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Abstract. We consider the problem of the development of singularities for
classical solutions to a new periodic shallow water equation. Blow-up can
occur only in the form of wave-breaking, i.e. the solution remains bounded
but its slope becomes unbounded in finite time. A quite detailed description
of the wave-breaking phenomenon is given: there is at least a point (in
general depending on time) where the slope becomes infinite exactly at
breaking time. The precise blow-up rate is established and for a large class
of initial data we also determine the blow-up set.
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1. Introduction

In this paper we consider the problem of the development of singularities
for classical solutions to the initial value problem

Ut — Utpgy + Uy = 2UzUpy + Ulgry, t>0, x€eR,
(1) u(0, ) = up(z), z € R,
u(t,x + 1) = u(t, x), t>0, zeR,

whereuy is a given periodic initial value.

This quasilinear partial differential equation is a model for wave motion
on shallow water cf. [12Ju(t, =) representing the water’s free surface above
a flat bottom. Equation (1) was abstractly derived as a bi-Hamiltonian gen-
eralization of the famous Korteweg-de Vries (KdV) equation [28]. Recently,
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R. Camassa and D. Holm gave a physical derivation of (1) and found that
the equation has solitons: two solitary waves keep their shape and size after
interaction while the ultimate position of each wave is affected only with a
phase shift by the nonlinear interaction (see [19]). In [13] it was conjectured
that wave-breaking occurs for certain initial profiles of (1) - for results on
wave-breaking for solutions to (1) we refer to [15], [18], [19]. Equation (1)
is integrable in the sense of an infinite-dimensional Hamiltonian system (for
this aspect we refer to [21], [16]).

The KdV equation and Whitham’s equation (see [45]) are well-known
models for wave-motion on shallow water with a flat bottom. However,
whereas the KdV equation admits soliton interaction for its solitary waves
[23], [24], [25], [39], the KdV equation does not model wave-breaking: it
is shown in [7] that solutions exist globally for initial data Ir¥(S) - see
also [35] (hereS is the unit circle). On the other hand, wave-breaking has
been observed for certain solutions to Whitham’s equation (for a formal
discussion we refer to [45] - see [18] for a rigorous proof) but the numerical
calculations carried out [23] do not support any strong claim that soliton
interaction holds for this model. An equation modelling both soliton inter-
action and wave-breaking on shallow water is an important problem in the
theory of water waves [45], [31]. This explains the numerous papers devoted
recently to the study of equation (1) - see [1], [2], [8]-[22], [28]-[33], [37],
[38], [42], [43].

Let us also mention that the above described model for wave-motion
on shallow water arises in an entirely different context, namely, the partial
differential equation (1) is a re-expression of the geodesic flow in the group
D3(S) of orientation-preserving diffeomorphisms of the circle. We will use
this connection with infinite dimensional geometry to study in detail the
wave-breaking phenomena.

We shortly present now the geometrical picture. Let

DH(S) = n:S — S, n bijective and orientation-preserving,
andn,n~! € H3(S)

be the group of orientation-preserving diffeomorphisms of the circle mod-
elled on the Sobolev spadé?(S). We sayf € H3(S,S) if for everyx € S

and any chartO, ¢) containingz and any chartO’, ¢) of f(z), the map
pofop ! ¢p(0) — Risin H3(4(0),R). SinceD3(S) is open in
H3(S,S), we conclude thaD?(S) is also an infinite dimensional manifold,
cf. [27], which locally, around each of its poinjslooks like a Hilbert space.
FurthermoreD?(S) can be given a group structure with multiplication be-
ing the composition of the map®?3(RR) is not precisely a Lie group (right
translationR,,(¢) := ¢ on is C* but left translation and inversion are only
C") but it shares some important Lie group properties.
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If #3(S) is the vector space of all 3 (S)-vector fields, any tangent vector
X, to D3(S) atn is of the formX o 5 with someX € H3(S). For a given
X € H3(S), let X®(n) = X o n denote the right-invariant vector field on
D3(S) whose value at the identityis X. #3(S) can be thought of as the
Lie algebra ofD3(S). The Lie algebra bracket 6{3(S) is given by

