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1 Introduction

In this paper we study global solutions, including self-similar solutions, of
the initial value problem for the following nonlinear Sékinger equation

iug + Au = y|u|“u, (1.2)
u(0,z) = p(z) (1.2)

Here,u = u(t, z) is a complex valued function defined {fh co) x RV,
is a real numbery > 0, and the initial conditionp(z) is a complex valued
function defined oflR”. Also, at the end of the paper, we will extend some
of our results to include the nonlinear heat equation analogous to (1.1)

There is a well known principle which has frequently been used to prove
existence of global solutions of nonlinear equations. Suppose the set of
solutions of some nonlinear equation is invariant under a certain group of
transformations. For example, the set of solutions of (1.1) is invariant under
the transformations — u) , whereu, (¢, z) = )\%u()\Qt, Az),forall\ > 0.
Suppose next that some nofim ||, defined on a space of initial valuesis
invariant with respect to this group of transformations (restricted to spatial
functions). In our situation, this means tht,|| = ||¢||, for all A > 0,
wherep) (z) = )\%gp()\x). Under these circumstances, one can often prove
that initial datay for which ||¢|| is sufficiently small give rise to global
solutions of the nonlinear equation.

To our knowledge, this idea was first discovered by T. Kato and H. Fu-
jita [9, 24], for the Navier-Stokes system, who proved that data small in
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H%(R?’) yield global solutions. The second author [32] used this idea to
. . a N
prove that data small with respect to either fne" (R™) norm, |f7a > 1,

o0
orthenorm/[ ||e!®¢||% dt give rise to global solutions of the nonlinear

heat equatioon analogous to (1.1). Kato [21] then showed that solutions of
the Navier-Stokes equations with data smalLit(R") are global. Y. Giga
and T. Miyakawa [14] and Y. Giga [10] extended these arguments to more
general nonlinear heat equations and to fractional power spaéésrirthe
case of the Navier-Stokes equation. Developing this idea further, Y. Giga and
T. Miyakawa [15] subsequently proved global existence of solutions to the
Navier-Stokes system, expressed in terms of the vorticity, with initial vor-
ticity small in certain Morrey spaces of measures. In [4], the authors applied
this principle to (1.1) to show global existence of solutions for data small
with respect to fractional homogeneous Sobolev norms (see T. Kato [23] and
H. Pecher [27] for recent related results); and in [6], we again applied this
principle to equation (1.1), using a norm on functigndefined in terms of
atime integral of|.S(t)¢|| .«+2, whereS(t) is the linear Sctidinger group.
As a corollary, we showed, for certain valueswgfthat sufficiently oscilla-
tory data (defined in a somewhat restricted sense: see Corollary 2.5 in [6])
give rise to global solutions. More recently, this principle was applied by
M. Cannone [1] and M. Cannone and F. Planchon [2] to the Navier-Stokes
system using Besov norms. In particular, as proved for (1.1), highly os-
cillatory initial data (in a more general context than defined in [6]) give
rise to global solutions. Moreover, [1, 2, 15] all include results on the ex-
istence of self-similar solutions. Indeed, both the Morrey spaces used by
Y. Giga and T. Miyakawa and the Besov spaces used by M. Cannone and
F. Planchon are sufficiently weak to include homogeneous data, for which
the resulting global solutions are necessarily self-similar. One advantage
of this method of investigating self-similar solutions is that one easily ob-
tains self-similar solutions which are not radially symmetric. These ideas
have been applied to a general nonlinear heat equation by F. Ribaud [29].
In this brief historical survey, we have focused on the Navier-Stokes equa-
tion, parabolic equations and the nonlinear $dimger equation. We hope
that authors of similar results for other nonlinear equations will forgive the
omission.

One purpose of this paper is to prove the existence of global solu-
tions, including self-similar solutions, to the nonlinear Shinger equa-
tion (1.1) using norms analagous to those used by Cannone and Planchon.
There is, however, a serious difficulty in applying these ideas to (1.1).
Besov norms for data(x) are equivalent to weighted norms of the type
l]|| = supt®||e"“ ||, and itis these latter norms which are well suited

>0
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to prove global existence. For (1.1), as we shall see, it is relatively easy to
prove global existence of solutions with datawhich are small with re-
spect to a certain norii|e||| = supt’|S(t)¢| L, where instead of the

>0

heat semigroup’”, the Schiddinger groups(t) is used. Since these norms
do not seem to have any well known equivalent forms, it is more difficult
to determine which functions are finite with respect to this norm. Indeed,
to obtain self-similar solutions, one needs homogeneous initial data. A sig-
nificant portion of this paper is therefore devoted to explicitly calculating
S(t)¢ for functions of the typep(z) = |x|P.

Once self-similar and other global solutions are proved to exist by this
method, it is important to compare them to squtionsHh(RN), known
to exist since the work of Ginibre and Velo [16]. It turns out, at least for
a in a certain range, that a class of glot#! solutions are asymptotically
self-similar. In other words, the difference between such a solution and one
of the self-similar solutions constructed below tends to zerbih?(RY)
more rapidly than either of them do separately.

Many of the results in this paper concerning equation (1.1) are valid for
the range oty given by

o < < (1.3)

N -2’
whereqy is the positive root of the equation
Na? 4 (N —2)a — 4 =0.

Throughout the entire paper, the hypothesis (1.3) is to be interpreted as
apg <a<ooif N=1or2.
The powerag in the study of equation (1.1) was first encountered by

Strauss [31]. One way to understamglis that it is the value of for which
Na «a+2 . e
5 T arl The equality of these two humbers is “significant” since the
(6]
L%(RN) norm is invariant under the dilations, (z) = )\égp()\x) men-
a+2
tioned above, and the norfim+1 (RV) is the dual of the normi+2(RY),

which appears in the energy of (regular) solutions of (1.1). Alls(%? (RN)
is the image of.*"2(RY) under the nonlinear map+ |u|*u. In fact, the
condition (1.3) is equivalent to the condition

a+2 Na
< — < a+2.
a+1 2

(If the reader finds this explanation @f a bit far fetched, we invite him/her
to find a better one.)
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The Schédinger groupS(t) = ¢** and the heat semigroup” are
both part of the analytic semigroup defined by convolutithy = G, x ¢,
where

232
Ga(z) = (dmz) "3 e ir

is defined for all nonzero complex numbersiith Re z > 0. Equivalently,
these operators can be defined via the Fourier transform as

CZA(,O _ _7:_1 (6_4”1—2“27()0) ’

for all complexz with Re z > 0. It follows that for eacht € R, S(¢) is a
continuous map on the space of tempered distributf®¥(R”) and that for
eachy € S'(RY), the mapt — S(t)y is continuous fronR into S’(RY).

Our approach to self-similar solutions of (1.1) is via the corresponding
integral equation (2.1) below. Previous work [20, 25, 26] on self-similar
solutions of (1.1) has been based on an analysis of the ordinary differential
equation verified by the profile of the self-similar solution. The focus has
been to study the asymptotic behavior (in space) of this profile in order to
determine the regularity of the self-similar solution. Our work has a very
different orientation and does notimmediately recover these previous results.

Clearly, the methods we use here apply equally well, if not more easily,
to the nonlinear heat equation corresponding to (1.1). While this has been
done to some extent [29], it has not yet been proved that a class of global
solutions are asymptotic to the self-similar solutions constructed by this
method.

The outline of the rest of this paper is as follows. In the next section
we prove the basic global existence theorem (Theorem 2.1) and show how
it relates to some of the previously known results for equation (1.1). In
Sect. 3 we study the action of the linear Sidfinger groupS(¢) on ho-
mogeneous functions of the typ€z) = |z|? andy(z) = w(x)|x|™P,
where0 < Rep < N andw is homogeneous of degree 0. It turns out
(for certainw) that for allt > 0, S(t)¢ is C* and belongs td."(R") for
larger (Corollary 3.4 and Propositions 3.7 and 3.9). Moreover, we show in
Sect. 4 (Proposition 4.3) that these functions can verify the hypotheses of
Theorem 2.1, thereby giving rise to global, self-similar solutions of (1.1),
both with and without radially symmetry. Also in Sect. 4, we show that cer-
tain H'! solutions are asymptotically self-similar (Propositions 4.7 and 4.8).
The H! initial valuesy which lead to this behavior decay Iil{e]‘g as
|z| — oo, wherea is such thaty ¢ H'(RY), buty ¢ L%(RN)), i.e.
ap < a < 4/N. In Sect. 5, we establish an analogue of Theorem 2.1 for
an equation related to (1.1) by the pseudo-conformal transformation. By
constructing asymptotically self-simildf! solutions of that equation, and
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by applying the inverse pseudo-conformal transformation, we obtain solu-
tions of (1.1) on(—oo, 0) which have an asymptotically self-similar blow

up behavior at 0. However, these solutions of (1.1) arghlasolutions (see
Theorem 5.7 and Remark 5.10 below). Finally, in Sect. 6, we outline how
these methods can be applied to the nonlinear heat equation. In particular,

. 2 . .
if « > —, we show that a large class of global solutions are asymptoti-
cally self-similar. As in the case of the nonlinear Satinger equation, the
initial values giving rise to such behavior decay Ii]m% as|z| — oo.

