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1 Introduction

This paper continues the investigation of convex finite type domains by
meansof explicite integral formulaswhich startedwith [DiFo] and [DiFiFo].
In [DiFo] Diederich and Fornæss constructed smooth support functions for
convex domains of finite type and proved that these support functions satisfy
some nice estimates on the given domain. In [DiFiFo] the authors used these
support functions to construct somē∂-solving Cauchy-Fantappié kernels.
After proving some additional estimates for the support functions and their
Leray decomposition they could prove that the solutions given by these
kernels satisfy the best possible Hölder estimates.

These results have also been used in [DiMa] to improve some theorem of
[BrChDu] about the zero sets of functions of the Nevanlinna class in convex
domains of finite type.

In this paper we construct somē∂-solving integral operators that satisfy
the best possible estimates with respect toLp norms. More precisely we
prove the following theorem.

Theorem 1.1 LetD ⊂⊂ C
n be a linearly convex domain withC∞-smooth

boundary of finite typem. We denote byLp
(0,r)(D) the Banach space of

(0, r)-forms whose coefficients belong toLp(D) byΛα
(0,r)(D) the Banach

space of(0, r)-forms whose coefficients are uniformly Hölder continuous of
orderα onD and byBMO(0,r)(D) the space of(0, r)-forms with BMO-
coefficients.
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Then there are bounded linear operatorsTr such that∂̄Trf = f for all
f ∈ Lp

(0,r+1)(D) with ∂̄f = 0 and these operators satisfy the following
estimates.

(i) For 1 ≤ p < mn + 2 we have||Trf ||Lq ≤ Cp||f ||Lp for 1/q =
1/p− 1/(mn+ 2).

(ii) For p = mn+ 2 we have||Trf ||BMO ≤ C||f ||Lp

(iii) For mn + 2 < p we have||Trf ||Λα ≤ Cp||f ||Lp for α = 1/m −
(n+ 2/m)/p.

In [ChKrMa] it was shown that the gain of regularity which is given in
our theorem is the best possible in the case of complex ellipsoids, that is for
domains of the form|z1|m1 + . . . + |zn|mn < 1 with m = maxmi. Since
all complex ellipsoids are also convex domains of finite type our result is
optimal in the sense that there exists a domain and a∂̄ closed form with
Lp-coefficients that does not admit any solution with estimates better than
stated above.

A result similar to Theorem 1.1 has recently been obtained in a paper
by A. Cumenge [Cu], where she constructs solution operators with the help
of the Bergman kernel, and uses certain estimates for the Bergman kernel,
which are given in [Mc2] to prove the required estimates.

In this paper we will make use of the support functions defined in [DiFo]
and of some of the estimates proved in [DiFiFo]. It would have been the
easiest just to use the same Cauchy-Fantappié kernels and only make the
necessary modifications (transform the boundary integral into a volume in-
tegral) to be able to apply these operators also toLp-forms. In fact it is quite
easy to see that such an operator satisfies the first estimate of our theorem
for all q such that1/q > 1/p−1/(mn+2). However, this operator seems to
be not good enough to get exactly the best possible estimates. So finally we
construct some integral operators of Berndtsson-Andersson type (see also
[DiMa]) which contain certain weights which are suitable for our purpose.

This article is organised in the following way: In Sect. 2 we briefly recall
the definition of the support function from [DiFo] and the definition of the
Leray decomposition from [DiFiFo]. Then we prove some first estimate
for a modified support function and define ā∂ solving weighted kernel
of Berndtsson-Andersson type. We also formulate two lemmas which give
some sufficient conditions for the estimates of Theorem 1.1. In Sect. 3 we
recall somewell known facts about convex domains of finite type and review
some estimates for the support function and their decomposition which have
already been proved in [DiFiFo]. Then we prove several estimates for the
ingredients of our kernel. In Sect. 4 we give an auxiliary integral estimate
and finally prove the two lemmas which have been given in Sect. 2.
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2 Solution operators

LetD = {� < 0} be a convex domain withC∞-smooth boundary of finite
typem. It was shown in [Mc2] that the defining function� can be chosen in
such away that there exists a neighbourhoodU of ∂D such that|∇�(ζ)| > 1

2
for all ζ ∈ U and all the domainsDζ := {z : �(z) < �(ζ)} are convex
domains of finite typem as well. Let us assume that the defining function
already has this property. Ifnζ is the unit outer normal vector at the point
ζ on the hypersurface{z : �(z) = �(ζ)} then we can find a familyΦ(ζ) of
unitary transformations such thatΦ(ζ)nζ = (1, 0, . . . , 0) for all ζ ∈ U . As
in [DiFo] and [DiFiFo] we define

