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1 Introduction

This paper continues the investigation of convex finite type domains by
means of explicite integral formulas which started with [DiFo] and [DiFiFo].

In [DiFo] Diederich and Fornaess constructed smooth support functions for
convex domains of finite type and proved that these support functions satisfy
some nice estimates on the given domain. In [DiFiFo] the authors used these
support functions to construct somesolving Cauchy-Fantappikernels.

After proving some additional estimates for the support functions and their
Leray decomposition they could prove that the solutions given by these
kernels satisfy the best possiblélder estimates.

These results have also been used in [DiMa] to improve some theorem of
[BrChDu] about the zero sets of functions of the Nevanlinna class in convex
domains of finite type.

In this paper we construct somesolving integral operators that satisfy
the best possible estimates with respecf.tonorms. More precisely we
prove the following theorem.

Theorem 1.1 Let D cC C™ be alinearly convex domain witti®°-smooth
boundary of finite typen. We denote b)Lme) (D) the Banach space of
(0, r)-forms whose coefficients belong8(D) by A?OJ,)(D) the Banach
space of 0, r)-forms whose coefficients are uniformlglder continuous of

ordera on D and byBM O,y (D) the space of0, r)-forms with BMO-
coefficients.
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Then there are bounded linear operatdfssuch thatT, f = f for all
f e L’(J0 r+1)(D) with 9f = 0 and these operators satisfy the following
estimates.

(i) For 1 < p < mn + 2 we have||T, f||rs < Cpl|f]|zr fOr 1/q =
1/p—1/(mn +2).

(i) For p=mn +2we have|T, f||srmo < C||f||Lr

(i) For mn + 2 < p we havel||T, f||ae < Cp||fl||rr fOr @ = 1/m —
(n+2/m)/p.

In [ChKrMa] it was shown that the gain of regularity which is given in
our theorem is the best possible in the case of complex ellipsoids, that is for
domains of the formz; | + ... + |z,|™" < 1 with m = maxm;. Since
all complex ellipsoids are also convex domains of finite type our result is
optimal in the sense that there exists a domain afdcised form with
LP-coefficients that does not admit any solution with estimates better than
stated above.

A result similar to Theorem 1.1 has recently been obtained in a paper
by A. Cumenge [Cu], where she constructs solution operators with the help
of the Bergman kernel, and uses certain estimates for the Bergman kernel,
which are given in [Mc2] to prove the required estimates.

In this paper we will make use of the support functions defined in [DiFo]
and of some of the estimates proved in [DiFiFo]. It would have been the
easiest just to use the same Cauchy-Fan&keinels and only make the
necessary modifications (transform the boundary integral into a volume in-
tegral) to be able to apply these operators als’tdorms. In fact it is quite
easy to see that such an operator satisfies the first estimate of our theorem
forall g suchthat /¢ > 1/p—1/(mn+2). However, this operator seems to
be not good enough to get exactly the best possible estimates. So finally we
construct some integral operators of Berndtsson-Andersson type (see also
[DiMa]) which contain certain weights which are suitable for our purpose.

This article is organised in the following way: In Sect. 2 we briefly recall
the definition of the support function from [DiFo] and the definition of the
Leray decomposition from [DiFiFo]. Then we prove some first estimate
for a modified support function and definedasolving weighted kernel
of Berndtsson-Andersson type. We also formulate two lemmas which give
some sufficient conditions for the estimates of Theorem 1.1. In Sect. 3 we
recall some well known facts about convex domains of finite type and review
some estimates for the support function and their decomposition which have
already been proved in [DiFiFo]. Then we prove several estimates for the
ingredients of our kernel. In Sect. 4 we give an auxiliary integral estimate
and finally prove the two lemmas which have been given in Sect. 2.
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2 Solution operators