These results differ from those of Escobedo and Kavian [7] and Escobedo,
Kavian and Matano [8], who study asymptotically self-similar solutions of

the nonlinear heat equation when< —. Finally, we mention that Plan-

chon [28] has recently proved, by methods rather different from those in the
current article, that a large class of solutions of the Navier-Stokes system
are asymptotically self-similar.

2 Existence of global solutions

In this section we prove the existence of global solutions to the integral
equation corresponding to (1.1), i.e.

u(t) = S(t)yp - iv/o S(t = s) (Ju(s)[*u(s)) ds, (2.1)

whereS(t) is the linear Schirdinger group (Theorem 2.1 below). The proof
uses only the most basic properties of the linear &dinger groupS(¢),
i.e.

_ _Nao
1S@) el Lot < [4mt] 232 o] ass.

The calculation used is not so different from the calculation near the end of
Sect.5in [32]. Indeed, the simplicity of the proof is somewhat remarkable
given the long history of very technical proofs of local and global existence
of solutions of (1.1) and (2.1), [16, 17, 22, 3, 4]. The relationship of The-
orem 2.1 to previous results will be explained below in Remark 2.2 and
Proposition 2.3. We note that the results in this paper apply, as do the results
in [6], to equation (2.1) withy being of either sign.

Before stating Theorem 2.1, we need one more definitiom. Vieri-
fies (1.3), let

4— (N -2«
= — 2.2
b 2a(a+2) (2:2)
It follows easily that
N
Bla+1) <1, ? oy, (2.3)
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and
N«

2(a+2)

One verifies thatup t°||S(t)¢|| o+ is invariant under the transformations
>0

B+1— —Bla+1)=0. (2.4)

oa(z) = )\%Lp()\a:), (see formula (3.6) in Sect. 3), though this fact is not
explicitly needed for the proof of Theorem 2.1.

Theorem 2.1. Suppose (1.3), and Igtbe given by (2.2). Suppose further
thatp > 0 and M > 0 satisfy the inequality

p+ KMt < M,

where K = K(a, N,~) is given explicitly below by (2.12). Let be a
tempered distribution such that

sup [t ()]l etz < p. (2.5)
t>0

It follows that there exists a unique positively global (i.e. defined for all
t > 0) solutionu of (2.1) such that

sup [ [u(t)]] sz < M. (2.6)
t>0

Furthermore,

(@) u(t) — S(t)p € C([0,00), H Toim (RV));
(b) ltlfol u(t) = ¢ as tempered distributions.

Suppose» and verify (2.5) and let, and v be respectively the solutions
of (2.1) satisfying (2.6) with initial valueg and . It follows that

sup [t7[|u(t) — v(t)]| parz < (1= KM®) " sup|t)®[[S(t) (¢ — ¥)ll pase.
t>0 t>0

If, in addition, S(t)(¢ — 1) has the stronger decay property
Sup [t (1 + 1) 1S (1) (¢ — ¥) || et < 0o, (2.7)

for somey > 0 such that3(a+ 1) + 46 < 1, and if K'M* < 1, whereK’
is given by (2.13) below, then

sup (#1714 1) lu(t) = v(&)]] o

<(1- KM sup A+ D NS () (P = )| pare- (2.8)
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Remarks 2.2.
(a) The estimate (2.5), interpreted as a decay rate for |grge slower than

the decay rate of S(¢)p|| etz if ¢ € L%(RN), i.e.3 < 2(0][\:0_52).
The last part of the theorem imposes additional decay properties only on
the differencep — v, not on the initial values separately. As an example,
supposep andw verify (2.5) and thatp — ¢ € L%(RN). It follows
that

__Na
[S()(p = D)l Lotz < (dmt) 2T || = | ata.

Lo+
Na
2(a+2)
do = o in Proposition 2.3 (d).) One easily checks that

In particular, (2.7) is satisfied with = 6y = — . (In fact,

Bla+1)+ 6y = fa+ (B4 ) = 1.

Therefore, (2.7) and (2.8) hold for @llwith 0 < § < §g. In other words,
for larget,

—Na o
|u(t) — v(t)||pate < Cot 2@+, (2.9)

foralle > 0.
(b) 1 sup |t|?)S(t)¢|La+2 < p, instead of (2.5), the same conclusions hold
t<0

for negatively global solutions, i.e. solutions defined fortatl 0.

(c) If the estimate (2.5) is verified only on the finite intergal 7], re-
spectively[—T', 0), the proof of Theorem 2.1 will show that the same
conclusions hold for solutions defined pnT7, respectively—1, 0]. In
particular, uniqueness is a local property. For example,df H' (RV),
then for allt € R, ||S(t)¢||pat+2 < C|S()el| g1 = C|le|| g1- Thus, for
sufficiently smalll” > 0, sup [t|°||S(t)||et2 < p, and so by The-

te[—T.,T)
orem 2.1, there exists a unique solutieft) of (2.1) on[—T,T)] such
that
sup [t |[u(®)]| sz < M.
te[-T,T]

On the other hand, sinee < ~ 4

5 there is a “classical” (in the sense
that it is well known) solutionu; (¢) of (2.1),

uy € CO([~Ty, Th], H(RY)),

for someT; > 0. Clearly then, (after possibly choosiAg > 0 a bit
smaller),

sup [t s ()| oz < M.
te[-T,T)
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It follows that the “weak” solution constructed by Theorem 2.1 coincides
with the classical solution or-7', T']. As another consequence of “local
uniqueness”, lep verify (2.5) and le be the (positively) global solution
constructed by Theorem 2.1. In addition, suppose for sgme 0 that
Y = u(t) verifies sup t°||S(t)Y|o+2 < p. (This is not a priori
te[0,T

true since the only inf[orr]nation we know from Theorem 2.1 is that
u(ty) € L¥2(RN).) Let v(t) be the solution of (2.1) of0, T with
initial value 1. It follows thatv(t) = u(t + t¢) for smallt > 0 since
tP||u(t+to)||Lat+2 < M for sufficiently smalk. (Again, a similar remark
holds if sup [t°(|S(t)t)]| Les2 < p.)

te[—T,0]

. 4 . Na
(d) Sincea < N _ 3o it follows thatm < 1, and so property (a)

after (2.6) implies that(t) — S(t)¢ € C([0, 00), H1(RY)).

(e) Theorem 2.1, while providing new cases where global solutions of (2.1)
exist, does not include most of the standard results of local and global
existence. First of all, the standafd' theory is valid for0 < o <

4 . . . .
N3 without the lower limitog . Also, while Theorem 2.1 does imply

local existence and uniqueness forc H'(RY) (remark (c) above),
there is no mechanism for continuing solutions which verify a priori
estimates. Thus, the known global existence results based on Sobolev
inequalities and energy conservation do not follow from Theorem 2.1.
Finally, Theorem 2.1 does not even include all the previous results of
global existence based on smallness of a certain norm, as in [4], for
example.

(f) The last part of Theorem 2.1 was inspired by some of the arguments of
Kato [21].

Proof of Theorem 2.1. Let X be the set of Bochner measurable functions
u : (0,00) — LT2(RYN) such thasup ¢°||u(t)| L+ is finite. We denote
>0

by X, the set ofu € X such that

sup t7||u(t)[| otz < M.
t>0

Endowed with the metricd(u,v) = supt?||u(t) — v(t)||for2, Xas iS @
>0

complete metric space. We will show that the mapping defined formally by

Pou(t) = S(t)p — iy /0 St —s) (lu(s)"u(s) ds,  (2.10)

is a strict contraction oIX ;.
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Note that ifp € S'(RY), thenS(t)p € C(R,S'(RY)). Therefore, if
o verifies (2.5), therS(t)p : (0,00) — L +Z(RN) is weakly continuous,
hence Bochner measurable.
We observe first that it. € X, then by the Sobolev embedding theorem
15t =) (uis)*uls) | e = luls)uls)ll - ne
< O fu(s)[*u(s )HL% Cllu(s) I35
< OsBlatl)

It follows from (2.3) that
t
Asa—&wwwmwnw

is in C(]0, o0); H_%(RN)), taking on the value 0 at= 0. Thus, the
right hand side of (2.10) can be interpreted as a continuous function into the
space of tempered distributions, with initial valge

Next, suppose that and+ verify (2.5) and that, andv are in X ;. It
follows that

17| Pyult) — Pyo(t)l| etz <
(S (t)p — S()l| a2+
tﬁhl/ﬂ 1St = s) (lu(s)|“uls) = |v(s)|*v(s)) [| pa+2 ds.