�ζ(w) := �(ζ + Φ̄T (ζ)w),

S̃ζ(w) := 3w1 +Kw2
1 − c

m∑
j=2

M2j
σj

∑
|α|=j
α1=0

1
α!
∂jrζ
∂wα

(0)wα

for K,M > 0 suitably large,c > 0 suitably small (all independent ofζ),
and put

S̃(z, ζ) := Sζ(Φ(ζ)(z − ζ)).
At this point we have to mention that in [DiFo] the support function and
the estimates have been given only forζ ∈ ∂D. However it is easy to see
that all the results remain true at least for allζ in some (possible smaller)
neighbourhoodU of ∂D. Now whereverS is defined we can construct a
Leray decomposition in the following way. We just define

Q̃1
ζ(w) := 3 +Kw1

and fork > 1

Q̃k
ζ (w) := −c

m∑
j=2

M2j
σj

∑
|α|=j

α1=0, αk>0

αk

jα!
∂jrζ
∂wα

(0)
wα

wk

and set
Q̃(z, ζ) := ΦT (ζ)Qζ(Φ(ζ)(z − ζ)).

Since we want to defineQ for all ζ we choose two neighbourhoods
bD ⊂⊂ U1 ⊂⊂ U2 ⊂⊂ U of the boundary and a smooth cut off function
0 ≤ χ ≤ 1 such thatχ(ζ) = 1 for ζ ∈ U1 andχ(ζ) = 0 for ζ ∈ D\U2.
Using this we can define

Q̂(z, ζ) = χ(ζ)Q̃(z, ζ)

Beforewecan construct our solution operatorwehave to prove the following
lemma.
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Lemma 2.1 There exists a constantC1 such that for allz, ζ ∈ D we have
Re
(
〈Q̂(z, ζ), z − ζ〉 + C1�(ζ)

)
� �(z) + �(ζ) − |z − ζ|m.

Proof.First, if ζ ∈ D\U1 and therefore�(ζ) < −c then the inequality will
always be satisfied if onlyC1 is large enough. Forζ ∈ U1 the term on the
left hand side becomes RẽS(z, ζ) + C1�(ζ). Let us writez = µnζ + λv,
wherev is some complex tangential vector atζ on the hypersurface{z :
�(z) = �(ζ)}. By Theorem 2.3 from [DiFo] we have

ReS̃(z, ζ)+C1�(ζ) ≤ Reµ−K(Imµ)2 −c
∑

|aαβ(ζ, v)| |λ|j +C1�(ζ).

Since the domainDζ is also of finite typem the sum can be estimated from
below byc|λ|m. Together with the first two terms this gives an estimate by
c|z − ζ|m. Moreover we have Reµ ≤ C ′�(z) − C ′�(ζ). Thus we get the
desired result if we chooseC1 large enough and larger thanC ′. �

Now we define

sj(z, ζ) := (z̄j − ζ̄j)dζj ,

Qj(z, ζ) :=
Q̂j(z, ζ)
C1�(ζ)

dζj

with the constantC1 from Lemma 2.1 andG(z) := z−N . For convenience
we also introduce the notationS(z, ζ) = 〈Q̂(z, ζ), z − ζ〉 + C1�(ζ) Using
these ingredients the Berndtsson-Andersson kernel becomes

K :=
n−1∑
k=0

cnkG
(k) (1 + 〈Q(z, ζ), z − ζ〉) s ∧ (∂̄Q)k ∧ (∂̄s)n−1−k

〈s(ζ, z), ζ − z〉n−k

Note that due to Lemma 2.1 we have

Re(1 + 〈Q(z, ζ), z − ζ〉) = Re
S(z, ζ)
C1�(ζ)

� �(ζ)
C1�(ζ)

> 0

thatG is holomorphic on the set Re(z) > 0 and thatG(1) = 1. Now we
can also introduce the notationKr(z, ζ) for the part of the kernel which is
of degree(0, r) with respect toz and define

Trf(z) :=
∫

ζ∈D
f(ζ) ∧Kr(z, ζ)

Since due to the weight function the kernel vanishes forζ ∈ bD the inte-
gral operatorsTr are indeed solution operators inD (see [BeAn] for more
details).

In order to prove the estimates of Theorem 1.1 it is enough to show the
following two lemmas.
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Lemma 2.2 Let r = (mn + 2)/(mn + 1) and letε be an arbitrary small
constant. Then the kernel satisfies the following estimates∫

z∈D
|K(z, ζ)|rdσ2n ≤ C (1)∫

z∈D
|�(z)|−ε|K(z, ζ)|rdσ2n ≤ Cε|�(ζ)|−ε (2)∫

ζ∈D
|�(ζ)|−ε|K(z, ζ)|rdσ2n ≤ Cε|�(z)|−ε (3)

Lemma 2.3 Letr = (mn+2)/(mn+1) and forp > mn+2 let p′ be the
dual exponent top andα = 1/m− (n+ 2/m)/p. Then the kernel satisfies
the following estimates∫

ζ∈D
|∇zK(z, ζ)|rdσ2n ≤ C(�(z))−r (4)∫

ζ∈D
|∇zK(z, ζ)|p′

dσ2n ≤ C(�(z))p′(α−1) (5)

In fact forp = 1 the first statement of Theorem 1.1 just follows from (1) by
means of Ḧolder inequality. To prove Theorem 1.1 (i) forp > 1 we have
to use (2), (3) and some standard argumentation which can be found for
instance in [Ra] and [McSt].