(LxrY™) () =[X,Y]on, X,Y €H*S), neDS),

where[X, Y] is the Lie bracket of vector fields ¢h
Consider now thé7!(S)-metric

@) (.9 = / f(@)g(x) da + / f(@)g (2)dx, f.ge H'S),
S S

on T.D3(S) = H3(S). We can define a metric on al'D3(S) by right
translation, i.e. fol, W € T, D3(S),

(ViW) ki (s) = <V on L, Wo 7771>H1(S) i
This metric is right-invariant by definition and mak®s(S) into a weak
Riemannian manifold, i.e. the topology induced by this metric is weaker
than the topology oD3(S).

(1) is a re-expression of the geodesic flow in the grd#gS) with the
above described (right-invariant) metric:ifsolves (1) and iy = q(¢, x)
solves

Qt:U(t,Q), t>07 .Z'ES,

with ¢(0,2) = z on§, then the curve(t,-) : ¢ > 0 is a geodesic issuing
from the identity inD3(S). Conversely, ifg(t,-) : t > 0 is a geodesic,
thenv = ¢; o ¢~ solves (1) up to breakdown of the geodesic flow, cf. [21]
and [40]; for the explicit computations we refer to [36]. This aspect of (1)
resembles to the situation for Euler’s equation of hydrodynamics [6], [26],
[27].

As mentioned above, wave-breaking occurs for certain initial profiles of
(1). Inthis paper we give a quite detailed description of this phenomenon. We
first prove that the maximal existence tiffie- 0 of a classical solution to (1)
is finite if and only if the slope of the solution becomes unbounded in finite
time (while the solution remains bounded). This is classically referred to as
wave breaking (see [45]). In contrast to other blow-up results for hyperbolic
partial differential equations (see [3], [4], [34], [44]) where few can be said
about the way blow-up occurs, we will see that the model (1) offers a very
nice picture of the wave-breaking phenomena. Namely, 4f oo, we have

I ( Lt ):_
Jing \min{us(t, 2)} ) = —o0
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and the exact blow-up rate is

lim ((T — ) min{uq(t x)}) — 2.

t—T

Further, we will show that for a large class of odd initial data the blow-up

set consists of the three poirs, %, 1}. More precisely, we have

1
Uz (t,0) = uy <t, 2) =u,(t,1) > —o00 as t—T < oo
while

sup  u(t,z)| < o0
(t,z)€[0,T) xS

1 1
sup |ugz(t,z)| < oo, x€ <O, ) U <,1> )
t€[0,T) 2 2
Formally, the wave breaks at a discrete set of points and elsewhere we do
not oberseve anything “bad” at breaking time!

and

2. The blow-up rate

This sectionis devoted to a general discussion of wave-breaking for solutions
to (1).
Let us first recall

Theorem A[17] Givenug € H3(S), there exists amaximdl = T (ug) > 0
and a unique strong solution

u=u(-,up) € C([0,T); H(S)) N C'([0,T); H(S))

to problem(1). The solution depends continuously on the initial data, i.e., the
mappinguo — u(-, ug) is continuous fromi3(S) to C ([0, T); H3(S)) N
CH([0,T); H*(S)) and if T < oo we havelimy 7 |u(t,-)| g3 = oo.
Moreover, [[u?(t, z) +uZ(t, z)] dz is conserved of0, T). Forug € H*(S)

the solutionu posseses the additional regularity

ue C([0,T); HY(S)) N CH([0,T); H*(S)).

A solutionu to (1) on some intervad, to) with ¢y > 0 is calledclassical
if it satisfies the partial differential equation pointwise [Onty) x S. By
Sobolev’s imbedding theorem and Theorem A, agyc H*(S) yields a
classical solution of (1) on its maximal existence interval.
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Throughout this paper we always take € H?3(S) and we consider the
problem of the development of singularities for strong solutions to (1). In
view of Theorem A and the above observation, itis easy to see that all results
will also hold for classical solutions, provided the initial datac H*(S).

