalue and, if∫ ∞
−∞ |q(x)| (1 + x2

)
dx is small enough we even havei0 = 1.

For anyp ∈ (1,∞) and i ≥ i0, it follows from Theorem 9 thatJi
is an admissible interval forF : R × Xp → Yp and that there is global
bifurcation atλi. Furthermore the possibility (ii) in Theorem 2 cannot occur
for the component,Ci, of solutions bifurcating fromλi.

Remark 5.2In defining the components of solutions in Theorem 2 we re-
stricted our attention to an admissible interval. This is because the degree
theory which underlies our whole approach is only available in such inter-
vals. However Example 3 shows that, in general, we should not expect to
be able to continue branches of solutions beyond the admissible intervals.
Indeed in Example 3 there are no solutions of the problem outside the ad-
missible intervals. To see this we argue as follows. If(λ, u) ∈ R ×Xp and
F (λ, u) = 0, we have

−u′′ + [P + U − λ]u = 0

where

U(x) = q(x) + r(x)C(u(x), u′(x)).

SinceP + U ∈ L∞(R) it follows from Theorem 3 thatu ∈ X2. But
C(u(·), u′(·)) ∈ L∞(R) and soxU(x) ∈ L1(R). It now follows from the
results in [15] thatu = 0 if λ ∈ Σ.

If the condition
∫ ∞
−∞ |xr(x)| dx <∞ is relaxed tor ∈ L1(R), the above

discussion shows thatU ∈ L1(R). The results in [15] now show thatu = 0
if λ belongs to the interior ofΣ.
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6 Exponential decay of solutions

In our paper [27] we have investigated the exponential decay of solutions
of rather general quasilinear second order equations. Using the assumptions
(A), (B) and (L∞) introduced in the present article these conditions for
exponential decay can be expressed rather simply and we see that they are
particularly relevant for the situations discussed in Theorems 7 and 8.

Theorem 10 Let the conditions (B), (A) and (L∞) be satisfied and suppose
thatF (λ, u) = 0whereu ∈ Xp for somep ∈ (N,∞)andF : R×Xp → Yp
is the operator defined by (5). Letρ denote the spectral radius of the positive

definite matrix
[
A∞

αβ

]
appearing in (L∞) and set

δ(λ) = lim inf
|x|→∞

∂ξ0b(x, 0, λ).

If δ(λ) > 0, then

lim
|x|→∞

eµ|x|u(x) = 0

for anyµ <
√

δ(λ)
ρ .

Remark 6.1Wealways haveρ > 0 but, afterDuF
∞(λ, 0) has been reduced

to the form−∆ + ∂ξ0b(x, 0, λ) by a linear change of variable, we obtain
ρ = 1. Note also that

δ(λ) = inf
x∈R

∂ξ0b
∞(x, 0, λ),

so, as one might expect, the estimate for the decay rate is determined by the
limit operatorF∞(λ, ·).
Proof. This is a special case of Theorem 2.1 of [27]. Indeed, by (A) and
(L∞), the condition (2.5’) of [27] is satisfied. Referring to Remark 2.1 of
[27], we set

cj(x, ξ, λ) =
∫ 1

0
∂ξj
b(x, tξ, λ)dt for j = 0, 1, .., N

and we observe that by (B),(A) and (L∞),

lim inf
|x|→∞

c0(x, 0, λ) = δ(λ)

whereas

lim
|x|→∞

cj(x, 0, λ) = 0 for j = 1, .., N.
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Similarly, usingρ(x) to denote the spectral radius of the matrix[aαβ(x, 0)],
we find that

lim
|x|→∞

ρ(x) = ρ.

In the notation of Sect. 2 of [27] we now haveδ∞ = δ(λ), ρ∞ = ρ and
c∞ = 0. The result now follows immediately from Theorem 2.1 of [27].�

An essential requirement in the above result is thatδ(λ) > 0 and this is
satisfied by all the solutions on the components bifurcating fromλ0 in some
of the special cases discussed in Sect. 4.

Consider first the situation covered by Theorem 7. We see thatδ(λ) ≥ 0
for allλ ∈ J . However, under themore stringent conditions required for part
(ii) we see thatδ(λ) = ω − λ and soδ(λ) > 0 for all λ ∈ J = (−∞, ω).
Thus all solutions withλ ∈ J decay exponentially. (Recall that (LL) implies
(L∞).)

Suppose now that the hypotheses of Theorem 7(i) are satisfied. Then,
for all λ ∈ J, ∂ξ0b

∞(x, 0, λ) = ∂ξ0g(0, λ) > 0 for all x ∈ R
N and

soδ(λ) = ∂ξ0g(0, λ) > 0. Recalling that the hypotheses of Theorem 8(i)
ensure that (L∞) also holds we see that all solutions withλ ∈ J decay
exponentially.

The situation treated is Sect. 4.3 is completely different andwemay have
δ(λ) < 0 for all solutions in the admissible intervalJ for the operatorF
under the hypotheses of Theorem 9. In fact the main interest of that result is
that it covers caseswhereinf J > inf σe ≥ inf P and soδ(λ) = inf P−λ <
0 for λ ∈ J . However solutions withλ ∈ J may still decay exponentially
even in this case. To illustrate this, consider Example 2 in Sect. 5 with the
additional requirement that

B(ξ, λ) = C(ξ, λ)ξ0

whereC ∈ C1(RN+2) andC(0, λ) = 0 for all λ ∈ R. Suppose that(λ, u)
is a solution withu ∈ Xp for somep ∈ (N,∞) andλ ∈ J ⊂ R\Σ where
inf J > inf Σ. Thenδ(λ) < 0. Nonetheless, setting

U(x) = q(x) + r(x)C(u(x),∇u(x), λ),
we see thatu satisfies the linear Schrödinger equation

−∆u+ [P + U − λ]u = 0

where lim
|x|→∞

U(x) = 0. Thus the essential spectrum of the self-adjoint

operator−∆+(P+U) isΣ. It follows fromTheorem3(iii) withV = P+U
thatu ∈ X2 and then from TheoremC.3.4 of [31] (see also Proposition 6(3)
in [26]) thatu decays exponentially. So far we do not know if exponential
decay occurs for solutions withλ ∈ J in the general context of Theorem 9.
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38. Zheludev, V.A.: Perturbation of the spectrum of the one dimensional self-adjoint

Schr̈odinger operator with a periodic potential, Topics in Math. Physics Vol 4, editor
M.S. Birman, Consultants Bureau, New York 1971


