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0. Introduction
We consider the Stokes equation

u— Au+ Vp =0,divu =0in 2 x (0,00),
(0.1) u=ugatt =0,
u=00nas? x (0,00)

inadomainf2 in R™(n > 2) with smooth boundary. Here= (u!,... u")

are unknown velocity field ang is unknown pressure field. Initial data

ug is assumed to satisfy @mpatibility condition: divug = 0 in {2 and

the normal component afy equals zero ow{2. This system is a typical

parabolic equation and it has several properties resembling the heat equation.
If 2 = R™, wisreduced to a solution of the heat equation with initial data

ug because there is no boundary condition. For example, a regularity-decay

estimate

(0.2) [Vu(t)|l, < Ct=2||ug|, fort >0

holds for alll < p < oo with C' independent of andug, where|| f(¢)||, :=

(fo |f(t,a:)]f”dx)1/p andV denotes the gradient in the space variables. If
p = 2, the estimate (0.2) is still valid for any domain. Indeed, since the
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Stokes operatad is self-adjoint and nonnegative, the operatagenerates
an analytic semigroup—*4. This yields

|AY2e g1y < O3 |ug 2.

Sinceu = e *ug and||AY?ully = || Vul|2, (0.2) follows forp = 2.(See
Borchers and Miyakawa [3] for applications.) Fbr< p < oo, (0.2) is
valid for bounded domains (Giga [7]) and for a half space (Ukai [13]).
The estimate (0.2) is also valid for exterior domain witk> 3, with extra
restrictionl < p < n.(See Borchers and Miyakawa [2], Giga and Sohr [8],
Iwashita [10].)

However, there was no result fpr= 1 or p = oo where the boundary
of £2 is not empty. The main difficulty lies in the fact that the projection
associated with the Helmholtz decomposition is not boundef'itype
spaces, because it involves singular integral operators such as the Riesz
operators. Nevertheless in this paper, we prove (0.2) forl where(? is
ahalf spac®” = {z = (z1, -+ ,zn); xn > 0}.

Theorem 0.1. Letu be the solution of the Stokes equation (0.1ir= R”
with initial dataug € L'(R™), which satisfy the compatibility condition.
Then there is a constaxit independent ofiy such that

(0-3) IVa()ll < OtV ug]

forall ¢ > 0.

This is rather surprising since we do not expgett)||1 < C||uo||1 for
2 = R . Actually, the estimate (0.3) follows from a stronger estimate:

Theorem 0.2. Under the same hypothesis as in Theorem 0.1, there is a
constantC’ independent ofiy such that

(0.4) IVu(t) |30y < C't 2 |Jug||x
forall ¢ > 0.
Here

112 @ny = mt{l| Fllz @ny; f € HUR™), flry = £,

whereH!(R") is the Hardy space iR" defined later.
Combining the Sobolev inequality with (0.3), we have

(0.5) ()l n1y < Cot™2[|uolly

with Cy independent of > 0 andwug. This has been already proved by
Borchers and Miyakawa [1] where a genefdl— L7 estimate

[u(@)llp < Cot™*[|uollq
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with « = (n/2)(1/q — 1/p) has been proved for all < ¢ < p < co where

{2 = R"'. Their method does not depend on (0.3). Fox ¢ < p < oo,

such estimate has been proved by Ukai [13]. There is an extensive literature
on LP? — L7 estimates for exterior domainfg (n > 3) (e.g. Giga and Sohr

[9], Borchers and Miyakawa [2], Iwashita [10], Chen [4]) but the casel

andp = oo is included only in Chen [4] fon = 3.

To show (0.4), we recall the solution formula obtained by Ukai [13]. The
solution is represented by the Gauss kernel and various Riesz operators. It
is known by Carpio [4] that the solutiom = G, * u( of the heat equation
with initial dataug € L'(R") satisfies

(0.6) IV (®) g @ny < Crt~?|Juoly

whereG; isthe Gauss kernel. If the solution of (0.1) were represented only by
G and aRiesz operatorR, (0.6) could yield (0.4) since the Riesz operator
is bounded ir{!. Unfortunately, the formula contains the Riesz operator in
tangential variables’ = (z1,...,z,—1)t09R’, and therefore itis not clear
that such operators are bounded4h(R™). To overcome this difficulty, we
rewrite Ukai’s formula so tha¥ « does not contain tangential Riesz operators
using the operatod whose symbol equalg’|, where(¢', &,) = £ € R™.
Because of this, we need to prove

(0.7) 1Aw(®) 341 my < Cot™?|Jug s

in addition to (0.6). Although there are several extra technical difficulties,
this is a rough idea for the proof of (0.4).