By Sobolev’s imbedding theorem and the conservation law from Theo-
rem A we deduce that the solutiansatisfies

(3) sup |u(t,z)| < 0.
te[0,T)xS

Itis convenient to introduce the potentigk, «) associated to a solution
u(t, ) of (1), defined byy := u — u,,. Problem (1) is equivalent to

Yt = —2Yuy — Yz u, t>0, z€R,

(4) y(0,2) =yo(z), wz€R,
yt,x+1)=y(t,x), t=0, z€R,

as an evolution equation i@([0, T); H(S)) N C*([0, T); La(S)).

Theorem 1The maximal existence tinfeis finite if and only if the slope of
the solution becomes unbounded from below in finite time.

Proof. By Theorem A and Sobolev’s imbedding theorem it is clear that if
the slope of the solution becomes unbounded from below in finite time, then
T < 0.

LetT < oo and assume that for some constant- 0 we have

ugy(t,x) > =K, (t,z)€[0,T) xS.
Using (4) and integration by parts we find that

% /S[y(t,x)]2dx = 3/%(,57;5) y(t, 2)] de

S
<3K [ [y(t,x))*dz, te(0,T).
S
Gronwall’'s inequality yields
6 [waPde < [P de te©.)
S S

Letus now approximate, € H3(S) inthe spacd’3(S) with a sequence
uf € H*(S), n > 1. We denote by." the solution of (1) with initial data
ug, defined on the maximal interval of exister[6eT,,) given by Theorem
A, and lety” := u" —ul,.
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The additional regularity of.™ (ensured by Theorem A) enables us to
differentiate the first equation of (1), which leads to

G [ozearis = =5 [ b
(6) — w(t, )y (t, )y (¢, x) dx
4/S (t,2) 5" (t, 2) 4 (¢, 7) de,

te (0,T),).

As above, we have

M & [brealta == [weo P, te©.T,),

We first claim that there is a sequeneg — oo with

inf in u™ (¢ = —00.
(®) it iz ,0)] = —oo

Indeed, if this does not hold, we find that fer> 1 large enough

inf [minug(t,x)} > —00
t€[0,T,) LzeS

and by (6)-(7), taking into account (3), we would obtain
4 Jo (o) gz 2)?) da
S Kn fS ([yn(t7m)]2 + [yg(twr)]z) dx? te (O7TTL)7
for somekK,, > 0. But in this case Gronwall’'s inequality gives

[ (1o + o) do < e [ (e

S S
o (4 2))?) do, ¢ € (0,T5).

In view of Theorem A, this implies th&f, = oo for all n > 1 large enough

which is in contradiction to the continuous dependence on initial data (we

assumed” < o0).
Therefore relation (8) holds and we obtain

sup  |ugz*(t, )| oo (s) = 00,
t€[0,Tn,)

which on its turn implies

sup |u"*(t, )| g2(s) = oo
t€(0,Tn,)
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Taking now into account the relatigff* = u™* — w2, we find

xx?

sup  [y"*(t, )| p2(s) = oo
t€[0,Tn,,)

The previous relation and (5) can not hold simultaneously in view of the
continuous dependence on initial data. The obtained contradiction shows
that our assumption (on the boundedness from below of the slope of the
solution) is false. The proof is completel

Let us now derive a useful equivalent form of equation (1).
The operatofl —9?2)~! acting onL?(S) has the following representation

(=371 @) = [Ga-9r©d 1<)
with the Green's function
cosh (z — [z] — 3)
2sinh (3)

Equation (1) can also be written as

G(z) = x €S.

(I- 63) (ug + uug) = =0y <u2 + ;ﬁ) .

We obtain from here that

1
U + Uty — Oy (G* (u2+ 2“:%)) =0,

wherex stands for convolution with respect to the spatial variable. By dif-
ferentiation we obtain

1
Upy + Ulgy + ui = —85 (G * [u2 + 2u§]>

1 1
:uQ—l—iui—G* [u2+2u§}
so that
1 1
9) Uty + Uy = u? — §u§ — G {u2 + Qui]

in the space” ([0, 7); H(S)).