Since
|5t —s) (Iu(S)vag(S) — [v(s)[*v(s)) [| pa-re
< (dn(t = 5)) 2 || Juls)[*uls) — [v(s)[*v(s)l] asz
< (a+ 1)(4n(t — 5)) Fosm
(lu(s)1Fasz + "U(S)Mf%““) [u(s) — v(s)|[ La+e
< o+ 1)(dr(t — 8)) " a2 s=B@+D) preg(y, v),
we obtain

tﬂHP@u(t) — Pyv(t)| pa+z < tﬁHS(t)go — S(t)Y| pate + KM%d(u,v),
(2.11)
where

K = K(a,N,7) (2.12)

__Na__ N«
— 23/(a + 1)(4n) W“B<1—%a+mﬂ—ﬁm+m>,
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whereB(-, -) is the beta function. (Properties (2.3) and (2.4) have been used
in the above calculation.)
Settingy = 0in (2.11), we see that

sup 17| Ppu(t) || porz < p+ KM*TH < M.
t>0

Thus, P, mapsX,, into itself. Next, setting) = ¢ in (2.11), we see that
d(Pou — Pyov) < KM“d(u,v).

Since K M“ < 1, it follows thatP,, is a strict contraction otX 5, , and so
has a unique fixed point. This proves the first part of the theorem, including
statements (a) and (b).

To prove the continuous dependence result, it suffices to observe that
(2.11) implies

d(u,v) < supt?]|S(t)p — S| sz + KM d(u,v).
t>0

To prove the stronger decay estimate, we modify the calculation (2.11) as
follows:

(14 ) u(t) — v(t) || pore < 71+ 1)°|SE)e — S| posrat
t°(1 +t)5|7|/0 15t = s) (lu(s)|u(s) — [v(s)[v(s)) | arads.
Since

(L+0°1S(t = s) (lu(s)|u(s) = [o(s)*v($)]) || parz <

d
1+t __Na__
AR <1——||:5> (4m(t — 5)) " 2otz s~ Al pre
sup Tﬁ(l + T)(;H”LL(T) — (1) || a2,
0<r<t

B 5
and ( 1+ t> < (t) , we deduce
1+s s
P+ ) |u(t) — v(t)| pose

<t (1+8)°)|S(t)e — S(t)| pare+
K'M® sup Tﬁ(l + T)JHU(T) —v(7)|| fa+2,

0<r<t
where
K' = K'(a, N,~,9) (2.13)
—ol(a+ D)) T B (1— — Y 1 Ba+1)—4).
2(a+2)’
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This completes the proof. 0

Proposition 2.3. Leta, 8, p andM be as in the statement of Theorem 2.1.
(a) If ¢ is a tempered distribution such thiim sup t°||S(£)€|| etz < p,
t10

iclx 2
theny — e "1 ¢ verifies (2.5) for all sufficiently large > 0. This
applies in particular if¢ € H'(RY).

(b) Let¢ € L%?(RN). There existd” > 0 such that ifr > T andy =

S(7)&, theny verifies (2.5).

(c) If pandits Fourier transform are il o1 (RN), thensup 1t (1)l Lot
< o0. In particular, a sufficiently small multiple qﬁ satlsfles (2.5), as
well as (2.5) witht > 0 replaced byt < 0.

(d) If (=A)2¢p € LI(RN), where

_ Noa?+(N—-2)a—4 and N Na? + (N +2)a +4
B 20(a + 2) q 2a(a +2) ’

thensup |t%||S(t)¢|| o+ < C||(—L)Z ]| q. In particular, if |(—A) 2
teR

¢||a is sufficiently small, ther satisfies (2.5), as well as (2.5) with
t > 0 replaced byt < 0. (Remark: as is the norrﬁwHLgf, the norm

|(=A) 2 || 1« isinvariantunder the dilationg () = A%@()\x). More-
a . g
over,||<pHL% <CI(=L)z | La smce& “Na = —.)
(e) If the tempered distribution is such thatim sup t°||S(¢) || pa+2 < oo,
£40

thenyp € W—29+2(RV),

(f) Supposer € H'(RY) satisfies (2.5). The solution of (2.1) constructed
in Theorem 2.1 coincides for all> 0 with the “classical” H'! solution,
which is therefore global.

(9) Lety be atempered distribution verifying (2.5), and 1ét) be the so-
lution of equation (2.1) constructed in Theorem 2.4 (i) € H'(RY)
for sometg > 0, then the same is true for all > 0 and u is a
“classical” H' solution on(0,c0). In particular, ¢ € L?*(R"). Fi-
nally, if lim sup t%||u(t) || a+2 is sufficiently small, thep € H*(RY).

£10

(If a < % orif v > 0, this is always verified.)

Proof. (a) One can easily check, using the explicit representatistif
as a convolution operator, that

S()el(@) = (1 + ety F Tt [5<1+’fd>g] (11@)-
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. t .
Settingr = ——, one readily computes that
1+4ct

sup t?||S(t) @l ase = sup (1—er)77P||S(7)€]| pase,
t>0 0<7’<%

where
_ Na?+ (N -2)a—4
B 2a(a + 2)

(positive sincex > ag). This proves (a).
(b) Thisis a simple consequence of

> 0,

a+1

__Na
1S ¢llpore = t(1S(t 4+ T)E]| vz < Ct7(E+ 1) 2osD) €l otz

and the fact tha <

Corollary 2.5 in [6].)
a+2
(c) Sincey € LTL(}RN), it follows that

N
e (Statements (a) and (b) are analogous to
2(a+2)

No
e 2(at2) «a .
1S@) el Lot < [dmt] 22l ate

SinceFy € Lati (RY), it follows that

1S@Ollzase = |77 (41 7 )|

La+2
Aitr2].12
< Ol Fo| asz = CIF@l agz.

. . N
The result (c) now easily follows sinée< § < e
2(a+2)
(d) The indicesr andq verify
N N 1 1 o o+ 2 ,
S . - _ = — 2, 2 2.
. > B, 7 at3 N a+1<q< , <q <a+
Therefore,

ISE) @l sz = [[(—A)"2SE)(=A) 2 | pate
< CISE(=A) 2|0 < CIITPII(=A) 29| o,
which establishes the result.

(e) Using the Fourier transform representationSgt), one readily
verifies that

iA/O S(T)pdr = S(t)e — .
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Since < 1, the assumptiosup t%||S(t)p|| La+2 < oo implies that
t40

t
Y= / S(r)pdr € LO‘+2(RN),
0

for ¢ > 0 sufficiently small. Thusp = S(t)p — iy € W—2o+2(RY),

(f) Supposep € H'(RM). Let I C [0,00) be the largest interval
containing 0 such that the two solutions coincidelomhe arguments in
Remark 2.2 (c) show thdtis nontrivial and thaf is an open subset @i, o).
Thus,! is of the form[0, T*). Suppose thaf* < co. Conservation of energy
(for the classical solution) and the estimate (2.6) imply thet(¢)|| .
remains bounded as! T*. Thus, the classical solution can be continued up
to and pasf™. Since both the classical solution and the solution constructed

by Theorem 2.1 are if([0, T*], H_%(RN)), they must agree &t*,
i.e.T* € I. This contradiction proves thdt= [0, co).

(9) Thatu(t) is a classicalH' solution on(0, o) follows from Re-
mark 2.2 (¢) and conservation of energy as in the preceding argument. Since
l|lu(t)|| .2 is a constant fof! solutions, it follows thatp € L?(R"). By
Theorem 1.1 in [4], there exist8 > 0 such that ifp ¢ H'(RY), then

ta= T |Vu(t)|lr2 > C for smallt > 0. Energy conservation then implies
thatt?||u(t)|| pa+2 > C1, which completes the proof. m

3 Homogeneous data and the linear Sclidinger group

In this section we study the action of the linear Shinger groupS(t)
on homogeneous functions. The main results, given in Corollary 3.4 and
Propositions 3.7 and 3.9, are that for a wide class of homogeneous functions
@, S(t)p (for all t > 0) is in C>(RY) and belongs td.”(RY) for large
enoughr. Thisis true in spite of the fact thatitself belongs to no Lebesgue
space oiR"Y. The proofs of these results depend on explicit calculations with
the gamma function and analytic continuation arguments.

