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Abstract. We examine the extent to which a smooth minimal complex pro-
jective surfaceX is determined by its derived category of coherent sheaves
D(X). To do this we find, for each such surfakethe set of surfaces for
which there exists a Fourier-Mukai transfoid{Y’) — D(X).

1. Introduction

This paper addresses the guestion: to what extent is a smooth projective
variety X determined by its bounded derived category of coherent sheaves
D(X)? Recall [14] thatD(X) is a triangulated category, whose objects
are bounded complexes of coherent sheaveX oli Y is another smooth
projective variety, an equivalence of categories

$:D(Y) — D(X)

preserving the triangles is called a Fourier-Mukai transform. Put another
way then, our problem is to find, for a given variey, the set ofFourier-
Mukai partnersof X, i.e. the set of varietiey” for which there exists a
Fourier-Mukai transform relating andY.

This problem is interesting for several reasons. Firstly, Fourier-Mukai
(FM) transforms have shown themselves to be important tools for studying
moduli spaces of sheaves [7,17,21], and it is therefore natural to attempt
to classify them. Secondly, the theory of Fourier-Mukai-type transforms
seems to provide the correct language for describing certain geometrical
dualities suggested by string theory. As a particular example of this, M.
Kontsevich’s homological mirror conjecture [16] predicts that all mirror
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varieties of a given variety have equivalent derived categories. Thus, the
existence of distinct FM partners of a variefymay relate to the possibility
that the conjectural mirror map is not a well-defined bijectioXat

The first example of a non-trivial FM transform was given by S. Mukai in
1981 and related the derived category of an abelian variety with the derived
category of the dual variety [19]. Since then further examples have been
given, involving K3 surfaces [3, 8], abelian surfaces [17], elliptic surfaces [7]
and Enriques and bielliptic surfaces [10]. Clearly, some sort of classification
is in order.

The classification of FM transforms splits naturally into two parts. Given
a smooth projective variet¥ these are

(a) find the set of FM partners of, that is, the set of varieties for which
there exists a FM transfori(Y) — D(X),
(b) find the group of FM transformi3(X) — D(X).

When X has ample canonical or anticanonical bundle a complete solu-
tion was obtained by A. Bondal and D. Orlov [5, 6]. In this case the answer
is rather trivial, in that the only FM partner of is X itself, and all au-
toequivalences db(X) are generated by shifts, automorphisms¥oénd
twists by line bundles.

Remarkably, Orlov also managed to solve both problems wXies
an abelian variety. In this case the solution is very interesting and highly
non-trivial [25].

These two results together give a simple answer to both problems in the
case whenX has dimension one. In particular, it is possible to prove that
the only FM partner of a curvg is X itself.

In this paper we solve Problem (a) for minimal complex surfaces. We
obtain the following theorem, which will be explained in greater detail below.

Theorem 1.1. Let X be a smooth minimal complex projective surface, and
let Y be a Fourier-Mukai partner ofX, not isomorphic taX. Then either

X is an elliptic surface, and” is another elliptic surface obtained as in [7,
13], by taking a relative Picard scheme of the elliptic fibration&nor X

is of K3 or abelian type, andl” is of the same type, with Hodge-isometric
transcendental lattice.

Corollary 1.2. The number of FM partners of a smooth minimal complex
projective surface is finite.

The proof of Theorem 1.1 is rather long, since each different type of sur-
face appearing in the Enriques classification must be analysed separately.
For surfaces of Kodaira dimension 0, the problem is mostly lattice-theoretic,
and we rely heavily on results of V. Nikulin. Other surfaces are best treated
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with more geometric methods. In particular, it becomes important to clas-
sify curves with non-positive self-intersection which do not intersect the
canonical divisor.

Problem (b) for surfaces is much more difficult. In particular, determining
the group of autoequivalences of the derived category of a K3 surface seems
to be of considerable interest.

Notation. All varieties will be overC. Given a varietyX, the translation

(or shift) functor onD(X) is written [1], so that the symbaE[m] means

the objectF of D(X) shifted to the left bym places. By a sheaf oX we
mean a coherer®x-module, and a point ok always means a closed (or
geometric) point. The structure sheaf of such a poiat X will be denoted

O.. The canonical bundle of a smooth projective varigtys denotedvy .

By a lattice we mean a free abelian group of finite rank with a non-degenerate
Z-valued symmetric bilinear form.

2. Preliminaries on Fourier-Mukai transforms

Throughout this section we fix a pair of smooth projective varielieand
Y.

2.1. AFourier-Mukai transform relating andY is an exactequivalence
of categories

$:D(Y) — D(X).

Due to a theorem of Orlov [24], it is known that for any such equivaleihce
there is an objecP of D(Y x X)), unique up to isomorphism, such th&t
is isomorphic to the functor defined by the formula

P N L .
Py, x (=) =Rrx (P @7y (-)),

whereY <~ Y x X =% X are the projection maps. The objétts called
thekernelof the transformp.

We say thatX andY areFourier-Mukai partnersf there is a FM trans-
form relating X andY'. This is equivalent to the statement thatX ) and
D(Y') are equivalent as triangulated categories.

