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0. Introduction

In the 1920’s Lefschetz [Le] stated the following theorem now known as
the Lefschetz theorem on hyperplane sectionsN.et P* be a connected
complex submanifold of complex dimensienLet H be a hyperplane and

N N H a nonsingular hyperplane section. Then the relative cohomology
groups satisfy:

HI(NNNH;C)=0, j<n-1

Fifty years later Barth [B] generalized Lefschetz’s theorem:MetV C PV
be complex submanifolds of complex dimensiongn, respectively. IfM
andN meet properly, then,

H/(N,NNM;C)=0, j<min(n+m—v,2m—uv+1).

Generalizations of Barth’s results to homotopy groups were first obtained
by Larsen [La] and Barth-Larsen [B-L] and later by Sommese and Fulton-
Lazarsfeld [F-L]. In particular they prove a “connectedness” theorem for
closed local complete intersectiodg, N C PY of complex dimensions
m, n, respectively. For such varieties it is shown that the relative homotopy
groups satisfy:

T (N, NNM) =0, j<min(n+m—v,2m—v+1).
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Sommese [S1][S2] generalized this result to submanifolds of certain homo-
geneous complex manifolds. Finally in 1987 Okonek [O] generalized these
homotopy results to include varieties with singularities. For a more complete
survey of this topic we refer the reader to [F-L].

In 1961 T. Frankel [F] proved a “connectedness” theorem for complex
submanifolds of a Bhler manifold of positive holomorphic sectional curva-
ture. LetV be a complete Bhler manifold of positive holomorphic sectional
curvature and of complex dimensionLet M, N C V be compact complex
submanifolds of dimensions andn, respectively. Frankel proved that if
m +n > vthenM and N must intersect. Apparently it was not seen how
to apply Frankel's technigue to the more general “connectedness” results
described above. However the relevance of Frankel’'s work to these results
was noted by Fulton in [Ful].

In this paper we show that a variant of Frankel’'s argument together with
Morse theory on a space of paths leads to an elegant proof of homotopy con-
nectedness theorems for complex submanifolds of certaimdf manifolds
of non-negative holomorphic bisectional curvature. In particular, we prove:

Theorem 0.1. Let V' be a Kahler manifold. Suppose that, N C V are
complex submanifolds of complex dimensions:, respectively, such that
M is compact andV is a closed subset 6f. Let

1t (N, NN M) — m;(V, M),
be the homomorphism induced by the inclusion.

(i) If V = P? thens, is an isomorphism foj < n+ m — v and is a
surjection forj =n+m —v + 1.

(i) If V= Gr(p,p + ¢;C) thenu, is an isomorphism foj < n +m —
2pq + (p+q — 1) and is a surjection fof = n +m — 2pq + (p + q).

(i) If V =Gr(2,p+ 2;R) thenu, is an isomorphism fof < n+m —p
and is a surjectionfoj =n+m — p + 1.

Theorem 0.1 in the case (i) thiat = P? is due to Fulton-Lazarsfeld [F-L,
Theorem 9.6]. Their result is actually somewhat more general.

Corollary 0.2. Supposel, M and N satisfy the same hypotheses as in
Theorem 0.1. Morover,

(i) ifV=0Pr’setl=nuo.
(i) if V.=0Gr(p,p+ ¢;C)setv =pgandl =p+q— 1.
(iii) if V=0Gr(2,p+ 2;R) setv = pand? = p.

In each of these three cases, we have:

(01) If j<2m—v—(v—{)+1 then 7;(V,M)=0.
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If j <min@2m—-—v—(v—0)+1, n+m—v—(v—1{_))
(0.2) then 7;(N,N N M) = 0.

In the case (i) that” = PY (0.1) is due to Larsen [La]. Sommese [S2]
proved both statements of the corollary in cases (i) and (ii). He also has
similar results wherv is a simple abelian variety.

The proof of Theorem 0.1 relies on the computation of the index of a
critical point of the energy on a suitable space of paths. Thisis donein Sect. 2.
In Sect. 1 we outline the results we require from Morse theory on path spaces.
The results are taken from Milnor [M] with some modifications. In Sect. 3
we combine the results of the previous sections to derive the connectedness
theorem.

