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Abstract. We consider the problem of the development of singularities for
classical solutions to a new periodic shallow water equation. Blow-up can
occur only in the form of wave-breaking, i.e. the solution remains bounded
but its slope becomes unbounded in finite time. A quite detailed description
of the wave-breaking phenomenon is given: there is at least a point (in
general depending on time) where the slope becomes infinite exactly at
breaking time. The precise blow-up rate is established and for a large class
of initial data we also determine the blow-up set.
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1. Introduction

In this paper we consider the problem of the development of singularities
for classical solutions to the initial value problem

(1)




ut − utxx + 3uux = 2uxuxx + uuxxx, t > 0, x ∈ R,

u(0, x) = u0(x), x ∈ R,

u(t, x+ 1) = u(t, x), t ≥ 0, x ∈ R,

whereu0 is a given periodic initial value.
This quasilinear partial differential equation is a model for wave motion

on shallow water cf. [12],u(t, x) representing the water’s free surface above
a flat bottom. Equation (1) was abstractly derived as a bi-Hamiltonian gen-
eralization of the famous Korteweg-de Vries (KdV) equation [28]. Recently,
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R. Camassa and D. Holm gave a physical derivation of (1) and found that
the equation has solitons: two solitary waves keep their shape and size after
interaction while the ultimate position of each wave is affected only with a
phase shift by the nonlinear interaction (see [19]). In [13] it was conjectured
that wave-breaking occurs for certain initial profiles of (1) - for results on
wave-breaking for solutions to (1) we refer to [15], [18], [19]. Equation (1)
is integrable in the sense of an infinite-dimensional Hamiltonian system (for
this aspect we refer to [21], [16]).

The KdV equation and Whitham’s equation (see [45]) are well-known
models for wave-motion on shallow water with a flat bottom. However,
whereas the KdV equation admits soliton interaction for its solitary waves
[23], [24], [25], [39], the KdV equation does not model wave-breaking: it
is shown in [7] that solutions exist globally for initial data inL2(S) - see
also [35] (hereS is the unit circle). On the other hand, wave-breaking has
been observed for certain solutions to Whitham’s equation (for a formal
discussion we refer to [45] - see [18] for a rigorous proof) but the numerical
calculations carried out [23] do not support any strong claim that soliton
interaction holds for this model. An equation modelling both soliton inter-
action and wave-breaking on shallow water is an important problem in the
theory of water waves [45], [31]. This explains the numerous papers devoted
recently to the study of equation (1) - see [1], [2], [8]-[22], [28]-[33], [37],
[38], [42], [43].

Let us also mention that the above described model for wave-motion
on shallow water arises in an entirely different context, namely, the partial
differential equation (1) is a re-expression of the geodesic flow in the group
D3(S) of orientation-preserving diffeomorphisms of the circle. We will use
this connection with infinite dimensional geometry to study in detail the
wave-breaking phenomena.

We shortly present now the geometrical picture. Let

D3(S) =
{
η : S → S , η bijective and orientation-preserving,

andη, η−1 ∈ H3(S)

}

be the group of orientation-preserving diffeomorphisms of the circle mod-
elled on the Sobolev spaceH3(S). We sayf ∈ H3(S,S) if for everyx ∈ S

and any chart(O,φ) containingx and any chart(O′, ψ) of f(x), the map
ψ ◦ f ◦ φ−1 : φ(O) → R is in H3(φ(O),R). SinceD3(S) is open in
H3(S,S), we conclude thatD3(S) is also an infinite dimensional manifold,
cf. [27], which locally, around each of its pointsη, looks like a Hilbert space.
Furthermore,D3(S) can be given a group structure with multiplication be-
ing the composition of the maps.D3(R) is not precisely a Lie group (right
translationRη(φ) := φ ◦ η isC∞ but left translation and inversion are only
C0) but it shares some important Lie group properties.
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If H3(S) is the vector space of allH3(S)-vector fields, any tangent vector
Xη to D3(S) at η is of the formX ◦ η with someX ∈ H3(S). For a given
X ∈ H3(S), letXR(η) = X ◦ η denote the right-invariant vector field on
D3(S) whose value at the identitye is X. H3(S) can be thought of as the
Lie algebra ofD3(S). The Lie algebra bracket ofH3(S) is given by(LXRY R

)
(η) = [X,Y ] ◦ η, X, Y ∈ H3(S), η ∈ D3(S),

where[X,Y ] is the Lie bracket of vector fields onS.
Consider now theH1(S)-metric

(2) 〈f, g〉H1(S) =
∫
S

f(x)g(x) dx+
∫
S

f ′(x)g′(x) dx, f, g ∈ H1(S),

on TeD3(S) w H3(S). We can define a metric on allTD3(S) by right
translation, i.e. forV,W ∈ TηD3(S),

〈V,W 〉H1(S) :=
〈
V ◦ η−1,W ◦ η−1〉

H1(S) .