Let D = {p < 0} be a convex domain witb">°-smooth boundary of finite
typem. It was shown in [Mc2] that the defining functigrcan be chosen in
such away that there exists a neighbourhbiaif 9D suchthatVe(¢)| > 3

for all ¢ € U and all the domain®, := {z : o(z) < o(¢)} are convex
domains of finite typen as well. Let us assume that the defining function
already has this property. i, is the unit outer normal vector at the point
¢ on the hypersurfacéz : o(z) = o(¢)} then we can find a familg(¢) of
unitary transformations such thé{{)n. = (1,0,...,0) forall{ € U. As

in [DiFo] and [DiFiFo] we define

oc(w) == o(¢ + &7 (¢)w),

8%"4
_ al 8w0‘

Se(w) —3w1+Kw1—cZM2]U] Z

|al=
a1=

for K, M > 0 suitably largec > 0 suitably small (all independent @9,

and put 3
5(2,¢) = Sc(2(0)(z = C))-

At this point we have to mention that in [DiFo] the support function and
the estimates have been given only foe 0D. However it is easy to see
that all the results remain true at least for@ih some (possible smaller)
neighbourhood/ of 9D. Now whereversS is defined we can construct a
Leray decomposition in the following way. We just define

Qé(w) =3+ Kuw

and fork > 1

m

Ghw) = —e3 Moy Y e ut

: o jal ow* T wy
j=2 |a|=3
a1=0, ap>0

and set R
Q(2,€) = 2T (Q)Qc(2(¢)(= — ©)).

Since we want to defin€) for all { we choose two neighbourhoods
bD CcC Uy CcC Uy cc U of the boundary and a smooth cut off function
0 < x < 1suchthaty(¢) =1for{ € U; andx(¢) = 0 for ¢ € D\Us.
Using this we can define

Q(Z, C) = X(C)Q(Za C)

Before we can construct our solution operator we have to prove the following
lemma.
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Lemma 2.1 There exists a constadt; such that for allz, { € D we have

Re ((Q(2,0),2 = O) + C10(0)) S o(2) + 0(¢) ~ |2 = ¢|™

Proof. First, if ( € D\U; and therefore({) < —c then the inequality will
always be satisfied if onlg; is large enough. Faf € U; the term on the
left hand side becomes &z, ¢) + C1o(¢). Let us writez = pne + v,
wherev is some complex tangential vector@bn the hypersurfacéz :
o(z) = o(¢)}. By Theorem 2.3 from [DiFo] we have

ReS(z,¢)+C1o(¢) < Rep—K(Impu)* —c> " laas(C, v)| |A +Cro(C).

Since the domai), is also of finite typen the sum can be estimated from

below byc|\|™. Together with the first two terms this gives an estimate by

c|z — ¢|™. Moreover we have Re < C’p(z) — C"p(¢). Thus we get the

desired result if we choogg, large enough and larger thaH. (]
Now we define

Sj(Z,C) = (2]‘ - Ej)dea

QJ (Zv C)
i(2,() = d¢;
with the constan€; from Lemma 2.1 and(z) := 2z~ . For convenience

we also introduce the notatid#(z, ¢) = (Q(z, (), z — ¢) + C10(¢) Using
these ingredients the Berndtsson-Andersson kernel becomes

s A (0Q)F A (9s)m 1k
<5(Ca Z)a C - Z>nik

n—1
K = chkG(k) (1 + <Q(Z7€)7Z - C))
k=0

Note that due to Lemma 2.1 we have

52,0 - o)
Re(1+(Q(z,¢),z — = Re pe
that G is holomorphic on the set Re) > 0 and thatG(1) = 1. Now we
can also introduce the notatidt,(z, ) for the part of the kernel which is
of degre€g(0, ) with respect ta: and define

>0

T f(2) := J(Q) N Kr(z,()
¢eD
Since due to the weight function the kernel vanishes(fer bD the inte-
gral operatord’;. are indeed solution operators in (see [BeAn] for more
details).
In order to prove the estimates of Theorem 1.1 it is enough to show the
following two lemmas.
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Lemma 2.2 Letr = (mn + 2)/(mn + 1) and lete be an arbitrary small
constant. Then the kernel satisfies the following estimates

/ K (2, ) doan < C 1)
z€D
/ ()] 1K (2, ) doran < Crlol€)] @
z€D
/ 10(O) 1K (2, ) o < C:lo(2)] 3)
¢ceD

Lemma 2.3 Letr = (mn+2)/(mn+ 1) and forp > mn + 2 letp’ be the
dual exponent tp anda = 1/m — (n + 2/m)/p. Then the kernel satisfies
the following estimates

/ V. K (2, ) dosn < Clo(2))™" @)
¢eD

/ VK (2, O dow, < Clo(z)P @D 5)
¢eD

In fact forp = 1 the first statement of Theorem 1.1 just follows from (1) by
means of Klder inequality. To prove Theorem 1.1 (i) fpr> 1 we have
to use (2), (3) and some standard argumentation which can be found for
instance in [Ra] and [McSt].

