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0. Introduction

We consider the Stokes equation

(0.1)
ut −∆u+ ∇p = 0,div u = 0 in Ω × (0,∞),

u = u0 at t = 0,

u = 0 on∂Ω × (0,∞)

in a domainΩ in R
n(n ≥ 2) with smooth boundary. Hereu = (u1, . . . , un)

are unknown velocity field andp is unknown pressure field. Initial data
u0 is assumed to satisfy acompatibility condition: div u0 = 0 in Ω and
the normal component ofu0 equals zero on∂Ω. This system is a typical
parabolic equation and it has several properties resembling the heat equation.

If Ω = R
n,u is reduced to a solution of the heat equation with initial data

u0 because there is no boundary condition. For example, a regularity-decay
estimate

(0.2) ‖∇u(t)‖p ≤ Ct−1/2‖u0‖p for t > 0

holds for all1 ≤ p ≤ ∞ withC independent oft andu0, where‖f(t)‖p :=(∫
Ω |f(t, x)|pdx)1/p

and∇ denotes the gradient in the space variables. If
p = 2, the estimate (0.2) is still valid for any domain. Indeed, since the
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Stokes operatorA is self–adjoint and nonnegative, the operatorA generates
an analytic semigroupe−tA. This yields

‖A1/2e−tAu0‖2 ≤ Ct−1/2‖u0‖2.

Sinceu = e−tAu0 and‖A1/2u‖2 = ‖∇u‖2, (0.2) follows forp = 2.(See
Borchers and Miyakawa [3] for applications.) For1 < p < ∞, (0.2) is
valid for bounded domains (Giga [7]) and for a half space (Ukai [13]).
The estimate (0.2) is also valid for exterior domain withn ≥ 3, with extra
restriction1 < p < n.(See Borchers and Miyakawa [2], Giga and Sohr [8],
Iwashita [10].)

However, there was no result forp = 1 or p = ∞ where the boundary
of Ω is not empty. The main difficulty lies in the fact that the projection
associated with the Helmholtz decomposition is not bounded inL1 type
spaces, because it involves singular integral operators such as the Riesz
operators. Nevertheless in this paper, we prove (0.2) forp = 1 whereΩ is
a half spaceRn

+ = {x = (x1, · · · , xn);xn > 0}.

Theorem 0.1. Letu be the solution of the Stokes equation (0.1) inΩ = R
n
+

with initial data u0 ∈ L1(Rn), which satisfy the compatibility condition.
Then there is a constantC independent ofu0 such that

(0.3) ‖∇u(t)‖1 ≤ Ct−1/2‖u0‖1

for all t > 0.

This is rather surprising since we do not expect‖u(t)‖1 ≤ C‖u0‖1 for
Ω = R

n
+. Actually, the estimate (0.3) follows from a stronger estimate:

Theorem 0.2. Under the same hypothesis as in Theorem 0.1, there is a
constantC ′ independent ofu0 such that

(0.4) ‖∇u(t)‖H1(Rn
+) ≤ C ′t−1/2‖u0‖1

for all t > 0.

Here

‖f‖H1(Rn
+) = inf{‖f̃‖H1(Rn); f̃ ∈ H1(Rn), f̃ |Rn

+
≡ f},

whereH1(Rn) is the Hardy space inRn defined later.
Combining the Sobolev inequality with (0.3), we have

(0.5) ‖u(t)‖n/(n−1) ≤ C0t
−1/2‖u0‖1

with C0 independent oft > 0 andu0. This has been already proved by
Borchers and Miyakawa [1] where a generalLp − Lq estimate

‖u(t)‖p ≤ C0t
−α‖u0‖q
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with α = (n/2)(1/q− 1/p) has been proved for all1 ≤ q < p ≤ ∞ where
Ω = R

n
+. Their method does not depend on (0.3). For1 < q < p < ∞,

such estimate has been proved by Ukai [13]. There is an extensive literature
onLp − Lq estimates for exterior domainsΩ (n ≥ 3) (e.g. Giga and Sohr
[9], Borchers and Miyakawa [2], Iwashita [10], Chen [4]) but the caseq = 1
andp = ∞ is included only in Chen [4] forn = 3.