This metric is right-invariant by definition and makesD3(S) into a weak
Riemannian manifold, i.e. the topology induced by this metric is weaker
than the topology ofD3(S).

(1) is a re-expression of the geodesic flow in the groupD3(S) with the
above described (right-invariant) metric: ifv solves (1) and ifq = q(t, x)
solves

qt = u(t, q), t > 0, x ∈ S,

with q(0, x) = x on S, then the curveq(t, ·) : t ≥ 0 is a geodesic issuing
from the identity inD3(S). Conversely, ifq(t, ·) : t ≥ 0 is a geodesic,
thenv = qt ◦ q−1 solves (1) up to breakdown of the geodesic flow, cf. [21]
and [40]; for the explicit computations we refer to [36]. This aspect of (1)
resembles to the situation for Euler’s equation of hydrodynamics [6], [26],
[27].

As mentioned above, wave-breaking occurs for certain initial profiles of
(1). In this paper we give a quite detailed description of this phenomenon. We
first prove that the maximal existence timeT > 0 of a classical solution to (1)
is finite if and only if the slope of the solution becomes unbounded in finite
time (while the solution remains bounded). This is classically referred to as
wave breaking (see [45]). In contrast to other blow-up results for hyperbolic
partial differential equations (see [3], [4], [34], [44]) where few can be said
about the way blow-up occurs, we will see that the model (1) offers a very
nice picture of the wave-breaking phenomena. Namely, ifT < ∞, we have

lim
t→T

(
min
x∈S

{ux(t, x)}
)

= −∞
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and the exact blow-up rate is

lim
t→T

(
(T − t) min

x∈S

{ux(t, x)}
)

= −2.

Further, we will show that for a large class of odd initial data the blow-up
set consists of the three points{0, 1

2 , 1}. More precisely, we have

ux(t, 0) = ux

(
t,

1
2

)
= ux(t, 1) → −∞ as t → T < ∞

while
sup

(t,x)∈[0,T )×S

|u(t, x)| < ∞

and

sup
t∈[0,T )

|ux(t, x)| < ∞, x ∈
(

0,
1
2

)
∪
(

1
2
, 1
)
.

Formally, the wave breaks at a discrete set of points and elsewhere we do
not oberseve anything “bad” at breaking time!

2. The blow-up rate

This section is devoted to a general discussion of wave-breaking for solutions
to (1).

Let us first recall

Theorem A [17] Givenu0 ∈ H3(S), there exists a maximalT = T (u0) > 0
and a unique strong solution

u = u(·, u0) ∈ C([0, T );H3(S)) ∩ C1([0, T );H2(S))

to problem(1). The solution depends continuously on the initial data, i.e., the
mappingu0 7→ u(·, u0) is continuous fromH3(S) to C([0, T );H3(S)) ∩
C1([0, T );H2(S)) and if T < ∞ we havelimt→T |u(t, ·)|H3(S) = ∞.
Moreover,

∫
S
[u2(t, x)+u2

x(t, x)] dx is conserved on[0, T ). Foru0 ∈ H4(S)
the solutionu posseses the additional regularity

u ∈ C([0, T );H4(S)) ∩ C1([0, T );H3(S)).

A solutionu to (1) on some interval[0, t0) with t0 > 0 is calledclassical
if it satisfies the partial differential equation pointwise on[0, t0) × S. By
Sobolev’s imbedding theorem and Theorem A, anyu0 ∈ H4(S) yields a
classical solution of (1) on its maximal existence interval.



Shallow water equation 79

Throughout this paper we always takeu0 ∈ H3(S) and we consider the
problem of the development of singularities for strong solutions to (1). In
view of Theorem A and the above observation, it is easy to see that all results
will also hold for classical solutions, provided the initial datau0 ∈ H4(S).

