

Theorems of Barth-Lefschetz type and Morse theory on the space of paths

Richard Schoen¹, Jon Wolfson²

- ¹ Department of Mathematics, Stanford University, Stanford, CA 94305-2060, USA (email: schoen@gauss.stanford.edu)
- ² Department of Mathematics, Michigan State University, E. Lansing, M.I. 48824, USA (e-mail: wolfson@math.msu.edu)

Received June 25, 1996; in final form November 4, 1996

0. Introduction

In the 1920's Lefschetz [Le] stated the following theorem now known as the Lefschetz theorem on hyperplane sections. Let $N \subset \mathbb{P}^v$ be a connected complex submanifold of complex dimension n. Let H be a hyperplane and $N \cap H$ a nonsingular hyperplane section. Then the relative cohomology groups satisfy:

$$H^j(N, N \cap H; \mathbb{C}) = 0, \quad j \le n-1.$$

Fifty years later Barth [B] generalized Lefschetz's theorem: Let $M, N \subset \mathbb{P}^{v}$ be complex submanifolds of complex dimensions m, n, respectively. If M and N meet properly, then,

$$H^{j}(N, N \cap M; \mathbb{C}) = 0, \quad j \le \min(n + m - v, 2m - v + 1).$$

Generalizations of Barth's results to homotopy groups were first obtained by Larsen [La] and Barth-Larsen [B-L] and later by Sommese and Fulton-Lazarsfeld [F-L]. In particular they prove a "connectedness" theorem for closed local complete intersections $M, N \subset \mathbb{P}^v$ of complex dimensions m, n, respectively. For such varieties it is shown that the relative homotopy groups satisfy:

$$\pi_i(N, N \cap M) = 0, \quad j \le \min(n + m - v, 2m - v + 1).$$

The first author was partially supported by NSF Grant DMS-9504441. The second author was partially supported by NSF Grant DMS-9504898.

Sommese [S1][S2] generalized this result to submanifolds of certain homogeneous complex manifolds. Finally in 1987 Okonek [O] generalized these homotopy results to include varieties with singularities. For a more complete survey of this topic we refer the reader to [F-L].

In 1961 T. Frankel [F] proved a "connectedness" theorem for complex submanifolds of a Kähler manifold of positive holomorphic sectional curvature. Let V be a complete Kähler manifold of positive holomorphic sectional curvature and of complex dimension v. Let $M, N \subset V$ be compact complex submanifolds of dimensions m and n, respectively. Frankel proved that if $m + n \ge v$ then M and N must intersect. Apparently it was not seen how to apply Frankel's technique to the more general "connectedness" results was noted by Fulton in [Fu].

In this paper we show that a variant of Frankel's argument together with Morse theory on a space of paths leads to an elegant proof of homotopy connectedness theorems for complex submanifolds of certain Kähler manifolds of non-negative holomorphic bisectional curvature. In particular, we prove:

Theorem 0.1. Let V be a Kähler manifold. Suppose that $M, N \subset V$ are complex submanifolds of complex dimensions m, n, respectively, such that M is compact and N is a closed subset of V. Let

$$\iota_*: \pi_i(N, N \cap M) \to \pi_i(V, M),$$

be the homomorphism induced by the inclusion.

- (i) If $V = \mathbb{P}^v$ then i_* is an isomorphism for $j \le n + m v$ and is a surjection for j = n + m v + 1.
- (ii) If $V = Gr(p, p+q; \mathbb{C})$ then i_* is an isomorphism for $j \le n+m-2pq+(p+q-1)$ and is a surjection for j = n+m-2pq+(p+q).
- (iii) If $V = Gr(2, p+2; \mathbb{R})$ then i_* is an isomorphism for $j \le n+m-p$ and is a surjection for j = n+m-p+1.

Theorem 0.1 in the case (i) that $V = \mathbb{P}^{v}$ is due to Fulton-Lazarsfeld [F-L, Theorem 9.6]. Their result is actually somewhat more general.

Corollary 0.2. Suppose V, M and N satisfy the same hypotheses as in Theorem 0.1. Morover,

(i) if $V = \mathbb{P}^v$ set $\ell = v$. (ii) if $V = Gr(p, p+q; \mathbb{C})$ set v = pq and $\ell = p+q-1$. (iii) if $V = Gr(2, p+2; \mathbb{R})$ set v = p and $\ell = p$.

In each of these three cases, we have:

(0.1) If
$$j \leq 2m - v - (v - \ell) + 1$$
 then $\pi_j(V, M) = 0$.