Lemma 2.1. If X andY are FM partners thewim(X ) = dim(Y') and the
canonical line bundles x andwy have the same order.

1A functor between triangulated categorieisctif it commutes with the translation
functors, and takes distinguished triangles to distinguished triangles.
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Proof. Define theSerre functorSx on the category)(X) by the formula
Sx(—) =wx ® (—)[dim X].
In [4, Prop. 3.4] it is shown that any FM transform
&:D(Y) — D(X)

commutes with the Serre functors ahandY'. Thus if¥ is a quasi-inverse
to the equivalence, there is an isomorphism of functors

Sy ¥ oSxod.
The lemma is an immediate consequence of this.

Given a FM transforn®@: D(Y) — D(X), and an objecE of D(Y), let
us write

¢'(E) = H'(9(E))

for theith cohomology sheaf of the obje@( ) of D(X). We shall call®
asheaf transfornif there is an integep such that for each pointc Y,

®'(0,) = O unlessi = p.

An equivalent condition, [8, Lemma 4.3], is that the kerne#as concen-
trated in some degree and is flat ovel".

2.2. LetE andF be objects ofD(Y"). For each integei one defines a
vector space

Homyyy (E, F) = Hompyy (B, Fli)).

Recall that if £ and F' are concentrated in degréehen these spaces are
just theExt-groups of the sheavds andF’, i.e.

Hompyy (E, F) = Exti-(E, F).

The following trivial but useful observation is sometimes referred to as the
Parseval theorem

Lemma 2.2. Let®: D(Y) — D(X) be a FM transform, and take objects
EandF of D(Y). Then

Homf)(X) (P(E),D(F)) = Homf)(y)(E, F).

Proof. Immediate becaus@ is an equivalence of categories, commuting
with the translation functors iD(Y) andD(X). O
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The lemma implies that
X(2(E), &(F)) = x(E, F),
wherey (E, F') denotes the relative Euler character
X(E,F) =) (—1)"dim Hom{, (E, F).

This relative Euler character is given in terms of the Chern chardaiérs
and F' by the Riemann-Roch theorem. For examplé; ifs a surface, then

X(E,F) =r1(E)chy(F) —ci1(F) - c1(F) +r(F)cha(FE)
1

+5 () (B) — r(B)er(F)) - Ky + r(E)e(F)x(Oy),

where Ky is the first Chern class of the canonical line bundfe In par-
ticular, if E and F' are torsion sheaves

X(E,F)=—ci(E)-ci(F).

2.3. Grothendieck’s Riemann-Roch theoremimplies that for any FM trans-
form @: D(Y') — D(X) there is a linear map of vector spaces

o:H*(V,Q) — H"(X,Q)
making the following diagram commute

DY) % D(X)

ch ch
H*(Y,Q) -2 H*(X, Q),

wherech denotes the operation of taking the Chern character.

The proof of [22, Theorem 4.9] shows thais an isomorphism of vector
spaces. Furthermore, singds given by an algebraic class on the product
Y x X, it preserves the parity of the degree of cohomology classes. One
therefore has

Proposition 2.3. Surfaces with equivalent derived categories have the same
Picard number, and the same topological Euler numbén

2 The Chern character of an object of the derived category is just the alternating sum of
the Chern characters of the cohomology sheaves.
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2.4. Animportant property of FM transforms is that they preserve families
of sheaves. Leb: D(Y) — D(X) be a FM transform, take a scherfieof
finite type overC, and let€ be a sheaf oy x Y, flat overS.

Proposition 2.4. The set of points € S for which the objectb(&;) of
D(X) is concentrated in degree 0 is the set of points of an open sUbskt
S (possibly empty). Furthermore there is a shéabn U x X, flat overU,
such that for any point € U, F, = &(&y).

Proof. See [9, Chapter 6] or [21, Theorem 1.6]]
As a consequence one has

Lemma 2.5. Let®: D(Y) — D(X) be a FM transform, and suppose there
is a pointy € Y, such that

P(Oy) = Oc[pl;

for some pointz € X and some integep. ThenX andY are birationally
equivalent.

Proof. By Prop. 2.4 there is an open subget_ Y such that for each point
y € V, there is a poinf(y) € X with

P(0y) = Oy lp-

The kernel of®, restricted td/ x X, is supported on the graph ¢f so
fis a morphism\V — X, and hence defines a birational mgp--+ X.
Since@ is an equivalence this birational map has an inverseY smdY
are birationally equivalent. [

Remark 2.6.Suppose the conditions of Lemma 2.5 hold, and tkiat a
minimal surface of non-negative Kodaira dimension. Themust be the
blow-up of X atr > 0 points. But by Prop. 2.3X andY have the same
Picard number, sp = 0, and X andY” are isomorphic.

2.5. The following important result allows one to construct examples of
FM transforms. It was proved by Bondal and Orlov [5], and one of us [8],
using ideas of Mukai.

