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0. Introduction

In the 1920’s Lefschetz [Le] stated the following theorem now known as
the Lefschetz theorem on hyperplane sections. LetN ⊂ P

v be a connected
complex submanifold of complex dimensionn. Let H be a hyperplane and
N ∩ H a nonsingular hyperplane section. Then the relative cohomology
groups satisfy:

Hj(N, N ∩ H; C) = 0, j ≤ n − 1.

Fifty years later Barth [B] generalized Lefschetz’s theorem: LetM, N ⊂ P
v

be complex submanifolds of complex dimensionsm, n, respectively. IfM
andN meet properly, then,

Hj(N, N ∩ M ; C) = 0, j ≤ min(n + m − v, 2m − v + 1).

Generalizations of Barth’s results to homotopy groups were first obtained
by Larsen [La] and Barth-Larsen [B-L] and later by Sommese and Fulton-
Lazarsfeld [F-L]. In particular they prove a “connectedness” theorem for
closed local complete intersectionsM, N ⊂ P

v of complex dimensions
m, n, respectively. For such varieties it is shown that the relative homotopy
groups satisfy:

πj(N, N ∩ M) = 0, j ≤ min(n + m − v, 2m − v + 1).

The first author was partially supported by NSF Grant DMS-9504441. The second author
was partially supported by NSF Grant DMS-9504898.
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Sommese [S1][S2] generalized this result to submanifolds of certain homo-
geneous complex manifolds. Finally in 1987 Okonek [O] generalized these
homotopy results to include varieties with singularities. For a more complete
survey of this topic we refer the reader to [F-L].

In 1961 T. Frankel [F] proved a “connectedness” theorem for complex
submanifolds of a K̈ahler manifold of positive holomorphic sectional curva-
ture. LetV be a complete K̈ahler manifold of positive holomorphic sectional
curvature and of complex dimensionv. LetM, N ⊂ V be compact complex
submanifolds of dimensionsm andn, respectively. Frankel proved that if
m + n ≥ v thenM andN must intersect. Apparently it was not seen how
to apply Frankel’s technique to the more general “connectedness” results
described above. However the relevance of Frankel’s work to these results
was noted by Fulton in [Fu].

In this paper we show that a variant of Frankel’s argument together with
Morse theory on a space of paths leads to an elegant proof of homotopy con-
nectedness theorems for complex submanifolds of certain Kähler manifolds
of non-negative holomorphic bisectional curvature. In particular, we prove:

Theorem 0.1. Let V be a K̈ahler manifold. Suppose thatM, N ⊂ V are
complex submanifolds of complex dimensionsm, n, respectively, such that
M is compact andN is a closed subset ofV . Let

ı∗ : πj(N, N ∩ M) → πj(V, M),

be the homomorphism induced by the inclusion.

(i) If V = P
v then ı∗ is an isomorphism forj ≤ n + m − v and is a

surjection forj = n + m − v + 1.
(ii) If V = Gr(p, p + q; C) thenı∗ is an isomorphism forj ≤ n + m −

2pq + (p + q − 1) and is a surjection forj = n + m − 2pq + (p + q).
(iii) If V = Gr(2, p + 2; R) thenı∗ is an isomorphism forj ≤ n + m − p

and is a surjection forj = n + m − p + 1.

Theorem 0.1 in the case (i) thatV = P
v is due to Fulton-Lazarsfeld [F-L,

Theorem 9.6]. Their result is actually somewhat more general.

Corollary 0.2. SupposeV, M and N satisfy the same hypotheses as in
Theorem 0.1. Morover,

(i) if V = P
v set` = v.

(ii) if V = Gr(p, p + q; C) setv = pq and` = p + q − 1.
(iii) if V = Gr(2, p + 2; R) setv = p and` = p.

In each of these three cases, we have:

If j ≤ 2m − v − (v − `) + 1 then πj(V, M) = 0.(0.1)
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If j ≤ min(2m − v − (v − `) + 1, n + m − v − (v − `))
then πj(N, N ∩ M) = 0.(0.2)

In the case (i) thatV = P
v (0.1) is due to Larsen [La]. Sommese [S2]

proved both statements of the corollary in cases (i) and (ii). He also has
similar results whenV is a simple abelian variety.