1. The solution formula

In this section we recall the solution formula for (0.1) obtained by Ukai [13]
for later use.
First, we establish conventions of notations. For an n-dimensional vector
a, we denote its tangential componéat, . .., a,,_1) bya’ € R*~1, so that
a=(d,a,).Weseb; = d/0zjandletV’ = (01, - ,0,—1). Hereafter('
denotes a positive constant which may differ from one occasion to another.
Let F be the Fourier transform iR":

i) = [ e
and letf be the Fourier tranform of in the tangential space:

figha) = [ e e a i,
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The Riesz operatorB; (j =1,...,n),5; (j =1,...,n—1), and the
operatorA are defined by

(Af)(é) = lﬁ’lff(f)-
We setR’ = (Ry,...,Ry-1), S = (51, ...,S,-1) and defindJ by
Uf=rR -S(R - S+ Ry)e,

wherer is the restriction operator froR" to R’}, ande is the extension
operator fromR’; ontoR™ with value 0, that is,

ef:{f for z,, > 0,

0 forz, <O.

We also define the operatokt) and F'(t) by

[E@) (@) = Jpn {Ge(z —y) = Gu(a’ =y 20 + ya)} £(y)dy,
[F@)f1(@) = Jpn {Ge(z = y) + Gu(a’ =y 20 + ya)} £(y)dy,
whereG, is the Gauss kern€¥, (z) = (4xt)~"/2¢~17*/4 Note thatE(t) f

(resp.F(t) f) is the solution to the heat equationii with Dirichlet (resp.
Neumann) data:

—Az=0inR? x (0,7),
=0 =1,
Z|lz,=0 =0.(resp.Opz|z,—0 =0.)
We recall the formula obtained by Ukai.

Theorem 1.1(Ukai). The solution to (0.1) can be expressed as

(1.18.) u = UE(t)Vluo,
(1.1b) u' = E(t)Vaug — SUE(t)Viuy,
whereViug = =S - u), + uf andVaug = uf, + Suf.

We give a formal proof of Theorem 1.1 for the reader’s convenience. By
(0.1), we getAp = 0 in R’;. Applying the tangential Fourier transform,
the equatiordp = 0 is reduced to an ordinary differential equati@} —
|€'12)p = 0. Assuming thap is bounded, we getd, + |¢'|)p = 0. We
setv” = (9, + A)u" andv’ = Vou = o’ + Su™. Thenv satisfiesv, —
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Av = 0, v"|i=g = AViug, v'|t=0 = Vaug, andv|,,,—o = 0. Thusv solves
the heat equation iR"! with zero Dirichlet data. Solving for with some
manipulations we get (1.1).

To solve our problem, we rewrite the formula (1.1). Note that the vector
field w in (1.1) is given as a restrictioru of a vector fieldu = (@', u,,) of
the form

(12a) @" =R -S(R S+ Ry)eE(t)Viuo,
(1.2b) @ = E{t)Vaug — SR’ - S(R' - S + Ry)eE(t)Viuo.

Lemma 1.2. Letj be an integer witH < j < n. Assume thativug = 0in
R” whenj = n. Then the first space derivative ®fire expressed as

0;u"™ = —R;{R' - AeE(t)uq — R,V - eE(t)u

(1.3a) +R -V'eE(t)uy + RpAeE(t)ug},
8j’ljl = (%E(t)’ué + wj
(1.3b) +RAR (V' - eE(t)up) — R, V' (V' A™L - eB(t)ug)

—R'AeE(t)uf + R,V eE(t)uy},
where

(1.4) Wi = V' AT E(t)ug forl<j<n-1,
J _v/(vl . A_lF(t)u6) fOI’j —

Proof. To show (1.3), it is convenient to use the Fourier transformation by
d;uin (1.2). Note that the operatof§ ande£(t) commute. Then we get

Fo) =6 i (6w 1)

HREANGEE T

Z—EI eE(t)u e Uy
» (—m FleE(t)uh) + F(eE() o>)