To show (0.4), we recall the solution formula obtained by Ukai [13]. The
solution is represented by the Gauss kernel and various Riesz operators. It
is known by Carpio [4] that the solutionu = Gt ∗ u0 of the heat equation
with initial datau0 ∈ L1(Rn) satisfies

(0.6) ‖∇u(t)‖H1(Rn) ≤ C1t
−1/2‖u0‖1

whereGt is the Gauss kernel. If the solution of (0.1) were represented only by
Gt and a Riesz operator inRn, (0.6) could yield (0.4) since the Riesz operator
is bounded inH1. Unfortunately, the formula contains the Riesz operator in
tangential variablesx′ = (x1, . . . , xn−1) to∂R

n
+, and therefore it is not clear

that such operators are bounded inH1(Rn). To overcome this difficulty, we
rewrite Ukai’s formula so that∇udoes not contain tangential Riesz operators
using the operatorΛ whose symbol equals|ξ′|, where(ξ′, ξn) = ξ ∈ R

n.
Because of this, we need to prove

(0.7) ‖Λu(t)‖H1(Rn) ≤ C2t
−1/2‖u0‖1

in addition to (0.6). Although there are several extra technical difficulties,
this is a rough idea for the proof of (0.4).

1. The solution formula

In this section we recall the solution formula for (0.1) obtained by Ukai [13]
for later use.

First, we establish conventions of notations. For an n-dimensional vector
a, we denote its tangential component(a1, . . . , an−1) bya′ ∈ R

n−1, so that
a = (a′, an). We set∂j = ∂/∂xj and let∇′ = (∂1, · · · , ∂n−1). Hereafter,C
denotes a positive constant which may differ from one occasion to another.

Let F be the Fourier transform inRn:

Ff(ξ) =
∫

Rn

e−ix·ξf(x)dx,

and letf̂ be the Fourier tranform off in the tangential space:

f̂(ξ′, xn) =
∫

Rn−1
e−ix

′·ξ′
f(x′, xn)dx′.
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The Riesz operatorsRj (j = 1, . . . , n), Sj (j = 1, . . . , n− 1), and the
operatorΛ are defined by

F(Rjf)(ξ) = iξj
|ξ| Ff(ξ),

F(Sjf)(ξ) = iξj
|ξ′|Ff(ξ),

F(Λf)(ξ) = |ξ′|Ff(ξ).

We setR′ = (R1, . . . , Rn−1), S = (S1, . . . , Sn−1) and defineU by

Uf = rR′ · S(R′ · S +Rn)e,

wherer is the restriction operator fromRn to R
n
+, ande is the extension

operator fromR
n
+ ontoR

n with value 0, that is,

ef =

{
f for xn ≥ 0,

0 for xn < 0.

We also define the operatorsE(t) andF (t) by

[E(t)f ](x) =
∫

R
n
+

{Gt(x− y) −Gt(x′ − y′, xn + yn)} f(y)dy,

[F (t)f ](x) =
∫

R
n
+

{Gt(x− y) +Gt(x′ − y′, xn + yn)} f(y)dy,

whereGt is the Gauss kernelGt(x) = (4πt)−n/2e−|x|2/4t. Note thatE(t)f
(resp.F (t)f ) is the solution to the heat equation inR

n
+ with Dirichlet (resp.

Neumann) data:

zt −∆z = 0 in R
n
+ × (0, T ),

z|t=0 = f,

z|xn=0 ≡ 0. (resp.∂nz|xn=0 = 0.)

We recall the formula obtained by Ukai.

Theorem 1.1(Ukai). The solution to (0.1) can be expressed as

un = UE(t)V1u0,(1.1a)

u′ = E(t)V2u0 − SUE(t)V1u0,(1.1b)

whereV1u0 = −S · u′
0 + un0 andV2u0 = u′

0 + Sun0 .