In order to prove the other two statements of Theorem 1.1 we want to
make use of the well known Hardy-Littlewood lemma (for the BMO-version
see for instance [McSt])

Proposition 2.4 Let g € C*(D). If for somea with 0 < o < 1 there
exists a constant’ such thatVg(z)| < Cdist(z,bD)*~! theng belongs
to A, (D). If there exist a constartt’ such thatVg(z)| < Cdist(z,bD)*

theng belongs taBM O(D).

Now the last two results of our theorem follow from (4) and (5) by means
of Holder inequality.

Before we can prove Lemma 2.2 and Lemma 2.3, which will be done
in Sect. 4, we need some estimates for the ingredients of the kernels. In
particular we need estimates @, dQ andV.d@ and we need estimates
for the weight which can be reduced to certain estimate$fon order to
get all these estimates we have to explore the special geometry of our class
of domains, which will be done in the next section.

3 Basic estimates

Let D = {p < 0} C C™ be a bounded convex domain wiffi°-boundary
of finite typem. As above we assume that the domains:= {z : o(2) <
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0(¢)} are also convex and of finite type for all € U. For¢ € U and
e < go we define some sort of complex directional boundary distances by

7(C,v,¢) :=max{c: |o(( + Av) —o(¢)] <e forall XeC, |\ <c}.

For a fixed point{ and a fixed radiug we define thes-extremal basis
(v1,...,v,) centred at as in [Mc2]. If it is important to mention the de-
pendence o4 ande of the coordinates with respect to this basis, we denote
their components by;, ¢ .. Letv, be a unit vector in the;, - .-direction and
write 7 (¢, €) == 7(¢, vk, €). We can now define the polydiscs

AP.(Q) :={2€ C": |z ¢c| < ATi((,€)VE}.

(Note that the factod in front means blowing up the polydisc around its
centre and not just multiplying each point By)
Using these polydiscs we define the pseudo distance

d(z,¢) :==inf{e: z € P.(¢)}.

The following statements can be found in the literature (see for instance
[Mc1], [Mc2], [BrNaWa], [BrChDu]):

Proposition 3.1 (i) There exists a constari > 1 (independent of
ande) such that

CP.ja(C) D §P.(Q) forall ¢, e

(i) The pseudo distancé(z, ¢) satisfies the properties

d(z,¢) = d(¢, 2),
d(z,¢) S d(z,w) + d(w, ().

(iii) We haver;(¢,e) ~ eandez < 7,(C,e) < ... < m(Coe) < em. For
z € P.(¢)we havez — (| < em andz & P.(¢) implies|z — ¢| > e.

(iv) Letw be any orthonormal coordinate system centred and letv;
be the unit vector in the;-direction. Then we have

£

~ Hj (2, Uj; e)aj+ﬁj

a\awlg(z)
Ow*owh

for all multiindicesa and 8 with |a + 5] > 1.

Using the polydiscs defined above we also introduce the following
polyannuli
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Note that we now havé(z, ) ~ 2'c for all z € P!(¢). Due to Proposition
3.1 (i) the constant’ can be chosen in such a way that we have

U P(¢ (O\CH

and

UPZ €) 3 Pey(O\E-(C).

In fact the last coverlng is finite for every fixedbut the number of the
polyannuli which are involved tends to infinitydftends to zero.

Now we want to recall some of the estimates which have been proved in
[DiFiFo]. We begin with an estimate for our modified support functton

Lemma 3.2 For all z and in U ande < ¢y we have
15(z,Q) 2 €
for ¢ € PY(z) or z € PY(¢).

Proof. The proof of this statement is not exactly the same as the proof of
Lemma 4.2 in [DiFiFo]. But it can be proved in the same way and is even a
little bit easier. So we omit the details here. (|

We now come to the estimates for the component3,adQ andV..Q.
First let us fix a pointzy € U and choose a small number Now we
want to write all forms with respect to theextremal coordinates at,
which we denote byv*. We choose a unitary transformatidgri such that
w* = &*(( — zp). If we define

Q" (w*) == *Q(z0, 20 + (2*) w")
then we havé . Q;(20,¢)d¢ = Zk Qj(w*)dwy, and

0Q = Z aw,* Q. (w*)dw; A dwj.
lk

Lemma 3.3 For all w* with [w}| < 7;(z0,¢) we have
9
Qh(w")| S
‘ k( )‘ Tk(ZO,E)
9

Tk (20, €)