Theorem 2.7. SupposeX andY have dimension. Let’P be an object of
D(Y x X), and let® denote the exact functor

d7 DY) — D(X)

defined above. Thehis an equivalence of categories if and only if, for each
pointy € Y,

HOHID(X) (@(Oy), @(Oy» =C and@(Oy) Qux = @Oy,
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and for each pair of pointgy, y» € Y, and each integet,
Homg(X) (®(0y,), $(0,,)) = 0 unlessy; = yo and0 <i <n. O

Most examples of FM transforms for surfaces arise via the following
simple corollary. Recall that a sheaf on a smooth projective vadieig
calledspecialif E @ wx = F.

Corollary 2.8. Let X be a smooth projective surface with a fixed polarisa-
tion, and letY” be a smooth, fine, complete, two-dimensional moduli space
of special, stable sheaves &n Then there is a universal she@fonY x X,

and the functo?. . , is a FM transform.

Proof. The assumption thaf is fine means that there is a universal stfeaf
onY x X, flat overY. For each poiny € Y, P, is a stable (hence simple),
special sheaf oX. Furthermore, sinc&” is smooth of dimension 2, the
tangent space to aty, which is given by

EX‘U%( (Py, Py)
has dimension 2. It follows that for any pair of points y» € Y,
X(pylapw) =1-2+1=0.

If 41 andys are distinct then there are no non-zero maps between the sheaves
P,, andP,,, so by Serre duality,

Extg((Pyl,Pyz) = Homx (Py,, Py,)" = 0.
The result then follows from Theorem 2.70]
2.6. Assume thak andY are surfaces. Our basic tool for classifying FM
transforms is

Lemma 2.9. Let®: D(Y) — D(X) be a FM transform and take a point
y € Y. Then there is an inequality

> dimExtk (2°(0,), 8 (0,)) < 2,

and moreover, each of the shea@8$0,)) is special.

Proof. The second statement is immediate from Theorem 2.7. For the first
part consider the spectral sequence [5, Prop. 4.2],

Equ _ @ Extg((@i(oy)’ @iJrq(Oy)) — Homg"(_g() (@(Oy), @(Oy))

TheE21’0 term survives to infinity, and by Lemma 2.2
Homp x)(2(0y), 2(0y)) = Hompyy) (Oy, Oy) = C,
so the result follows. [J
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Corollary 2.10. Suppos€ is an abelian surface. Then every FM transform
¢:D(Y) — D(X) is a sheaf transform.

Proof. For any non-zero shef on an abelian surfack, the dimension of
the spac&xt} (E, F) is at leasR. [

2.7. The support of an objeét of D(X) is defined to be the union of the
supports of the cohomology sheavedniit is a closed subset df. A point
x € X lies in the support of an objeé of D(X) if and only if there is an
integeri such that A

Homp, x)(E,Oz) # 0.

This statement follows from a simple spectral sequence argument [8, Ex.
2.2).

Supposeb: D(Y) — D(X) is a FM transform, and le? be a quasi-
inverseD(X) — D(Y"). Letn be the common dimension of andY". For
any pair of point§y, z) € Y x X,

Hom%(y) (¥(0z), Oy) = HomZb(X)(Om, P(0y))

= Homp 3 (2(0y), 0.)",
soz lies in the support of?(O,) precisely whery lies in the support of
U(O,).

A simple consequence of this is that the supports of the objEc®s; ),
asy varies inY, cover X. For otherwise there would be a pointe X
such tha¥(O,) had empty support, and hence was zero, contradicting the
assumption tha? is an equivalence. An extension of this argument gives

Lemma 2.11. Let X andY be surfaces, and@:D(Y) — D(X) a FM
transform. Suppos& has non-zero Kodaira dimension, and take a finite
set of pointsS C X. Then for a general poinj € Y, the support of>(O,)

is disjoint from S.

Proof. Assume the opposite. Then every poinfiolies in the union over
x € S of the supports of the objects O, ), so for some: € S, the support
of ¥(0O,) is the whole ofY". Since each cohomology sheaf {O,) is
special, it follows thatuy has finite order, contradicting Lemma 2.10]

3. Ruled surfaces and surfaces of general type

We start our classification of Fourier-Mukai transforms by looking at sur-
faces with Kodaira dimensionoco and2.

Proposition 3.1. Let X be a minimal surface of general type. Then the only
FM partner of X is X itself.
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Proof. Itis a standard fact[2, VII1.2.3, VII.2.5] th& has only finitely many
irreducible curved satisfyingD - Kx = 0. Thus, by Lemma 2.11, given a
FM transform®: D(Y') — D(X), we may choose € Y so that the support
of #(0,) does not contain any of these curves.

Let £ be a non-zero cohomology sheaf®fO, ). SinceF is special £
is atorsion sheaf, and (F) - Kx = 0, soci(F) = 0, andE is supported in
dimension zero. Then Riemann-Roch giwg¥’, F') = 0, and this implies
thatExt} (E, E) has dimension at leagt This applies to any cohomology
sheaf of¢(0O,) so Lemma 2.9 implies that some shift®fO, ) is a sheaf
E. Then, by Lemma 2.2F is simple, hence isomorphic {0, for some
x € X, and Remark 2.6 shows thHtis isomorphic toX. O

Proposition 3.2. Let X be a minimal surface of Kodaira dimensiefo
with no elliptic fibration. Then the only FM partner &f is X itself.