(0.2) If
$$j \le \min(2m - v - (v - \ell) + 1, n + m - v - (v - \ell))$$

then $\pi_j(N, N \cap M) = 0.$

In the case (i) that $V = \mathbb{P}^v$ (0.1) is due to Larsen [La]. Sommese [S2] proved both statements of the corollary in cases (i) and (ii). He also has similar results when V is a simple abelian variety.

The proof of Theorem 0.1 relies on the computation of the index of a critical point of the energy on a suitable space of paths. This is done in Sect. 2. In Sect. 1 we outline the results we require from Morse theory on path spaces. The results are taken from Milnor [M] with some modifications. In Sect. 3 we combine the results of the previous sections to derive the connectedness theorem.

1. Morse theory

Let V be a complete Riemannian manifold and let M and N be submanifolds (intersecting or not) with M compact and N a closed subset of V. We let $\mathcal{P}(V; M, N)$ denote the set of C^k paths $\gamma : [0, 1] \to V$ such that $\gamma(0) \in M$ and $\gamma(1) \in N$. The energy E of the path defines a function on $\mathcal{P}(V; M, N)$ given by:

$$E(\gamma) = \int_0^1 |\dot{\gamma}(t)|^2 dt.$$

We are interested in studying the topology of $\mathcal{P}(V; M, N)$ via the Morse theory of the function E. There are two approaches to this study. In one the space of paths is given the structure of a Hilbert manifold and Morse theory on Hilbert manifolds is applied to the energy E. This is the approach developed in detail by Palais [P]. An older approach to this problem, originating with M. Morse, approximates the path space by finite-dimensional manifolds and employs techniques from finite-dimensional Morse theory. This is the approach described by Milnor in [M]. For ease of exposition we will follow the latter approach.

In [M], Milnor studies a special case of the above problem, namely, the topology of the path space $\mathcal{P}(V; p, q)$ where p and q are points in V. While our problem is more general it turns out the results we require are stated in [M]. Moreover, the proofs given in [M] apply to the general case with only minor changes that can easily be made by the reader. Accordingly, in this section, we will describe the general set-up, state the results we will need and give the appropriate references to [M].

We begin by defining the path space. A *piecewise smooth path* from M to N is a map $\gamma : [0, 1] \to V$ such that:

(i) there is a subdivision $0 = t_0 < t_1 < \cdots < t_k = 1$ of [0, 1] such that each $\gamma|_{[t_{i-1}, t_i]}$ is smooth.

(ii) $\gamma(0) \in M$ and $\gamma(1) \in N$.

The set of all piecewise smooth paths from M to N in V will be denoted by $\Omega(V; M, N)$ or simply Ω .

The set $\Omega(V; M, N)$ can be topologized as follows: Let ρ denote the Riemannian distance function on V. Let $\gamma_1, \gamma_2 \in \Omega(V; M, N)$. Define the distance $d(\gamma_1, \gamma_2)$ by:

$$d(\gamma_1, \gamma_2) = \max_{0 \le t \le 1} \rho(\gamma_1(t), \gamma_2(t)) + \int_0^1 (|\dot{\gamma}_1(t)| - |\dot{\gamma}_2(t)|)^2 dt$$

Note that $\dot{\gamma}_1$ and $\dot{\gamma}_2$ are not defined at finitely many points in [0, 1], however the integral is defined. This metric induces the required topology. The energy of a path

$$E(\gamma) = \int_0^1 |\dot{\gamma}(t)|^2 dt$$

defines a continuous map $\Omega(V; M, N) \to \mathbb{R}$.

Define the *tangent space* of Ω at γ , $T_{\gamma}\Omega$, to be the vector space of piecewise smooth vector fields W along γ such that $W(0) \in T_{\gamma(0)}M$ and $W(1) \in T_{\gamma(1)}N$. A standard computation shows that the first variation of E in the direction $W \in T_{\gamma}\Omega$, denoted $E_*(W)$, is given by:

$$\frac{1}{2}E_*(W) = \langle W, \dot{\gamma} \rangle \Big|_0^1 - \sum_t \langle W(t), \Delta_t \dot{\gamma} \rangle - \int_0^1 \langle W, \frac{D\dot{\gamma}}{dt} \rangle dt,$$

where $\Delta_t \dot{\gamma} = \dot{\gamma}(t^+) - \dot{\gamma}(t^-)$ = the discontinuity of $\dot{\gamma}$ at t. It follows that γ is a critical point of E if:

- (i) γ is a smooth geodesic.
- (ii) γ is normal to M and N at $\gamma(0)$ and $\gamma(1)$, respectively.