<

E Qi)

g
73(Z07€)7k(20a6>

<

and the involved constants are independenfyande.
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Proof. This lemma can be proved in the same way as Lemma 5.1 in [DiFiFo].
The necessary minor modifications are left to the reader. O

We also have to consider the case thats a fixed point inU and z
varies in somé>((p). Here we want to write everything with respect to the
e-extremal coordinates @p. As above we choose an appropriate unitary
transformatior?* and definav* = &*(¢ — {p) andw, = &*(z — (o). If we
define

Q* (w.) := 2*Q(Co + (%) ww, o)
then we have ", Qi(z, (0)d¢; = Y, @ (wy)dwy, and

a 8 * — % *
oQ = Z Par Qi (wy)dw; A dwy.
Ik

Lemma 3.4 For all w, with |w,;| < 7;({o, ) we have

|Qr(w:)| S

g
7%(Qh5)
g

A

7%(4075)
e

7;(Co, €)1 (Co, €)

and the involved constants are independerjycinde.

o
'azjczkw*)

S

9 .
Tw;@k(w*)

Proof. Using Lemma 2.1 from [DiFiFo] we can simply assume that the
coordinatesy in the definition ofQ) are already the-extremal coordinates
at(y. Then the rest of the proof is again the same as above. O

As a consequence of the last two lemmas we get the following result.

Lemma 3.5 For 2 in U fixed,e < g9 and¢ € P.(zp) we have

n
Ek €k+1

o(Q)F * Q(C)k—i-l) 71(20,€) 7 H Tj(zo,g)—Q

j=n—k+2
(6)

Q) (20, )| < (

i ck—1 ek
V-(0Q)* (0. 0)| < (Q(Ok—l " g<<>k>

(a0 )
Q(C) Q(C)Tn—k+2(207€)2

n

x7i(z0,6) 2 [] 7i(20,9) 7 (7)

j=n—k+3

and an analog statement to (6) is also true {giin U fixed andz € P-({p).
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Proof. By definition we have

_ x(Q) ~ ,
Q=) = ; Gyl 5O

and therefore

5010 =3 (50 (55 ) 40

ik
X 9
Cro(¢) O,

Computing thecth exterior product we get

Qj(z, C)> G, A dg;

00 = 200 e (x— 2o )OS (00
CtoP Cio Cro CFtok-1
(8)
In order to prove (6) we just have to write this equation with respect to the

e-extremal coordinates at. Then we can use Lemma 3.3 and see that the
first term can be estimated by

1 ek
o(¢)* H§:1 T (20, €)7v, (20, €)
where they; must be pairwise different and the must be pairwise dif-

ferent. So every index may appear at most twice. Since wehaves) <
Tn(2,€) < ... < m(z,¢) the first term can also be estimated by

k n

Q(C)k71(20,6)72 H Tj(20,€)72

j=n—k+2

To estimate the second term we again use Lemma 3.3, the fac that
is bounded (and thereforg 1/7;) and the fact thabo/0(; < /7 (see
Proposition 3.1 (iv). We get an estimate by

1 ( 1 N 5 ) £ gh-1
o(OF \7u(20,6)  0o(Q)7u(20,¢) 7—1/<ZO75)H?;%TM](Z(),E)TV].(Z(),&“)

which can again be estimated by the term on the right hand side of (6). In
order to prove an analog formula for fixégiwe do exactly the same, namely
we write (8) with respect to the-extremal coordinates g and than make

use of Lemma 3.4.
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To prove (7) we first have to appl/ ., to (8). We get

k ~ - o~
V.(0Q)F = %@Q)’H A (V.0Q)
k—1 5 o
+C’X9k <3X - Z%) A (V2Q) A (DQ)F!
k—1

+ X (Ox-200) QA 0O A (V.00

Using again Lemma 3.3 we see that the first term can be estimated by

1 €k_1 6k—l n

S; (C)le(Z()?E)iQ H Tj(207€>72

kE 77k—1
o(¢) ]_[jzlm,-(zoﬁ)nj(zoag) 0 j=n—k+3

For the second term we get

1 ( 1 N € ) € gh-1
o(OF \7u(z0,€) ~ 0(O)7u(20,) ) 7(20,€) [T5Z} 7, (20, )70, (20, €)