Proof. Let : D(Y) — D(X) be a FM transform. IfX = P? then the
argument of Prop. 3.1 applies, so we may t&kéo be a ruled surface over
a curve of genus.

We freely use notation and results from [£%,2]. Recall in particular
that the Neron-Severi group oX is generated by two elementsand f,
satisfying

C*=—e, f*=0, C-f=1,

wheree is some integer invariant of . In terms of this basis
Kx=-2C+(29—-2—¢)f.

We shall assume for the moment tBétis not the unique rational ruled
surface with invariant = 2.

SupposeD is an irreducible curve oX with D - Kx = 0. We claim
that D2 > 0. Assume for contradiction thd®? < 0. The two-dimensional
vector spac&’S(X)®zQis then spanned b andK x, so the Hodge index
theorem implies thak’% > 0, andX must be ruled oveP!. In particular
e > 0.Write D = aC + bf. SinceD is irreducible

D-C=b—ae >0, D-f=a>0,

which is impossible sinc®? = a(2b — ea) < 0.

If @is notasheaftransformthen by Lemma 2.9 we can find a gpaint”
and a cohomology shedf of #(0O,), supported in dimension 1, such that
the groupExt% (E, E) has dimension at most 1. Sindeis special, any
irreducible curveD contained in the support & satisfiesD - Kx = 0, and
thereforeD? > 0. But this is a contradiction since the grolgt3 (E, E)
is non-zero, so by Riemann-Roeh{ F)? < 0.
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Thus the kernel ofp is a sheafP on Y x X, flat overY. Given a
pointy € Y let D be the support of the she®, = ¢(O,). If D is zero-
dimensional, it follows as in Prop. 3.1 th&t andY are isomorphic. Thus
we may assume thdD is a curve. TherD - Ky = 0 andD? = 0, and
sinceP, is simple,D is connected. Furthermore is irreducible since any
irreducible componenb, C D satisfiesD, - Kx = 0 and henceD} > 0.

Fix a smooth hyperplane sectidi on Y, with H - Ky # 0, and let
U:D(X) — D(Y) be a quasi-inverse ab. For any pointz € X, the
support of? (O,) meetsH at a finite set of points becaug€¢,.) is special.
We show that for some integérthis defines a ma — Sym<(H) which
is an elliptic fibration onX.

Recall the definition of the derived dual

O} = RHomo,, (O, Oy) = Og(H)[-1].

For any line bundld. onY’, one has isomorphisms
, L 4

= Homg(lx)(@(L ® On(H)),O,).

By the theorem on cohomology and base-change, we can cliossti-
ciently ample so that the object

P(L®O0p(H)) =Rrx(PRmy(L®Oy(H)))

is concentrated in degree 0 and is locally free. Then the above groups vanish
unlessi = —1, so for eachr € X, the object

W(O)[-1]1 = ¥(0,)[-1] & O

is concentrated in degree 0. If the kernel of the transférn 1] is the
objectQ of D(Y x X), this implies [8, Lemma 4.3] tha®|;« x is a sheaf
on H x X, and is flat overX. ThusQ defines a family of torsion sheaves
on H, parameterised by, so induces a morphism

f: X — Sym?(H).

By the result of Sect. 2.7, any fibre ¢fis the intersection over a finite
set of pointsy € H of the supports of the sheavPs = ¢(0O,). Each sheaf
P, is supported on an irreducible cury®, satisfyingD, - Kx = 0, and
by Riemann-Roch, given two points, y» € Y one hasD,, - D,, = 0. It
follows that any non-singular fibre gfis an elliptic curve. Applying Stein
factorisation gives an elliptic fibratioX' — S onto a smooth curvé, and
hence a contradiction.
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The remaining possibility is thaX is the unique rational ruled surface
with invariante = 2. Then, [15, Cor. 2.18)' C X is the only irreducible
curve satisfyingC - Kx = 0, so the argument of Prop. 3.1 shows that
is birational toX . By Lemma 2.3, X andY have the same Picard number,
soY is also a rational ruled surface, and hence has no elliptic fibration.
Applying what we have already proved Yg we conclude that” also has
invariante = 2, so X andY are isomorphic. OJ

4. Elliptic surfaces

Fourier-Mukai transforms for elliptic surfaces were introduced in [7]. We
start by reviewing the construction given there. Throughout we fix a surface
X and a relatively minimal elliptic fibration: X — C.

Given an object of D(X), one defines théibre degreeof £

d(E) = c1(E) - f,

where f denotes the algebraic equivalence class of a fibre. &kt Ay
denote the highest common factor of the fibre degrees of obje©$.%.
Equivalently\ x ¢ is the smallest numbersuch that there is a holomorphic
d-section ofr.

Leta > 0 andb be integers, withh coprime toa)x,c. Then, as was
shown in [7], there is a smooth, two-dimensional component

Y = JX/C(au b)

of the moduli space of pure dimension one stable sheavés time general
point of which represents a rank degree stable vector bundle supported
on a smooth fibre of.