1. Morse theory

LetV be acomplete Riemannian manifold andi¢and/N be submanifolds
(intersecting or not) with\/ compact andV a closed subset df. We let
P(V; M, N) denote the set af* pathsy : [0, 1] — V such thaty(0) € M
andy(1) € N. The energy of the path defines a function GWV'; M, N)
given by:

1
B6) = [ P

We are interested in studying the topologyfV'; M, N) via the Morse
theory of the functionE'. There are two approaches to this study. In one
the space of paths is given the structure of a Hilbert manifold and Morse
theory on Hilbert manifolds is applied to the eneifgyThis is the approach
developed in detail by Palais [P]. An older approach to this problem, orig-
inating with M. Morse, approximates the path space by finite-dimensional
manifolds and employs techniques from finite-dimensional Morse theory.
This is the approach described by Milnor in [M]. For ease of exposition we
will follow the latter approach.

In [M], Milnor studies a special case of the above problem, namely, the
topology of the path spad@(V; p, q) wherep andq are points in//. While
our problem is more general it turns out the results we require are stated in
[M]. Moreover, the proofs given in [M] apply to the general case with only
minor changes that can easily be made by the reader. Accordingly, in this
section, we will describe the general set-up, state the results we will need
and give the appropriate references to [M].

We begin by defining the path spacep#cewise smooth pafrom M
to NV is a mapy : [0, 1] — V such that:

(i) thereis a subdivisiod =ty < t; < --- <t = 1 of [0, 1] such that
eachy|y,, , ;. is smooth.
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(i) ~(0) € M andvy(1) € N.

The set of all piecewise smooth paths frdthto N in V' will be denoted
by 2(V; M, N) or simply (2.

The set2(V; M, N) can be topologized as follows: Lgtdenote the
Riemannian distance function én Let~y;,v2 € 2(V; M, N). Define the
distanced(vy1, v2) by:

1
d(y1,72) = max p(y (£),72(8)) + /0 (Fa ()] — Fat)])?dt.

0<t<1

Note thaty; and+, are not defined at finitely many points[ih 1], however
the integral is defined. This metric induces the required topology. The energy

of a path
/|’y 2dt

defines a continuous map(V; M, N) — R.

Define thetangent spacef (2 at~, T2, to be the vector space of
piecewise smooth vector field§ along~y such that¥ (0) € T’ M and
W (1) € T,q)N. A standard computation shows that the first variation of
E in the directionlV € T, {2, denotedE, (W), is given by:

SE(W) = (W,3)|.

1 .
S-S WA~ [ w

t

whereAy = 4(t+) — 4(¢t~) = the discontinuity ofy att. It follows thaty
is a critical point ofFE if:

() ~is asmooth geodesic.
(i) ~isnormaltoM andN atv(0) andv(1), respectively.

Let Wy, Wy € T, 82. If v is a critical point ofE' then the second variation
of E along~, denotedE....(W1, Ws), is given by:
1 DWW,

§E**(W1,W2) = —Z<W2( )y Ap—— 7

t

)

! D*Wy ) i
—/0 (Wa, ——=— 72 + R(y, W1i)5)dt.

Let £2. denote the closed subsBt ([0, c]) C £ and IetfozC denote the
open subset~1([0, ¢)). Following Milnor we construct a finite dimensional
approximation tof2.: Choose some subdivisiah = ¢y < t; < --- <
tr = 10f [0, 1]. Let 2(to, ..., ;) be the subspace @ consisting of paths
v :[0,1] — V such that:
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(i) ~(0) e Mandy(l) e N
(i) 7|[ti71,ti] is a geodesic for each=1, ..., k.

Define the subspaces:

Qc(to, .. .tk) =0.N Q(to, .. .,tk)

Qc(to, .. .tk) = () ﬂQ(tQ, .. ,tk).

Theorem 1.1. Let V' be a complete Riemannian manifold and Aétand
N be submanifolds witl/ compact andV a closed subset df’. Letc
be a fixed positive number such that # ¢. Then for all sufficiently fine

subdivisiond) =ty < t; < --- < tx = 10f[0, 1] the setfzc(to, ...tx) can
be given the structure of a smooth finite dimensional manifold.