By Sobolev’s imbedding theorem and the conservation law from Theo-
rem A we deduce that the solutionu satisfies

(3) sup
t∈[0,T )×S

|u(t, x)| < ∞.

It is convenient to introduce the potentialy(t, x) associated to a solution
u(t, x) of (1), defined byy := u− uxx. Problem (1) is equivalent to

(4)




yt = −2yux − yxu, t > 0, x ∈ R,

y(0, x) = y0(x), x ∈ R,

y(t, x+ 1) = y(t, x), t ≥ 0, x ∈ R,

as an evolution equation inC([0, T );H1(S)) ∩ C1([0, T );L2(S)).

Theorem 1The maximal existence timeT is finite if and only if the slope of
the solution becomes unbounded from below in finite time.

Proof. By Theorem A and Sobolev’s imbedding theorem it is clear that if
the slope of the solution becomes unbounded from below in finite time, then
T < ∞.

Let T < ∞ and assume that for some constantK > 0 we have

ux(t, x) ≥ −K, (t, x) ∈ [0, T ) × S.

Using (4) and integration by parts we find that

d

dt

∫
S

[y(t, x)]2 dx = −3
∫

S

ux(t, x) [y(t, x)]2 dx

≤ 3K
∫

S

[y(t, x)]2 dx, t ∈ (0, T ).

Gronwall’s inequality yields

(5)
∫

S

[y(t, x)]2 dx ≤ e3Kt

∫
S

[y0(x)]2 dx, t ∈ (0, T ).

Let us now approximateu0 ∈ H3(S) in the spaceH3(S) with a sequence
un

0 ∈ H4(S), n ≥ 1. We denote byun the solution of (1) with initial data
un

0 , defined on the maximal interval of existence[0, Tn) given by Theorem
A, and letyn := un − un

xx.
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The additional regularity ofun (ensured by Theorem A) enables us to
differentiate the first equation of (1), which leads to

(6)

d

dt

∫
S

[yn
x(t, x)]2 dx = −5

∫
S

un
x(t, x) [yn

x(t, x)]2 dx

−4
∫

S

un(t, x) yn(t, x) yn
x(t, x) dx,

t ∈ (0, Tn).

As above, we have

(7)
d

dt

∫
S

[yn(t, x)]2 dx = −3
∫

S

un
x(t, x) [yn(t, x)]2 dx, t ∈ (0, Tn).

We first claim that there is a sequencenk → ∞ with

(8) inf
t∈[0,Tnk

)

[
min
x∈S

unk
x (t, x)

]
= −∞.

Indeed, if this does not hold, we find that forn ≥ 1 large enough

inf
t∈[0,Tn)

[
min
x∈S

un
x(t, x)

]
> −∞

and by (6)-(7), taking into account (3), we would obtain

d
dt

∫
S

(
[yn(t, x)]2 +[yn

x(t, x)]2
)
dx

≤ Kn

∫
S

(
[yn(t, x)]2 + [yn

x(t, x)]2
)
dx, t ∈ (0, Tn),

for someKn > 0. But in this case Gronwall’s inequality gives∫
S

(
[yn(t, x)]2 + [yn

x(t, x)]2
)
dx ≤ eKnt

∫
S

(
[yn

0 (t, x)]2

+[yn
0,x(t, x)]2

)
dx, t ∈ (0, Tn).

In view of Theorem A, this implies thatTn = ∞ for all n ≥ 1 large enough
which is in contradiction to the continuous dependence on initial data (we
assumedT < ∞).

Therefore relation (8) holds and we obtain

sup
t∈[0,Tnk

)
|unk

x (t, ·)|L∞(S) = ∞,

which on its turn implies

sup
t∈[0,Tnk

)
|unk(t, ·)|H2(S) = ∞.
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Taking now into account the relationynk = unk − unk
xx, we find

sup
t∈[0,Tnk

)
|ynk(t, ·)|L2(S) = ∞.

The previous relation and (5) can not hold simultaneously in view of the
continuous dependence on initial data. The obtained contradiction shows
that our assumption (on the boundedness from below of the slope of the
solution) is false. The proof is complete.ut

Let us now derive a useful equivalent form of equation (1).
The operator(I−∂2

x)−1 acting onL2(S) has the following representation

[
(I − ∂2

x)−1f
]
(x) =

∫
S

G(x− ξ) f(ξ) dξ, f ∈ L2(S),

with the Green’s function

G(x) =
cosh

(
x− [x] − 1

2

)
2 sinh

(1
2

) , x ∈ S.