In order to prove the other two statements of Theorem 1.1 we want to
make use of thewell knownHardy-Littlewood lemma (for theBMO-version
see for instance [McSt])

Proposition 2.4 Let g ∈ C1(D). If for someα with 0 < α < 1 there
exists a constantC such that|∇g(z)| ≤ Cdist(z, bD)α−1 theng belongs
toΛα(D). If there exist a constantC such that|∇g(z)| ≤ Cdist(z, bD)−1

theng belongs toBMO(D).

Now the last two results of our theorem follow from (4) and (5) by means
of Hölder inequality.

Before we can prove Lemma 2.2 and Lemma 2.3, which will be done
in Sect. 4, we need some estimates for the ingredients of the kernels. In
particular we need estimates forQ, dQ and∇zdQ and we need estimates
for the weight which can be reduced to certain estimates forS. In order to
get all these estimates we have to explore the special geometry of our class
of domains, which will be done in the next section.

3 Basic estimates

LetD = {� < 0} ⊂ C
n be a bounded convex domain withC∞-boundary

of finite typem. As above we assume that the domainsDζ := {z : �(z) <
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�(ζ)} are also convex and of finite typem for all ζ ∈ U . For ζ ∈ U and
ε < ε0 we define some sort of complex directional boundary distances by

τ(ζ, v, ε) := max{c : |�(ζ + λv) − �(ζ)| < ε for all λ ∈ C, |λ| < c}.
For a fixed pointζ and a fixed radiusε we define theε-extremal basis
(v1, . . . , vn) centred atζ as in [Mc2]. If it is important to mention the de-
pendence onζ andε of the coordinates with respect to this basis, we denote
their components byzk,ζ,ε. Letvk be a unit vector in thezk,ζ,ε-direction and
write τk(ζ, ε) := τ(ζ, vk, ε). We can now define the polydiscs

APε(ζ) := {z ∈ C
n : |zk,ζ,ε| ≤ Aτk(ζ, ε)∀k}.

(Note that the factorA in front means blowing up the polydisc around its
centre and not just multiplying each point byA.)

Using these polydiscs we define the pseudo distance

d(z, ζ) := inf{ε : z ∈ Pε(ζ)}.
The following statements can be found in the literature (see for instance

[Mc1], [Mc2], [BrNaWa], [BrChDu]):

Proposition 3.1 (i) There exists a constantC > 1 (independent ofζ
andε) such that

CPε/2(ζ) ⊃ 1
2Pε(ζ) for all ζ, ε

(ii) The pseudo distanced(z, ζ) satisfies the properties

d(z, ζ) ≈ d(ζ, z),
d(z, ζ) � d(z, w) + d(w, ζ).

(iii) We haveτ1(ζ, ε) ≈ ε andε 1
2 � τn(ζ, ε) ≤ . . . ≤ τ2(ζ, ε) � ε 1

m . For

z ∈ Pε(ζ) we have|z− ζ| � ε 1
m andz �∈ Pε(ζ) implies|z− ζ| � ε.

(iv) Letw be any orthonormal coordinate system centred atz and letvj
be the unit vector in thewj-direction. Then we have∣∣∣∣∣∂

|α+β|�(z)
∂wα∂w̄β

∣∣∣∣∣ � ε∏
j τ(z, vj , ε)

αj+βj

for all multiindicesα andβ with |α+ β| ≥ 1.

Using the polydiscs defined above we also introduce the following
polyannuli

P i
ε(ζ) := CP2iε(ζ)\1

2P2iε(ζ).
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Note that we now haved(z, ζ) ≈ 2iε for all z ∈ P i
ε(ζ). Due to Proposition

3.1 (i) the constantC can be chosen in such a way that we have
∞⋃
i=0

P−i
ε (ζ) ⊃ Pε(ζ)\{ζ}

and ∞⋃
i=0

P i
ε(ζ) ⊃ Pε0(ζ)\Pε(ζ).

In fact the last covering is finite for every fixedε but the number of the
polyannuli which are involved tends to infinity ifε tends to zero.

Now we want to recall some of the estimates which have been proved in
[DiFiFo]. We begin with an estimate for our modified support functionS.

Lemma 3.2 For all z andζ in U andε < ε0 we have

|S(z, ζ)| � ε

for ζ ∈ P 0
ε (z) or z ∈ P 0

ε (ζ).