The proof of Theorem 0.1 relies on the computation of the index of a
critical point of the energy on a suitable space of paths. This is done in Sect. 2.
In Sect. 1 we outline the results we require from Morse theory on path spaces.
The results are taken from Milnor [M] with some modifications. In Sect. 3
we combine the results of the previous sections to derive the connectedness
theorem.

1. Morse theory

LetV be a complete Riemannian manifold and letM andN be submanifolds
(intersecting or not) withM compact andN a closed subset ofV . We let
P(V ; M, N) denote the set ofCk pathsγ : [0, 1] → V such thatγ(0) ∈ M
andγ(1) ∈ N . The energyE of the path defines a function onP(V ;M, N)
given by:

E(γ) =
∫ 1

0
|γ̇(t)|2dt.

We are interested in studying the topology ofP(V ;M, N) via the Morse
theory of the functionE. There are two approaches to this study. In one
the space of paths is given the structure of a Hilbert manifold and Morse
theory on Hilbert manifolds is applied to the energyE. This is the approach
developed in detail by Palais [P]. An older approach to this problem, orig-
inating with M. Morse, approximates the path space by finite-dimensional
manifolds and employs techniques from finite-dimensional Morse theory.
This is the approach described by Milnor in [M]. For ease of exposition we
will follow the latter approach.

In [M], Milnor studies a special case of the above problem, namely, the
topology of the path spaceP(V ; p, q) wherep andq are points inV . While
our problem is more general it turns out the results we require are stated in
[M]. Moreover, the proofs given in [M] apply to the general case with only
minor changes that can easily be made by the reader. Accordingly, in this
section, we will describe the general set-up, state the results we will need
and give the appropriate references to [M].

We begin by defining the path space. Apiecewise smooth pathfrom M
to N is a mapγ : [0, 1] → V such that:

(i) there is a subdivision0 = t0 < t1 < · · · < tk = 1 of [0, 1] such that
eachγ|[ti−1,ti] is smooth.
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(ii) γ(0) ∈ M andγ(1) ∈ N.

The set of all piecewise smooth paths fromM to N in V will be denoted
by Ω(V ; M, N) or simplyΩ.

The setΩ(V ;M, N) can be topologized as follows: Letρ denote the
Riemannian distance function onV . Let γ1, γ2 ∈ Ω(V ;M, N). Define the
distanced(γ1, γ2) by:

d(γ1, γ2) = max
0≤t≤1

ρ(γ1(t), γ2(t)) +
∫ 1

0
(|γ̇1(t)| − |γ̇2(t)|)2dt.

Note thatγ̇1 andγ̇2 are not defined at finitely many points in[0, 1], however
the integral is defined. This metric induces the required topology. The energy
of a path

E(γ) =
∫ 1

0
|γ̇(t)|2dt

defines a continuous mapΩ(V ;M, N) → R.

Define thetangent spaceof Ω at γ, TγΩ, to be the vector space of
piecewise smooth vector fieldsW alongγ such thatW (0) ∈ Tγ(0)M and
W (1) ∈ Tγ(1)N . A standard computation shows that the first variation of
E in the directionW ∈ TγΩ, denotedE∗(W ), is given by:

1
2
E∗(W ) = 〈W, γ̇〉

∣∣∣1
0
−

∑
t

〈W (t), ∆tγ̇〉 −
∫ 1

0
〈W,

Dγ̇

dt
〉dt,

where∆tγ̇ = γ̇(t+) − γ̇(t−) = the discontinuity oḟγ at t. It follows thatγ
is a critical point ofE if:

(i) γ is a smooth geodesic.
(ii) γ is normal toM andN atγ(0) andγ(1), respectively.

Let W1, W2 ∈ TγΩ. If γ is a critical point ofE then the second variation
of E alongγ, denotedE∗∗(W1, W2), is given by:

1
2
E∗∗(W1, W2) = −

∑
t

〈W2(t), ∆t
DW1

dt
〉

−
∫ 1

0
〈W2,

D2W1

dt2
+ R(γ̇, W1)γ̇〉dt.