Let $W_1, W_2 \in T_{\gamma}\Omega$. If γ is a critical point of E then the second variation of E along γ , denoted $E_{**}(W_1, W_2)$, is given by:

$$\frac{1}{2}E_{**}(W_1, W_2) = -\sum_t \langle W_2(t), \Delta_t \frac{DW_1}{dt} \rangle$$
$$-\int_0^1 \langle W_2, \frac{D^2W_1}{dt^2} + R(\dot{\gamma}, W_1)\dot{\gamma} \rangle dt.$$

Let Ω_c denote the closed subset $E^{-1}([0,c]) \subset \Omega$ and let $\overset{\circ}{\Omega_c}$ denote the open subset $E^{-1}([0,c))$. Following Milnor we construct a finite dimensional approximation to Ω_c : Choose some subdivision $0 = t_0 < t_1 < \cdots < t_k = 1$ of [0,1]. Let $\Omega(t_0,\ldots,t_k)$ be the subspace of Ω consisting of paths $\gamma:[0,1] \to V$ such that:

(i) $\gamma(0) \in M$ and $\gamma(1) \in N$ (ii) $\gamma|_{[t_{i-1},t_i]}$ is a geodesic for each $i = 1, \ldots, k$. Define the subspaces:

$$\Omega_c(t_0, \dots, t_k) = \Omega_c \cap \Omega(t_0, \dots, t_k)$$

$$\overset{\circ}{\Omega_c}(t_0, \dots, t_k) = \overset{\circ}{\Omega_c} \cap \Omega(t_0, \dots, t_k).$$

Theorem 1.1. Let V be a complete Riemannian manifold and let M and N be submanifolds with M compact and N a closed subset of V. Let c be a fixed positive number such that $\Omega_c \neq \phi$. Then for all sufficiently fine subdivisions $0 = t_0 < t_1 < \cdots < t_k = 1$ of [0, 1] the set $\hat{\Omega}_c(t_0, \ldots, t_k)$ can be given the structure of a smooth finite dimensional manifold.

Proof. [M] Sect. 16. \Box

Denote the manifold of broken geodesics $\overset{\circ}{\Omega}_{c}(t_{0}, \ldots t_{k})$ by *B*. Let

$$E|_B : B \to \mathbb{R}$$

denote the restriction to B of the energy function $E: \Omega \to \mathbb{R}$.

Theorem 1.2. $E|_B : B \to \mathbb{R}$ is a smooth map. For each a < c the set $B_a = (E|_B)^{-1}([0,a])$ is compact and is a deformation retract of the set Ω_a . The critical points of $E|_B$ are precisely the same as the critical points of E in $\overset{\circ}{\Omega}_c$, that is, the smooth geodesics from M to N intersecting M and N orthogonally and with energy less than c. The index of the hessian of $E|_B$ at each such critical point γ is equal to the index of E_{**} at γ .

Proof. [M] Sect. 14 and Sect. 16. \Box

Now suppose that every nontrivial critical point γ of E on Ω has index $\lambda > \lambda_0 \ge 0$. We remark that this implies that $N \cap M \ne \phi$. Since otherwise there exists a nontrivial minimizing geodesic from M to N and the index of such a geodesic must be zero. It follows that if every nontrivial critical point γ on Ω has index $\lambda > \lambda_0 \ge 0$ then the space Ω_0 of minimal (i.e., trivial) geodesics can be identified with the subspace $N \cap M \subset \Omega$.

Theorem 1.3. Suppose N intersects M transversally and that every nontrivial critical point of E on Ω has index $\lambda > \lambda_0 \ge 0$. Then the relative homotopy groups $\pi_j(\Omega, \Omega_0)$ are zero for $0 \le j \le \lambda_0$.