We give a formal proof of Theorem 1.1 for the reader’s convenience. By
(0.1), we get∆p = 0 in R

n
+. Applying the tangential Fourier transform,

the equation∆p = 0 is reduced to an ordinary differential equation(∂2
n −

|ξ′|2)p̂ = 0. Assuming thatp is bounded, we get(∂n + |ξ′|)p̂ = 0. We
setvn = (∂n + Λ)un andv′ = V2u = u′ + Sun. Thenv satisfiesvt −
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∆v = 0, vn|t=0 = ΛV1u0, v′|t=0 = V2u0, andv|xn=0 = 0. Thusv solves
the heat equation inRn

+ with zero Dirichlet data. Solving forv with some
manipulations we get (1.1).

To solve our problem, we rewrite the formula (1.1). Note that the vector
field u in (1.1) is given as a restrictionrū of a vector fieldū = (ū′, ūn) of
the form

ūn = R′ · S(R′ · S +Rn)eE(t)V1u0,(1.2a)

ū′ = E(t)V2u0 − SR′ · S(R′ · S +Rn)eE(t)V1u0.(1.2b)

Lemma 1.2. Letj be an integer with1 ≤ j ≤ n. Assume thatdivu0 = 0 in
R
n
+ whenj = n. Then the first space derivative ofū are expressed as

∂j ū
n = −Rj{R′ · ΛeE(t)u′

0 −Rn∇′ · eE(t)u′
0

+R′ · ∇′eE(t)un0 +RnΛeE(t)un0},(1.3a)

∂j ū
′ = ∂jE(t)u′

0 + wj

+Rj{R′(∇′ · eE(t)u′
0) −Rn∇′(∇′Λ−1 · eE(t)u′

0)(1.3b)

−R′ΛeE(t)un0 +Rn∇′eE(t)un0},

where

(1.4) wj =

{
∂j∇′Λ−1E(t)un0 for 1 ≤ j ≤ n− 1,
−∇′(∇′ · Λ−1F (t)u′

0) for j = n.

Proof. To show (1.3), it is convenient to use the Fourier transformation by
∂j ū in (1.2). Note that the operatorsSj andeE(t) commute. Then we get

F(∂j ūn) = iξj
iξ′

|ξ| · iξ
′

|ξ′|
(
iξ′

|ξ| · iξ
′

|ξ′| +
iξn
|ξ|

)

×
(

− iξ′

|ξ′| · F(eE(t)u′
0) + F(eE(t)un0 )

)

= − iξj|ξ|

{(
iξ′

|ξ| |ξ
′| − iξn

|ξ| iξ
′
)

· F(eE(t)u′
0)

+
(
iξ′

|ξ| · iξ′ +
iξn
|ξ| |ξ′|

)
F(eE(t)un0 )

}
,
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F(∂j ū′) = iξj

(
F(E(t)u′

0) +
iξ′

|ξ′|F(E(t)un0 )
)

−iξj iξ
′

|ξ′|
(
iξ′

|ξ| · iξ
′

|ξ′|
) (

iξ′

|ξ| · iξ
′

|ξ′| +
iξn
|ξ|

)

×
(

− iξ′

|ξ′| · F(eE(t)u′
0) + F(eE(t)un0 )

)

= iξjF(eE(t)u′
0) − ξjξ

′

|ξ′| F(eE(t)un0 )

+
iξj
|ξ|

{
iξ′

|ξ| ξ
′ · F(eE(t)u0) − iξn

|ξ| iξ
′
(
iξ′ · 1

|ξ′|F(eE(t)u′
0)

)

−
(
iξ′

|ξ| |ξ
′| − iξn

|ξ| iξ
′
)

F(eE(t)un0 )

}
.