k k+1 n
3 3 _ _
5 < + >T1(Zo,€) 2 H Tj(Zo,&‘) 2

oOF " olQF L

And the last term gives

1 ( 1 N € > € gk—2
o(OF \7u(z0,€) ~ o(O)7u(20,) ) 7(20,€) [T5Z7 7, (20, )70, (20, €)

gk—l 5k 9 n )
5 < + > 7'1(2’0,8)7 H Tj(Zo,&‘)i

o(OF o)k j=n—k+3

which altogether give the estimate (7) of our lemma. O

4 Integral estimates

In this section we will finally give the proofs of Lemma 2.2 and Lemma
2.3. First let us mention that fér = 0 our kernel becomes the well known
Martinelli-Bochner kernel with some additional weight. Since by Lemma
2.1 the weight is bounded and all necessary properties are already known
for the Martinelli-Bochner kernel we can restrict our attention to the case
1 < k < n — 1. In this case the kernel contains at least one fagtand
therefore vanishes {fdoes not belong t&';. Since the only singularity is of

the form|z — ¢|~“ itis also clear that everything is bounded:if- ¢| > .

So it is enough to consider the case thatnd¢ are inU and({ € P.,(z)
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or z € P, (¢) respectively. For fixed, we will definep := |o({p)| and
then split the polydisc into the two parf3,(¢y) and andP-,({o)\ P, (<o)
Remember that the first set can be coverefd 8y, P, *(¢o) and the second
setis covered byJ:° P.(¢o). So basicaly we have to deal with domains of

the form PJ,({o). We have the following lemma

Lemma 4.1 Letc be an arbitrary constant and letand <’ be small con-
stants. Further let < p < (mn + 2)/(mn + 1) and define
0k,p) =2-2p)+k-1)A-p +2n—-2k—1)(1—p)/m+1/m
1 mn + 1
=——(p—1
alp):=— —(p-1)

Then we have(p) > 0andforl < k <n — 1 we get

(9)

alp) < o(kp) <

Moreover we have
/ZEPCOQ (CO)
doay,

X
lo(2)[eT1(Co, co)@—€)p T rso T]-Qp(Co, co)|z — Colpn—2k-1)

< (c0)F P75 (o) P) (10)

and a similar statement is true if we integrate with respec to Pcﬂg(zo)‘
(20)-

Proof. The estimates faf(k, p) anda(p) are simple straight forward conse-
guences of the assumptions pandk. To prove the integral estimate (10)
we make use of thécp)-extremal coordinates gp. First integrating with
respect to the; direction and using the fact that(z)| > Rez; we get

lEng (¢o)
doap,

X
10(2) 771G, c0) @< Ty g0 727 (Gor o)z — GolP—24-D

< 71(Co, co) P
doop—2

<J
2€P%,(¢o) [Tjon—k2 Tfp(Co, co)|z — Go[P3n=2k=1)

< (o) P 5 (co)
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X/ d02n 2
2€P% (o) [[jon k1o T; 22 (Cy, co)|z — Colp2n—2k=1)

Now we integrate with respect to the coordinatgsy.o, ..., z, and use
the fact thatr,, _j,2(Co, co) > -+ > 7.(Co, co) > (co)'/?. We get

/ dO'
< NE'D—E( . \2—2p (kl)(22p)/2/ 2n—2k
S (co)™ P (ce)” ™ (co) repo oy 7 — Cop @D

Finally we can use polar coordinates and the fact that1 (o, co) <
- < (¢, co) < (co)'/™ and get

(co)(1/m) $2n—2k—1 14

S (co)™P 7 (co)* P (co) VB2 / e}

0

5 (CQ)E/p—s(CQ)2—2p(CQ) (k—1)(2—2p)/2 (CQ)[(Qn—Qk—l)(l—p)—l—l]/m

< (@) *(co) ™

which completes the proof of (10). O
Proof of Lemma 2.2Ne start with the proof of (2). Fiy, € U and let
= |o(¢o)|. First we consider integration over the $&{((,) which can be
covered by J;° P, (¢o). We fix a constand with ¢/r < ¢ < 1. Since by
Lemma 2.1 the quotieni(¢)/S(z, ¢) is bounded, it follows from Lemma
3.2 that forz € P, (¢o) we have

Gae) =)