Equation (1) can also be written as

(
I − ∂2

x

)
(ut + uux) = −∂x

(
u2 +

1
2
u2

x

)
.

We obtain from here that

ut + uux − ∂x

(
G ∗

(
u2 +

1
2
u2

x

))
= 0,

where∗ stands for convolution with respect to the spatial variable. By dif-
ferentiation we obtain

utx + uuxx + u2
x = −∂2

x

(
G ∗

[
u2 +

1
2
u2

x

])

= u2 +
1
2
u2

x −G ∗
[
u2 +

1
2
u2

x

]

so that

(9) utx + uuxx = u2 − 1
2
u2

x −G ∗
[
u2 +

1
2
u2

x

]

in the spaceC([0, T );H1(S)).
The following result plays an important role in our further investigations:

Lemma 1 [18] Let t0 > 0 and v ∈ C1([0, t0);H2(S)). Then for every
t ∈ [0, t0) there exists at least one pointξ(t) ∈ S with

m(t) := min
x∈S

[
vx(t, x)

]
= vx(t, ξ(t)),
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and the functionm is almost everywhere differentiable on(0, t0) with

dm

dt
(t) = vtx(t, ξ(t)) a.e. on (0, t0).

We use the previous lemma to give more insight into the blow-up mech-
anism for the wave-breaking solutions to problem (1).

Theorem 2Letu0 ∈ H3(S) and letT > 0 be the maximal existence time
of the corresponding solution to(1). If T is finite, we have

lim
t→T

(T − t) min
x∈S

ux(t, x) = −2.

Proof.We already know by Theorem 1 that

lim inf
t→T

min
x∈S

ux(t, x) = −∞.

Define nowm(t) := minx∈S [ux(t, x)], t ∈ [0, T ), and letξ(t) ∈ S

be a point where this minimum is attained. Clearlyuxx(t, ξ(t)) = 0 since
u(t, ·) ∈ H3(S) ⊂ C2(S). Evaluating (9) atξ(t) and using Lemma 1, we
obtain the relation
(10)
dm

dt
+

1
2
m2 = u2(t, ξ(t)) −

[
G ∗

(
u2 +

1
2
u2

x

)]
(t, ξ(t)) a.e. on (0,T).

By Young’s inequality we have fort ∈ [0, T ) that

|G ∗
(
u2 +

1
2
u2

x

)
(t, ·)|L∞(S) ≤ |G|L∞(S) |u2(t, ·)

+
1
2
u2

x(t, ·)|L1(S)

≤ cosh
(1

2

)
2 sinh

(1
2

) |u(t, ·)|2H1(S)

=
cosh

(1
2

)
2 sinh

(1
2

) |u0|2H1(S),

if we take into account the conservation law from Theorem A.
Recalling that by (3) the solution is bounded on[0, T ) × S, we find a

constantK > 0 such that∣∣∣∣u2(t, ξ(t)) −
[
G ∗

(
u2 +

1
2
u2

x

)]
(t, ξ(t))

∣∣∣∣ ≤ K, t ∈ [0, T ).

From (10) and the previous relation we obtain

(11) −K ≤ dm

dt
+

1
2
m2 ≤ K a.e. on (0,T).
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Let ε ∈ (0, 1
2). Sincelim inft→T m(t) = −∞ by Theorem 1, there is

somet0 ∈ (0, T ) with m(t0) < 0 andm2(t0) > K
ε . Let us first prove that

(12) m2(t) >
K

ε
, t ∈ [t0, T ).

Sincem is locally Lipschitz (it belongs toW 1,∞
loc (R) by Lemma 1) there

is someδ > 0 such that

m2(t) >
K

ε
, t ∈ (t0, t0 + δ).

Pick δ > 0 maximal with this property. Ifδ < T − t0 we would have
m2(t0 + δ) = K

ε while

dm

dt
≤ −1

2
m2 +K < −1

2
m2 + εm2 < 0 a.e. on(t0, t0 + δ).