We begin by establishing notation, recalling some well-known facts,
and making some definitions. The gamma function satisfies the following
relation

¢ *I'(2) :/ e~ dt, (3.1)
0

valid forc > 0 andz € C with Re z > 0. Also, if {2 denotes the domain of
the standard branch of the logarithm, i.e.

2 = {z € C; zis not a negative real number @f,
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then for a fixed complex numbey, the functionf(z) = 2P = ePlo8% is
analytic in{2. Note that ifr > 0, then(rz)? = rPzP for all z € 2. Also,
|rP| = rRePif r > 0.

Another function that plays a central role in the analysis is given by

1
H(y;a,b) = / Va1 — )t ar, (3.2)
0

wherea,b € C with Rea > 0 andReb > 0, andy € R (or C). Note that
H(y;a,b) is separately analytic as a functionfa, andb in the domains
just specified. In addition, i§ € R, then

I'(Rea)I'(Reb)

T'Re(a+b))
(3.3)

|H (y;a,b)| < H(0;Rea,Reb) = B(Rea,Reb) =

whereB(-, -) is the beta function.
To fix notation, we letD) = D, , be the dilation operator

Dyp(x) = Dapp() = Np(Az). (3-4)

where\ > 0 andp is a fixed complex power such that< Rep < N. ltis
easy to check that:

_N
IDxpellr = ARP " o]l Lr,

and that

S(t) = DAS()\Qt)D%7 (3.5)

Rep
2

Re N N
t2 o |[S(t)Dagllrr = (A*) 2 E [S(APt)pl . (3.6)

forall A > 0.

We are interested in studying the action of the $dimger groupS(¢)
on functionsy which are fixed byD), i.e. such thaDy¢(x) = D) pp(x) =
o(z) for all A > 0. Such functions will be calleg-homogeneouygrather
than “homogeneous of degree” sincep is not necessarily real). For ex-
ample,p(z) = || is ap-homogeneous function, as are all functions of
the formp(z) = w(x)|z| P, wherew(z) is homogeneous of degree 0f
is p-homogeneous, we see that

S(t)e = D%S(l)ap, (3.7)

for all ¢ > 0. If in addition S(1) € L"(RY) for somer, then the same is
true for.S(t)p forall ¢t > 0 and

N _ Rep
IS@®)pllr =tz 2" [ S(Dellr- (3.8)
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It turns out that||.S(1)¢||z- is finite for a large class gf-homogeneous
functions , for large enough values of This motivates the following
definition.

Definition 3.1. Thep-homogeneous function, where0 < Rep < N, is
SC-regular ifS(t)p € L™(RY) N C(RY) for all t > 0 and allr such that

- N N
r>max{ —, ——— o,
Rep’ N —Rep

For suchr, ||S(t)¢|| - clearly verifies formula (3.8). If in additior§(¢)y €
C>(RN) for all t > 0, theny is SC°-regular.

Remark 3.2. Ifap-homogeneous functignis SC*-regular, thenitfollows
from formula (3.7) thaS(t) € C°°((0,00) x RY).

The main results of this section are that™?, and more generally
Py.(z)|z|P7*,0 < Rep < N, are SC°-regularp-homogeneous functions,
whereP; is a homogeneous harmonic polynomial of degregSee Corol-
lary 3.4 and Propositions 3.7 and 3.9 below.) It follows that the set of homo-
geneous functions(z) of degree 0 such that(xz) = w(x)|z| P isan SC°-
regularp-homogeneous function is dense as a subsgt 0§V —1). Indeed,
they include all linear combination of functions of the fody(z)|=|~*,
where P, is a homogeneous harmonic polynomial of dedgreét the end
of this section we give some results concerning the actisf{ofseparately
on the part ofz| = near the origin and on the part pf| =7 “near infinity.”

Our analysis begins with the simplgshomogeneous function.

Proposition 3.3. Lety(xz) = |x|7P where0 < Rep < N. Fort > 0 and
xz € RY,

S0 = i trs2)a (BEL ) ()

where the functior is defined by (3.2).

Proof. The basic idea is to express —? using the gamma function, then
change variables so that the Gauss kernel appears in the integral. It will then
be possible to apply the operatdr™.

By formula (3.1), ifz # 0

2|77 = D(p/2)~" [i° e 1otz —1 gt
= 4_§F(p/2 LI 6_%8_5_1 ds
= 475(4m) 2 T (p/2)! [5° Go(z)s> 5V ds.
This integral, in addition to being absolutely convergent for eaeh0, is
an absolutely convergent Bochner integrali(R™) + Co(RY). In other
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words
N

p= ( )2 I'(p/2)~ / Gs( —Lds.
Next, we apply the heat semigroup? for t > 0, which gives

N
2

e =473 (47) F(p/Q)l/ Gope()s2 51 ds.

0
This integral now is absolutely convergentdiy(R"), where pointwise
evaluation is a bounded linear functional. Making the change of variables

t
r = ——, we see that for alt € RY
s+t

(29)(x) = 45 (am) ¥ T(p/2) ! [ G
= (4t)" 5 (4nt)2 T'(p/2)~ folGi(x)T% -

rlz|?

= () 5r(p/2)7 fy e rE T (1 =)
(3.10)

We next claim that formula (3.10) is valid not only for> 0, but for all

t € Cwith Ret > 0. Indeed, ifp € S(RY), then(e!®y,n) is an analytic
function oft on the open half planBe ¢ > 0, and continuous on the closed
half planeRet > 0. Next, if we integrate the right side of (3.10) against
n(z) overRY, the result is also an analytic function ©bn the right half
planeRet > 0, continuous at least on the closed half plane witk 0
removed. By the identity theorem, these two functions are equal on the open
half plane. By continuity, they are equal also fo= i7, 7 € R, 7 # 0.
Sincen is an arbitrary Schwartz function, (3.10), as an identity between
two tempered distributions, has been proved for all complek 0 with

Ret > 0. This establishes the proposition. O

Corollary 3.4. Under the hypotheses of Proposition 3.3, it follows that

(@) S(t)pis C> onRY forall t > 0;
(b) S(t)p € L®(RN) for all ¢ > 0, and||S(t)¢||L~ < C(p)t~ 2 . Ifin
additionp € R, then

T (45)
I5(0heli = IS0 = (4 F ozt

Lemma 3.5. Ify > 0, Rea > 0 andReb > 0, and ifn and m are
nonnegative integers such that

N RN

n+2 > Reaandm + 2 > Reb,
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then

(a+k)7rz

H(y;a,b) =y~ ZC’k a,b)e —k + Cpy1(a, D)y~ ™ x

1 t —a—m—1
m / / (I—s)™|—i— il dse HmTi=bqt
I'im+2— b Y

_ (btk)mi

+eWy b Z Ck(b,a) x>y k4 Cht1(b, a)eiyy_b_”_1 X

1 —b—n—1
nt / / (1—s) ( ) dse " ti=agr  (3.11)
n—l—2—a

where
Ch(a,b) = F(“J k) F(Zlfari ;)b) (3.12)
_ I

1 ala+1)---(a+k—-1)(1—-0b)(2—-0b)---(k—b).

Remark 3.6. If bis a positive integer, thefi;. (a, b) = 0 for k£ > b, and the
coefficient of the first integral term

Cms1(a,b)  I'(la+m—1)
I'(m+2-b) (m+1)(1-b)

is zero sincel'(z) has poles a0, —1,—2,... Thus, the first part of the
expansion has preciselyterms and no integral remainder. Similarlyaif

is a positive integer, then the second part of the expansion has precisely
terms and no integral remainder.

Proof of Lemma 3.5. For the moment, we assume that
0<Rea<1l, O0<Reb<1.

Using formula (3.1) twice, first wite = r, z = 1 — a, and then with
c=1-—r,z=1-0b, we rewrite formula (3.2) as follows.