The proof of the theorem requires a lemma about functions on finitedimensional manifolds: Let X be a smooth manifold and $f : X \to \mathbb{R}$ be a smooth real-valued function with minimum value 0 such that each $X_c = f^{-1}([0, c])$ is compact. **Lemma 1.4.** If the set X_0 of minimal points has a neighborhood U with a retraction $r : U \to X_0$ and if every critical point in $X \setminus X_0$ has index $> \lambda_0$ then

$$\pi_j(X, X_0) = 0 \quad for \quad 0 \le j \le \lambda_0$$

Proof. [M] Sect. 22. \Box

Proof of the theorem: It suffices to prove that

$$\pi_j(\overset{\circ}{\Omega}_c,\Omega_0) = 0 \qquad 0 \le j \le \lambda_0$$

for arbitrarily large values of c. By Theorem 1.2 $\hat{\Omega}_c$ contains a smooth manifold $\hat{\Omega}_c(t_0, t_1, \ldots, t_k)$ as a deformation retract. Also by Theorem 1.2, the energy function $E : \Omega \to \mathbb{R}$ when restricted to $\hat{\Omega}_c(t_0, \ldots, t_k)$ has the property that every nontrivial critical point in $\hat{\Omega}_c(t_0, \ldots, t_k)$ has index $\lambda > \lambda_0$. The space of minimal geodesics $\Omega_0 \simeq M \cap N$ is contained in $\hat{\Omega}_c(t_0, \ldots, t_k)$. To apply the lemma it only remains to show that there is a neighborhood $U \subset \hat{\Omega}_c(t_0, \ldots, t_k)$ of Ω_0 and a retraction $r : U \to \Omega_0$.

Consider the neighborhoods $\overset{\circ}{\Omega_{\varepsilon}}(t_0,\ldots,t_k)$ of Ω_0 for $\varepsilon > 0$. We claim there is an $\varepsilon_0 > 0$ such that E has no nontrivial critical points in $\hat{\Omega}_{\varepsilon_0}(t_0, \cdots, t_0)$ t_k). To prove this, suppose the contrary. Then there is a sequence $\{\gamma_i\}$ of critical points of E with $E(\gamma_i) < \varepsilon_i$ and $\varepsilon_i \downarrow 0$. In particular the γ_i are smooth geodesics with $\gamma_i(0) \in M$, $\gamma_i(1) \in N$ and such that the image of γ_i intersects both M and N orthogonally. Since $E(\gamma_i) \downarrow 0$ and M is compact the image of the γ_i converges to a point $x \in N \cap M$. Let A denote a geodesically convex neighborhood of x. By rechoosing the sequence $\{\gamma_i\}$ we can suppose that each γ_i lies in A and moreover it is the unique geodesic lying in A joining its endpoints. Successively rescale A. In the limit we have an *n*-plane, $T_x N$, (dim N = n) and and an *m*-plane, $T_x M$, $(\dim M = m)$ intersecting transversally. There are sequences, $y_i \in T_x M$ and $z_i \in T_x N$, with $y_i \to 0$, $z_i \to 0$ and straight lines L_i joining y_i to z_i . Moreover the L_i intersect $T_x N$ and $T_x M$ orthogonally. Clearly this latter condition is impossible, proving the claim. Let $U = \check{\Omega}_{\varepsilon_0}(t_0, \ldots, t_k)$. The retraction $r: U \to \Omega_0$ is given by following the gradient flow lines of E on $\Omega_{\varepsilon_0}(t_0,\ldots,t_k).$

Let V be a complete Kähler manifold. Let $M, N \subset V$ be complex submanifolds of complex dimensions m, n, respectively and suppose that M is compact and and N is a closed subset of V. To prove the analog of Theorem 1.3 we do not need to assume that M and N intersect transversally.

Theorem 1.5. Let V be a complete Kähler manifold. Let $M, N \subset V$ be complex submanifolds and suppose that M is compact and N is a closed subset of V. If every nontrivial critical point of E on Ω has index $\lambda > \lambda_0 \ge 0$ then the relative homotopy groups $\pi_j(\Omega, \Omega_0)$ are zero for $0 \le j \le \lambda_0$.

Proof. The proof is the same as the proof of Theorem 1.3 except that in the limit after rescaling the convex neighborhood A we have a complex n-plane, T_xN , intersecting an analytic variety (M rescaled). However the same contradiction results, proving the theorem. \Box

2. The index of a critical point

Let V be a complete Kähler manifold of complex dimension v, with complex structure J and Levi-Civita connection ∇ . Let M and N be complex submanifolds of complex dimensions m and n, respectively. We continue to denote, by $\Omega(V; M, N) = \Omega$, the space of paths $\gamma : [0, 1] \rightarrow V$ constrained by the requirements that $\gamma(0) \in M$ and $\gamma(1) \in N$. Consider the energy of a path

$$E(\gamma) = \int_0^1 |\dot{\gamma}|^2 dt$$

as a function on Ω . As shown in Sect. 1 γ is a critical point of E if:

- (i) γ is a smooth geodesic
- (ii) γ is normal to M and N at $\gamma(0)$ and $\gamma(1)$, respectively.