Being locally Lipschitz, the functionm is absolutely continuous and there-
fore we would obtain by integrating the previous relation on[t0, t0 + δ]
that

m(t0 + δ) ≤ m(t0) < 0

which on its turn would yield

m2(t0 + δ) ≥ m2(t0) >
K

ε
.

The obtained contradiction completes the proof of relation (12).
A combination of (11) and (12) enables us to infer

(13)
1
2

+ ε ≥ −
d m
dt

m2 ≥ 1
2

− ε a.e. on (0,T).

Sincem is locally Lipschitz on[0, T ) and (12) holds, it is easy to check that
1
m is locally Lipschitz on(t0, T ). Differentiating the relationm(t) · 1

m(t) =
1, t ∈ (t0, T ), we get

d

dt

(
1
m

)
= −

d m
dt

m2 a.e. on (t0, T ),

with 1
m absolutely continuous on(t0, T ). For t ∈ (t0, T ), integrate (13) on

(t, T ) to obtain(
1
2

+ ε

)
(T − t) ≥ − 1

m(t)
≥
(

1
2

− ε

)
(T − t), t ∈ (t0, T ),

that is,
1

1
2 + ε

≤ −m(t) (T − t) ≤ 1
1
2 − ε

, , t ∈ (t0, T ).
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By the arbitraryness ofε ∈ (0, 1
2) the statement of Theorem 2 follows.ut

We conclude this section by presenting sufficient conditions on the initial
profile to ensure wave breaking for the corresponding solution to (1).

Theorem B [17] Assumeu0 ∈ H3(S), u0 6≡ 0, satisfies∫
S

u0(x) dx = 0 or

∫
S

[u3
0(x) + u0(x)u2

0,x(x)] dx = 0.

Then the maximal existence time of the corresponding solution to(1) is
finite.

Theorem C [20] Assumeu0 ∈ C∞(S) is such that

min
x∈S

[u′
0(x)] + max

x∈S

[u′
0(x)] ≤ −2

√
3 |u0|H1(S).

Then the maximal existence time of the corresponding solution to(1) is
finite.

3. The blow-up set

In this section we determine for a large class of initial data the exact blow-up
set for the corresponding wave-breaking solution to the initial value problem
(1).

To a strong solutionu to (1) with initial datau0 ∈ H3(R) and with
maximal existence timeT > 0 (given by Theorem A) we associate the
differential equation

(14)

{
qt = u(t, q), t ∈ (0, T ),
q(0, x) = x, x ∈ R.

As already mentioned in the Introduction, (14) is the equation for the
geodesic inD3(S) issuing from the identity in the directionu0.

Lemma 2 Let u0 ∈ H3(S) and letT > 0 be the maximal existence time
of the corresponding solution to(1). Then the system(14) has a unique
solutionq ∈ C1([0, T ) × R,R). Moreover, for each fixedt ∈ [0, T ), the
map q(t, ·) in an increasing diffeomorphism ofR with qx(t, x) > 0 for
(t, x) ∈ [0, T ) × R.

Proof. For fixedx ∈ R we deal with an ordinary differential equation. By
Sobolev’s imbedding theorem we have thatu ∈ C1([0, T ) × R,R) and by
(3) we know thatu is bounded on[0, T ) × R. Therefore classical results in
the theory of ordinary differential equations (cf. [5]) yield the first assertion.
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From (14) we obtain the system

(15)

{
d
dt qx = ux(t, q) qx, t ∈ (0, T ),
qx(0, x) = 1, x ∈ R.

The solution to (15) is given by

(16) qx(t, x) = e
∫ t
0 ux(s,q(s,x)) ds, (t, x) ∈ [0, T ) × R.

For every fixedt ∈ (0, T ) we have by Sobolev’s imbedding theorem (and
the periodicity in the spatial variable) that

sup
(s,x)∈[0,t]×R

|ux(s, x)| < ∞.

Combining this with (16) we find a constantK > 0 such that

qx(t, x) ≥ e−tK , (t, x) ∈ [0, T ) × R.

The proof is complete. ut
Lemma 3 Letu0 ∈ H3(S) and letT > 0 be the maximal existence time of
the corresponding solution to(1). If y := u−uxx is the associated potential,
we have

y(t, q(t, x)) q2x(t, x) = y0(x), (t, x) ∈ [0, T ) × R.