Let Ωc denote the closed subsetE−1([0, c]) ⊂ Ω and let
◦
Ωc denote the

open subsetE−1([0, c)). Following Milnor we construct a finite dimensional
approximation toΩc: Choose some subdivision0 = t0 < t1 < · · · <
tk = 1 of [0, 1]. Let Ω(t0, . . . , tk) be the subspace ofΩ consisting of paths
γ : [0, 1] → V such that:
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(i) γ(0) ∈ M andγ(1) ∈ N
(ii) γ|[ti−1,ti] is a geodesic for eachi = 1, . . . , k.

Define the subspaces:

Ωc(t0, . . . tk) = Ωc ∩ Ω(t0, . . . , tk)
◦
Ωc(t0, . . . tk) =

◦
Ωc ∩Ω(t0, . . . , tk).

Theorem 1.1. Let V be a complete Riemannian manifold and letM and
N be submanifolds withM compact andN a closed subset ofV . Let c
be a fixed positive number such thatΩc 6= φ. Then for all sufficiently fine

subdivisions0 = t0 < t1 < · · · < tk = 1 of [0, 1] the set
◦
Ωc(t0, . . . tk) can

be given the structure of a smooth finite dimensional manifold.

Proof. [M] Sect. 16. ut

Denote the manifold of broken geodesics
◦
Ωc(t0, . . . tk) by B. Let

E|B : B → R

denote the restriction toB of the energy functionE : Ω → R.

Theorem 1.2. E|B : B → R is a smooth map. For eacha < c the set
Ba = (E|B)−1([0, a]) is compact and is a deformation retract of the set
Ωa. The critical points ofE|B are precisely the same as the critical points

of E in
◦
Ωc, that is, the smooth geodesics fromM to N intersectingM and

N orthogonally and with energy less thanc. The index of the hessian ofE|B
at each such critical pointγ is equal to the index ofE∗∗ at γ.

Proof. [M] Sect. 14 and Sect. 16. ut
Now suppose that every nontrivial critical pointγ of E on Ω has index

λ > λ0 ≥ 0. We remark that this implies thatN ∩ M 6= φ. Since otherwise
there exists a nontrivial minimizing geodesic fromM to N and the index of
such a geodesic must be zero. It follows that if every nontrivial critical point
γ on Ω has indexλ > λ0 ≥ 0 then the spaceΩ0 of minimal (i.e., trivial)
geodesics can be identified with the subspaceN ∩ M ⊂ Ω.

Theorem 1.3. SupposeN intersectsM transversally and that every non-
trivial critical point of E on Ω has indexλ > λ0 ≥ 0. Then the relative
homotopy groupsπj(Ω, Ω0) are zero for0 ≤ j ≤ λ0.

The proof of the theorem requires a lemma about functions on finite-
dimensional manifolds: LetX be a smooth manifold andf : X → R

be a smooth real-valued function with minimum value0 such that each
Xc = f−1([0, c]) is compact.
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Lemma 1.4. If the setX0 of minimal points has a neighborhoodU with a
retractionr : U → X0 and if every critical point inX \ X0 has index> λ0
then

πj(X, X0) = 0 for 0 ≤ j ≤ λ0.

Proof. [M] Sect. 22. ut

Proof of the theorem:It suffices to prove that

πj(
◦
Ωc, Ω0) = 0 0 ≤ j ≤ λ0

for arbitrarily large values ofc. By Theorem 1.2
◦
Ωc contains a smooth

manifold
◦
Ωc(t0, t1, . . . , tk) as a deformation retract. Also by Theorem 1.2,

the energy functionE : Ω → R when restricted to
◦
Ωc(t0, . . . , tk) has

the property that every nontrivial critical point in
◦
Ωc(t0, . . . , tk) has index

λ > λ0. The space of minimal geodesicsΩ0 ' M ∩ N is contained in
◦
Ωc(t0, . . . , tk). To apply the lemma it only remains to show that there is a

neighborhoodU ⊂ ◦
Ωc(t0, . . . , tk) of Ω0 and a retractionr : U → Ω0.