- ifj Zfl an. ] e !
- m{(\a’f’ ) Fero

+ (g i€+ e e <>u3>},
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Fo) = it; (f(E(t) )+ §| (E(t)u8)>

e ss) <sz i @)
gJ|5f|<|»sr EVAGREREGE]

 (~ o FeB ) + FleB W)

€|
s / éjgl n
=& F(eE(t)ug) — € F(eE(t)uy)
% i e ig—ni’ ) —F(e
*ra{mf B~ e (i g Fenn)

—Zél’ e up
<|5|’5' € >f( E) 0)}'

By the inverse Fourier transform the first identity implies (1.3a). To
show (1.3b), we must handle the teign(i¢’ /|£'|) F[E (t)u(]. By the inverse
Fourier transform this term is transformedov’ A~ E(t)uf. Forl < j <
n — 1 this equals tav;. Forj = n we invoke the assumption diw, = 0 so
thatd,uf = -V’ - ug;:

V' ATLEtu =9, V' A7 [ {Gi(z —v)
R}
—Gi(@' — o, xn + yn) }ug (y)dy

0
= v//lil - {&CGt(x — y)

0 n
_T%Gt(xl - y/7 -fUn + yn)} uO (y)dy

Tn — Yn
=VvA! - {— 2ty Gi(z —y)

Tn + Yn
2t

- V'A—l{ | lGia=

Yn =400
—Gi(2' =y, zp +yn)} uq&(y)} dy'

yn=0
+ [ AGta=)

+

Gz’ -y xn + yn)} ug (y)dy
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+Gt(m/ - y/7 Tn + yn)} 8nug(y)dy}

=V [ (Gl —y)

RY
+Gi(@ =y xn +yn) } V- ug(y)dy
= -V (V- A 'F(t)up) = w,. O

2. Proof of theorem

To prove Theorem 0.1, we need to estimate the right hand side of (1.3)
in L1(R™). In this section we estimate these terms in the Hardy spéce
instead ofL!, which is the subspace df'. We recall the definition of the
Hardy spacé{'. Note that the following definition is one of many equivalent
definitions of the Hardy space. (See Fefferman and Stein [6].)

Definition 2.1. A function f € L'(R") belongs to the Hardy spad¢! =
H(R) if
(@) = sup |Gy + f(z)| € LY(R™),

where the symbal denotes the convolution with respect to the space variable
x. The norm off € H!(R") is defined by

[l = 11 )

Here, we remark that &' function f belongs to#! if and only if its
Riesz transfornR; f belongs taL!(R™) for all j, and that

£l = 1 F 2 ey + Y I Rifllziey  (equivalent norm)
j=1

For the convenience, we denote the operator norf;oh H'! by ||| - |||
To estimate (1.3) ir{!, we require the following lemma.

Lemma 2.2. Let K be an integral operator of form
(2.1) Kf(x)= / k(x,y)f(y)dy forz e R".

If the kernelk(z, y) satisfies that

sup [|k(-, y)|l = ko < oo,
yeR”
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thenK is a bounded operator from! (R") to H!(R"), i.e.
(2.2) 1K fllar < koll fll 1 mny-

Proof. By definition of H!,

(K f)*(x) = supgsg U}Rn Gs(r — 2) fRn k(z, y)f(y)dydz‘
(2.3) < supyg | fon F(U) Jpn Gs(a — 2)k(z2, y)dzdy]
< Jan [FOH{5UPs0 | [ Gs (2 — 2)k(2,y)d2| } dy.
Integrating (2.3) with respect to, we get

1K fllar < fn LF@IEC y) 30 dy
<kollfllprmny- DO

We next show several pointwise estimates on the heat kernel.

Lemma 2.3. Assume that real parameterseindm satisfy0 <! < n and
m > 0. Then there exists a constafit= C ,,, which does not depend on
z € R™ andt > 0 such that

(2.4a) 10;Gi(w)| < CHEEm=TD 21! [P g, |7
for1 < j < nwithn > 2,

(2.4b) 10;0,A7LG(z)| < ClFm=n=D/2)3/ | g, |=m
forl <j,k <n-—1withn > 3,

(2.4c) [AG ()| < CHEFm=n=D2 1! g |77
withn > 2.

In (2.4a) the restrictiori < n is unnecessary.