There is a natural morphisin — C, taking a point representing a sheaf
supported on the fibre~!(p) of X to the pointp, and this morphism is a
relatively minimal elliptic fibration. Moreover, there is a universal steaf
onY x X, supported oY x¢ X, and the corresponding functét’ . . is
a FM transform. In [7] these ideas are used to prove the following result.

Theorem 4.1. Take an element

<§ Z) € SLy(2),

such that x /¢ dividesd anda > 0. LetY” be the elliptic surfacé x - (a, b)
overC'. Thenthere exist universal sheaf&senY x X, flat over both factors,
such that the resulting functa? = &7 . . is an equivalence of categories
satisfying

o)) (59)
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for all objectsE of D(Y). O

Whena = 1 the elliptic surfacd x ¢ (a, b) is the relative Picard scheme
of R. Friedman [13], which we denote more conciselyJgy(b).

Lemma 4.2. For any pair of integers:, b, with b coprime toa\ x ¢, there
is an isomorphism

(2) Jx/c(a,b) = Jx/c(b).

Proof. The essential pointis that, asin[1, Theorem 6], the determinant map
gives an isomorphism

det: Mx, (a,b) — Mx,(1,b) = Jacb(X,)

on each smooth fibrel,, of m: X — C. Glueing these maps gives the
isomorphism (2).

In more detail, letU C C be an open subset @ over which the
morphismr is smooth, and leP;; denote the restriction gP to the open
subset

Yo xe Xy CY x¢o X.

For each poiny € Yy, the restriction ofPy to the fibre{y} x ¢ X is arank
a, degreé vector bundle on the smooth elliptic cur¥g; ). ThereforePy
is locally free, and we can consider the determinant line bundiig; . This
parameterises degrédine bundles on the fibres af, and hence defines an
isomorphism

Ix/c(a,b) xc U — Jx/c(b) xc U.
Since both spaces in (2) are relatively minimal o¢&r[2, Prop. 111.8.4]
implies that they are isomorphic.(J

Lemma 4.3. For any integerb coprime toA /¢, the elliptic surfacel” =
Jx,c(b) has the same Kodaira dimension &s

Proof. The Euler numbers ok andY are equal by Lemma 2.3. By [12,
Prop. 1.3.23] we must show that the base orbifoldsoandY” are diffeo-
morphic, i.e. that for each poipte C', the multiplicities of the fibres ok
andY over the poinp are equal.

Let®:D(Y) — D(X) be a FM transform as in Theorem 4.1, and fix a
pointp € C. Let Fy be the fibre ol” overp. ThusOpr, has Chern character
(0, £,0). It is easy to check using formula (1) that the objé¢Or, ) of
D(X) has Chern character(0, cf, d).

Suppose thaty is amultiple fibre, so thaty = mDy for some positive
integerm, and letEl = ¢(Op,. ). ThenE is an object ofD(X') supported
on the fibreF'xy of X overp, and if the first Chern class & is —Dx, we
must havenDx = cf. Butc is coprime tod, andm divides A x,c which
dividesd, so it follows thatF'y has multiplicity at leastn. By symmetry
the multiplicities of the fibres oK andY overp are equal. O
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We can now prove the following classification result.

Proposition 4.4. Let X be a minimal surface of non-zero Kodaira dimen-
sion, with an elliptic fibrationr: X — C. If Y is an FM partner ofX, then

Y is isomorphic to the relative Picard schemig,(b), for some integeb
coprime toA x/c-

Proof. Let f be the conomology class of a fibrexafThe cohomology class
Kx is a non-zero rational multiple of, [2, Cor. V.12.3], so the support of
any special sheaf oX is contained in a finite number of fibres of

Takex € X lying onasmooth fibre of, and take a poinj € Y such that
the support of the objedt = #(0O,) containsz. SinceHomp x)(FE, E) =
C, the support ofE is connected, hence equal to the (smooth) fibre of
m containingz. Now the Chern class af must be(0, af, —b) for some
integersa andb, and since

X(E,2(0y)) = x(Oy,0y) =1,

Riemann-Roch implies that\ x - is coprime td. SinceL is supported on
an elliptic curve, all of its cohnomology sheaves are non-rigid, so Lemma 2.9
implies thatE has only one non-zero cohomology sheaf. Thus a shiff of
is a simple sheaf on an elliptic curve, hence stable.

LetY ™ be the elliptic surfacéx ¢ (b), with its relatively minimal elliptic
fibration7™: Y™ — C. There is a transform

w:D(YT) — D(X)

which takes the structure sheaf of some pointY'dfto E. Applying Prop.
2.5 to the transforn@—! o @ shows that there is a birational equivalence
f:Y ——» Y+ such that

(Epfl 0®)(0y) = Of(y)

for all pointsy in some open subset &f.

If X has Kodaira dimension 1, then so HoandY T, so Remark 2.6
shows thatf extends to an isomorphism, completing the proof. The only
other possibility is thaK is a minimal ruled surface over an elliptic base. In
that cas@” andY * also have Kodaira dimensienso, and also have Picard
number2, so are minimal ruled surfaces over an elliptic base. By Prop. 3.2
we may assume thaf has an elliptic fibrationr: Y — C.