By the inverse Fourier transform the first identity implies (1.3a). To
show (1.3b), we must handle the termiξj(iξ′/|ξ′|)F [E(t)un0 ]. By the inverse
Fourier transform this term is transformed to∂j∇′Λ−1E(t)un0 . For1 ≤ j ≤
n− 1 this equals towj . Forj = n we invoke the assumption divu0 = 0 so
that∂nun0 = −∇′ · u′

0:

∂n∇′Λ−1E(t)un0 = ∂n∇′Λ−1
∫

R
n
+

{Gt(x− y)

−Gt(x′ − y′, xn + yn)
}
un0 (y)dy

= ∇′Λ−1
∫

R
n
+

{
∂

∂xn
Gt(x− y)

− ∂

∂xn
Gt(x′ − y′, xn + yn)

}
un0 (y)dy

= ∇′Λ−1
∫

R
n
+

{
−xn − yn

2t
Gt(x− y)

+
xn + yn

2t
Gt(x′ − y′, xn + yn)

}
un0 (y)dy

= ∇′Λ−1

{∫
Rn−1

[
{−Gt(x− y)

−Gt(x′ − y′, xn + yn)
}
un0 (y)

]yn=+∞
yn=0

dy′

+
∫

R
n
+

{Gt(x− y)
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+Gt(x′ − y′, xn + yn)
}
∂nu

n
0 (y)dy

}

= −∇′Λ−1
∫

R
n
+

{Gt(x− y)

+Gt(x′ − y′, xn + yn)
} ∇′ · u′

0(y)dy

= −∇′(∇′ · Λ−1F (t)u′
0) = wn. 2

2. Proof of theorem

To prove Theorem 0.1, we need to estimate the right hand side of (1.3)
in L1(Rn). In this section we estimate these terms in the Hardy spaceH1

instead ofL1, which is the subspace ofL1. We recall the definition of the
Hardy spaceH1. Note that the following definition is one of many equivalent
definitions of the Hardy space. (See Fefferman and Stein [6].)

Definition 2.1. A function f ∈ L1(Rn) belongs to the Hardy spaceH1 =
H1(Rn) if

f∗(x) = sup
s>0

|Gs ∗ f(x)| ∈ L1(Rn),

where the symbol∗denotes the convolution with respect to the space variable
x. The norm off ∈ H1(Rn) is defined by

‖f‖H1 := ‖f∗‖L1(Rn)

Here, we remark that aL1 function f belongs toH1 if and only if its
Riesz transformRjf belongs toL1(Rn) for all j, and that

‖f‖H1 ∼= ‖f‖L1(Rn) +
n∑
j=1

‖Rjf‖L1(Rn) (equivalent norm).

For the convenience, we denote the operator norm ofRj in H1 by ||| · |||H1 .
To estimate (1.3) inH1, we require the following lemma.

Lemma 2.2. LetK be an integral operator of form

(2.1) Kf(x) =
∫

Rn

k(x, y)f(y)dy for x ∈ R
n.

If the kernelk(x, y) satisfies that

sup
y∈Rn

‖k(·, y)‖H1 = k0 < ∞,
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thenK is a bounded operator fromL1(Rn) to H1(Rn), i.e.

(2.2) ‖Kf‖H1 ≤ k0‖f‖L1(Rn).

Proof.By definition ofH1,

(2.3)
(Kf)∗(x) = sups>0

∣∣∫
Rn Gs(x− z)

∫
Rn k(z, y)f(y)dydz

∣∣
≤ sups>0

∣∣∫
Rn f(y)

∫
Rn Gs(x− z)k(z, y)dzdy

∣∣
≤ ∫

Rn |f(y)|{sups>0
∣∣∫

Rn Gs(x− z)k(z, y)dz
∣∣} dy.

Integrating (2.3) with respect tox, we get

‖Kf‖H1 ≤ ∫
Rn |f(y)|‖k(·, y)‖H1dy

≤ k0‖f‖L1(Rn). 2

We next show several pointwise estimates on the heat kernel.