Proof. [M]Sect.16. O

Denote the manifold of broken geodesjoog(to, ...1r) by B. Let
Elz:B—R
denote the restriction t& of the energy functio® : 2 — R.

Theorem 1.2. E|p : B — R is a smooth map. For each < ¢ the set
B. = (E|g)~1([0,a]) is compact and is a deformation retract of the set
(2,. The critical points ofF|  are precisely the same as the critical points

of Fin (020, that is, the smooth geodesics frdthto N intersectingM and
N orthogonally and with energy less thanThe index of the hessian Bf 5
at each such critical poiny is equal to the index of,. at~.

Proof. [M] Sect. 14 and Sect. 16. O

Now suppose that every nontrivial critical pombf E on {2 has index
A > Ao > 0. We remark that this implies tha& N M # ¢. Since otherwise
there exists a nontrivial minimizing geodesic fravhto N and the index of
such a geodesic must be zero. It follows that if every nontrivial critical point
~v on {2 has index\ > Xy > 0 then the spacé&, of minimal (i.e., trivial)
geodesics can be identified with the subspace M C (2.

Theorem 1.3. SupposeV intersectsM transversally and that every non-
trivial critical point of £ on 2 has index\ > Xy > 0. Then the relative
homotopy groups; ({2, £2) are zero ford < j < .

The proof of the theorem requires a lemma about functions on finite-
dimensional manifolds: LeX be a smooth manifold and : X — R
be a smooth real-valued function with minimum valliesuch that each
X. = 1[0, c]) is compact.
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Lemma 1.4. If the setX, of minimal points has a neighborhoadwith a
retractionr : U — X and if every critical point inX \ X, has index> A
then

Wj(X,X()):O for OS]S)\O

Proof. [M] Sect.22. O

Proof of the theoremit suffices to prove that
(06, 20) =0 0<j <A

for arbitrarily large values ot. By Theorem 1.2(Ozc contains a smooth
manifold (2.(to, t1, . . ., tx) a@s a deformation retract. Also by Theorem 1.2,
the energy function® : 2 — R when restricted t(fzc(to,...,tk) has

the property that every nontrivial critical point j?zc(to, ..., tr) has index
A > )g. The space of minimal geodesit ~ M N N is contained in

f)c(to, ..., tx). To apply the lemma it only remains to show that there is a
neighborhood’/ C (Ozc(to, ..., tr) of £29 and a retractiom : U — (2.
Consider the neighborhood%e(to, ..., t) of £ for e > 0. We claim

there is arxg > 0 such that& has no nontrivial critical points ig%ao (to, -+
t;.). To prove this, suppose the contrary. Then there is a seqyengef
critical points of E with E(v;) < ¢; ande; | 0. In particular they; are
smooth geodesics witly;(0) € M, ~;(1) € N and such that the image
of ~; intersects both\/ and N orthogonally. Since®(~;) | 0 and M is
compact the image of theg converges to a point € N N M. Let A de-
note a geodesically convex neighborhood:oBy rechoosing the sequence
{7:} we can suppose that eaghlies in A and moreover it is the unique
geodesic lying inA joining its endpoints. Successively rescaleln the
limit we have am-plane, T, N, (dim N = n) and and amn-plane, T, M,
(dim M = m) intersecting tranversally. There are sequenges; T, M
andz; € T, N, with y; — 0, z; — 0 and straight lined.; joining y; to z;.
Moreover theL; intersectl,, N andT,. M orthogonally. Clearly this latter

condition is impossible, proving the claim. LEt = !0250 (to,...,tx). The
retractionr : U — (2 is given by following the gradient flow lines @ on

Qeo(to, .oy tg). O

Let V be a complete Khler manifold. LetM, N C V be complex
submanifolds of complex dimensions, n, respectively and suppose that
M is compact and and/ is a closed subset df. To prove the analog of
Theorem 1.3 we do not need to assume iand N intersect transversally.
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Theorem 1.5. Let V' be a complete &hler manifold. LetM, N C V be
complex submanifolds and suppose thatis compact andV is a closed
subsetof/. If every nontrivial critical point ofZ on{2 hasindex > \o > 0
then the relative homotopy groups(2, £2) are zero for0 < j < Xo.