Proof. Differentiate the left-hand side with respect to time and take into
account (4) and (15)-(16).ut
Lemma 4 Assumeu0 ∈ H3(S) is odd and letT > 0 be the maximal
existence time of the corresponding solution to(1). Thenq(t, ξ) = ξ for
ξ ∈ {0, 1

2 , 1} andt ∈ [0, T ).

Proof.An odd initial profile for (1) develops into a waveu(t, ·) which is odd
at any timet ∈ [0, T ), cf. [15].

We will prove the statement forξ = 1
2 . Sinceu(t, ·) is odd, we see that

u(t, 1
2) = 0, t ∈ [0, T ). From (14) we have that{

d
dt q(t,

1
2) = u(t, q(t, 1

2)), t ∈ (0, T ),
q(0, 1

2) = 1
2 .

Sinceu(t, 1
2) = 0 for t ∈ [0, T ) we conclude by uniqueness that the constant

function 1
2 is the solution of the above differential equation, that is,q(t, 1

2) =
1
2 for t ∈ [0, T ).

The remainding cases can be treated similarly.ut
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Lemma 5 Assumeu0 ∈ H3(S) is odd and letT > 0 be the maximal
existence time of the corresponding solution to(1). For 1

2 ≤ x ≤ 1 we have
the representation formulas
(17)
u(t, x) = 1

sinh( 1
2)

sinh(1 − x)
∫ x

1
2

sinh
(
ξ − 1

2

)
y(t, ξ) dξ

+ 1
sinh( 1

2)
sinh

(
x− 1

2

) ∫ 1
x sinh(1 − ξ) y(t, ξ) dξ, t ∈ [0, T ),

whereas
(18)
ux(t, x) = − 1

sinh( 1
2)

cosh(1 − x)
∫ x

1
2

sinh
(
ξ − 1

2

)
y(t, ξ) dξ

+ 1
sinh( 1

2)
cosh

(
x− 1

2

) ∫ 1
x sinh(1 − ξ) y(t, ξ) dξ, t ∈ [0, T ).

The representations on[0, 1
2 ] are obtained by reflection inx = 1

2 if we recall
thatu(t, ·) is odd fort ∈ [0, T ).

Proof.From Section 2 we know that

u(t, x) =
∫

S

G(x− ξ) y(t, ξ) dξ, (t, x) ∈ [0, T ) × S,

whereG(x) := cosh(x−[x]− 1
2 )

2 sinh( 1
2 )

, x ∈ S.

Fix (t, x) ∈ [0, T ) × [12 , 1] and letσ := 1
4 sinh( 1

2 )
. We have

u(t, x) = σ ex
∫ x

0
e−ξ− 1

2 y(t, ξ) dξ + σ e−x

∫ x

0
eξ+

1
2 y(t, ξ) dξ

+σ ex
∫ 1

x
e−ξ+ 1

2 y(t, ξ) dξ + σ e−x

∫ 1

x
eξ− 1

2 y(t, ξ) dξ.

As before, sinceu0(·) is odd, we have fort ∈ [0, T ) thatu(t, ·) andy(t, ·)
are odd too. Combining this with the spatial periodicity of bothu(t, ·) and
y(t, ·) ast ∈ [0, T ), and changing variables (ξ 7→ 1 − ξ) we arrive to the
identities

ex
∫ 1−x

0
e−ξ− 1

2 y(t, ξ) dξ + ex
∫ 1

x
e−ξ+ 1

2 y(t, ξ) dξ

= 2ex− 1
2

∫ 1

x
sinh(1 − ξ) y(t, ξ) dξ,

e−x

∫ 1−x

0
eξ+

1
2 y(t, ξ) dξ + e−x

∫ 1

x
eξ− 1

2 y(t, ξ) dξ

= 2e−x+ 1
2

∫ 1

x
sinh(ξ − 1) y(t, ξ) dξ,
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ex
∫ 1

2

1−x
e−ξ− 1

2 y(t, ξ) dξ + ex
∫ x

1
2

e−ξ− 1
2 y(t, ξ) dξ

= 2ex−1
∫ x

1
2

sinh
(

1
2

− ξ

)
y(t, ξ) dξ,

e−x

∫ 1
2

1−x
eξ+

1
2 y(t, ξ) dξ + e−x

∫ x

1
2

eξ+
1
2 y(t, ξ) dξ

= 2e1−x

∫ x

1
2

sinh
(
ξ − 1

2

)
y(t, ξ) dξ.