Lemma 3.5 implies that for € P, *(¢o) we have

Ak (27%p)k
O X (G0 [T rra (0 20)

Then the integral under consideration can be estimated as follows

[ el i ol don,
2€Py *(Co)

5 1 0o\
S
2Py i(Go) 10(2)1° ( 27

(27'0)* (2770 Tdag
Qk J 2((072 L )l_-[] —n— k+2T]2(<072 ZQ)‘Z_CO‘QH—W{;—I n
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5 Qér/ .
z€P; (o)
doan

X , _ i _ _
lo(2)[FT1(C0, 270) =T [T, 4yo 777 (0, 2700) |2 — (o7 2n—2k—1)

where we also used the fact thaf¢y, 27%0) ~ 2~%o. Applying Lemma 4.1
we get

[ el i G ol o,
z€P, " (o)

S.; Qfér(2fig)6r75(zfig)é(k,r) 5 271‘(57"75) |Q(CO)|75(27iQ)5(k,r)

Since27%p < 1 (independent ofy) 5(k,p) > 0 andér — e > 0 this also
implies

/ 10(2)] 51K (2 Go)["doram < |o(Co)|~
2€Py(Co)

To estimate the integral oveét., ((o)\ P,(¢o) we use the covering by);~,
P} (¢o) and forz € P,(¢o) we have by Lemma 3.2

(S(z,C0)>_N_k _ ( 0 >N+’“ < giN (e)"
Cro(¢o) ~\27% ~ 27p

For (0Q)* we use the same estimate as above and then the integral becomes

/ o) IR (2 o) o < 2 / |
2€P%(Co) 2€PE(Co)

doap,
) ' " r —i (2n—2k—
[0(2)[F71(C0, 2710)* T _pyo 77" (G0, 2770) |2 — Go|7(2n=2k—1)

Applying Lemma 4.1 we get

[l K G G don,
z€P}(Co)

SJ 2—iNr(2iQ)—s(2ig)6(k,r) 5 2—2'(Nr—{-:) |Q(CO)|—E(2—iQ)5(k,r)

Sincep is bounded and < §(k,p) < 1/m this implies

/ 10(2) 51K (2, Co) " doram < o)~
2€Pe( (C0)\Po(C0)

provided thatV > (¢ + (1/m))/r. This completes the proof of (2). Since
all estimates are still valid for = 0 this also proves the first statement of
Lemma 2.2.
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It remains to show (3). For fixeeh we seto := |o(z0)|. Again we split
the domain of integration into the two pafs(z) and P, (z0)\P,(20). On
P,(z0) we use the covering);® P, *(z) and by Lemma 2.1 and Lemma
3.2 we see that fof € P, (z) we have the estimate

<S(20,C)>Nk - (g(@ )“ (g(@ )‘”E/’”

Cr0(¢o) ~\27% 0

wheres is a small positive constant. Estimatifi@®)* as usually the integral
becomes

[ 1@ K o O do,
CEP, *(20)

& /Cepg—i(zo) |Q(2)|6 ( <§(2})k_6 <Q(QO>6+€/T

. . s
(27'0)"*(27"0)° iy
. . .
(O (20,270 0) [T k12 75 (20,277 0) |2 — Go[— 2+ 1

S Q—ﬁr—a/ .
CeP, " (20)

X

X

dO’Qn
71 (20,271 0) (20" H;'L:n—k+2 TJZT(% 2-ig)|z — (o|r@n—2k=1)

Applying Lemma 4.1 we get

[ e I G o,
(ePy *(20)
g Qférfz-:(271'0)51"(271'@)5(&7“) 5 271‘61"’9(20)|f€(27ig)6(k,r)

which also implies
/ 10(0) 1K (20, ) doan < Jo(z0)]
CEP,(20)

To estimate the integral over.,(z0)\P,(z0) we use the coveringJ;=,
Pl(z0) and for¢ € P}(z0) we get from Lemma 3.2 the following estimate

(Gl =806
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where we also used the fact thét) is bounded. Estimatin@Q)* as above,
the integral becomes

| QIR 0. O do,
CEPi(20)

- 1 Q(C) k+e 1 o(k,r)/r
~ /cepg(zo) lo(Q)]F ( ( 2'0 ) <220>

, (Qimk . dos
(Q)F 7t (20,20 0) [T} g2 73 (20, 270) |2 — o[> ~2F 1 !
S (@) |
CEP(z0)
doay,