Let $W_1, W_2 \in T_{\gamma}\Omega$. If γ is a critical point of E then we rewrite the second variation of E along γ by:

(2.1)
$$\frac{1}{2}E_{**}(W_1, W_2) = \langle \nabla_{W_1}W_2, \dot{\gamma} \rangle \Big|_0^1 + \int_0^1 \langle \nabla_{\dot{\gamma}}W_1, \nabla_{\dot{\gamma}}W_2 \rangle dt - \int_0^1 \langle R(\dot{\gamma}, W_1)\dot{\gamma}, W_2 \rangle dt.$$

Suppose that γ is a nontrivial critical point and that W(0) is a vector in $T_{\gamma(0)}M$. Parallel translate W(0) along γ to construct a vector field W = W(t) along γ . Of course, W(1) need not be tangent to N at $\gamma(1)$ so W is not necessarily an element of $T_{\gamma}\Omega$. However formally we have:

(2.2)
$$\frac{1}{2}E_{**}(W,W) = \langle \nabla_W W, \dot{\gamma} \rangle \Big|_0^1 - \int_0^1 \langle R(\dot{\gamma},W)\dot{\gamma},W \rangle dt.$$

V is Kähler so JW is also parallel along γ . M is complex so $JW(0) \in T_{\gamma(0)}M$. Thus we also have:

(2.3)
$$\frac{1}{2}E_{**}(JW, JW) = \langle \nabla_{JW}JW, \dot{\gamma} \rangle \Big|_{0}^{1} - \int_{0}^{1} \langle R(\dot{\gamma}, JW)\dot{\gamma}, JW \rangle dt.$$

Adding (2.2) and (2.3) and using $\nabla_{JW}JW = -\nabla_W W$ we have:

(2.4)
$$\frac{1}{2}E_{**}(W,W) + \frac{1}{2}E_{**}(JW,JW) = -\int_0^1 (\langle R(\dot{\gamma},W)\dot{\gamma},W\rangle + \langle R(\dot{\gamma},JW)\dot{\gamma},JW\rangle)dt.$$

Using the symmetries of the curvature tensor we have:

(2.5) $\langle R(\dot{\gamma}, W)\dot{\gamma}, W \rangle + \langle R(\dot{\gamma}, JW)\dot{\gamma}, JW \rangle = \langle R(\dot{\gamma}, J\dot{\gamma})W, JW \rangle.$

This expression is the holomorphic bisectional curvature of the complex lines $\dot{\gamma} \wedge J\dot{\gamma}$ and $W \wedge JW$.

Let $\{W_1(0), \ldots, W_m(0), JW_1(0), \ldots, JW_m(0)\}$ be an orthonormal framing of $T_{\gamma(0)}M$. For each $i = 1, \ldots, m$, parallel translate $W_i(0)$ along γ to construct parallel vector fields $\{W_1, \ldots, W_m, JW_1, \ldots, JW_m\}$ along γ . Note that the vectors $W_i(1), JW_i(1)$ are perpendicular to both $\dot{\gamma}(1)$ and $J\dot{\gamma}(1)$. Thus the vector space

$$S = span\{W_1(1), \dots, W_m(1), JW_1(1), \dots, JW_m(1)\}$$

is a complex *m*-dimensional space lying in a complex (v-1)-dimensional subspace of $T_{\gamma(1)}V$. It follows that the subspace $S \cap T_{\gamma(1)}N$ has complex dimension at least equal to

$$k = m + n - (v - 1).$$

Moreover, the vector fields $\{W, JW\}$ with $W(1), JW(1) \in S \cap T_{\gamma(1)}N$ are parallel and lie in $T_{\gamma}\Omega$.