I'(l—a)l’ (1—5) (y;a,b)
= [0 J5° f eWre=rsgmag=(1=r)ty=b gp. g dt
= [0 J5° f (iy— s+t) "drs % b ds dt

OOe“J stt_q s e —ty—b
_fo 1y—s+t t"dsdl

_fo fo —zy_(;f-&-s b dsdt + eV fo fo Zy S+t e s %dtds

= Jo Jo" =i dse Tt dt + e [ [T s ds et .
(3.13)
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We therefore consider the integral

f(w):/ooo S s, (3.14)

wherew € {2 (the domain of the standard branch of the logarithm), and
0 < Rea < 1. Itis known (by changing variables in the beta function) that
f(1) =TI'(1 —a)'(a). Next, if w is a positive real number, we set= wt;

and so

° (wt)—@ _
= t=w l'(l—a)l . 1
F(w) /0 W —wdt=w (1 -l a), w>0.  (31)
Sincef(w) andw™? = e~*1°8" are both holomorphic im2, (3.15) is true

for all w € (2. Substituting (3.15) back into (3.13), with = +iy — ¢, we
see that

H(y; a, b)
m b Joo (—iy —t)y" ettt dt + F( e [0% iy —t)"PeT it dt.
(3.16)
The next step is to replade-iy — t)~* and (iy — t)~? in (3.16) by their
finite Taylor formulas arountl= 0 with integral remainder terms. f(t) =
(—iy —t)"*andg(t) = (iy — t)~%, then

fOW =ala+1)---(a+k—1)(—iy—t)~Fk
gB @) =bb+1) - (b+k—1)(—iy —t)07*

Since,

S O I m p(m+1)
£ = 30 g OO+ [ (=9 ) s,

k=0

and similarly forg(t), we see that

H(y;a,b) = 1 D i‘f / e it gy
k:O

I 1
+1(ab / 7' / (t — S)mf(m+1) (S) dS eittib dt
(k)
RANNE / o—tp—ath gy
1 =3 Z

1 zy/ ‘/ n (n+1) ( )dseittfa dt;
—(1 n




Nonlinear Schiddinger and heat equations 101

and so
H(y;a,b) =
L ala+1)- a—i—k—l o
1—52 )< y) k0 (k+1—10)

=0

(a+m)(—iy — s)_a_m_l ds e_tt_b dt

e - n
1—a / n'/t s)"b(b+1)--

(b+n)(iy —s) " Ldse 't dt.

Furthermore, sincg > 0,

o] t
/ / (t — )™ (—iy — s) 2" Ldse 't dt
—a m—1 . St —emmed —tym~+1—b
= 1 —s)m | —i— y dse "t dt;

and so we obtain the formulation (3.11)—(3.12).

Formula (3.11) has been proved only fpr> 0, 0 < Rea < 1, and
0 < Reb < 1. On the other hand, the right hand side is an analytic function
inafor0 < Rea <n+2,withy > 0andb (0 < Reb < m + 2) fixed,
and also an analytic function tfor 0 < Reb < m + 2, with y > 0 anda
(0 < Rea < n + 2) fixed. (Recall that the /I"(z) is an entire function.) It
follows that (3.11) is true for al{ > 0, and alla andb in the region stated
in the lemma. O

Proposition 3.7. Let p(z) = |z|™? where0 < Rep < N. S(t)p €
L"(RYN) for all ¢ > 0 and all such that

cmaxd NN L
"M A Rep’ N —Rep [
and||S(t)e| L verifies formula (3.8). Moreovef(t)p(x) is given by the
explicit formula (3.17) below for # 0.

Remark 3.8. This result along with Corollary 3.4 shows thatr) = |z| ™7
where0 < Rep < N is an SC°-regularp-homogeneous function.
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Proof. Applying the asymptotic expression from Lemma 3.5 to the for-
mula (3.9) in Proposition 3.3, we see that, under the combined hypotheses
of the proposition and the lemma, with= p/2 andb = (N — p)/2, if

7 > 0 andz # 0, then (still denotingp(z) = |z|7P)

m eri (z[2) 7"
S(r)ele) = oY At n)e'® (B2)

aTrZ

(1) e e
Am+1(a7b)|x’ <47_> m

. 473t —emmd —t,m+1—b
1 —s)™ dse 't dt+
e

) o\ —k
ile)? _(
e ’x‘fN+p(47_)gprBk(bja N+2k) <|z’ )

4T
k=0
—n—1 ami
ol Np e N 2P\ (n+ De
! A7) 3P B (b
e ar |z (47)2 ni1(b,a) i Tnt2—a) X

ool 4rst) 0L
/ / (1—s)" <1 — 2) dse "= qt (3.17)
0o Jo |z|

where
_ Cila,b) I'(a+Fk)I(k+1-0)
Ar(a,b) = ;(a) = Tk (-0 (3.18)
%a(a—i—l) ath— D)1 —B)2—b)---(k—b),
and
Bk(b’a):C’k(b,a)_F(bJrk)F(k:lefa) (3.19)

I'(a)  T(a)k! I'(l1-a)
_ (b
- I'(a)k!

bb+ 1) (b+k—1)(1—a)2—a) - (k—a).

Note thatAy(a,b) = 1.

By Corollary 3.4,S(t)¢ € C=(RY) for t > 0. Thus, to determine
whetherS(t)p € L"(RY), it suffices to conside| large. Proposition 3.7
now follows immmediately from formula (3.17). O

Proposition 3.9. The function given by(z) = w(z)|z|™P, where0 <
Rep < N, andw(z) = Pi(z)|z|~*, P, being a homogeneous harmonic
polynomial of degreé&, is an SC°-regular p-homogeneous function.
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Proof. It follows from the representation of the Sékinger group via the
Fourier transform,

S(t)p = tbp = F1 (e—4it7r2\-|2fs0) ’
and the considerations in Sect. 3.2 of Chapter 3 of Stein [30] that
SH)[Pe |- 777" = Pu[Snyar(t) | - |77, (3.20)

where on the right side of (3.2Q)- |P~* is interpreted as a tempered
distribution onRY+2% and Sy 421 () is the Schivdinger group oV +2k,

The resulting radially symmetric functiofiy o (t) | - |77~* is then re-
interpreted as a function d&"V. The result then follows from Corollary 3.4
and formula (3.17) withV replaced byV + 2k. i

Proposition 3.10. Lety be an SC-regulap-homogeneous function, with
0 < Rep < N. Letq andr be dual exponents such that

r > ma N N
X - .
Rep’ N —Rep

Setf = S(1)p, sof € L"(RY).
Suppose = @1 + 9, Wherep; € LI(RY). It follows thatS(t)ps €
L"(RN) forall t > 0 and

_ N Rep
If = DS t)p2ller < CE 2 2 |l g, VE >0, (3.21)

which convergesto 0 @s— cc. If o1 € LL(RYN), thent2 S(t)p, € C(RN)
for all t > 0 and converges tg(0) uniformly on compact subsetskf' as
t — oo. Finally, suppose in additiop is SC°-regular andy; € L'(RY)
has compact support. It follows th&(t)p2 € C>°(RY) for all ¢ > 0.

Proof. The condition orr implies thatr > 2. Thus, on the one hand,

r—2)

_N(E-2)
1S@®)erlr < Ct™ 2 [ln] L,
for all ¢ > 0. On the other hand, by (3.7)
[S@)erlr = [1S(E) (e — @2)llzr
N _Rep
=P SM)e = SWt)ealllLr =122 |If = D zS(t)e2llr-

These two estimates immediately give (3.21).
Suppose next that; € L'(RY). It follows thatS(t)p; € C(RY) for
all t > 0. Sincey is SC-regular, it is also true that(t)p, € C(RY) for
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all ¢ > 0. Since dilating the spatial variable only does not change.fiie
norm, (3.21) implies that

() -

fromwhich it follows that 2 S (¢)¢, converges tg (0) uniformly on compact
sets.

Finally, if o; € L'(RY) has compact support, then foratk 0, S(t)p1
is C*. Sincey is SC*-regular, the same is true féi(t)p, and therefore
also forS(t)p2. This proves the proposition. O

N | R
<Ot 2 g,
L

Intuitively, 1 contains the singular part @f near the origin and»-
contains the slowly decaying part offor large|z|. Indeedy € LI({|z| <

. : N . N "
1})ifandonlyifg < Ren’ ie.r > N _Rop’ Thus, the above proposition
can be applied witl; = nyp+ 1, wheren is any L function with compact
support and) is in LI(R™) for all

< ma N N
X - .
4 Rep’ N — Rep

In particular, data which decay enough likg~" (or another SC-regular
p-homogeneous function) as| — oo, give rise to solutions of the linear
Schiddinger equation which are asymptotic (in time) to the solutions with
pure homogeneous data.

The final result of this section (Proposition 3.11 below) shows, at least
to some extent, that the oscillating part of the development (3.17) is due to
the singularity of.z| 7 near the origin.

Notation. To simplify the reading and printing of what follows, we denote
by X1, Ry, X9, and R, the four terms on the right side of formula (3.17). In
otherwordsY'; andY; are the two finite sumg;; beginning withz| =, and

R; and Ry are the two integral remainder terms. Of coutse= X (¢, z),
etc. Thus, (3.17) reads simply

[S(t)p](x) = Xi(t,z) + Ri(t,z) + Xao(t, x) + Ra(t, x).