Consider the full subcategoy,,(Y) of D(Y') consisting of objects
invariant under twisting byvy. The support of any object db,,(Y") is
contained in the union of a finite number of fibresnofBy uniqueness of
Serre functors (see Lemma 2.1), the FM transfdrm o & takes objects
of Dy, (Y') to objects ofD,, (Y *). This says that the birational mgptakes
fibres ofr to fibres ofr ™, so applying [2, Prop. 111.8.4] shows thaextends
to an isomorphism. O
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Remark 4.5.If o is a divisor onX such that - f = Ax/¢, then twisting
by Ox (o) gives an isomorphism

Jx/c(b) = Jx/0(b+ Ax/0)-

Thus an elliptic surface of non-zero Kodaira dimension has only finitely
many FM partners.

The argument of Lemma 4.2 shows that the operation of taking duals
gives a birational equivalence, hence an isomorphism

Ix/0(b) = Jx/c(=b).
Finally note that there is an isomorphism
Jx/c(1) = X.

To see this note that the ideal sheaf of the diagon&l - X is flat over both
factors, and hence generates a family of rank 1, degriestable sheaves
supported on the fibres af

5. K3 and abelian surfaces

Let X be an abelian or K3 surface. Following Mukai [22], one introduces
theextended Hodge lattioef X by using the formula

((r1, D1, 81), (12, D2,52)) = D1 - Dy — 1182 — 1251
to define a bilinear form on the cohomology ring
H*(X,Z) = H°(X,Z) ® H*(X,Z) & H*(X, Z),
and taking the following Hodge decompositiontdt* (X, C)
H>*02(x,c)=H"*(x,C), H*EO(X,C)=H*(X,C),

12 () (x,C) = H'(X,C) @ H“ (X, C) @ HY(X, C).

InsideH? (X, Z) one has two sublattices, th&ron-Severi latticavhich

is

NS(X) = H*(X,Z) nH" (X, C),
and its orthogonal complemem{ X ), thetranscendental latticef X . The
transcendental lattice inherits a Hodge structure fE610X, Z).

A Hodge isometryp between the transcendental lattices (or extended
Hodge lattices) of two K3 (or abelian) surfac&sandY’, is an isometry
between the relevant lattices which preserves the Hodge decomposition. This
last condition is equivalent to the statement thatC takes the cohomology
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class of the unique (up to scalar multiples) non-vanishing holomorphic 2-
form onY to the corresponding class da.

To each sheaf (or complex of sheavéspn X one associatesMukai
vector

1
v(B) = (1(B), e1(E), je1(E)* — ea(E) — ex(E)) € H¥(X, Z),
where (r(E),c1(F),co(E)) are the Chern classes éf, ande is 0 or 1
depending on whetheX is abelian or K3 respectively. Having done this,

the Riemann-Roch formula becomes

X(E, F) = —(v(E),v(F)),

for any pair of sheaves (or complexdslandF' on X.

By Lemma 2.1 any FM partner of is also an abelian or K3 surface,
and Lemma 2.3 shows that an abelian surface could never be a partner of a
K3 surface.

The following theorem is due to Mukai [22] and Orlov [24]. We sketch
the proof for the reader’s convenience, and to fix ideas for the next section
where similar techniques are used.

Theorem 5.1. Let X andY be a pair of K3 (respectively abelian) surfaces.
The following statements are equivalent,

(@) there is a FM transforn®: D(Y') — D(X),

(b) there is a Hodge isometry': T(Y) — T(X),

(c) there is a Hodge isometgy H2*(Y, Z) — H?*(X, Z),

(d) Y is isomorphic to a fine, two-dimensional moduli space of stable
sheaves orX .

Sketch proof.
(@)= (b). Any FM transform®: D(Y') — D(X) induces an isomorphism
of vector spaces

¢: H*(Y,C) — H*(X, C),

asin Sect. 2.3. Since the kernelis algebraic, this isomorphism preserves
the Hodge decomposition. Mukai checks [22, Lemma 4.7, Theorem 4.9],
that¢ preserves the inner product and the integral lattices. It followsgthat
takesT(Y) into T(X).
(b)= (c). This is a consequence of a result of Nikulin [22, Prop. 6.1].
The orthogonal complement @f(Y') in H2*(Y, Z) contains the hyperbolic
lattice

H=HY,z) e HY(Y, Z),

so any isometry of transcendental lattices extends to an isometry of extended
Hodge lattices.
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(€)= (d). Let

¢:H?*(Y,Z) — H**(X,Z)
be a Hodge isometry, and put= ¢(0,0,1). Composing with standard
automorphisms ofi?*(X, Z), obtained either by swapping® and H*,
or by twisting by line bundles, we may assume that (r,¢,s), with r
positive,/ ample, and coprime tor.