Proof.We first prove (2.1a). Sina@ G, (z) = —(x;/2t)Gy(x) ande#I°/4
< C|t=Y2%z|~* for e > 0, we have
0;Gi(z) = — LGy (x)
(2.5) = _21‘/711/7]%“6—|a:’|2/4t€—|xn|2/4t
< Ct(l+m_n_1)/2|:I,‘/|_l|l‘n|_m.
We next show (2.4b). Note that~! is equal to (—A’)~1/2

—1/2 . .
(ZZ;% 8,3) , so the integral kernel afi~! is ¢, |2/| "2 for n > 3,
wherec, is some positive constant. Therefore we have

(2.6) 8j8kA_th(:L‘) = Cnﬁjak/ |{L‘/ — y'|_”+2Gt(y', acn)dy'.
n—1
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Setz = t1/2z to get
0,00, A7 Gy(z) = t=("TD/29, 0, 471G (2).
So it is sufficient to show (2.4b) far= 1, i.e.
(2.7) 10,0047 G (2)] < O/l ™
In fact, if (2.7) is valid, then we have

102,00, AT1Gy ()| = = HD/2|9, 0., A71G4(2))]
< (7t4(7”+1)/2‘zlyfl’zn"fnl
_ Ct(l+m_n—1)/2’$/|_l|xn‘_m

for anyt > 0.
Let ¢/, be a smooth function ilR”~! such thad) < ¢; < 1, suppy C
{I2'| <1}, andyn]|.rj<1/2 = 1. Setypy = 1 —1)1. Then
(2.8)
;0 A71G1(2) = W€7Z%/4{8jak Jrn—1 %67“’/'2/%@/
+ 050k [gns %e"yw“dy’}
= Ce /Y1 () + L()}.
The estimate of the terth : We have
. d, / o —a 2
29) Li(2') = 9,0 f% S(ll)'y;'gy;e [ =v/ /4 gy
= f‘y/|§1 w}‘%f(j,k(z/ - y/>dy7

where

; 0, /
Ki(?) = <ka — J;) eI/

andd; ;. is Kronecker's delta. Recalling’ — /| < [2/| + 1 and|z’ — y/|* >
|2’|2/2 — 1 holds for|y/| < 1, we get

K (2" = 4] < {W + %} e—(12'12=2)/8
el/4

=& (]z’|+1)2+2}e_|2/|2/8
< C|

Hence we have

[0 < C [y izl |y’
< (7‘2/’41
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The estimate of the terd®: We have

(050 —ly
= Jaoms St e Wy

(n - 2 {fRn—l ]1/12)(2’, -y ) |j/k nyne ly'|? /4d /
(2.10) + Jgn-1(Ok2) (@' —3) |ZZIj:yy,]|'n oIV /Ady' }

t a1 2(& =y ) Ljn( = y)e W dy
= Ji(2) — (n — 1)Ja(2') + J3(2'),

where

;T 6',]4
Liat) = (-2 {ne 22t - B ]

2"
Since the support a;+» andd;0y1)» are included inl/2 < |z| < 1, the
estimates of/; and.J, can be obtained like as the estimatd af

. / , ,
|J1(Z/)| = / %2)2(?/)6_"2 -y |2/4dy/
psyist Y
= ||V2¢2||Loo/ %e—(lz’IQ—Q)/sdy/
12<ly1<t Y1
(2.11) <ol
1 /
|J2(Z’)| < ||V¢2||Loo/ — 6_("2 ‘2_2)/8dy/
1/2<ly|<1 |Y/]
(2.12) < C\z'|_l_

To estimate the ternis, we use the inequality’|’ < C;(|2" —v'|' + |¥/]").

Since|L;j.(2')| < r—yper, We get

P an / _
|J3(z/)| < C’Z/|—l f\z’—y’|21/2 <‘|Z/_;//||n 4 |Z’|y |/‘ ) \y| /4tdy
(2.13) < O™ s jp@7 4 200y e P 4y
= O
Combining the estimate (2.11), (2.12), and (2.13), wefét’)| < C|/|~
and
10,0, 471G (2)| < Cem@n/A|2/|

(2.14)
< Gl ']l ™™

This proves (2.7) fon > 3.
The estimate (2.4c) fon > 3 is easily obtained by the fact that is
equal to(— AN A"t = —(6? + --- 92_,)A~! and by applying (2.4b).
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Finally, we show (2.4c) fon = 2. Note that/ is equal t0|0;| = 01 51.
So we have
AGt(I‘) = 8151Gt($)
1