Proposition 3.11. Lety(z) = |z|7P,0 < Rep < N; and letn be aC>
cut-off function, i.e. identicallyt in a neighborhood of the origin and of

N
compact support. [Rep > 5 then

S(t)(ng) — (1 —n)(Z2 + Ra) € H®(RY),

forall ¢ > 0.
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Proof. Letn be aC* cut-off function. Clearly then

S(t)e = S(t)(ne) + S —n)el, (3.22)

S(t)p =nS(t)e + (1 —n)S(t)e. (3.23)
SinceS(t)pis C>* onRY, and sinceyyp is in L (RY) with compact support,
it follows that each term in (3.22) and (3.23)@&® on R, with nS(t)¢p

being of compact support.
Also, (1 — n)p, (1 —n)X; and (1 — n)R; (for a fixedt) are all in

N .
weer(RY) for all r > ——. We write
Rep

Syl —(1 —n)(X2 + Ra)
=S(t)p = SH[1—n)¢] — (1 —n)(X2+ Ra)
=nS(t)e+ (1 =n)S(t)e —SE)[(1—n)¢] — (1 —n)(X2 + Ra)
=nSt)e+ (1 —n)(Z1+ R1) — S#)[(1 —n)el.

If Rep > g then(1 — n)p, (1 — )X and(1 — n)R; (for a fixedt) are

allin H°°(RY), as must be&s (¢)[(1 —n)¢], sinceS(t) preservesi > (RY).
SincenS(t)y is C*° with compact support, this proves the proposition.

Conjecture:  S(t)[ny] — (1 —n)(La + Ra) € S(RN), S(t)[(1 —n)yp] —
(1—n)(X1 + Ry) € S(RN).

4 Self-similar solutions

We recall the notion of self-similar solutions.
Definition 4.1. A solutionu(t, x) of (2.1) is self-similar if for somg with

2 o
Rep = —, u(t,x) = Mu(\?t, A\z) for all A > 0. Note that a self similar
[0
solution verifies

ult,z) =t~ 5§ <\%> , (4.1)
wheref = u(1,).

Remark 4.2. Note that ifu is a self-similar solution, then

N_ 1
lu(@)lLr = t2r == || f]|Lr,

for everyl < r < oo such thatf € L"(R™). In particular, if f € L2(R"),

then
N 1

[u®)llL2 = t5 7= fll2-
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This implies that, except in the case= N a self-similar solutiortannot

be a classicaH! solution, sinceH ! solutions satisfy the conservation of
charge.

Proposition 4.3. Assume (1.3), and suppoRe p = %. If p(z) is afinite

linear combination of functions of the for, (z)|z|~?~*, whereP, is a
homogeneous harmonic polynomial of degkeéncluding £ = 0), then
|S(1)¢|| fa+2 is finite and

PS¢l etz = ISVl parz, V>0, (4.2)

wheref is given by (2.2). If, in addition|.S(1) || ,«+2 is sufficiently small,
there exists a self-similar solutianof (2.1) with initial valueyp, having all
the properties described in Theorem 2.1.

Proof. It follows from the conditions omx andp that
(0 < Rep< N,

(i) @+ 2 > NN
a maxq —, ———— o .
Rep’ N —Rep

- . 2 -
(Statement (i) is true sinag, > N') The finiteness of S(1) || f+2 there-
fore follows from Propositions 3.7 and 3.9; and formula (4.2) is the same as

2 .
formula (3.8) withr = v + 2, Rep = o andg given by (2.2).

The fact that the solution with initial value ¢ is self-similar is a conse-
quence of the uniqueness provision. Sinée(Ax) = ¢(x) forall A > 0,
the functions\Pu(\%t, A\z) are all solutions of (2.1) with the same initial
valuey and all verifying (2.6). O

Remark 4.4. One may even allow an infinite sum= > ¢,,, , where each
©m is as in the statement of Proposition 4.3. One need only impose two
conditions: that the sum = > ¢, converges in the sense of tempered
distributions and tha}  ||.S(1)¢m || Le+2 < co. This gives a very wide class
of self-similar solutions. It would of course be quite interesting to character-
ize the set of tempered distributions (homogeneous or otherwise) such that
stu18t5||5’(t)<p|\m+2 < o0.

>

Remark 4.5. While we do not know how smooth these self-similar solu-
tions are, we can at least note that C'((0, c0), L*+2(RY)). Indeed, since
u € L2 ((0,00), L¥T2(RY)), it follows from (4.1) thatf € L2(RN).

The operatos — f(s-) being continuoug0, co) — LoT2(RY), continu-
ity follows from (4.1).
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Lemma 4.6. Suppose verifiessup t°||S(t)p|| o+2 < oo, wherea veri-
>0

fies (1.3). Ifip = 1 + @2 Wherep; € L%(RN) andyy € HY(RY), then
su%)tﬁHS(t)(ngLam < 0.
>

. 4
Proof. Sincep, € H'(RY) anda < N

5 we see that

1S@)p2llLot> < CISE)@2llnr < Cllpa|a < oo

In particular,
ltif(rjlt’@”S(t)gOQ||La+2 < 0.

Next,

t7]S ()2l pasa = t7]S(t) (0 — p1)l| o+
< 7S (t)pll sz + 7S ()¢l Loz

_ _Nao _
< C+ CtPt 2 lorll oz = C+ Ct™7prl] asz,
whereo is given in Proposition 2.3 (d)} > 0 sincea > «g. Thus

lim sup t°||S(t)p2]| Lotz < 0.
t—o0
This proves the lemma. O

Proposition 4.7. Suppose (1.3) and thatis a p-homogeneous function,
. 2
withRep = o such that

(i) supt”||S(t)pllare < oo;
t>0 )
. a+2
(i) » = @1 + @2 wherep; € Lat1 (RY) andpy € HY(RY).

After multiplyingy by a sufficiently small constant so thatand - ver-
ify the formula (2.5) withA/ small enough to apply the last part of The-
orem 2.1, letv(t) be the globalH! solution with initial valuey,, let

u(t,x) =t 2f <m> be the self-similar solution with initial value,

\/E
w(t,x) =v(t,z) —t 5 f (“") :

Vi
It follows that for alle > 0,

Nao
lw(®)]| o2 = O X+ 7),
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and NaiD)
Hf - t%v(tvx\/i)”LaJFQ < Cat_m+g+€,
ast — oo. Both converge t0 ast — oo if € is sufficiently small.

Proof. This is an immediate consequence of Lemma 4.6, Theorem 2.1,
and formula (2.9) in Remark 2.2 (a). Also, compare formula (3.21). o

Proposition 4.8. If ap < a < i, the decompositiopp = ¢; + @2 as
described in Lemma 4.6 can be realized witlas in Proposition 4.3 and
»1 = Ny + 1, wheren and+ are such that

(i) n e Whe(RN),

(i) n(xz) = 1for zin a neighborhood of: = 0,

(i) n(x)[a| > € L (RY),

(iv) ¥ € Lati(RN)n H (RY).
For exampley could be aC'' cut-off function with compact support.
Proof. This is trivial to verify. Unfortunately, to verify thatl — n)y €

H'(RY), one has to impose the additional restrictior: N m

. . . 4
Remark 4.9. The results of this section show thabif < o < N then a

wide class of initial values ii7 ! (R") which are “asymptotically homoge-
neous” inRY (i.e. the functionsp, in Proposition 4.8), give rise to global,
asymptotically (in time) self-similar solutions of equation (2.1). Note that
for such solutions, the known scattering theoriesxdbapply. Indeed, the
H' scattering theory does not apply because 4/N; and the scattering
theory inX = H' N L?(|z|?dx) does not apply beacuse ¢ X.

5 Self-similar blow up

In Sect. 4, we constructed self-similar solutions of (1.1), and also a class
of classicalH! solutions that are asymptotically self-similar as+ oo.
However, self-similar solutions can also describe blow up behavior, as in
the case of certain nonlinear heat equations (see for example Y. Giga and
R.V. Kohn [11, 12, 13] and M.A. Herrero and J.J.L. &&fjuez [18, 19]). In

this section, we exhibit a class of negatively global solutions of (1.1) which
are asymptotically self-similar at the “blow up” time= 0 (see Theorem 5.7
below). To accomplish this, we apply the pseudo-conformal transformation,
which interchanges the behaviorstat 0 and att = oo. More precisely,
consider a solution of the equation (1.1) of+-c0, 0), and set

)2 1
v(s,y) = s_%ez‘Z‘s U <—, y) , (5.1)
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fory € RY ands > 0. It follows (formally) thatv satisfies the (non-
autonomous) nonlinear Sadinger equation

Na—4

s+ Av=rs 2z |v|%, (5.2)

on (0, co). We write the Cauchy problem for the equation (5.2) in the integral
form

Noa—4
2

v(s) = S(s)y — iy /OS S(s—1)T (lo(T)|%v(7)) dr. (5.3)

For (5.3), we have the following analogue of Theorem 2.1.