Sincew is algebraic, we can consid&i™, the moduli space of stable
sheaves otk with Mukai vectorv, with respect to the polarizatioh The
fact thatwv is primitive implies that this moduli space is fine [22, Theorem
A.6], and the fact that?> = 0 implies thatY'* is two-dimensional. General
results of Mukai show that * is smooth [20] and non-empty [22, Theorem
5.4], [18, Prop. 6.16, Cor. 6.23].

By Cor. 2.8 there is a FM transform

v:D(Y') — D(X),
such that for any poiny € Y+, ¥(0O,) is the corresponding stable sheaf
on X. The argument given for (a}-(b) shows tha gives rise to a Hodge
isometry
:H* (YT, Z) — H** (X, Z)

taking (0, 0, 1) to v. The composite)~! o ¢ is a Hodge isometry

H**(Y,Z) — H>*(Y ', 7Z)
fixing (0, 0, 1), which therefore restricts to give a Hodge isometry

H%(Y,Z) — H2(Y T, 7).

In the K3 surface case, the Torelli theorem shows #handY ™ are
isomorphic, and we are done. Otherwiseis an abelian surface, and [26,
Theorem 1] shows thalt” is isomorphic to eithet” ™ or its dual variety.

In either caseY” is a FM partner ofX since dual abelian varieties have
equivalent derived categories by the results of [19]. It follows from Cor.
2.10 that there is a universal family of sheay@, : y € Y’} on X, which

we may assume are locally free, and which are simple by Lemma 2.2. Then
[18, Prop. 6.16] shows that each bun@igis actually stable (with respect

to any polarization ofX), soY is indeed a moduli space of stable sheaves
onX.

(d)= (a). Immediate from Cor. 2.8.0J

Remark 5.2.Given a FM transformd: D(Y) — D(X) between K3 sur-
faces, the theorem implies thit is a moduli space of stable sheaves on
X. This doesnot mean that is given by the formulad? . .., with P a
universal sheaf ol x X . As we mentioned in the introduction, finding the
set of FM transforms between two K3 surfaces satisfying the conditions of
the theorem is a difficult unsolved problem.
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Proposition 5.3. Let X be a K3 or abelian surface. Thexihas only a finite
number of FM partners.

Proof. Suppose for contradiction thaf has infinitely many FM partners
Y, and choose two such surfadésandY;, not isomorphic, together with
a Hodge isometry

¢:H>*(Y1,Z) — H**(Ya, 7).
Sinceg preserves the Hodge decomposition, itinduces lattice isomorphisms
T(Y1) — T(Yz),  NS(Y1)® H — NS(Ya) @ H,

where H = H°(Y,Z) @ H*(Y,Z) is the hyperbolic lattice. The second
isomorphism shows that the lattice&(Y;) and NS(Y2) have the same
genus [23, Theorem 1.3.1, Cor. 1.9.4]. There are only finitely many different
lattices of each genus [11, Ch. £3,.3], so we may choosg, so that there

are infinitely many possible choices g such thatNS(Y;) andNS(Y3)

are isometric. For any such choice we can find a Hodge isometry

F:NS(Y1) @ T(¥1) — NS(Y2) & T(Y2).

Fix an abstract lattic®/” isomorphic taNS(Y;) @ T(Y;). Lattices con-
taining W as a sublattice of finite index are all contained in the dual lattice
W* = Homyz (W, Z), and thus correspond to subgroups of the finite abelian
groupW* /W, as in [23, Sect. 4]. Obviously there are only a finite number
of these, so, changinlf; again, we may assume that there are infinitely
many possible choices faf, such that the lattice extensions

NS(Y1) @ T(Y1) — H2(Y1,Z),  NS(Ya) @ T(Yz) — H%(Ys, Z)

are isomorphic. But for any such choice, the isom¢gtextends to a Hodge
isometry
H?(Y1,Z) — H(Ys, 7).

If X is a K3 surface, the Torelli theorem implies thgtandY; are isomor-
phic. In the case wheXH is an abelian surface we can apply [26, Theorem 1]
to conclude thak; is isomorphic taYs or its dual. In both cases we obtain

a contradiction, since we claimed there were an infinite number of possible
choices forY;. O

Remark 5.4.Nikulin’s results imply that if a K3 surface has Picard number

at least 12 then it has no FM partners other than itself [22, Prop. 6.2]. This
result is not true in general; Mukai observes [22, p. 394] that there are K3
surfaces with isometric transcendental lattices (hence equivalent derived
categories) but distinct &on-Severi lattices.
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6. Enriques and bielliptic surfaces

We conclude our classification of FM transforms by considering surfaces
with non-trivial canonical bundle of finite order, i.e. Enriques and bielliptic
surfaces. Collectively we shall call such surfagestient surfaces

All bielliptic surfaces have exactly two elliptic fibrations, and the general
Enriques surface is also an elliptic surface in two different ways. Thus it
is possible to generate many examples of non-trivial FM transforms for
guotient surfaces by considering compositions of the transforms arising
from Theorem 4.1. Further examples were described in [10]. Nonetheless,
in this section we shall prove that X is a quotient surface then any FM
partner ofX is isomorphic toX itself.