Proof.The proof of this statement is not exactly the same as the proof of
Lemma 4.2 in [DiFiFo]. But it can be proved in the same way and is even a
little bit easier. So we omit the details here. �

We now come to the estimates for the components ofQ, ∂̄Q and∇zQ.
First let us fix a pointz0 ∈ U and choose a small numberε. Now we
want to write all forms with respect to theε-extremal coordinates atz0,
which we denote byw∗. We choose a unitary transformationΦ∗ such that
w∗ = Φ∗(ζ − z0). If we define

Q∗(w∗) := Φ̄∗Q(z0, z0 + (Φ̄∗)Tw∗)

then we have
∑

iQi(z0, ζ)dζi =
∑

kQ
∗
k(w

∗)dw∗
k and

∂̄Q =
∑
lk

∂

∂w̄∗
l

Q∗
k(w

∗)dw̄∗
l ∧ dw∗

k.

Lemma 3.3 For all w∗ with |w∗
j | < τj(z0, ε) we have

|Q∗
k(w

∗)| � ε

τk(z0, ε)∣∣∣∣ ∂∂zjQ∗
k(w

∗)
∣∣∣∣ � ε

τk(z0, ε)∣∣∣∣∣ ∂∂w̄∗
j

Q∗
k(w

∗)

∣∣∣∣∣ � ε

τj(z0, ε)τk(z0, ε)

and the involved constants are independent ofz0 andε.
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Proof.This lemmacan be proved in the sameway as Lemma5.1 in [DiFiFo].
The necessary minor modifications are left to the reader. �

We also have to consider the case thatζ0 is a fixed point inU andz
varies in somePε(ζ0). Here we want to write everything with respect to the
ε-extremal coordinates atζ0. As above we choose an appropriate unitary
transformationΦ∗ and definew∗ = Φ∗(ζ − ζ0) andw∗ = Φ∗(z− ζ0). If we
define

Q∗(w∗) := Φ̄∗Q(ζ0 + (Φ̄∗)Tw∗, ζ0)

then we have
∑

iQi(z, ζ0)dζi =
∑

kQ
∗
k(w∗)dw∗

k and

∂̄Q =
∑
lk

∂

∂w̄∗
l

Q∗
k(w∗)dw̄∗

l ∧ dw∗
k.

Lemma 3.4 For all w∗ with |w∗j | < τj(ζ0, ε) we have

|Q∗
k(w∗)| � ε

τk(ζ0, ε)∣∣∣∣ ∂∂zjQ∗
k(w∗)

∣∣∣∣ � ε

τk(ζ0, ε)∣∣∣∣∣ ∂∂w̄∗
j

Q∗
k(w∗)

∣∣∣∣∣ � ε

τj(ζ0, ε)τk(ζ0, ε)

and the involved constants are independent ofζ0 andε.

Proof. Using Lemma 2.1 from [DiFiFo] we can simply assume that the
coordinatesw in the definition ofQ are already theε-extremal coordinates
at ζ0. Then the rest of the proof is again the same as above. �

As a consequence of the last two lemmas we get the following result.

Lemma 3.5 For z0 in U fixed,ε < ε0 andζ ∈ Pε(z0) we have

|(∂̄Q)k(z0, ζ)| �
(
εk

�(ζ)k
+

εk+1

�(ζ)k+1

)
τ1(z0, ε)−2

n∏
j=n−k+2

τj(z0, ε)−2

(6)

|∇z(∂̄Q)k(z0, ζ)| �
(
εk−1

�(ζ)k−1 +
εk

�(ζ)k

)

×
(

1
�(ζ)

+
ε

�(ζ)τn−k+2(z0, ε)2

)

×τ1(z0, ε)−2
n∏

j=n−k+3

τj(z0, ε)−2 (7)

and an analog statement to (6) is also true forζ0 in U fixed andz ∈ Pε(ζ0).
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Proof.By definition we have

Q(z, ζ) =
∑

j

χ(ζ)
C1�(ζ)

Q̃j(z, ζ)dζj

and therefore

∂̄Q(z, ζ) =
∑
jk

(
∂

∂ζ̄k

(
χ(ζ)
C1�(ζ)

)
Q̃j(z, ζ)

+
χ(ζ)
C1�(ζ)

∂

∂ζ̄k
Q̃j(z, ζ)

)
dζ̄k ∧ dζj

Computing thekth exterior product we get

(∂̄Q)k =
χk

Ck
1�

k
(∂̄Q̃)k+ck

1
C1�

(
∂̄χ− χ

C1�
∂̄�

)
∧Q̃∧ χk−1

Ck−1
1 �k−1

(∂̄Q̃)k−1

(8)
In order to prove (6) we just have to write this equation with respect to the
ε-extremal coordinates atz0. Then we can use Lemma 3.3 and see that the
first term can be estimated by

1
�(ζ)k

εk∏k
j=1 τµj (z0, ε)τνj (z0, ε)

where theµj must be pairwise different and theνj must be pairwise dif-
ferent. So every index may appear at most twice. Since we haveτ1(z, ε) ≤
τn(z, ε) ≤ . . . ≤ τ2(z, ε) the first term can also be estimated by

εk

�(ζ)k
τ1(z0, ε)−2

n∏
j=n−k+2

τj(z0, ε)−2

To estimate the second term we again use Lemma 3.3, the fact that∂̄χ
is bounded (and therefore� 1/τj) and the fact that∂�/∂ζ̄k � ε/τk (see
Proposition 3.1 (iv). We get an estimate by