. 1
(2.15) = 01— lim —Gi(21 — y1,72)dy1.
T el0 ly1|>e Y1

(See Torchinsky [12], p.266.) Integrating by parts we get

o0
Jisse grGelar = yi, 22)dys = [log [y1|Gi(z1 — y17ﬂ?2)}

+ {log [y1|Gi(w1 — y17$2)]
—0o0

= Jigs 15 108 [9110y, Gi(z1 = 1, w2)dyn

= log e(Gy(z1 + €,22) — Gi(z1 — €, 22))

+ Jiyr 15 log [y H 72 Ge(@1 — y1, @2)dy.

Sendinge | 0, we get

1
(2.16) AGy(z) = ﬂ@l/ log |y1 | Gt( — y1,x2)dy;.

Setz = t1/2z andy = ¢'/2w. Then we have

(AGy)(z) = £t7120,, [ (log |w:| + log t+/2) 2L
Xt_lGl (21 —wi, wg)t1/2dw1

= t3/2(AGH)(2).

So it is sufficient to show (2.4c) far= 1.

11
AG(2) = — e, { / log [y 5 e300y,
7T47T |y1\<1
+/ log [y1| 5 yl e~(1—w)* /4dy1}
ly1]>1
1 —z
(2.17) = 3¢ %/4(11(zl)+12(zl)).

The estimate of: We have
21—y1|? — (21—
Ii(a1) = J2, log [y (1 — B2 E ) ey,
As the same suggestion to (2.11), we obtain

. 2\ _l=l® 1
|Il(2’1)\S%f_l1|10g\y1|!<1+(|1‘+1))6 5 Tidy,

(2.18) ]
< C(1 4+ |z P)e /8,
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The estimate ofs: The method is similar to the case> 3. Integrating
by parts,

I(z1) = 81{ {]Og ‘y1|e*(21*y1)2/4} ;i-oo
+ {log ’Z/l\ef(zlfyl)z/ﬂ N

— o0

f\y1|>1 Y1
s y1 (Zlfyl) /4

f\y1|>1 y1 2 dy

— (1 41)2/4 _ = (21-1)2 /4+f\y1|>1 e

e~ (:1-w)? /4dy1}

(21_y1)2/4dy1.

We setw; = z; — y1 and obtain

Ir(z) = e D/ _ ==/ / %e_w%/‘lde
21w |>1 (21 —w1)

Using|z1]' < C(|z1 — w1|' + |w1]!), we obtain
(2.19)

|I2(21)] < \e*(21+1)2/4’ + ’67(z1*1)2/4’
! 1-2 Jwy|! i l2/a
T ermw T ('Zl — wil +m)e oL /4 gy

< Oz

sincel < 2 so that|z; — w;|'~2 < 1. Combining the estimate (2.18) and
(2.19),we obtain (2.4c) fan = 2. O

We are now ready to show the key lemma for the main theorem.

Lemma 2.4. Assume a function = a(z) is in L' (R7). Then

(2.20a) 19;E(t)allap < Ct||a|przn) for 1 < j < n,
(2.20b) [|9;05 A7 eE(t)all3p < Ot (|a] prrny for 1 < jik <m -1,
(2.20c) HAeE(t)an < Ct 2 all g,

(2.20d) (|90, A7 F(t)allapr < Ot 2l prrny for 1 < jik <m —1.

Proof. To show (2.20a,b,c), we extend the functiaix) from R’} ontoR"
with a(2/, ) = —a(2’, —x,,) for z,, < 0. Then

[E(t)a](z) = Gt * a(x)
= [ Gz —y)aly)dy,

R
[eE(t)al(z) = 0(za)[E(t)a] (x),
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wheref is the Heaviside function, i.e.

0an) 1 forz, >0,
Tn) =
0 forz, <O.