Let X be a quotient surface, and letbe the order ofux. It is easily
seen that there is a surfa&e with trivial canonical bundle, such thaf is
the quotient ofX by a free action of the finite cyclic grou@ of ordern.
We refer to the quotient mapy : X — X as thecanonical coveof X. Let

$:D(Y) - D(X)

be a FM transform. By Lemma 2.4y also has ordeti, so has a canonical
coverpy:? — Y. In [10] we proved that there is kft of ¢ to a FM
transform

®:D(Y) — D(X)

making the following two squares of functors commute
DY) & DX)
p’;]lpy,* p}Tlpx,*
DY) - D(X).

Moreover any such lift is equivariant, in that there is an automorphism
u: G — G such that for each € G there is an isomorphism of functors

g od = dopu(g)

Proposition 6.1. Let X be an Enriques surface. Then the only FM partner
of X is X itself.

Proof. Take notation as above. Thu§ andY are K3 surfaces and =
Z/(2). It follows thatY” is also an Enriques surface. Lggbe the generator
of G. Define sublattices

H¥(X,Z) = {0 € H*(X,Z) : g*() = +6}.
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Note thatt2* (X, Z) c H2(X,Z). Furthermore
H%(X,C) c H*(X,Z) ® C.

The transformq3~induces aG-equivariant Hodge isometry between
H?*(Y,Z) andH?* (X, Z), and hence gives @-equivariant isometry

fHZ(Y,Z) — H* (X, 2),

taking the subspadd@’2(Y, C) ontoH%2( X, C). We claim thatf extends
to an isometry N N
f:H*(Y,Z) — B*(X,Z).

Assuming this for the moment, note thais then aG-equivariant Hodge
isometry, so by the Torelli theorem for Enriques surfaces, [2, VIII.21X2],
andY are isomorphic.

To prove the claim we use more results of Nikulin. The orthogonal com-
plement ofH** (X, Z) in H?(X, Z), which is equal td1% (X, Z), is even,
2-elementary ([23, Defn. 3.6.1]) and indefinite. The claim then follows from
Prop. 1.14.1 and Theorems 3.6.2 and 3.6.3 of [28].

Proposition 6.2. Let X be a bielliptic surface. Then the only FM partner
of X is X itself.

Proof. Take notation as above. Théfi is a guotient of a product of two
elliptic curves by afinite grouf of translations, sois an abelian surface with
two elliptic fibrations without multiple fibres. Theéon-Severi group ok
is generated by the algebraic equivalence clagsefs of the corresponding
fibres andf; - fo = m, the order offH. B

Note that the groug acts on one of the fibres, sdy, of X via multipli-
cation by a complexth root of unity. It follows thatX has a multiple fibre
of multiplicity n, and that there exists a divisbron X suchthapy D = fi.

Consulting the table on [2, p. 148], the possible values:adire 1,2,3
and 4, and whem > 1, the prime factors ofn are the same as thoseraf
By Remark 4.5, all the relative Picard schemesXo€onsidered in Sect. 4
are isomorphic toX. We shall show thab is isomorphic to a composite of
transforms arising from the two elliptic fibrations via Theorem 4.1.

Cor. 2.10 shows that is a sheaf transform. Thus we can suppose that
for each pointy € Y, the objectf” = &(0Oy) is a sheaf onX, of Chern
charactefr, pf1 + qf2, s) say. The fact thad is a lift of & implies that

X% (P(Oy)), F) = x(P(Oy), px,+(F)) = x(2(Oy), 8(0y)) = 1,

wherey = py (7). Nowp% (#(Oy)) has second Chern class divisiblerby
and hence byn, so Riemann-Roch implies thais coprime tom.
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Let h be the greatest common divisorioédndp, and take integerisand
d such thabp + dr = —h. Riemann-Roch together with Lemma 2.2 shows
thatrs = mpq. Sinces is coprime tom, we see thatn dividesr/h. By
Theorem 4.1 we can find a transfodmD(X) — D(X) such that

r(WE)\ _ [ —p/hr/mh r(E)
(aem) = (3" (6
whered(E) = ¢, (E) - f, for any object® of D(X).

The transforn¥ arises by considering the moduli space of stable sheaves
@(0@;) onX of Chern characté®), afs, b), wherea = r /mh. We must show
that is the lift of a transformy: D(X) — D(X), it follows from this that
v is G-equivariant. By [10, Lemma 5.1], it is enough to check that for some
objectA of D(X),

xX(px A, ¥(0y)) = 1.
By Riemann-Roch, this is the statement that there is a divison X such
thatb is coprime top, D - fo. But we can assume that, D = f;, and this
is enough, sincé is coprime tom.

Replacing® with the composite transformk o & we can now assume
thatr = 0 andp # 0. By Riemann-Rochg = 0 also, soF' has Chern

charactef0, pf1, s), where, as before,is coprime tgp andm. There exists
an equivariant transform

¥:D(X) — D(X)

such that?(O;) has this same Chern character, so compogingth the
inverse of¥ we can assume that = 5(03;) has Chern charactéd, 0, 1).

But @ is a sheaf transform, so there is an isomorphisii — X such that
forallj ey,

Sinced is G-equivariant descends to an isomorphistnY” — X. O
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