Lemma 2.3. Assume that real parametersl andm satisfy0 ≤ l ≤ n and
m ≥ 0. Then there exists a constantC = Cl,m which does not depend on
x ∈ R

n andt ≥ 0 such that

|∂jGt(x)| ≤ Ct(l+m−n−1)/2|x′|−l|xn|−m(2.4a)

for 1 ≤ j ≤ n with n ≥ 2,
|∂j∂kΛ−1Gt(x)| ≤ Ct(l+m−n−1)/2|x′|−l|xn|−m(2.4b)

for 1 ≤ j, k ≤ n− 1 with n ≥ 3,
|ΛGt(x)| ≤ Ct(l+m−n−1)/2|x′|−l|xn|−m(2.4c)

with n ≥ 2.

In (2.4a) the restrictionl ≤ n is unnecessary.

Proof.We first prove (2.1a). Since∂jGt(x) = −(xj/2t)Gt(x) ande−|x|2/4t

≤ C|t−1/2x|−α for α ≥ 0, we have

(2.5)
∂jGt(x) = −xj

2tGt(x)

= − xj

2tn/2+1 e
−|x′|2/4te−|xn|2/4t

≤ Ct(l+m−n−1)/2|x′|−l|xn|−m.
We next show (2.4b). Note thatΛ−1 is equal to (−∆′)−1/2 =(∑n−1
k=1 ∂

2
k

)−1/2
, so the integral kernel ofΛ−1 is cn|x′|−n+2 for n ≥ 3,

wherecn is some positive constant. Therefore we have

(2.6) ∂j∂kΛ
−1Gt(x) = cn∂j∂k

∫
Rn−1

|x′ − y′|−n+2Gt(y′, xn)dy′.
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Setx = t1/2z to get

∂xj∂xk
Λ−1Gt(x) = t−(n+1)/2∂zj∂zk

Λ−1G1(z).

So it is sufficient to show (2.4b) fort = 1, i.e.

(2.7) |∂j∂kΛ−1G1(z)| ≤ C|z′|−l|zn|−m.
In fact, if (2.7) is valid, then we have

|∂xj∂xk
Λ−1Gt(x)| = t−(n+1)/2|∂zj∂zk

Λ−1G1(z)|
≤ Ct−(n+1)/2|z′|−l|zn|−m
= Ct(l+m−n−1)/2|x′|−l|xn|−m

for anyt > 0.
Let ψ1 be a smooth function inRn−1 such that0 ≤ ψ1 ≤ 1, suppψ ⊂

{|z′| ≤ 1}, andψ1||z′|<1/2 ≡ 1. Setψ2 = 1 − ψ1. Then
(2.8)
∂j∂kΛ

−1G1(z) = C
(4π)n/2 e

−z2n/4
{
∂j∂k

∫
Rn−1

ψ1(z′−y′)
|z′−y′|n−2 e

−|y′|2/4dy′

+ ∂j∂k
∫

Rn−1
ψ2(z′−y′)
|z′−y′|n−2 e

−|y′|2/4dy′
}

= Ce−z2n/4{I1(z′) + I2(z′)}.
The estimate of the termI1: We have

(2.9)
I1(z′) = ∂j∂k

∫
|y′|≤1

ψ1(y′)
|y′|n−2 e

−|z′−y′|2/4dy′

=
∫
|y′|≤1

ψ1(y′)
|y′|n−2Kj,k(z′ − y′)dy,

where

Kj,k(z′) =
(
zjzk
4

− δj,k
2

)
e−|z′|2/4

andδj,k is Kronecker’s delta. Recalling|z′ − y′| ≤ |z′|+ 1 and|z′ − y′|2 ≥
|z′|2/2 − 1 holds for|y′| ≤ 1, we get

|Kj,k(z′ − y′)| ≤
{

(|z′|+1)2
4 + 1

2

}
e−(|z′|2−2)/8

= e1/4

4

{
(|z′| + 1)2 + 2

}
e−|z′|2/8

≤ C|z′|−l.
Hence we have

|I1(z′)| ≤ C
∫
|y′|≤1

1
|y′|n−2 |z′|−ldy′

≤ C|z′|−l
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The estimate of the termI2: We have