The following result plays an important role in our further investigations:
Lemma 1[18] Letty > 0 andv € C([0,ty); H*(S)). Then for every
t € [0,t9) there exists at least one poifift) € S with

m(t) i= min [oa(t,2)] = va(t, (1),
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and the functionn is almost everywhere differentiable @i ¢y) with

dm
r (t) = v (¢, &(2)) a.e. on (0,tp).

We use the previous lemma to give more insight into the blow-up mech-
anism for the wave-breaking solutions to problem (1).

Theorem 2Letuy € H3(S) and letT > 0 be the maximal existence time
of the corresponding solution {d). If 7' is finite, we have

li T —t i t = —2.
Jixg, (T = #) minus (t, )

Proof. We already know by Theorem 1 that

lim inf min u,(t, x) = —oo.
t—T zeS

Define nowm(t) := minges [u,(t,x)], t € [0,7), and leté(t) € S
be a point where this minimum is attained. Cleatly,(¢,£(t)) = 0 since
u(t,-) € H3(S) c C?(S). Evaluating (9) at(¢) and using Lemma 1, we
obtain the relation

(10)
dcTT + ;m —2(t,6(1)) — [G* <u2 + ;uiﬂ (t,(t)) ae. on(0,T)

By Young’s inequality we have far e [0, 7') that

|G * <u2 + ;ui) (t, ) ioos) < 1Glpees) lu?(t, )
3o
< cosh (%) fu )‘2
2 sinh (%) H(S)
cosh (%) 9
= m |u0’H1(S)
if we take into account the conservation law from Theorem A.

Recalling that by (3) the solution is bounded [6n7") x S, we find a
constantk’ > 0 such that

u?(t, £(t)) — [G % <u2 + ;u?c)] (t,f(t))‘ <K, telo,T).

From (10) and the previous relation we obtain

d 1
(11) —K < d—m+2m <K a.e.on(0,T)
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Lete € (0,1). Sinceliminf; ,7m(t) = —co by Theorem 1, there is
somet, € (0,T) with m(tg) < 0 andm?(ty) > £. Let us first prove that

(12) m(t) > g t € [to,T).

Sincem is locally Lipschitz (it belongs t(Wli,COO (R) by Lemma 1) there
is somey > 0 such that

K
m2(t) > - te (to,to + 0).

Pick 6 > 0 maximal with this property. 1§ < 7" — t, we would have
m2(to + §) = £ while

d 1
7? < _§m2 +K < —§m2 +em? <0 a.e. onty,to+9).

Being locally Lipschitz, the functiom is absolutely continuous and there-
fore we would obtain by integrating the previous relation[anty + J]
that

m(to + 5) < m(to) <0
which on its turn would yield

K
m?(to + ) > m(to) > =
The obtained contradiction completes the proof of relation (12).
A combination of (11) and (12) enables us to infer
dm

1 ol 1
1 z >_dt >~ _ - ge.on(0T
(13) stez——5>5-¢ (0,T)

Sincem is locally Lipschitz on0, T") and (12) holds, it is easy to check that
L is locally Lipschitz on(to, T'). Differentiating the relatiomn(t) - % =
1,t € (to,T), we get

d 1 dm
o (> - _ :;2 a.e.onf,7),

—~ _dt_
with L absolutely continuous ofto, T'). Fort € (to, T), integrate (13) on
(t,T) to obtain

(;+5) (T—t)z—ml(t)z @—e) (T'—t), te(t,T),

that is,
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By the arbitraryness of € (0, ) the statement of Theorem 2 followsD

We conclude this section by presenting sufficient conditions on the initial
profile to ensure wave breaking for the corresponding solution to (1).

Theorem B[17] Assumaery € H3(S), ug # 0, satisfies

/uo(x) dr =0 or /[ug(m) + uo(x)u(%x(m)] dzx = 0.
S S
Then the maximal existence time of the corresponding solutidgn)tés
finite.

Theorem C[20] Assumer, € C°(S) is such that

. / / < _2 .
minug(2)] + max{ug(e)] < ~2v3uolm )
Then the maximal existence time of the corresponding solutidn)tés
finite.