Theorem 2.1. Suppose that V is a Kähler manifold of positive holomorphic bisectional curvature, that M and N are complex submanifolds and that γ is a nontrivial critical point of the energy on $\Omega(V; M, N)$. Then,

$$index(\gamma) \ge m + n - (v - 1).$$

Proof. There are at least k pairs $\{W, JW\}$ that are parallel along γ and lie in $T_{\gamma}\Omega$. For each such pair, using the curvature assumption, (2.4) and (2.5) we have:

$$E_{**}(W,W) + E_{**}(JW,JW) = -2\int_0^1 \langle R(\dot{\gamma},J\dot{\gamma})W,JW\rangle dt < 0$$

The result follows. \Box

Consider next the case where V is a Kähler manifold of non-negative holomorphic bisectional curvature. Fix $x \in V$ and let $X \wedge JX$ be a complex line in T_xV . Let $C(x, X \wedge JX)$ be the cone:

$$\mathcal{C}(x,X\wedge JX)=\{Y\in T_xV: \langle R(X,JX)Y,JY\rangle>0\}.$$

Note that C is a complex cone; if $Y \in C$ then $JY \in C$.

Definition. Let $\ell(x, X \land JX)$ denote the maximal number of orthogonal pairs (Y, JY) in $C(x, X \land JX)$. Set:

(i) $\ell(x) = \inf_{\substack{X \land JX \\ x \in V}} \ell(x, X \land JX)$ (ii) $\ell = \inf_{x \in V} \ell(x).$

We say that ℓ is the *complex positivity* of V.

Remark. If V is a hermitian symmetric space then $\ell(x) = \ell$ for every $x \in V$. If V is a hermitian symmetric space such that the isotropy subgroup acts transitively on complex lines in T_xV then $\ell(x) = \ell(x, X \land JX)$ for any complex line $X \land JX$ in T_xV . In particular this is true if V is the complex Grassmann manifold or the complex quadric.

Proposition 2.2. If $V = \prod_{i=1}^{t} V_i$ and ℓ_i denotes the complex positivity of V_i then the complex positivity of V is $\ell = \min_i \ell_i$.

Proof. Clear.

Let $\operatorname{Gr}(p, p+q; \mathbb{C})$ denote the complex Grassmann manifold of complex *p*-planes in \mathbb{C}^{p+q} .

Lemma 2.3. If $V = Gr(p, p + q; \mathbb{C})$ then for any $x \in Gr(p, p + q; \mathbb{C})$ and any complex line $X \wedge JX$ through x:

- (i) The cone $C(x, X \wedge JX)$ is a complex subspace of complex dimension $\ell(x, X \wedge JX)$.
- (*ii*) $\ell(x, X \wedge JX) = \ell = p + q 1.$

Proof. Let (ω_{AB}) , $1 \le A, B \le p + q$, be the Maurer-Cartan one-form of the group U(p+q). The one-forms $\{\omega_{i\alpha}\}, 1 \le i \le p, p+1 \le \alpha \le p+q$, give a unitary coframe for the Kähler metric on $Gr(p, p+q; \mathbb{C})$ considered as a hermitian symmetric space. With respect to this coframe the curvature two-form is given by:

(2.6)
$$\Omega_{i\alpha,j\beta} = -\delta_{\alpha\beta} \sum_{\gamma=p+1}^{p+q} \omega_{i\gamma} \wedge \bar{\omega}_{j\gamma} - \delta_{ij} \sum_{k=1}^{p} \omega_{k\alpha} \wedge \bar{\omega}_{k\beta}.$$

In particular,

(2.7)
$$\Omega_{i\alpha,i\alpha} = -\sum_{\gamma=p+1}^{p+q} \omega_{i\gamma} \wedge \bar{\omega}_{i\gamma} - \sum_{k=1}^{p} \omega_{k\alpha} \wedge \bar{\omega}_{k\alpha}.$$

Now suppose that the vectors Y_1, Y_2 are orthogonal and lie in $\mathcal{C}(x, X \land JX)$. Let $a, b \in \mathbb{R}$ and consider,

$$\langle R(X,JX)(aY_1+bY_2), J(aY_1+bY_2) \rangle = a^2 \langle R(X,JX)Y_1, JY_1 \rangle + 2ab \langle R(X,JX)Y_2, JY_1 \rangle + b^2 \langle R(X,JX)Y_2, JY_2 \rangle.$$

By (2.7) the middle term of the right hand side vanishes and it follows that $aY_1 + bY_2 \in \mathcal{C}(x, X \wedge JX)$.