(2.10)

I2(z′) =
∫

Rn−1
(∂j∂kψ2)(z′−y′)

|z′−y′|n−2 e−|y′|2/4dy′

−(n− 2)
{∫

Rn−1(∂jψ2)(z′ − y′) zk−yk
|z′−y′|n e

−|y′|2/4dy′

+
∫

Rn−1(∂kψ2)(x′ − y′) zj−yj

|z′−y′|n e
−|y′|2/4dy′

}
+

∫
Rn−1 ψ2(z′ − y′)Lj,k(z′ − y′)e−|y′|2/4dy′

= J1(z′) − (n− 1)J2(z′) + J3(z′),

where

Lj,k(z′) = (n− 2)
{
n
xjxk

|z′|n+2 − δj,k
|z′|n

}
.

Since the support of∂jψ2 and∂j∂kψ2 are included in1/2 ≤ |z| ≤ 1, the
estimates ofJ1 andJ2 can be obtained like as the estimate ofI1:

|J1(z′)| =

∣∣∣∣∣
∫

1/2≤|y′|≤1

(∂j∂kψ2)(y′)
|y′|n−2 e−|z′−y′|2/4dy′

∣∣∣∣∣
≤ ‖∇2ψ2‖L∞

∫
1/2≤|y′|≤1

1
|y′|n−2 e

−(|z′|2−2)/8dy′

≤ C|z′|−l,(2.11)

|J2(z′)| ≤ ‖∇ψ2‖L∞

∫
1/2≤|y′|≤1

1
|y′|n−1 e

−(|z′|2−2)/8dy′

≤ C|z′|−l.(2.12)

To estimate the termJ3, we use the inequality|z′|l ≤ Cl(|z′ − y′|l + |y′|l).
Since|Lj,k(z′)| ≤ C

|z′−y′|n+1 , we get

(2.13)

|J3(z′)| ≤ C|z′|−l ∫|z′−y′|≥1/2

( |z′−y′|l
|z′−y′|n + |y′|l

|z′−y′|n
)
e−|y′|2/4tdy′

≤ C|z′|−l ∫|z′−y′|≥1/2(2
l−n + 2n|y′|l)e−|y′|2/4dy′

= C|z′|−l.

Combining the estimate (2.11), (2.12), and (2.13), we get|I2(z′)| ≤ C|z′|−l
and

(2.14)
|∂j∂kΛ−1G1(z)| ≤ Ce−x2

n/4|z′|−l
≤ Cl,m|z′|−l|zn|−m.

This proves (2.7) forn ≥ 3.
The estimate (2.4c) forn ≥ 3 is easily obtained by the fact thatΛ is

equal to(−∆′)Λ−1 = −(∂2
1 + · · · ∂2

n−1)Λ
−1 and by applying (2.4b).
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Finally, we show (2.4c) forn = 2. Note thatΛ is equal to|∂1| = ∂1S1.
So we have

ΛGt(x) = ∂1S1Gt(x)

= ∂1
1
π

lim
ε↓0

∫
|y1|>ε

1
y1
Gt(x1 − y1, x2)dy1.(2.15)

(See Torchinsky [12], p.266.) Integrating by parts we get∫
|y1|>ε

1
y1
Gt(x1 − y1, x2)dy1 =

[
log |y1|Gt(x1 − y1, x2)

]∞
ε

+
[
log |y1|Gt(x1 − y1, x2)

]−ε
−∞

− ∫
|y1|>ε log |y1|∂y1Gt(x1 − y1, x2)dy1

= log ε
(
Gt(x1 + ε, x2) −Gt(x1 − ε, x2)

)
+

∫
|y1|>ε log |y1|x1−y1

2t Gt(x1 − y1, x2)dy1.