SinceG, * (0;Gy)(x) = 0;Gs44(x), the estimate (2.4a) implies
|G # (9;Gi) ()| < C(s + )T =2 1! |7 77
for any nonnegativéandm. Thus, for0 <1+ m < n + 1 we have
(9G0)" () < O =D ! |,

Therefore we obtain

4
(2.21) HayGtHHl < ZCl,mt(l+mfnfl)/2 /Q ‘.I'/’*l’wn’imdx,
k=1 k

where(2; = {|z/| < t'/2,|z,| < tY/2Y, 02y = {|2/| > t1/2, |z, | < t'/?},
Q3 = {|2'] < Y2 |z,| > t1/2} and 2y = {|2’| > tY/2,|z,| > t'/?}. For
each integration of (2.21), we take suitabbndm such thai = m = 01in
D, l=n,m=0in2,1=0,m=2in23andl =n—1/2,m = 3/2
in £24. We thus observe that the right hand side of (2.21) is estimated from
above by a constant times!/2. Thus (2.20a) is obtained. The estimate is
obtained by Carpio [3, Lemma 2.1] but the proof contains misprint in [3,
p.457 line 4], so we gave the proof.

To prove (2.20b), we put(z,y) = 9;0,A10(z,)Gi(z — y). Then

(Gsx k(- y)(z)) = fR" Gs(z — x)k(z,y)dz
(2.22) = WW fRnfl e—|zf_x/\2/4saj8kA—1e—\zf_y/\2/4tdz/X
fOJrOO €7|zn7xn|2/4sef|zn7yn|2/4tdzn.

Since the integrand in the last integral in (2.22) is nonnegative, we get

(G k(- y)(@)] < 10,06 AT Gipe(2)):
By (2.4b) a calculation similar to the one to derive (2.21) yields

sup [[k(, y) g < Ot/
Y
forn > 3 and forn = 2 with j = k& = 1. Applying Lemma 2.2 we get
(2.20b,c). Note that (2.20b) agrees with (2.200) i 2.
The estimate (2.20d) is obtained in the same way as above but this time

we have to extend(z) as an even functionin,, i.e.a(z’, z,,) = a(2’, —x,)
forxz, <0. O
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We are now ready to prove Theorem 0.2. By Lemma 1.2 and Lemma
2.4,

10jUnll32 < H’RJMHI{ZZ;% Rk |l32 (1 Ae B(t)ug || 20
+|Oke E()ug[201)
B[22 (IIV - eE@)ug 32 + HAGE(t)UGHHl)}
< Cfl/QHUOHLI(Rip
10, 13 < OtV |uol| 1 -

Sinceu = gz, we now get
IVullprrn) < IVullz ey < [Vl < Ct_1/2||“O||L1(R1)-

The proof is complete.

References

1. W. Borchers, T. Miyakayal,? decay for the Navier-Stokes flow in halfspaces, Math.
Ann. 282(1988), 139-155
2. W. Borchers, T. Miyakaya, Algebrait® decay for Navier-Stokes flows in exterior
domains, Acta Math165(1990), 189-227
3. W. Borchers, T. Miyakaya, Algebrait? decay for Navier-Stokes flows in exterior
domains, Il, Hiroshima Math. 21 (1991), 621-640
4. A. Carpio, Large time behavior in incompressible Navier-Stokes equations, SIAM J.
Math. Anal.27 (1996), 449-475
5. Z.-M. Chen, Solution of the stationary and nonstationary Navier-Stokes equations in
exterior domains, Pacific J. Math59(1993), 227-240
6. C.Fefferman, E. Steifi{” spaces of several variavles, Acta Malth9(1972), 137-197
7. Y. Giga: Analyticity of the semigroup generated by the Stokes operatbf Bpaces,
Math. Z.178(1981), 297-329
8. Y. Giga, H. Sohr, On the Stokes operator in exterior domains, J. Fac. Sci. Univ. Tokyo,
Sect. IA Math.36 (1989), 103—-130
9. Y. Giga, H. Sohr, Abstract? estimates for the Cauchy problem with applications to
the Navier-Stokes equations in exterior domains, J. of Functional Andl92id991),
72-94
10. H. lwashita:L, — L, estimate for solutions of the nonstationary Stokes equations in
an exterior domain and the Navier-Stokes initial value problems,ispaces, Math.
Ann. 285(1989), 265-288
11. T. Miyakawa: Hardy spaces of solenoidal vector fields, with application to the Navier-
Stokes equations, Kyushu J. Ma8i1 (1997), 1-64
12. A. Torchinsky: Real-variable methods in harmonic anarysis, Academic, Press, 1986
13. S. Ukai: A solution formula for the Stokes equatiorRifi, Comm. Pure Appl. Math.
XL (1987), 611-621

Note added in proof.Recently, the third author proved (0.2) foe= oo for
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