Consider the neighborhoods
◦
Ωε(t0, . . . , tk) of Ω0 for ε > 0. We claim

there is anε0 > 0 such thatE has no nontrivial critical points in
◦
Ωε0(t0, · · ·,

tk). To prove this, suppose the contrary. Then there is a sequence{γi} of
critical points ofE with E(γi) < εi andεi ↓ 0. In particular theγi are
smooth geodesics withγi(0) ∈ M, γi(1) ∈ N and such that the image
of γi intersects bothM andN orthogonally. SinceE(γi) ↓ 0 andM is
compact the image of theγi converges to a pointx ∈ N ∩ M . Let A de-
note a geodesically convex neighborhood ofx. By rechoosing the sequence
{γi} we can suppose that eachγi lies in A and moreover it is the unique
geodesic lying inA joining its endpoints. Successively rescaleA. In the
limit we have ann-plane,TxN, (dimN = n) and and anm-plane,TxM,
(dimM = m) intersecting tranversally. There are sequences,yi ∈ TxM
andzi ∈ TxN , with yi → 0, zi → 0 and straight linesLi joining yi to zi.
Moreover theLi intersectTxN andTxM orthogonally. Clearly this latter

condition is impossible, proving the claim. LetU =
◦
Ωε0(t0, . . . , tk). The

retractionr : U → Ω0 is given by following the gradient flow lines ofE on
◦
Ωε0(t0, . . . , tk). ut

Let V be a complete K̈ahler manifold. LetM, N ⊂ V be complex
submanifolds of complex dimensionsm, n, respectively and suppose that
M is compact and andN is a closed subset ofV . To prove the analog of
Theorem 1.3 we do not need to assume thatM andN intersect transversally.
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Theorem 1.5. Let V be a complete K̈ahler manifold. LetM, N ⊂ V be
complex submanifolds and suppose thatM is compact andN is a closed
subset ofV . If every nontrivial critical point ofE onΩ has indexλ > λ0 ≥ 0
then the relative homotopy groupsπj(Ω, Ω0) are zero for0 ≤ j ≤ λ0.

Proof. The proof is the same as the proof of Theorem 1.3 except that in
the limit after rescaling the convex neighborhoodA we have a complex
n-plane,TxN , intersecting an analytic variety (M rescaled). However the
same contradiction results, proving the theorem.ut

2. The index of a critical point

Let V be a complete K̈ahler manifold of complex dimensionv, with com-
plex structureJ and Levi-Civita connection∇. Let M andN be complex
submanifolds of complex dimensionsm andn, respectively. We continue to
denote, byΩ(V ;M, N) = Ω, the space of pathsγ : [0, 1] → V constrained
by the requirements thatγ(0) ∈ M andγ(1) ∈ N . Consider the energy of
a path

E(γ) =
∫ 1

0
|γ̇|2dt

as a function onΩ. As shown in Sect. 1γ is a critical point ofE if:

(i) γ is a smooth geodesic
(ii) γ is normal toM andN atγ(0) andγ(1), respectively.

Let W1, W2 ∈ TγΩ. If γ is a critical point ofE then we rewrite the second
variation ofE alongγ by:

1
2
E∗∗(W1, W2) = 〈∇W1W2, γ̇〉

∣∣∣1
0
+

∫ 1

0
〈∇γ̇W1,∇γ̇W2〉dt

−
∫ 1

0
〈R(γ̇, W1)γ̇, W2〉dt.(2.1)

Suppose thatγ is a nontrivial critical point and thatW (0) is a vector in
Tγ(0)M . Parallel translateW (0) alongγ to construct a vector fieldW =
W (t) alongγ. Of course,W (1) need not be tangent toN at γ(1) soW is
not necessarily an element ofTγΩ. However formally we have:

1
2
E∗∗(W, W ) = 〈∇W W, γ̇〉

∣∣∣1
0
−

∫ 1

0
〈R(γ̇, W )γ̇, W 〉dt.(2.2)

V is Kähler soJW is also parallel alongγ. M is complex soJW (0) ∈
Tγ(0)M . Thus we also have:

1
2
E∗∗(JW, JW ) = 〈∇JW JW, γ̇〉

∣∣∣1
0
−

∫ 1

0
〈R(γ̇, JW )γ̇, JW 〉dt.(2.3)
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Adding (2.2) and (2.3) and using∇JW JW = −∇W W we have:

1
2
E∗∗(W, W ) +

1
2
E∗∗(JW, JW ) =

−
∫ 1

0
(〈R(γ̇, W )γ̇, W 〉 + 〈R(γ̇, JW )γ̇, JW 〉)dt.(2.4)

Using the symmetries of the curvature tensor we have:

〈R(γ̇, W )γ̇, W 〉 + 〈R(γ̇, JW )γ̇, JW 〉 = 〈R(γ̇, Jγ̇)W, JW 〉.(2.5)

This expression is the holomorphic bisectional curvature of the complex
lines γ̇ ∧ Jγ̇ andW ∧ JW .

Let {W1(0), . . . , Wm(0), JW1(0), . . . , JWm(0)} be an orthonormal
framing ofTγ(0)M . For eachi = 1, . . . , m, parallel translateWi(0) along
γ to construct parallel vector fields{W1, . . . , Wm, JW1, . . . , JWm} along
γ. Note that the vectorsWi(1), JWi(1) are perpendicular to botḣγ(1) and
Jγ̇(1). Thus the vector space

S = span{W1(1), . . . , Wm(1), JW1(1), . . . , JWm(1)}
is a complexm-dimensional space lying in a complex(v − 1)-dimensional
subspace ofTγ(1)V . It follows that the subspaceS ∩ Tγ(1)N has complex
dimension at least equal to

k = m + n − (v − 1).

Moreover, the vector fields{W, JW} with W (1), JW (1) ∈ S ∩ Tγ(1)N
are parallel and lie inTγΩ.

Theorem 2.1. Suppose thatV is a Kähler manifold of positive holomorphic
bisectional curvature, thatM andN are complex submanifolds and thatγ
is a nontrivial critical point of the energy onΩ(V ;M, N). Then,

index(γ) ≥ m + n − (v − 1).

Proof. There are at leastk pairs{W, JW} that are parallel alongγ and lie
in TγΩ. For each such pair, using the curvature assumption, (2.4) and (2.5)
we have:

E∗∗(W, W ) + E∗∗(JW, JW ) =

−2
∫ 1

0
〈R(γ̇, Jγ̇)W, JW 〉dt < 0.

The result follows. ut



Morse theory on the space of paths 85

Consider next the case whereV is a Kähler manifold of non-negative
holomorphic bisectional curvature. Fixx ∈ V and letX ∧JX be a complex
line in TxV . Let C(x, X ∧ JX) be the cone:

C(x, X ∧ JX) = {Y ∈ TxV : 〈R(X, JX)Y, JY 〉 > 0}.

Note thatC is a complex cone; ifY ∈ C thenJY ∈ C.

Definition. Let `(x, X ∧ JX) denote the maximal number of orthogonal
pairs(Y, JY ) in C(x, X ∧ JX). Set:

(i) `(x) = inf
X∧JX

`(x, X ∧ JX)

(ii) ` = inf
x∈V

`(x).

We say that̀ is thecomplex positivityof V .

Remark.If V is a hermitian symmetric space then`(x) = ` for everyx ∈ V .
If V is a hermitian symmetric space such that the isotropy subgroup acts
transitively on complex lines inTxV then`(x) = `(x, X ∧ JX) for any
complex lineX ∧ JX in TxV . In particular this is true ifV is the complex
Grassmann manifold or the complex quadric.

Proposition 2.2. If V =
t∏

i=1

Vi and`i denotes the complex positivity ofVi

then the complex positivity ofV is ` = mini `i.

Proof. Clear. ut
Let Gr(p, p+q; C) denote the complex Grassmann manifold of complex

p-planes inCp+q.

Lemma 2.3. If V = Gr(p, p + q; C) then for anyx ∈ Gr(p, p + q; C) and
any complex lineX ∧ JX throughx:

(i) The coneC(x, X ∧ JX) is a complex subspace of complex dimension
`(x, X ∧ JX).