The equality $\ell = p + q - 1$ follows immediately from (2.7). \Box

Now suppose V is the complex quadric. As a symmetric space V can be identified with the real Grassmann manifold $Gr(2, p + 2; \mathbb{R})$. Using the same reasoning as above we have,

Lemma 2.4. If $V = Gr(2, p + 2; \mathbb{R})$ then for any $x \in Gr(2, p + 2; \mathbb{R})$ and any complex line $X \wedge JX$ through x:

- (i) The cone $C(x, X \wedge JX)$ is a complex subspace of complex dimension $\ell(x, X \wedge JX)$.
- (ii) $\ell(x, X \wedge JX) = \ell = p.$

Theorem 2.5. Suppose that V is a complete Kähler manifold of non-negative holomorphic bisectional curvature. Further suppose that for any $x \in V$ and any complex line $X \wedge JX$ through x, the cone $C(x, X \wedge JX)$ is a complex subspace of complex dimension $\ell(x, X \wedge JX) \ge \ell$. Let M and N be complex submanifolds of complex dimensions m and n, respectively, and γ be a nontrivial critical point of energy on $\Omega(V; M, N)$. Then

$$index(\gamma) \ge m + n - (v - 1) - (v - \ell)$$

Proof. The argument in the proof of Theorem 2.1 shows that if $W, JW \in S \cap T_{\gamma(1)}N$ then

$$E_{**}(W,W) + E_{**}(JW,JW) = -2\int_0^1 \langle R(\dot{\gamma}, J\dot{\gamma})W, JW \rangle \le 0.$$

To get strict inequality we want

$$\langle R(\dot{\gamma}, J(\dot{\gamma}))W, JW \rangle > 0$$

at $\gamma(0)$. This is insured by requiring that:

$$W(0) \wedge JW(0) \in \mathcal{C}(\gamma(0), \dot{\gamma} \wedge J\dot{\gamma}).$$

The result follows. \Box

86

Corollary 2.6. Suppose
$$V = \prod_{i=1}^{t} Gr(p_i, p_i + q_i; \mathbb{C})$$
. Let M and N be com-

plex submanifolds of complex dimensions m and n, respectively. Let γ be a nontrivial critical point of the energy on $\Omega(V; M, N)$ then,

$$index(\gamma) \ge m + n + \min_{i}(p_i + q_i - 1) - 2\prod_{i}^{t} p_i q_i + 1$$

Proof. The result follows from Proposition 2.2, Theorem 2.5 and Lemma 2.3. \Box

A similar result holds for products of complex quadrics. We leave the exact formulation to the reader.

3. Applications

In this section we apply Morse theory to the path spaces $\Omega(V; M, N)$ and derive versions of the theorems of Lefschetz, Barth, Sommese, Fulton-Lazarsfeld, etc.

Let V be a complete Kähler manifold of non-negative holomorphic bisectional curvature and of complex dimension v. Suppose that for any $x \in V$ and any complex line $X \wedge JX$ through x, the cone $\mathcal{C}(x, X \wedge JX)$ is a complex subspace of complex dimension $\ell(x, X \wedge JX) \geq \ell$. Let $M, N \subset V$ be complex submanifolds of complex dimensions m, n, respectively and suppose that M is compact and N is a closed subset of V. We consider the path space $\Omega(V; M, N) = \Omega$ as described in Sect. 1.

Theorem 3.1. Suppose that,

$$\lambda_0 = n + m - v - (v - \ell) \ge 0.$$

Then relative homotopy groups $\pi_j(\Omega, N \cap M)$ are zero for $0 \leq j \leq \lambda_0$.

Proof. The theorem follows from Theorem 1.5 and Theorem 2.5. \Box

Theorem 3.1 and the long exact homotopy sequence of the pair $(\Omega, N \cap M)$ imply that the homomorphism induced by the inclusion:

(3.1)
$$\iota_*: \pi_j(N \cap M) \to \pi_j(\Omega)$$

is an isomorphism when $j < n + m - v - (v - \ell)$ and is a surjection when $j = n + m - v - (v - \ell)$.

Consider the fibration:

$$\Omega(V; M, x) \longrightarrow \Omega(V; M, N)$$
(3.2) $\downarrow e$

N

where e is the evaluation map $e : \gamma \mapsto \gamma(1)$ and $x \in N$. It is well-known that the homotopy groups of the fiber $\Omega(V; M, x)$ satisfy:

(3.3)
$$\pi_j(\Omega(V; M, x)) \simeq \pi_{j+1}(V, M)$$

for all j. The long exact homotopy sequence of the fibration is:

Thus, using (3.3), the long exact sequence (3.4) becomes:

(3.5)
$$\cdots \to \pi_{j+1}(N) \to \pi_{j+1}(V,M) \to \pi_j(\Omega) \to \pi_j(N)$$
$$\to \pi_j(V,M) \to \cdots$$