3. The blow-up set

In this section we determine for a large class of initial data the exact blow-up
set for the corresponding wave-breaking solution to the initial value problem
(2).

To a strong solution: to (1) with initial dataug € H?(R) and with
maximal existence tim& > 0 (given by Theorem A) we associate the
differential equation

qt = u(tv Q)7 le (O,T),
(14) { q(0,2) =z, ze€R.

As already mentioned in the Introduction, (14) is the equation for the
geodesic irD3(S) issuing from the identity in the directiom.

Lemma 2 Letug € H3(S) and letT > 0 be the maximal existence time
of the corresponding solution tal). Then the systerti4) has a unique
solutiong € C1([0,T) x R, R). Moreover, for each fixed € [0,T), the
map q(t,-) in an increasing diffeomorphism & with ¢, (¢,z) > 0 for
(t,z) € [0,T) x R.

Proof. For fixedz € R we deal with an ordinary differential equation. By
Sobolev's imbedding theorem we have that C1([0,7) x R, R) and by

(3) we know that: is bounded on0, T') x R. Therefore classical results in
the theory of ordinary differential equations (cf. [5]) yield the first assertion.
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From (14) we obtain the system

{ 4 = ug(t,q) qn, t€(0,7T),

15
(15) 7:(0,z) =1, zeR.

The solution to (15) is given by
(16) Go(t, ) = elo w0 ds (1 1) € [0, T) x R.

For every fixedt € (0,7") we have by Sobolev’s imbedding theorem (and
the periodicity in the spatial variable) that

sup  |ug(s,z)| < 0.
(s,z)€[0,t] xR

Combining this with (16) we find a constafit > 0 such that
@(t,x) > e ™™, (t,x) €[0,T) xR

The proof is complete. O

Lemma 3Letuy € H3(S) and letT > 0 be the maximal existence time of
the corresponding solution{@d). If y := u—u,, IS the associated potential,
we have

y(t,a(t,2)) gz(t, @) = yo(x), (t,x) € [0,T) x R.

Proof. Differentiate the left-hand side with respect to time and take into
account (4) and (15)-(16).0
Lemma 4 Assumeug € H3(S) is odd and letl’ > 0 be the maximal

existence time of the corresponding solution19. Theng(¢, &) = £ for
¢e{0,1 1} andt € [0, 7).
Proof.An odd initial profile for (1) develops into a wavet, -) which is odd
atany timet € [0, 7)), cf. [15].

We will prove the statement faf = 1. Sinceu(t, -) is odd, we see that
u(t,3) =0, ¢t € [0,T). From (14) we have that

Za(t,3) =ult,qt,3)), te(0,T),
q(0 1.

3) =

Sinceu(t, %) = 0fort € [0, T) we conclude by uniqueness that the constant
function? is the solution of the above differential equation, thag(s, 3 ) =
s fort€10,7).

The remainding cases can be treated similarly.
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Lemma 5 Assumeuy € H3(S) is odd and letl’ > 0 be the maximal
existence time of the corresponding solutioifitp For % <z < 1we have
the representation formulas

(17)
u(t,z) = Sinhl(%) sinh(1 — z) fg sinh (€ — 1) y(t,€) d¢
+sinhl(l> sinh (.’E B %) fxl Slnh(l - 5) y(t7 f) df, te [0, T),
whereas
(18)

ug(t, ) = _sinhl(l) cosh(1 — x) fg sinh (€ — 1) y(t, &) d¢
2
+@ cosh (z — ) fxl sinh(1 — &) y(t,&)d¢, t€[0,T).
2
The representations df, 5] are obtained by reflection in = 3 if we recall
thatu(t, -) is odd fort € [0, T).
Proof. From Section 2 we know that

u(t, z) /G r— &)yt 6)de, (tx)€[0,T) xS,
1
whereG(z) := %, T €S,
2
FiX (t,l’) [ ) [%, ] and IetO' = m We have
2

uta) = [Ty de e [ty de
0 0

1 1
‘l‘O’GI/ eH%y(t,f)df-i-Uex/ egféy(tvﬁ)df-

As before, sincey(-) is odd, we have fot € [0,T") thatu(¢, -) andy(t, -)
are odd too. Combining this with the spatial periodicity of bath, -) and
y(t,-) ast € [0,7T), and changing variableg (~ 1 — &) we arrive to the
identities