(ii) `(x, X ∧ JX) = ` = p + q − 1.

Proof. Let (ωAB), 1 ≤ A, B ≤ p + q, be the Maurer-Cartan one-form of
the groupU(p+q). The one-forms{ωiα}, 1 ≤ i ≤ p, p+1 ≤ α ≤ p+q,
give a unitary coframe for the K̈ahler metric on Gr(p, p + q; C) considered
as a hermitian symmetric space. With respect to this coframe the curvature
two-form is given by:

Ωiα,jβ = −δαβ

p+q∑
γ=p+1

ωiγ ∧ ω̄jγ − δij

p∑
k=1

ωkα ∧ ω̄kβ.(2.6)



86 R. Schoen, J. Wolfson

In particular,

Ωiα,iα = −
p+q∑

γ=p+1

ωiγ ∧ ω̄iγ −
p∑

k=1

ωkα ∧ ω̄kα.(2.7)

Now suppose that the vectorsY1, Y2 are orthogonal and lie inC(x, X ∧
JX). Let a, b ∈ R and consider,

〈R(X, JX)(aY1 + bY2), J(aY1 + bY2)〉 = a2〈R(X, JX)Y1, JY1〉
+2ab〈R(X, JX)Y2, JY1〉 + b2〈R(X, JX)Y2, JY2〉.

By (2.7) the middle term of the right hand side vanishes and it follows that
aY1 + bY2 ∈ C(x, X ∧ JX).

The equalitỳ = p + q − 1 follows immediately from (2.7). ut
Now supposeV is the complex quadric. As a symmetric spaceV can

be identified with the real Grassmann manifold Gr(2, p + 2; R). Using the
same reasoning as above we have,

Lemma 2.4. If V = Gr(2, p + 2; R) then for anyx ∈ Gr(2, p + 2; R) and
any complex lineX ∧ JX throughx:

(i) The coneC(x, X ∧ JX) is a complex subspace of complex dimension
`(x, X ∧ JX).

(ii) `(x, X ∧ JX) = ` = p.

Theorem 2.5. Suppose thatV is a complete K̈ahler manifold of non-negative
holomorphic bisectional curvature. Further suppose that for anyx ∈ V and
any complex lineX ∧ JX throughx, the coneC(x, X ∧ JX) is a complex
subspace of complex dimension`(x, X ∧ JX) ≥ `. LetM andN be com-
plex submanifolds of complex dimensionsm andn, respectively, andγ be
a nontrivial critical point of energy onΩ(V ;M, N). Then

index(γ) ≥ m + n − (v − 1) − (v − `).

Proof. The argument in the proof of Theorem 2.1 shows that ifW, JW ∈
S ∩ Tγ(1)N then

E∗∗(W, W ) + E∗∗(JW, JW ) = −2
∫ 1

0
〈R(γ̇, Jγ̇)W, JW 〉 ≤ 0.

To get strict inequality we want

〈R(γ̇, J(γ̇))W, JW 〉 > 0

atγ(0). This is insured by requiring that:

W (0) ∧ JW (0) ∈ C(γ(0), γ̇ ∧ Jγ̇).

The result follows. ut
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Corollary 2.6. SupposeV =
t∏
i

Gr(pi, pi + qi; C). LetM andN be com-

plex submanifolds of complex dimensionsm andn, respectively. Letγ be a
nontrivial critical point of the energy onΩ(V ;M, N) then,

index(γ) ≥ m + n + min
i

(pi + qi − 1) − 2
t∏
i

piqi + 1.

Proof. The result follows from Proposition 2.2, Theorem 2.5 and Lemma
2.3. ut

A similar result holds for products of complex quadrics. We leave the
exact formulation to the reader.

3. Applications

In this section we apply Morse theory to the path spacesΩ(V ;M, N)
and derive versions of the theorems of Lefschetz, Barth, Sommese, Fulton-
Lazarsfeld, etc.