Sendingε ↓ 0, we get

(2.16) ΛGt(x) =
1
π
∂1

∫ ∞

−∞
log |y1|x1 − y1

2t
Gt(x1 − y1, x2)dy1.

Setx = t1/2z andy = t1/2w. Then we have

(ΛGt)(x) = 1
π t

−1/2∂z1
∫ ∞
−∞(log |w1| + log t1/2) z1−w1

2t1/2

×t−1G1(z1 − w1, w2)t1/2dw1

= t−3/2(ΛG1)(z).

So it is sufficient to show (2.4c) fort = 1.

ΛG1(z) =
1
π

1
4π
e−z

2
2/4∂1

{∫
|y1|<1

log |y1|z1 − y1

2
e−(z1−y1)2/4dy1

+
∫

|y1|>1
log |y1|z1 − y1

2
e−(z1−y1)2/4dy1

}

=
1

4π2 e
−z22/4(I1(z1) + I2(z1)).(2.17)

The estimate ofI1: We have

I1(z1) =
∫ 1
−1 log |y1|12

(
1 − |z1−y1|2

2

)
e−(z1−y1)2/4dy1.

As the same suggestion to (2.11), we obtain

(2.18)
|I1(z1)| ≤ 1

2

∫ 1
−1 | log |y1||

(
1 + (|z1|+1)2

4

)
e−

|z1|2
8 + 1

4dy1

≤ C(1 + |z1|2)e−|z1|2/8.
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The estimate ofI2: The method is similar to the casen ≥ 3. Integrating
by parts,

I2(z1) = ∂1

{[
log |y1|e−(z1−y1)2/4

]+∞
1

+
[
log |y1|e−(z1−y1)2/4

]−1

−∞
− ∫

|y1|>1
1
y1
e−(z1−y1)2/4dy1

}
=

∫
|y1|>1

1
y1
z1−y1

2 e−(z1−y1)2/4dy1

= e−(z1+1)2/4 − e−(z1−1)2/4 +
∫
|y1|>1

1
y21
e−(z1−y1)2/4dy1.

We setw1 = z1 − y1 and obtain

I2(z1) = e−(z1+1)2/4 − e−(z1−1)2/4 +
∫

|z1−w1|>1

1
(z1 − w1)2

e−w
2
1/4dw1.

Using|z1|l ≤ C(|z1 − w1|l + |w1|l), we obtain
(2.19)

|I2(z1)| ≤ |e−(z1+1)2/4| + |e−(z1−1)2/4|
+C

∫
|z1−w1|>1

1
|z1|l

(
|z1 − w1|l−2 + |w1|l

|z1−w1|2
)
e−|w1|2/4dw1

≤ C|z|−l

sincel ≤ 2 so that|z1 − w1|l−2 ≤ 1. Combining the estimate (2.18) and
(2.19),we obtain (2.4c) forn = 2. 2

We are now ready to show the key lemma for the main theorem.

Lemma 2.4. Assume a functiona = a(x) is inL1(Rn
+). Then

‖∂jE(t)a‖H1 ≤ Ct−1/2‖a‖L1(Rn
+) for 1 ≤ j ≤ n,(2.20a)

‖∂j∂kΛ−1eE(t)a‖H1 ≤ Ct−1/2‖a‖L1(Rn
+) for 1 ≤ j, k ≤ n− 1,(2.20b)

‖ΛeE(t)a‖H1 ≤ Ct−1/2‖a‖L1(Rn
+),(2.20c)

‖∂j∂kΛ−1F (t)a‖H1 ≤ Ct−1/2‖a‖L1(Rn
+) for 1 ≤ j, k ≤ n− 1.(2.20d)

Proof.To show (2.20a,b,c), we extend the functiona(x) from R
n
+ ontoR

n

with a(x′, xn) = −a(x′,−xn) for xn < 0. Then

[E(t)a](x) = Gt ∗ a(x)
=

∫
Rn

Gt(x− y)a(y)dy,

[eE(t)a](x) = θ(xn)[E(t)a](x),
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whereθ is the Heaviside function, i.e.