Theorem 5.1. Suppose (1.3), and letbe given by
N2+ (N—-2)a—4

2a(a+2) (54)
Suppose further that > 0 and M > 0 satisfy the inequality
p+ KMt < M,
whereK = K(a, N, ~) is given by
K = 2]y|(a +1)(4r) T B (1 - 2(0]74?‘2) % —1-o(a+t 1)) .
Let+ be a tempered distribution such that
Sup [s|711S ()| sz < p. (5.5)

It follows that there exists a unique positively global (i.e. defined for all
s > 0) solutionv of (5.3) such that

sup |s|7[|v(s)]| pa+e < M. (5.6)
5>0

Furthermore,
(8) v(s) — S(s)v € C((0,00), H 77 (RV));
(b) lig]w(s) = 1) as tempered distributions.

Suppose) andJ verify (5.5) and leb andv be respectively the solutions
of (5.3) satisfying (5.6) with initial valueg and). It follows that

sup 517 [|o(s) = 0(s)l| v < (1= KM~ sup 51715 () (¢ = &) | o2
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If, in addition, S(s) (v — {E) has the stronger decay property

sup [517(1 + [s))°[1S () (¢ = )| o2 < 00, (5.7)

N L
for somed > 0 such thato(a + 1) + 6 < TQ —1,and if K'M* < 1,
whereK’ is given by
~ __Na Na Na
K =2 (4r) 2B (1 - ——e,— — 1 — 1) -4
e +1) ) (1- gy - 1-ola+ ) -0),
then

sup|s|7 (1 + |s[)°[[v(s) = 0(s) | o2
s>0

SO—FMWEQMW+bWW®W—me (5.8)

Proof. The proof is identical to the proof of Theorem 2.1, replacihigy
o. O

Remark 5.2. The value ot given by (5.4) is the same as defined in Propo-

(6] . .
Nat2) where( is given by (2.2).
Indeed 5 ando play analagous (and dual) roles in Sects. 2 and 4, on the one
hand, and Sect. 5 on the other hand. As another example, the limiting value
of 0 as used in Remark 2.2 (a) is preciselyln the analogous remark for
equation (5.3), which we invite the reader to formulate, the limiting value
of § is preciselys.

sition 2.3 (d). Moreoverg + o =

Remark 5.3. Asis the case for equation (1.1), the set of solutions of equa-
tion (5.2) is invariant under a group of dilations; and this allows one to
define self-similar solutions (see Proposition 5.5 below). These dilations,
when restricted to spatial functions (i.e. initial values) are precisaly,

whereReq = N — 2 and X > 0. (Recall formula (3.4).) The norm de-
fined by the left sidea of (5.5) is invariant with respect to these transforma-
tions. Moreover, the Lebesgue norm left invariant by these transformation is
L~az (RM), which is the dual of. = (RV), the invariant Lebesgue norm
for equation (1.1).

Remark 5.4. It follows from Theorem 3.4, p. 90 of [6] that the initial value
problem for (5.2) is locally well-posed in the spakié(R”). Moreover (by
Theorem 3.8, p. 91 of [6]), we have the energy identity

d Na-6 Nov —4 v 192
=M RS T s,
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where

1 ~ Na—4
E(s) = §HVU(S)H%2+ pep Rl [o(s) 542,

and conservation of charge

d
%HU(S)HLQ =0

(Note that the energy identity is established in [6] for solutiond ifR™) N
L?(RY | |z|?dz), but that it holds for ! solutions by the continuous depen-
dence property (iv) of Theorem 3.4 of [6].) It follows in particular that
property (f) of Proposition 2.3 holds as well for the equation (5.2). There-
fore, ify € H'(RY) satisfies (5.5), then the solution of (5.3) constructed in
Theorem 5.1 coincides for al> 0 with the “classical’H! solution, which

is therefore global.

Let now(y) = |y|~ (or more generally a finite combination of func-
tions of the formP (y)|y| 9%, whereP, is a homogeneous harmonic poly-
nomial of degreé: > 0), whereq € C verifies

2
Req=N — —.
!

By Proposition 3.&5 is an SC°-regularg-homogeneous function (see Def-
inition 3.1). Condition (1.3) implies that

+2> N N
max{ —, ———o.
@ = ma Req’ N — Regq

In particular, by formula (3.8) with = « + 2 (andp replaced by)), we see
that

sup NS ()Pl vz = S]] a2 < 003

and sowe may apply Theorem 5.1 with= c{/?wherec is a sufficiently small
constant. The following proposition is now proved by the same arguments
as in the proof of Proposition 4.3.

Proposition 5.5. Assume (1.3) and Iﬁﬁ be as above. i is small enough,
then there exists a solutianof (5.3) having all the properties described in
Theorem 5.1. Moreover, is self-similar, i.e.

v(s,y) = )\qv()\zs, AY),

forall A > 0. In particular,

o=t ().

S
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wheref(-) = v(1,-).

Let {/JV be as above, and letbe aC'> cut-off function, i.e. identically 1
in a neighborhood of the origin and of compact support. One verifies easily

that(1 — n)y € H(RN) provideda > % In addition, ;i € L%(RN)

4 .
becausex < 5 Therefore, adapting the proofs of Lemma 4.6 and
Propositions 4.7 and 4.8, we obtain the following result.

4 ~ . .
N N3 Letsy be as~|n Proposi
tion 5.5 andy a cut-off function as described above. ket ci, 1 = np,
and e = (1 — n)y. If ¢ is small enough, thew, ¢, and ¢ all verify
the assumptions of the first part of Theorem 5.1, g@naind «), verify the
assumptions of the last part of Theorem 5.1. If we denote by and v
the corresponding solutions of (5.3), thers self-similar as described in
Proposition 5.5, and for alt > 0,

ser-+31 ()

ass — oo, wheref(-) = v(1,-). Finally, v, is a “classical” H' solution
of (5.2).

The following theorem now follows by expressing the above results,
via the inverse pseudo-conformal transformation, in terms of solutions of
equation (1.1).

. 4
Proposition 5.6. Suppose— < a <

=0 (sfﬁJrE) , (5.9)

La+2

4 4 .
Theorem 5.7. Suppose]v < a< N3 and letv and vy be as in
Proposition 5.6. Let: be defined by

)2 1
ult,z) = (—t)~ % el v <—t, —f> : (5.10)
for z € RN andt < 0, and letu, be defined similarly in terms @f. Then
bothu andus are solutions of (1.1) of+-oo, 0) in the sense of Theorem 2.1.
Moreover,u is self similar, i.e.

ult,z) = (—1)%g <f:t> |

||

withp = N — gandg(z) = e*"mTv(l, x). Furthermore, for any > 0,

N5 (t, /1) — g(a)|gars = O ((—t>42c553+22)>”) G
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ast 1 0, which converges t0 ast 1 0 for e sufficiently small. In addition,
uy € C((—00,0), L"(RN)) foranyr € {2, N2N2]  [|[ua(t)]| 12 is constant,
anduy € C((—o00,0), HL (RY)).

loc
Remark 5.8. Of course, the construction of self-similar solutiansf (1.1)
by formula (5.10) in Theorem 5.7 is valid for the full rangg < a <
N 3o It is not clear if these are the same self-similar solutions - up to
complex conjugation - described in Proposition 4.3.

In the proof of Theorem 5.7, we will use the following lemma.

Lemma5.9. Assume (1.3), and letand§ be given respectively by (5.4)
and (2.2). Lety € S'(RY) be such tha’sup s7)|S(s)¢]| pare < oo, and

((0,00), L*T2(RN)) be such thatsup s7v(s)||pate < o0.

Suppose that satisfies equation (5.3) fos > 0 and letw be defined
by (5.10) forz € RY andt < 0. Then the following conclusions hold.

() (—t)7u(t) € L>((—00,0), L*T*(RY));
(i) there existsp € S’(R™) such thatu(t) prods in S’"(RN);

letv € L

loc

(i) ggg(—tWHS(t)soHW < o0;

(iv) u satisfies the equation (2.1) ¢ro0, 0).