Let V be a complete K̈ahler manifold of non-negative holomorphic bi-
sectional curvature and of complex dimensionv. Suppose that for anyx ∈ V
and any complex lineX ∧JX throughx, the coneC(x, X ∧JX) is a com-
plex subspace of complex dimension`(x, X ∧ JX) ≥ `. Let M, N ⊂ V
be complex submanifolds of complex dimensionsm, n, respectively and
suppose thatM is compact andN is a closed subset ofV . We consider the
path spaceΩ(V ;M, N) = Ω as described in Sect. 1.

Theorem 3.1. Suppose that,

λ0 = n + m − v − (v − `) ≥ 0.

Then relative homotopy groupsπj(Ω, N ∩ M) are zero for0 ≤ j ≤ λ0.

Proof. The theorem follows from Theorem 1.5 and Theorem 2.5.ut
Theorem 3.1 and the long exact homotopy sequence of the pair

(Ω, N ∩ M) imply that the homomorphism induced by the inclusion:

ı∗ : πj(N ∩ M) → πj(Ω)(3.1)

is an isomorphism whenj < n + m − v − (v − `) and is a surjection when
j = n + m − v − (v − `).

Consider the fibration:
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Ω(V ;M, x) −→ Ω(V ;M, N)

↓ e

N

(3.2)

wheree is the evaluation mape : γ 7→ γ(1) andx ∈ N . It is well-known
that the homotopy groups of the fiberΩ(V ;M, x) satisfy:

πj(Ω(V ;M, x)) ' πj+1(V, M),(3.3)

for all j. The long exact homotopy sequence of the fibration is:

· · · −→ πj+1(N) −→ πj(Ω(V ;M, x)) −→ πj(Ω)

e∗−→ πj(N) −→ πj−1(Ω(V ;M, x)) −→ · · ·(3.4)

Thus, using (3.3), the long exact sequence (3.4) becomes:

· · · → πj+1(N) → πj+1(V, M) → πj(Ω) → πj(N)
→ πj(V, M) → · · ·(3.5)

We have:

Theorem 3.2. LetV be a complete K̈ahler manifold of non-negative holo-
morphic bisectional curvature. Suppose that for anyx ∈ V and any complex
line X ∧ JX throughx, the coneC(x, X ∧ JX) is a complex subspace of
complex dimensioǹ(x, X ∧JX) ≥ `. LetM, N ⊂ V be complex subman-
ifolds of complex dimensionsm, n, respectively, such thatM is compact and
N is a closed subset ofV . Then the homomorphism induced by the inclusion

ı∗ : πj(N, N ∩ M) → πj(V, M)

is an isomorphism forj ≤ n + m − v − (v − `) and is a surjection for
j = n + m − v − (v − `) + 1 .

Proof. Forλ0 = n + m − v − (v − `) consider the diagram:

πλ0+1(N) → πλ0+1(V, M) → πλ0(Ω) → πλ0(N) → πλ0(V, M)

↑' ↑ ↑ onto ↑' ↑

πλ0+1(N) → πλ0+1(N, N ∩ M) → πλ0(N ∩ M) → πλ0(N) → πλ0(N, N ∩ M)

The vertical arrows are induced by inclusion. The top row is the long ex-
act sequence (3.5). The bottom row is the long exact sequence of the pair
(N, N ∩M). The result follows using Theorem 3.1 and the commutivity of
the diagram. ut
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Corollary 3.3. Under the same hypotheses as in Theorem 3.2, if

j ≤ 2m − v − (v − `) + 1

then
πj(V, M) = 0.

Proof. Apply Theorem 3.2 to the caseN = M . ut
Corollary 3.4. Under the same hypothesis as in Theorem 3.2, if

j ≤ min(2m − v − (v − `) + 1, n + m − v − (v − `))

then
πj(N, N ∩ M) = 0.

Proof. Follows from Corollary 3.3 and Theorem 3.2.ut
The statements of Theorem 3.2 and its corollaries apply, in particular,

to:

(i) V = P
v with ` = v.

(ii) V = Gr(p, p + q; C) with v = pq and` = p + q − 1.
(iii) V = Gr(2, p + 2; R) with v = p and` = p.
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