X , .
77 (20,2°0) [T} — oy 75" (20, 270) |2 — Gl (2n=2k=1)

Applying Lemma 4.1 we get

X

/ O (20, O doan < 27 0(z0)| 5 (20) R (2 )°®)
CEPZ;(Zo)
and therefore
/ 10(0) 1K (20, ) doan < Jo(z0)]
CEP,(20)

which finally completes the proof of Lemma 2.2. O

Proof of Lemma 2.3Lemma 3.5 already gives us an estimate Yoy
(0Q)*. The next thing we have to investigate is the derivative of the weight
function. Here we get

vz(l + <Q(Z7 Q)? 2 C))iN?k

., e ekt X(O)

XY (V@j(z, Oz = ¢) + Qs(z, C))

Using the estimates from Lemma 3.5 and Lemma 3.2 we see thatdor
PY(z) this can be estimated by

(S(Qz(i)o)WH (7@ (m;,s) NExews Lo 1))

(5295) " s = ()
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Also it is easy to see thal .ds = 0, V,s < 1 andV,|z — ¢| < 1. Using
all these estimates we get fore P?(z) that
s A (0Q)F A (53)"1k>

<8(Z> C)a C - Z>n_k

v. (G“f) (14 (Q(2:0), 2 — O))

. (Séﬂ))w

1 €
€ o(OF7(20,€) [T} —pyo 77 (20, €) |2 — Go[2n 271

<s<i(i)c>>N+k <g<€<k>’:—1 " g(ggk)

+
« 1 €
0(¢)  o(Q)72 1 o(20,€)

k

+
% 1
T12(ZO, 5) H?:n—k—i-?, 7‘],2(20’ 5)‘2 _ 40‘27172’{71
2(¢) )N”“
" (S(ZO,C)
gk

X
Q(g)lez (207 E) H;’L:n_k+2 T]‘Q(Z07 E) |Z - C0|2n_2k

Sincek > 1and|z—(¢| > efor¢ € PY(z) and using(¢)/S(z,¢) < 0(¢)/e
for a couple of times this can be estimated by

( Q(C) )N 9 1
S(20,0))  0(C)2(20,€) [T}—n_ps2 72 (20,€)|z — Co[2n =21

Now we fix 2o and seto := [o(z0)]. On P,(z9) we use the covering
Uizy P, "(20) and for¢ € P,*(20) Lemma 2.1 and Lemma 3.2 give us

Fa
(st) <(5) " (549)

the estimate
whered is a small positive constant. The integral under consideration can
now be estimated by

Lo ()7 ()

(2-'0)! (2 "g)? ’
x 272 n 2 on—ok=1 | 4020
0(¢)*7i (20, ¢) Hj:nkarQ T; (20,€)|z — Col

/
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< Qp/5p’/
¢EP; " (20)
doo,

X
1(20,8) I Ty g7 (20812 = Gl Cr 2k

Applying Lemma 4.1 we get

/ VLK (20, Q)
CEP, *(20)

S0P (2T )W (27 ) ) S 27 g (z0) (27 0) )

Now we observe that(p') = p’a wherea is as defined in Lemma 2.3.
Sincep/(§ + «) > 0 even fora = 0 we get

/ V. K (20, Q)" < Jol(zo)[P' @Y
CGPQ(Zo)

To integrate oveP., (z)\ P,(z0) we use the covering):2, P:(zo) and for
¢ € Pl(z0) Lemma 3.2 give us the estimate

oO) \N _ (oQ))? [ 1\
(S(Z0a<)> N(Wp) <219>

Then the integral becomes

/ (Q(O)Q( 1‘ >(5(k’7p’)—06(p’))/p’
cePi(zo) \ \27'0/ \27"0

. p
" (27%0) do
0(0)?71 (20, ) [Tj=p_kyo 77 (20, )|z — Go[?n—2k~1 "

< (20p) 7P Ok ) Falr)

/

dO’Qn

X/
) 2p’ 2p’ Y
cePyz0) 71" (20,8) [Tf—ppsa 75" (20,€)|z — o7’ (r=2h=1)

Applying Lemma 4.1 we get
/ V=K (20, O 5 (210) 7000t (2190
CEP; (20)
and sincex(p’) = p'a < p' this implies

/ VoK (20, O < |o(zo)[P" @
CEPe( (20)\Po(20)

which completes the proof of the lemma. O
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