Proof. The proof is the same as the proof of Theorem 1.3 except that in
the limit after rescaling the convex neighborhoddwe have a complex
n-plane, T, N, intersecting an analytic variety{ rescaled). However the
same contradiction results, proving the theorent

2. The index of a critical point

Let V be a complete Ehler manifold of complex dimensian with com-
plex structure/ and Levi-Civita connectioV. Let M and N be complex
submanifolds of complex dimensionsandn, respectively. We continue to
denote, by2(V; M, N) = (2, the space of paths: [0,1] — V constrained
by the requirements that0) € M and~(1) € N. Consider the energy of
a path

1
B = [ liPdr
0
as a function orf2. As shown in Sect. % is a critical point ofE if:

() ~is asmooth geodesic
(i) ~isnormaltoM andN at~(0) andv(1), respectively.

Let Wy, Wo € T.,42. If v is a critical point ofZ then we rewrite the second
variation of £ along~y by:
1

1 1
o Bur (W1, W2) = <VW1W2,"Y>’O +/ (V4 W1, Vi Wa)dt
0

1
(2.1) —A<meww%mt

Suppose that is a nontrivial critical point and thd# (0) is a vector in
T, )M . Parallel translaté (0) along~y to construct a vector fielél” =
W (t) along~. Of courseJ¥ (1) need not be tangent ¥y at~(1) soW is
not necessarily an element’6f(2. However formally we have:

2

V is Kahler soJW is also parallel along. M is complex saJW (0) €
T, 0)yM. Thus we also have:

1 1 1
@2)  GEWW) = (T W)~ [ 6w W

1
(2.3) %E**(JW, JW) = (Vg JW, w‘é - /0 (R(y, JW)4, JW)dt.
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Adding (2.2) and (2.3) and using ;jy JW = —Vy W we have:

1 1
5 B (WW) 4 S B (W, JW) =

1
(2.4) - /0 (R, W5, W) + (R(3, W5, JW))dt.

Using the symmetries of the curvature tensor we have:
(2.5) (R(, W)7, W) + (R(Y, JW), JW) = (R(¥, Jy)W, JW).

This expression is the holomorphic bisectional curvature of the complex
linesy A JyandW A JW.

Let {W1(0),...,W,,(0), JW1(0),...,JW,,(0)} be an orthonormal
framing of 7', o) M. For eachi = 1,...,m, parallel translatéV;(0) along
~ to construct parallel vector fieldd1, ..., W,,, JW1, ..., JW,,} along
~. Note that the vectord#/;(1), JW;(1) are perpendicular to boti(1) and
J#(1). Thus the vector space

S =spaqWi(1),...,Wp (1), JWi(1),...,JW,,(1)}
is a complexn-dimensional space lying in a compléx— 1)-dimensional
subspace of’,;)V'. It follows that the subspacg&n 7’,;) N has complex
dimension at least equal to

E=m+4n—(v—1).

Moreover, the vector field§W, JW } with W (1), JW (1) € SN T, )N
are parallel and lie iff’, £2.

Theorem 2.1. Suppose that is a Kahler manifold of positive holomorphic
bisectional curvature, that/ and N are complex submanifolds and that
is a nontrivial critical point of the energy of®(V'; M, N). Then,

indexy) > m+n— (v—1).

Proof. There are at leadt pairs{1W, JW} that are parallel along and lie
in T, £2. For each such pair, using the curvature assumption, (2.4) and (2.5)
we have:

Eue(W, W) + Eou(JW, JW) =

1
9 / (R(3, J3)W, JW)dt < 0.
0

The result follows. O
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Consider next the case wheveis a Kahler manifold of non-negative
holomorphic bisectional curvature. Fixc V and letX A JX be a complex
lineinT,V.LetC(z, X A JX) be the cone:

Clz, X NJX)={Y € T,V : (R(X,JX)Y,JY) > 0}.
Note thatC is a complex cone; i € C thenJY € C.