We have:

Theorem 3.2. Let V be a complete Kähler manifold of non-negative holomorphic bisectional curvature. Suppose that for any $x \in V$ and any complex line $X \wedge JX$ through x, the cone $C(x, X \wedge JX)$ is a complex subspace of complex dimension $\ell(x, X \wedge JX) \ge \ell$. Let $M, N \subset V$ be complex submanifolds of complex dimensions m, n, respectively, such that M is compact and N is a closed subset of V. Then the homomorphism induced by the inclusion

$$\iota_*: \pi_j(N, N \cap M) \to \pi_j(V, M)$$

is an isomorphism for $j \leq n + m - v - (v - \ell)$ and is a surjection for $j = n + m - v - (v - \ell) + 1$.

Proof. For $\lambda_0 = n + m - v - (v - \ell)$ consider the diagram:

$$\begin{aligned} \pi_{\lambda_0+1}(N) &\to \pi_{\lambda_0+1}(V,M) &\to \pi_{\lambda_0}(\Omega) &\to \pi_{\lambda_0}(N) &\to \pi_{\lambda_0}(V,M) \\ \uparrow &\simeq & \uparrow & \uparrow \text{ onto } \uparrow &\simeq & \uparrow \\ \pi_{\lambda_0+1}(N) &\to \pi_{\lambda_0+1}(N,N\cap M) \to \pi_{\lambda_0}(N\cap M) \to \pi_{\lambda_0}(N) \to \pi_{\lambda_0}(N,N\cap M) \end{aligned}$$

The vertical arrows are induced by inclusion. The top row is the long exact sequence (3.5). The bottom row is the long exact sequence of the pair $(N, N \cap M)$. The result follows using Theorem 3.1 and the commutivity of the diagram. \Box

Corollary 3.3. Under the same hypotheses as in Theorem 3.2, if

$$j \le 2m - v - (v - \ell) + 1$$

then

$$\pi_i(V, M) = 0.$$

Proof. Apply Theorem 3.2 to the case N = M. \Box

Corollary 3.4. Under the same hypothesis as in Theorem 3.2, if

$$j \le \min(2m - v - (v - \ell) + 1, n + m - v - (v - \ell))$$

then

$$\pi_j(N, N \cap M) = 0.$$

Proof. Follows from Corollary 3.3 and Theorem 3.2.

The statements of Theorem 3.2 and its corollaries apply, in particular, to:

(i) $V = \mathbb{P}^v$ with $\ell = v$.

- (ii) $V = \operatorname{Gr}(p, p+q; \mathbb{C})$ with v = pq and $\ell = p+q-1$.
- (iii) $V = \operatorname{Gr}(2, p+2; \mathbb{R})$ with v = p and $\ell = p$.

References

- [B] Barth, W., Transplanting cohomology classes in complex projective space, Amer. J. Math.92 (1970), 951-967.
- [B-L] Barth, W. Larsen, M., On the homotopy groups of complex projective manifolds, Math. Scand.30 (1972), 88-94.
- [F-L] Fulton, W.- Lazarsfeld, R., Connectivity and its applications in algebraic geometry, *Algebraic Geometry*, Springer Lecture Notes in Math. **862** (1981), 26-92.
- [F] Frankel, T., Manifolds with positive curvature, Pacific J. Math. 11 (1961), 165-174
- [Fu] Fulton, W., On the topology of algebraic varieties, Proc. of the Symposia in Pure Math., 46 Part 1 (1987), 15-46.
- [La] Larsen, M., On the topology of complex projective manifolds, Invent. Math. **19** (1973), 251-260.
- [Le] Lefschetz, S., L'Analysis Situs et la Géométrie Algébrique, Paris 1924.
- [M] Milnor, J., Morse Theory, Ann. of Math. Studies 51, Princeton Univ. Press, Princeton, NJ, 1963.
- [O] Okonek, C., Barth-Lefschetz theorems for singular spaces, J.Reine Angew Math., 374 (1987) 24-38.
- [P] Palais, R., Morse theory on Hilbert manifolds, Topology, 2 (1963) 299-340.
- [S1] Sommese, A., Theorems of Barth-Lefschetz type for complex subspaces of homogeneous complex manifolds, Proc. Natl. Acad. Sci. USA 74 (1977) 1332-1333.
- [S2] Sommese, A., Complex subspaces of homogeneous complex manifolds II- Homotopy Results, Nagoya Math. J. 86 (1982), 101-129