1
�(ζ)k

(
1

τµ(z0, ε)
+

ε

�(ζ)τµ(z0, ε)

)
ε

τν(z0, ε)
εk−1∏k−1

j=1 τµj (z0, ε)τνj (z0, ε)

which can again be estimated by the term on the right hand side of (6). In
order to prove an analog formula for fixedζ0 wedo exactly the same, namely
we write (8) with respect to theε-extremal coordinates atζ0 and than make
use of Lemma 3.4.
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To prove (7) we first have to apply∇z to (8). We get

∇z(∂̄Q)k = c
χk

�k
(∂̄Q̃)k−1 ∧ (∇z∂̄Q̃)

+c′
χk−1

�k

(
∂̄χ− χ

�
∂̄�

)
∧ (∇zQ̃) ∧ (∂̄Q̃)k−1

+c′′
χk−1

�k

(
∂̄χ− χ

�
∂̄�

)
∧ Q̃ ∧ (∂̄Q̃)k−2 ∧ (∇z∂̄Q̃)

Using again Lemma 3.3 we see that the first term can be estimated by

1
�(ζ)k

εk−1∏k−1
j=1 τµj (z0, ε)τνj (z0, ε)

� εk−1

�(ζ)k
τ1(z0, ε)−2

n∏
j=n−k+3

τj(z0, ε)−2

For the second term we get

1
�(ζ)k

(
1

τµ(z0, ε)
+

ε

�(ζ)τµ(z0, ε)

)
ε

τν(z0, ε)
εk−1∏k−1

j=1 τµj (z0, ε)τνj (z0, ε)

�
(
εk

�(ζ)k
+

εk+1

�(ζ)k+1

)
τ1(z0, ε)−2

n∏
j=n−k+2

τj(z0, ε)−2

And the last term gives

1
�(ζ)k

(
1

τµ(z0, ε)
+

ε

�(ζ)τµ(z0, ε)

)
ε

τν(z0, ε)
εk−2∏k−2

j=1 τµj (z0, ε)τνj (z0, ε)

�
(
εk−1

�(ζ)k
+

εk

�(ζ)k+1

)
τ1(z0, ε)−2

n∏
j=n−k+3

τj(z0, ε)−2

which altogether give the estimate (7) of our lemma. �

4 Integral estimates

In this section we will finally give the proofs of Lemma 2.2 and Lemma
2.3. First let us mention that fork = 0 our kernel becomes the well known
Martinelli-Bochner kernel with some additional weight. Since by Lemma
2.1 the weight is bounded and all necessary properties are already known
for the Martinelli-Bochner kernel we can restrict our attention to the case
1 ≤ k ≤ n − 1. In this case the kernel contains at least one factorχ and
therefore vanishes ifζ does not belong toU2. Since the only singularity is of
the form|z− ζ|−d it is also clear that everything is bounded if|z− ζ| > ε0.
So it is enough to consider the case thatz andζ are inU andζ ∈ Pε0(z)
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or z ∈ Pε0(ζ) respectively. For fixedζ0 we will define� := |�(ζ0)| and
then split the polydisc into the two partsP�(ζ0) and andPε0(ζ0)\P�(ζ0).
Remember that the first set can be covered by

⋃∞
i=0 P

−i
� (ζ0) and the second

set is covered by
⋃∞

i=0 P
i
�(ζ0). So basicaly we have to deal with domains of

the formP 0
c�(ζ0). We have the following lemma

Lemma 4.1 Let c be an arbitrary constant and letε andε′ be small con-
stants. Further let1 ≤ p ≤ (mn+ 2)/(mn+ 1) and define

δ(k, p) := (2 − 2p) + (k − 1)(1 − p) + (2n− 2k − 1)(1 − p)/m+ 1/m

α(p) :=
1
m

− (p− 1)
mn+ 1
m

Then we haveα(p) ≥ 0 and for1 ≤ k ≤ n− 1 we get

α(p) ≤ δ(k, p) ≤ 1
m

(9)

Moreover we have∫
z∈P 0

c�(ζ0)

× dσ2n

|�(z)|ετ1(ζ0, c�)(2−ε′)p∏n
j=n−k+2 τ

2p
j (ζ0, c�)|z − ζ0|p(2n−2k−1)

� (c�)ε′p−ε(c�)δ(k,p) (10)

and a similar statement is true if we integrate with respect toζ ∈ P 0
c|�(z0)|

(z0).