The sum of the right-hand sides in the fist two identities is

4 sinh
(
x− 1

2

)∫ 1

x
sinh(1 − ξ) y(t, ξ) dξ

whereas the sum of the right-hand sides of the last two identities is

4 sinh(1 − x)
∫ x

1
2

sinh
(
ξ − 1

2

)
y(t, ξ) dξ.

Therefore, adding these four identities side by side yields the formula for
u(t, x). The formula forux(t, x) is obtained now by differentiation.ut
Theorem 3 Assumey0 ∈ H1(S) is odd,y0 6≡ 0, andy0(x) ≥ 0 on [0, 1

2 ]
whereasy0(x) ≤ 0 on [12 , 1]. Then the corresponding solution to(1) blows-
up in finite timeT . We have that

(19) ux(t, 0) = ux

(
t,

1
2

)
= ux(t, 1) → −∞ as t → T < ∞

while
sup

(t,x)∈[0,T )×S

|u(t, x)| < ∞

and

(20) sup
t∈[0,T )

|ux(t, x)| < ∞, x ∈
(

0,
1
2

)
∪
(

1
2
, 1
)
.

Proof. If y0 is odd, then clearlyu0 ∈ H3(S) is odd and by Theorem B we
know thatT < ∞. Observe thatu(t, ·) is odd fort ∈ [0, T ), cf. [15], and
the solutionu(t, x) is bounded on[0, T ) × S if we recall (3).

By Lemmas 2-4 we obtain fort ∈ [0, T ) that

(21)

{
y(t, x) ≥ 0, x ∈ [0, 1

2

]
,

y(t, x) ≤ 0, x ∈ [1
2 , 1
]
.
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Let us now denote

f(t, x) :=
1

sinh
(1

2

) sinh(1 − x)
∫ x

1
2

sinh
(
ξ − 1

2

)
y(t, ξ) dξ,

(t, x) ∈ [0, T ) ×
[
1
2
, 1
]
,

g(t, x) :=
1

sinh
(1

2

) sinh
(
x− 1

2

)∫ 1

x
sinh(1 − ξ) y(t, ξ) dξ,

(t, x) ∈ [0, T ) ×
[
1
2
, 1
]
.

From (21) we see that

f(t, x) ≤ 0 and g(t, x) ≤ 0 for (t, x) ∈ [0, T ) × [
1
2
, 1].

If K := sup(t,x)∈[0,T )×S |u(t, x)|, we obtain from the previous relation
and (17) that

(22) |f(t, x)| + |g(t, x)| ≤ K, (t, x) ∈ [0, T ) ×
[
1
2
, 1
]
.

On the other hand, comparing the representation formulas (17) and (18), we
obtain the identity

ux(t, x) = −cosh(1 − x)
sinh(1 − x)

f(t, x) +
cosh

(
x− 1

2

)
sinh

(
x− 1

2

) g(t, x),
t ∈ [0, T ), x ∈

(
1
2
, 1
)
.

By the previous relation and (22) we conclude that

|ux(t, x)| ≤
(

cosh(1 − x)
sinh(1 − x)

+
cosh

(
x− 1

2

)
sinh

(
x− 1

2

)
)
K,

t ∈ [0, T ), x ∈
(

1
2
, 1
)
.

Together with the observation thatux(t, ·) is even fort ∈ [0, T ), this relation
proves (20).

Sinceu(t, ·) is periodic and odd for allt ∈ [0, T ), it is easy to deduce
the relation

ux(t, 0) = ux

(
t,

1
2

)
= ux(t, 1), t ∈ [0, T ).
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By Theorem 2 we know that

min
x∈S

[ux(t, x)] → −∞ as t → T

and therefore (19) is forced by (20).ut
Remarka) The same statement is true if we consider in Theorem 3 odd initial
potentialsy0 ∈ H1(S), y0 6≡ 0, andy0(x) ≤ 0 on [0, 1

2 ] whereasy0(x) ≥ 0
on [12 , 1]. To see this, it is enough to perform a shift iny0 by half a period.

b) In the class of initial potentials considered in Theorem 3, one can find
functions which are identical zero on some proper nondegenerated subin-
terval of [0, 1] containing1

2 . Nevertheless, of this continuum of zeros,1
2 is

the only one in the blow-up set!ut
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