Definition. Let ¢(z, X A JX) denote the maximal number of orthogonal
pairs(Y,JY)inC(x, X A JX). Set:

(|) {(z) ‘: Xl/{lJfX Uz, X NJX)

(i) E:;g‘f/ ().

We say that is thecomplex positivityf V.

Remarklf V' is a hermitian symmetric space thén:) = ¢ foreveryz € V.

If V' is a hermitian symmetric space such that the isotropy subgroup acts
transitively on complex lines iff;,V then/(x) = ¢(z, X A JX) for any

complex lineX A JX in T, V. In particular this is true i¥/ is the complex
Grassmann manifold or the complex quadric.

t
Proposition 2.2. If V = H V; and/; denotes the complex positivity 6f

=1
then the complex positivity &f is £ = min; ¢;.

Proof. Clear. O

Let Gr(p, p+ ¢; C) denote the complex Grassmann manifold of complex
p-planes inCP*4,

Lemma 2.3. If V = Gr(p, p + ¢; C) then for anyx € Gr(p,p + ¢; C) and
any complex lineX A J X throughz:

(i) The cone&l(z, X A JX) is a complex subspace of complex dimension
Uz, X NJTX).
(i) Lz, XNIJX)=l=p+q—1.

Proof. Let (wap), 1< A, B < p+ ¢, be the Maurer-Cartan one-form of
the groug/ (p+¢). The one-formgw;n}, 1 <i<p, p+1<a <p+g,

give a unitary coframe for the &hler metric on Gip, p + ¢; C) considered

as a hermitian symmetric space. With respect to this coframe the curvature
two-form is given by:

p+q p

(2.6) Qia,jﬁ = —5046 Z Wiy A Wiy — 5ij Zwko‘ N Wgg-
y=p+1 k=1
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In particular,
p+q p
(27) \Qia,ia = - Z Wiy N Wiy — Wka N Wka -
y=p+1 k=1

Now suppose that the vectars, > are orthogonal and lie ii(xz, X A
JX). Leta,b € R and consider,

(R(X, JX)(aYy + bY2), J(aY; 4 bY2)) = a*(R(X, JX)Y1, JY7)
+2ab(R(X, JX)Ys, JY1) + b*(R(X, JX)Ya, JY).

By (2.7) the middle term of the right hand side vanishes and it follows that
aY, +bYs € C(z, X N JX).
The equality? = p + g — 1 follows immediately from (2.7). O

Now supposé/ is the complex quadric. As a symmetric spacean
be identified with the real Grassmann manifold Gp + 2;R). Using the
same reasoning as above we have,

Lemma 2.4. If V = Gr(2,p + 2;R) then for anyx € Gr(2,p + 2;R) and
any complex lineX A J X throughz:

(i) The conel(xz, X A JX) is a complex subspace of complex dimension
Uz, X NJTX).
(i) Lz, XNJIX)=/{=p.

Theorem 2.5. Suppose thdl is acomplete Ehler manifold of non-negative
holomorphic bisectional curvature. Further suppose that foraryV and
any complex lineéX A JX throughz, the con&l(z, X A JX) is a complex
subspace of complex dimensitiw, X A JX) > (. Let M and N be com-
plex submanifolds of complex dimensiensandn, respectively, and be

a nontrivial critical point of energy o2(V'; M, N). Then

indexy) >m+n—(v—1)— (v—1).

Proof. The argument in the proof of Theorem 2.1 shows th&t'it/W ¢
SN TW(I)N then

1
Eee(W, W) + Bun(JW, JW) = —2 / (R(3, J3)W, JW) < 0.
0

To get strict inequality we want
(R(Y, J())W, JW) >0
at~(0). This is insured by requiring that:
W(0) AJW(0) € C(7(0),7 A 7).

The result follows. O
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t
Corollary 2.6. Supposé” = HGI’(pi,pi + ¢i; C). LetM and N be com-

plex submanifolds of comple;( dimensiemandn, respectively. Lef be a
nontrivial critical point of the energy of2(V'; M, N) then,

t
index) > m +n+min(p; + ¢, — 1) = 2] [ pigi + 1.
? .