θ(xn) =

{
1 for xn ≥ 0,

0 for xn < 0.

SinceGs ∗ (∂jGt)(x) = ∂jGs+t(x), the estimate (2.4a) implies

|Gs ∗ (∂jGt)(x)| ≤ C(s+ t)(l+m−n−1)/2|x′|−l|xn|−m

for any nonnegativel andm. Thus, for0 ≤ l +m ≤ n+ 1 we have

(∂jGt)∗(x) ≤ Ct(l+m−n−1)/2|x′|−l|x′|−m.
Therefore we obtain

(2.21) ‖∂jGt‖H1 ≤
4∑

k=1

Cl,mt
(l+m−n−1)/2

∫
Ωk

|x′|−l|xn|−mdx,

whereΩ1 = {|x′| ≤ t1/2, |xn| ≤ t1/2}, Ω2 = {|x′| > t1/2, |xn| ≤ t1/2},
Ω3 = {|x′| ≤ t1/2, |xn| > t1/2} andΩ4 = {|x′| > t1/2, |xn| > t1/2}. For
each integration of (2.21), we take suitablel andm such thatl = m = 0 in
Ω1, l = n, m = 0 in Ω2, l = 0, m = 2 in Ω3 andl = n − 1/2, m = 3/2
in Ω4. We thus observe that the right hand side of (2.21) is estimated from
above by a constant timest−1/2. Thus (2.20a) is obtained. The estimate is
obtained by Carpio [3, Lemma 2.1] but the proof contains misprint in [3,
p.457 line 4], so we gave the proof.

To prove (2.20b), we putk(x, y) = ∂j∂kΛ
−1θ(xn)Gt(x− y). Then

(2.22)

(Gs ∗ k(·, y)(x)) =
∫

Rn Gs(z − x)k(z, y)dz

= 1
(4πs)n/2

1
(4πt)n/2

∫
Rn−1 e

−|z′−x′|2/4s∂j∂kΛ−1e−|z′−y′|2/4tdz′×∫ +∞
0 e−|zn−xn|2/4se−|zn−yn|2/4tdzn.

Since the integrand in the last integral in (2.22) is nonnegative, we get

|(Gs ∗ k(·, y)(x)| ≤ |∂j∂kΛ−1Gs+t(x)|.
By (2.4b) a calculation similar to the one to derive (2.21) yields

sup
y

‖k(·, y)‖H1 ≤ Ct−1/2

for n ≥ 3 and forn = 2 with j = k = 1. Applying Lemma 2.2 we get
(2.20b,c). Note that (2.20b) agrees with (2.20c) ifn = 2.

The estimate (2.20d) is obtained in the same way as above but this time
we have to extenda(x) as an even function inxn, i.e.a(x′, xn) = a(x′,−xn)
for xn < 0. 2
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We are now ready to prove Theorem 0.2. By Lemma 1.2 and Lemma
2.4,

‖∂j ūn‖H1 ≤ |||Rj |||H1

{∑n−1
k=1 |||Rk|||H1(‖ΛeE(t)uk0‖H1

+‖∂keE(t)un0‖H1)

+|||Rn|||H1(‖∇ · eE(t)u′
0‖H1 + ‖ΛeE(t)un0‖H1)

}
≤ Ct−1/2‖u0‖L1(Rn

+),

‖∂j ū′‖H1 ≤ Ct−1/2‖u0‖L1(Rn
+).

Sinceu = ū|Rn
+

, we now get

‖∇u‖L1(Rn
+) ≤ ‖∇u‖H1(Rn

+) ≤ ‖∇ū‖H1 ≤ Ct−1/2‖u0‖L1(Rn
+).

The proof is complete.
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Note added in proof.Recently, the third author proved (0.2) forp = ∞ for
the Stokes flow in a half space.