Proof.The estimates forδ(k, p) andα(p) are simple straight forward conse-
quences of the assumptions onp andk. To prove the integral estimate (10)
we make use of the(c�)-extremal coordinates atζ0. First integrating with
respect to thez1 direction and using the fact that|�(z)| � Rez1 we get∫

z∈P 0
c�(ζ0)

× dσ2n

|�(z)|ετ1(ζ0, c�)(2−ε′)p∏n
j=n−k+2 τ

2p
j (ζ0, c�)|z − ζ0|p(2n−2k−1)

� τ1(ζ0, c�)2−(2−ε′)p−ε

×
∫

z′∈P 0
c�(ζ0)

dσ2n−2∏n
j=n−k+2 τ

2p
j (ζ0, c�)|z − ζ0|p(2n−2k−1)

� (c�)ε′p−ε(c�)2−2p
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×
∫

z′∈P 0
c�(ζ0)

dσ2n−2∏n
j=n−k+2 τ

2p
j (ζ0, c�)|z − ζ0|p(2n−2k−1)

Now we integrate with respect to the coordinateszn−k+2, . . . , zn and use
the fact thatτn−k+2(ζ0, c�) ≥ · · · ≥ τn(ζ0, c�) ≥ (c�)1/2. We get

� (c�)ε′p−ε(c�)2−2p(c�)(k−1)(2−2p)/2
∫

z′′∈P 0
c�(ζ0)

dσ2n−2k

|z − ζ0|p(2n−2k−1)

Finally we can use polar coordinates and the fact thatτn−k+1(ζ0, c�) ≤
· · · ≤ τ2(ζ0, c�) ≤ (c�)1/m and get

� (c�)ε′p−ε(c�)2−2p(c�)(k−1)(2−2p)/2
∫ (c�)(1/m)

0

t2n−2k−1dt

tp(2n−2k−1)

� (c�)ε′p−ε(c�)2−2p(c�)(k−1)(2−2p)/2(c�)[(2n−2k−1)(1−p)+1]/m

� (c�)ε′p−ε(c�)δ(k,p)

which completes the proof of (10). �
Proof of Lemma 2.2.We start with the proof of (2). Fixζ0 ∈ U and let

� := |�(ζ0)|. First we consider integration over the setP�(ζ0) which can be
covered by

⋃∞
i=0 P

−i
� (ζ0). We fix a constantδ with ε/r < δ < 1. Since by

Lemma 2.1 the quotient�(ζ)/S(z, ζ) is bounded, it follows from Lemma
3.2 that forz ∈ P−i

� (ζ0) we have(
S(z, ζ0)
C1�(ζ0)

)−N−k

�
(
�

2−i�

)k−δ

Lemma 3.5 implies that forz ∈ P−i
� (ζ0) we have

(∂̄Q)k � (2−i�)k

�kτ2
1 (ζ0, 2−i�)

∏n
j=n−k+2 τ

2
j (ζ0, 2−i�)

Then the integral under consideration can be estimated as follows∫
z∈P −i

� (ζ0)
|�(z)|−ε|K(z, ζ0)|rdσ2n

� �−δr

∫
z∈P −i

� (ζ0)

1
|�(z)|ε

((
�

2−i�

)k−δ

× (2−i�)k−δ(2−i�)δ

�k−δτ2
1 (ζ0, 2−i�)

∏n
j=n−k+2 τ

2
j (ζ0, 2−i�)|z − ζ0|2n−2k−1

)r

dσ2n
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� �−δr

∫
z∈P −i

� (ζ0)

× dσ2n

|�(z)|ετ1(ζ0, 2−i�)(2−δ)r
∏n

j=n−k+2 τ
2r
j (ζ0, 2−i�)|z − ζ0|r(2n−2k−1)

where we also used the fact thatτ1(ζ0, 2−i�) ≈ 2−i�. Applying Lemma 4.1
we get∫

z∈P −i
� (ζ0)

|�(z)|−ε|K(z, ζ0)|rdσ2n

� �−δr(2−i�)δr−ε(2−i�)δ(k,r) � 2−i(δr−ε)|�(ζ0)|−ε(2−i�)δ(k,r)

Since2−i� � 1 (independent ofζ0) δ(k, p) ≥ 0 andδr − ε > 0 this also
implies ∫

z∈P�(ζ0)
|�(z)|−ε|K(z, ζ0)|rdσ2n � |�(ζ0)|−ε

To estimate the integral overPε0(ζ0)\P�(ζ0) we use the covering by
⋃∞

i=0
P i

�(ζ0) and forz ∈ P i
�(ζ0) we have by Lemma 3.2(

S(z, ζ0)
C1�(ζ0)

)−N−k

�
(
�

2−i�

)N+k

� 2−iN

(
�

2−i�

)k

For(∂̄Q)k we use the same estimate as above and then the integral becomes∫
z∈P i

�(ζ0)
|�(z)|−ε|K(z, ζ0)|rdσ2n � 2−iNr

∫
z∈P i

�(ζ0)

× dσ2n

|�(z)|ετ1(ζ0, 2−i�)2r
∏n

j=n−k+2 τ
2r
j (ζ0, 2−i�)|z − ζ0|r(2n−2k−1)

Applying Lemma 4.1 we get∫
z∈P i

�(ζ0)
|�(z)|−ε|K(z, ζ0)|rdσ2n

� 2−iNr(2i�)−ε(2i�)δ(k,r) � 2−i(Nr−ε)|�(ζ0)|−ε(2−i�)δ(k,r)