1—x 1
e /0 e dy(t, €) dE + ” / ety (t, €) d

— 92e%3 /1 sinh(1 — &) y(¢, &) d¢,

11—z 1 1 1
- /0 T dy(t,€) de + e / Sy (t,€) de

1 1
— 9wt / sinh(€ — 1) y(t,€) e,
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1
x 2

= 2833_1 /:j sinh <; - 5) y(tvf) dga

2

1 T

e [T g e+ [ty ae

2

— 9el-w /f sinh (5 — ;) y(t, &) d€.

2

The sum of the right-hand sides in the fist two identities is

1
4 sinh (:1: — ;) /x sinh(1 — &) y(t, &) d€

whereas the sum of the right-hand sides of the last two identities is

4sinh(1 — x) ﬁx sinh (5 - ;) y(t, &) d€.

2
Therefore, adding these four identities side by side yields the formula for
u(t, ). The formula foru,(t, x) is obtained now by differentiation.O
Theorem 3Assumey, € H'(S) is odd,yo # 0, andyo(z) > 0 on [0, 1]

whereagyo(z) < 0on[1, 1]. Then the corresponding solution tb) blows-
up in finite timeT". We have that

1
(19) Uz (t,0) = uy <t, 2) =ux(t,1) > —o00 as t—-T <o

while
sup  |u(t,z)] < o0
(t,2)€[0,T) xS
and
1 1
(20) sup |ug(t,x)| < oo, x€ <O, > U (, 1> .
te[0,7) 2 2

Proof. If 4 is odd, then clearly,y € H3(S) is odd and by Theorem B we
know thatT" < co. Observe that(t, -) is odd fort € [0,7), cf. [15], and
the solutionu(¢, z) is bounded or0, T') x S if we recall (3).

By Lemmas 2-4 we obtain fare [0, T') that

y(t,z) >0, z€|0,1],
(21) {y(t,x) <0, =zxze€ [ ,i]

Sl
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Let us now denote

flt) = 3y (=) / " sinh (5 - ;) y(t,€) e,

S11

(t,2) € [0,T) x [;1}

1
g(t,x) := sin;(%) sinh <x — ;) /x sinh(1 — &) y(¢, &) d¢,

(t,2) € [0,T) x [;1}

From (21) we see that
1

f(t,z) <0 and g(t,x) <0 for (t,z)€0,T) x [571].

If K := sup( z)ejo,r)xs |u(t, )|, we obtain from the previous relation
and (17) that
1
@) ol +lota) <K (o) e0.1)x |3].
On the other hand, comparing the representation formulas (17) and (18), we
obtain the identity

Ug(t, ) = —‘;m F(t, ) +

1
t e [O,T), T € <2,1> .
By the previous relation and (22) we conclude that

cosh(l —z) = cosh (33 - l)
fua (t, 2)| < (Sinh(l ~2) " sinh (& g) ) "

1

Together with the observation that(¢, -) is even fort € [0, T'), this relation
proves (20).
Sinceu(t, -) is periodic and odd for alf € [0,7), it is easy to deduce

the relation

cosh (z — L
@=2) i,
2

)

sinh (35 -

e (£,0) = 1y (t, ;) — (1), te0,T).
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By Theorem 2 we know that

minfuy(t,x)] - —oc0 as t—T
€S

and therefore (19) is forced by (20)O

Remarlka) The same statementis true if we consider in Theorem 3 odd initial
potentialsy, € H'(S), yo # 0, andyo(z) < 0 on[0, 1] whereagjy(z) > 0
on [%, 1]. To see this, it is enough to perform a shiftyinby half a period.

b) In the class of initial potentials considered in Theorem 3, one can find
functions which are identical zero on some proper nondegenerated subin-
terval of [0, 1] containingl. Nevertheless, of this continuum of zergsis
the only one in the blow-up set!C
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