)

Proof. The result follows from Proposition 2.2, Theorem 2.5 and Lemma
23. O

A similar result holds for products of complex quadrics. We leave the
exact formulation to the reader.

3. Applications

In this section we apply Morse theory to the path spa@¢¥’; M, N)
and derive versions of the theorems of Lefschetz, Barth, Sommese, Fulton-
Lazarsfeld, etc.

Let V' be a complete Ehler manifold of non-negative holomorphic bi-
sectional curvature and of complex dimensioBuppose thatforanyc V'
and any complex lin& A J X throughz, the con&(z, X A JX) is a com-
plex subspace of complex dimensiéfx, X A JX) > (. Let M,N C V
be complex submanifolds of complex dimensionsn, respectively and
suppose that/ is compact andV is a closed subset 6f. We consider the
path spacé?(V; M, N) = {2 as described in Sect. 1.

Theorem 3.1. Suppose that,

=n+m—-—v—(v—4_)>0.
Then relative homotopy groups ({2, N N M) are zero for) < j < Ao.
Proof. The theorem follows from Theorem 1.5 and Theorem 2.51

Theorem 3.1 and the long exact homotopy sequence of the pair
(2, N n M) imply that the homomorphism induced by the inclusion:

(3.1) 1 (NN M) — 7i(02)
is an isomorphism whep < n +m — v — (v — ¢) and is a surjection when

j=n+m—v—(v—1{).
Consider the fibration:
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QV;M,x) — 2(V;M,N)

(3.2) le

N

wheree is the evaluation map : v — ~(1) andx € N. Itis well-known
that the homotopy groups of the fib&(V'; M, x) satisfy:

(3-3) T (2(V; M, 2)) = 741 (V, M),
for all j. The long exact homotopy sequence of the fibration is:

cee — 7Tj+1(N) — Wj(Q(V;Ma$)) — Wj(‘Q)

(3.4) 5 mi(N) — w1 (2(V; M, z)) — -

Thus, using (3.3), the long exact sequence (3.4) becomes:
2 (V) = 7w (V, M) — m(82) — m5(N)

(3.5) - mi(V,M)—---

We have:

Theorem 3.2. LetV be a complete &hler manifold of non-negative holo-
morphic bisectional curvature. Suppose that for any ¥ and any complex
line X A JX throughz, the con&l(z, X A JX) is a complex subspace of
complex dimensiof(xz, X AJX) > {.LetM, N C V be complex subman-
ifolds of complex dimensioms, n, respectively, such that is compact and

N is aclosed subset &f. Then the homomorphism induced by the inclusion

1 (N, NN M) — m;(V, M)

is an isomorphism foj < n +m — v — (v — £) and is a surjection for
j=n+m-v—(v—40)+1.

Proof. For \o = n+m — v — (v — £) consider the diagram:

7l’>\0+1(N) — 7l’>\0+1(V, M) — 7T)\O(Q) — 7T)\0(N) — 71'>\0(V7 M)
o 4 1 onto o 4
7T,\0+1(N) *)TFAO_H(N,NI'TM) %WAO(NQM) HWAO(N) *)WAO(N,NHM)

The vertical arrows are induced by inclusion. The top row is the long ex-
act sequence (3.5). The bottom row is the long exact sequence of the pair
(N, N NM). The result follows using Theorem 3.1 and the commutivity of
the diagram. O



Morse theory on the space of paths 89

Corollary 3.3. Under the same hypotheses as in Theorem 3.2, if
j<2m—-v—(v—4)+1

then
mi(V,M) = 0.

Proof. Apply Theorem 3.2tothecasé = M. O
Corollary 3.4. Under the same hypothesis as in Theorem 3.2, if
j<minm-—-v—(v—~€)+1,n+m—v—(v—1{))

then
(N, NN M) =0.

Proof. Follows from Corollary 3.3 and Theorem 3.2.0

The statements of Theorem 3.2 and its corollaries apply, in particular,
to:

(i) V =P"with{=n.
(i) V =0Gr(p,p+ ¢q;C)withv =pgandl =p+q— 1.
(i) V =0Gr(2,p+ 2;R) with v = p and? = p.
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