Since� is bounded and0 ≤ δ(k, p) ≤ 1/m this implies∫
z∈Pε0 (ζ0)\P�(ζ0)

|�(z)|−ε|K(z, ζ0)|rdσ2n � |�(ζ0)|−ε

provided thatN > (ε + (1/m))/r. This completes the proof of (2). Since
all estimates are still valid forε = 0 this also proves the first statement of
Lemma 2.2.
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It remains to show (3). For fixedz0 we set� := |�(z0)|. Again we split
the domain of integration into the two partsP�(z0) andPε0(z0)\P�(z0). On
P�(z0) we use the covering

⋃∞
i=0 P

−i
� (z0) and by Lemma 2.1 and Lemma

3.2 we see that forζ ∈ P−i
� (z0) we have the estimate

(
S(z0, ζ)
C1�(ζ0)

)−N−k

�
(
�(ζ)
2−i�

)k−δ (�(ζ)
�

)δ+ε/r

whereδ is a small positive constant. Estimating(∂̄Q)k as usually the integral
becomes∫

ζ∈P −i
� (z0)

|�(ζ)|−ε|K(z0, ζ)|rdσ2n

�
∫

ζ∈P −i
� (z0)

1
|�(ζ)|ε

((
�(ζ)
2−i�

)k−δ (�(ζ)
�

)δ+ε/r

× (2−i�)k−δ(2−i�)δ

�(ζ)kτ2
1 (z0, 2−i�)

∏n
j=n−k+2 τ

2
j (z0, 2−i�)|z − ζ0|2n−2k−1

)r

dσ2n

� �−δr−ε

∫
ζ∈P −i

� (z0)

× dσ2n

τ1(z0, 2−i�)(2−δ)r
∏n

j=n−k+2 τ
2r
j (z0, 2−i�)|z − ζ0|r(2n−2k−1)

Applying Lemma 4.1 we get

∫
ζ∈P −i

� (z0)
|�(ζ)|−ε|K(z0, ζ)|rdσ2n

� �−δr−ε(2−i�)δr(2−i�)δ(k,r) � 2−iδr|�(z0)|−ε(2−i�)δ(k,r)

which also implies

∫
ζ∈P�(z0)

|�(ζ)|−ε|K(z0, ζ)|rdσ2n � |�(z0)|−ε

To estimate the integral overPε0(z0)\P�(z0) we use the covering
⋃∞

i=0
P i

�(z0) and forζ ∈ P i
�(z0) we get from Lemma 3.2 the following estimate

(
S(z0, ζ)
C1�(ζ0)

)−N−k

�
(
�(ζ)
2i�

)k+ε( 1
2i�

)δ(k,r)/r
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wherewealsoused the fact that�(ζ) is bounded.Estimating(∂̄Q)k asabove,
the integral becomes∫

ζ∈P i
�(z0)

|�(ζ)|−ε|K(z0, ζ)|rdσ2n

�
∫

ζ∈P i
�(z0)

1
|�(ζ)|ε

((
�(ζ)
2i�

)k+ε( 1
2i�

)δ(k,r)/r

× (2i�)k

�(ζ)kτ2
1 (z0, 2i�)

∏n
j=n−k+2 τ

2
j (z0, 2i�)|z − ζ0|2n−2k−1

)r

dσ2n

� (2i�)−ε(2i�)−δ(k,r)
∫

ζ∈P i
�(z0)

× dσ2n

τ2r
1 (z0, 2i�)

∏n
j=n−k+2 τ

2r
j (z0, 2i�)|z − ζ0|r(2n−2k−1)

Applying Lemma 4.1 we get∫
ζ∈P i

�(z0)
|�(ζ)|−ε|K(z0, ζ)|rdσ2n � 2−iε|�(z0)|−ε(2i�)−δ(k)(2i�)δ(k)

and therefore∫
ζ∈P�(z0)

|�(ζ)|−ε|K(z0, ζ)|rdσ2n � |�(z0)|−ε

which finally completes the proof of Lemma 2.2. �
Proof of Lemma 2.3.Lemma 3.5 already gives us an estimate for∇z

(∂̄Q)k. The next thing we have to investigate is the derivative of the weight
function. Here we get

∇z(1 + 〈Q(z, ζ), z − ζ〉)−N−k

= ck(1 + 〈Q(z, ζ), z − ζ〉)−N−k−1χ(ζ)
�(ζ)

×
∑(

∇Q̃j(z, ζ)(zj − ζj) + Q̃j(z, ζ)
)

Using the estimates from Lemma 3.5 and Lemma 3.2 we see that forζ ∈
P 0

ε (z0) this can be estimated by(
�(ζ)
S(z0, ζ)

)N+k+1( 1
�(ζ)

(
ε

τj(z0, ε)
+

ε

τj(z0, ε)
|z − ζ|

))

�
(

�(ζ)
S(z0, ζ)

)N+k 1
τj(z0, ε)

�
(

�(ζ)
S(z0, ζ)

)N+k 1
ε
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Also it is easy to see that∇zds = 0, ∇zs � 1 and∇z|z − ζ| � 1. Using
all these estimates we get forζ ∈ P 0

ε (z0) that

∇z

(
G(k) (1 + 〈Q(z, ζ), z − ζ〉) s ∧ (∂̄Q)k ∧ (∂̄s)n−1−k

〈s(z, ζ), ζ − z〉n−k

)

�
(

�(ζ)
S(z0, ζ)

)N+k

×1
ε

εk

�(ζ)kτ2
1 (z0, ε)

∏n
j=n−k+2 τ

2
j (z0, ε)|z − ζ0|2n−2k−1

+
(

�(ζ)
S(z0, ζ)

)N+k ( εk−1

�(ζ)k−1 +
εk

�(ζ)k

)

×
(

1
�(ζ)

+
ε

�(ζ)τ2
n−k+2(z0, ε)

)

× 1
τ2
1 (z0, ε)

∏n
j=n−k+3 τ

2
j (z0, ε)|z − ζ0|2n−2k−1

+
(

�(ζ)
S(z0, ζ)

)N+k

× εk

�(ζ)kτ2
1 (z0, ε)

∏n
j=n−k+2 τ

2
j (z0, ε)|z − ζ0|2n−2k

Sincek > 1and|z−ζ| � ε for ζ ∈ P 0
ε (z)andusing�(ζ)/S(z, ζ) � �(ζ)/ε

for a couple of times this can be estimated by(
�(ζ)
S(z0, ζ)

)N ε

�(ζ)2
1

τ2
1 (z0, ε)

∏n
j=n−k+2 τ

2
j (z0, ε)|z − ζ0|2n−2k−1

Now we fix z0 and set� := |�(z0)|. On P�(z0) we use the covering⋃∞
i=0 P

−i
� (z0) and forζ ∈ P−i

� (z0) Lemma 2.1 and Lemma 3.2 give us
the estimate (

�(ζ)
S(z0, ζ)

)N

�
(
�(ζ)
�

)1+δ ( �(ζ)
2−i�

)1−δ

whereδ is a small positive constant. The integral under consideration can
now be estimated by∫

ζ∈P −i
� (z0)

((
�(ζ)
�

)1+δ ( �(ζ)
2−i�

)1−δ

× (2−i�)1−δ(2−i�)δ

�(ζ)2τ2
1 (z0, ε)

∏n
j=n−k+2 τ

2
j (z0, ε)|z − ζ0|2n−2k−1

)p′

dσ2n
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� �−p′−δp′
∫

ζ∈P −i
� (z0)

× dσ2n

τ1(z0, ε)(2−δ)p′ ∏n
j=n−k+2 τ

2p′
j (z0, ε)|z − ζ0|p′(2n−2k−1)

Applying Lemma 4.1 we get∫
ζ∈P −i

� (z0)
|∇zK(z0, ζ)|p′

� �−p′−δp′
(2−i�)δp′

(2−i�)δ(k,p′) � 2−iδp′ |�(z0)|−p′
(2−i�)α(p′)

Now we observe thatα(p′) = p′α whereα is as defined in Lemma 2.3.
Sincep′(δ + α) > 0 even forα = 0 we get∫

ζ∈P�(z0)
|∇zK(z0, ζ)|p′ � |�(z0)|p′(α−1)

To integrate overPε0(z0)\P�(z0) we use the covering
⋃∞

i=0 P
i
�(z0) and for

ζ ∈ P i
�(z0) Lemma 3.2 give us the estimate(

�(ζ)
S(z0, ζ)

)N

�
(
�(ζ)
2i�

)2( 1
2i�

)(δ(k,p′)−α(p′))/p′

Then the integral becomes∫
ζ∈P i

�(z0)

((
�(ζ)
2−i�

)2( 1
2−i�

)(δ(k,p′)−α(p′))/p′

× (2−i�)
�(ζ)2τ2

1 (z0, ε)
∏n

j=n−k+2 τ
2
j (z0, ε)|z − ζ0|2n−2k−1

)p′

dσ2n

� (2i�)−p′−δ(k,p′)+α(p′)

×
∫

ζ∈P i
�(z0)

dσ2n

τ2p′
1 (z0, ε)

∏n
j=n−k+2 τ

2p′
j (z0, ε)|z − ζ0|p′(2n−2k−1)

Applying Lemma 4.1 we get∫
ζ∈P −i

� (z0)
|∇zK(z0, ζ)|p′ � (2i�)−p′−δ(k,p′)+α(p′)(2i�)δ(k,p′)

and sinceα(p′) = p′α < p′ this implies∫
ζ∈Pε0 (z0)\P�(z0)

|∇zK(z0, ζ)|p′ � |�(z0)|p′(α−1)

which completes the proof of the lemma. �
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