Proof. An elementary calculation shows that

(=8)° u®)| sz = <_1) ; H)

and (i) follows.
We claim that

u(s) = S(s — 7)u(r) — iy / 805 — W (e () ds, (5.12)

9
ch+2

forall 7, s > 0. Notefirstthat (5.12) makes sense. Indeg¢d) € L~+2(R"Y)

— S’(RN) so thats +— S(s — 7)v(7) belongs toC (R, S’(RY)). Further-
morey:’ B ()| @0(p) € LEE((0, 00), La+1 (RN)). Note thatl a+1 (RV)

— H~Y(RM) and that(S(s))scr is a group of isometries iif‘(RY) for
every/ € R. Therefore, the integral on the right hand side of (5.12) belongs
to C((0,00), H~1(RY)) as a function ofs. We now establish (5.12). Set
w(s) = v(s) — S(s). It follows from (5.3) that

s) = —i’Y/OSS(S—M)M

(1) |“v(p) dps,
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. Na—4 at2
for all s > 0. Sincep™ 2 |v(p)|* () € LY((0,T), Lo+1(RY)) and
a2
L5+ (RN) — H-1(RN), it follows from standard semigroup theory that
w € C([0,00), H~1(RY)) and that

Na

w(s) = S(s = Tu(r) — iy / 805 — T o) "0() ds.

Adding S(s)y = S(s — 7)S(7)v to both sides of the above identity yields
(5.12).
Consider now the dilation operatér, and the multiplietM, defined by

bla|?

(Dyw)(z) = )\%w()\x), (Myw)(x) = €' 2 w(x).

We have .
u (—) = M_sDsv(s). (5.13)
S
On the other hand, it follows from [5, formulas (3.2) and (3.3)], that
M_yD,S(s —7) = S <_i + 1) M_,D,, (5.14)
T

fors, 7 > 0. By applyingM _, D, to both sides of (5.12), and by using (5.14)
then (5.13), we obtain

u(=7)
L D) S5 M Dy(o(p) () dp
=S (-3 +3)u(-)

s L () 0

Settingt = —1, 0= —1, and making the change of variabjes= —}, we
S T Ui

J

-2
2

n

|

S o
+
= =E= =

—_

=

obtain
u(t) = St —0)u(d) — 2’7/0 S(t —n)|u(n)|*uln) dn, (5.15)

forallt,n < 0.
a+2
Fix ¢ < 0. Since|u/®u € L'((0,T), La+1(RN)) ¢ L((0,T), H!
(R™)) for all T > 0, the integral in the right hand side of (5.15) converges
to

/0 S(t — ) u(n)|*u(n) dn,

in H—Y(RY) asf 1 0. On the other handy(t) € L*+2(RY) is fixed; and
so, by lettingd 1 0 in (5.15), we see that(t — 0)u(f) has a limitw in
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H=YRYN) 4+ Lo*2(RN) asf 1 0. In particularw € S'(RY), and we may
setp = S(—t)w € S'(RVN). It follows that S(t — 0)u() O—TO>S(t)go in

S’(RY). Therefore, letting 1 0 in (5.15), we obtain that, satisfies the
equation (2.1) orf—oo, 0). This proves (ii) and (iv). Finally, (iii) follows
from (i) and the estimates used in the proof of (2.11). This completes the
proof. O

Proof of Theorem 5.7. The property that: andus are solutions of (1.1)
on (—o0,0) in the sense of Theorem 2.1 follows from Lemma 5.9. Since

o(s,y) = s 5 f (f//;

ult,z) = (—1)" ¥ (—o)Re g <m> — (~t)g <j:t) ,

. , 2 . .
with p andg defined above (note th&ke p = —). Writing (5.9) in terms of
(6
u andug, we obtain
_ _Na a+2 _N 1 Yy _4g Yy
Hat2) TE — A I
o) [ ()~ ()
. y 1
Settingz = —= andt = ——, we deduce
NG s
o a+2
0 ((_t)%*ﬂ
= 2 fRN

+(a+2)Req

> by Proposition 5.5, we have

1) 2 (t, v/ ~1) = (~)3g(x)
Jux (=) T walt /=) - g(a)

N —
(=) "= ua(t, 2v/=t) = g(@)]| o2
=0 <( t)z a+z>+2<ofv+2)*%*€) =0 <(_t)we> ,

which is estimate (5.11). Finally, the regularity propertieggfollow easily
from the regularity ofv, described in Proposition 5.6. 0

Remark 5.10. It follows from (5.11) that||(—t)2ua(t, 2v/—t)|| fatre —
llg|| .a+2 ast 1 0. Therefore,

_4=-(N-2)«x
[uz ()] ot = (=t) 2@ [|g]| Late,
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which blows up as 1 0.

However, the relationship of these solutions to blow up of solutiof&'in
is not clear. Indeed, the solutien constructed in Theorem 5.7 is definitely
notinH'. Ifitwere, therwy (which is anH ! solution) would be a solution in
X = H'RN)N L%(RY, |z|?dz), which is impossible since its initial value
19 IS not in X. Moreover, the above result is true regardless of the sign of
~, and in particular ify > 0 (or everry = 0), in which case ndi! soILiltion
N -2
andy < 0, when there do exigtf! solutions of (1.1) which blow up in finite
time, we can exhibit asymptotically self-similar blowing up solutions which
just fail to be inH!.

. S . 4
blows up. It is nonetheless intriguing that, in the cgge< a <

6 The nonlinear heat equation

In this section, we consider solutions of the integral equation

u(t) = et — te(t*S)A w(s)|%u(s)) ds .
0 =cto=q | (fu(s)|*u(s)) d (6.1)

2 .
wherey € R anda > N Given such amy, one can always choogesuch
that

< —<uq. (6.2)

While ¢ is not uniquely determined by (6.2), we consigdixed once and
for all. All the results below are valid with any value @iverifying (6.2).
Next, we set

1 N
=———. 6.3
b= 5 (6.3)
One verifies easily that
N N
Bla+1) <1, 2—:‘ <1, ﬁ—i—l—z—;—ﬁ(a—i—l) =0. (6.4)

The proof of the following theorem parallels almost exactly the proof of
Theorem 2.1. The only additional features needed are the fac(teﬂéfa'gzo

is a contractiorCy semigroup on all.”(RV), 1 < r < oo and the better
smoothing properties of the heat semigroup,

1

_N(1_1
Il < (4rt)”* G0,

wheneverl < r < p < oo andt > 0. The first part of the theorem was
already proved by F. Ribaud [29], Theorem 4.5.2.
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2 .
Theorem 6.1. Leta > — and letq and g3 verify (6.2) and (6.3). Suppose
further thatp > 0 and M > 0 satisfy the inequality

p+ KM < M,

whereK = K («, N, 7, q) can be explicitly computed. Letbe a tempered
distribution such that
supt’lle'®pllzs < p. (6.5)
>

It follows that there exists a unique positively global (i.e. defined for all
t > 0) solutionu of (6.1) such that

sup t7||lu(t)|| L« < M. (6.6)
t>0

Furthermore,

(@) u(t) — e®p € C([0, 00), L%H(RN)), taking the valu® at¢ = 0;
(b) limu(t) = ¢, as tempered distributions.
10

Supposer and verify (6.5) and let, andv be respectively the solutions
of (6.1) satisfying (6.6) with the initial valugsand. It follows that

supt”[|u(t) — v(t)|[ze < (1 - KM*)™ supt? e (o — )| o
t>0 t>0

If, in addition, e'® (¢ — v) has the stronger decay property

iugtﬁ<1+t>5||em<so—¢>||Lq < o0 (6.7)
>

for somes > 0 such that(a + 1) + ¢ < 1, and withM perhaps smaller,
then

StUIgtﬁ(lth)éHu(t)—v(t)HLq < Cb;ugtﬁ(l+t)5||6tA(90—¢)HLq- (6.8)
> >

Asin Remark 2.2 (a), if we suppose that- v € Lo+t (RM), then (6.7)

is verified withd = 6y, where
N(a+1) 1
0p= ——> — —.
2q o

Sincef(a + 1) 4+ dp = 1, it follows that (6.8) holds for alb € (0, o).

Next, we need to identify those homogeneous functipnsuch that
sup t”||e'“¢||q is finite, since these initial data give rise to self-similar
>0

solutions of (6.1). This question has been extensively studied [1, 2, 29].
In particular, F. Ribaud ([29], Theorem 4.5.3) has proved that(if) =
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w(:c)]m|‘§ , wherew is homogeneous of degre@andw € L>(SV~1) with
small enough norm, then the solution of (6.1) with the initial vajués
self-similar.

In fact, we can improve this with the following simple remarks. gét)
be as above, where € L(SV~1). Setyp; = ny wheren is an L> (or
smoother) cut-off function (identically near the origin and of compact
support), and writeo = ¢ + 2. We can draw the following conclusions.

N
@ ¢1 € L"(RY) forall1 < r < 7a, and soe'®p; € LI(RYN) for all

t > 0.
(b) ¢2 € LI(RY), and sce!®py € LI(RYN) for all t > 0.
(€) et®p = P +etPpy € LI(RN)forallt > 0,and seup t°||e! > o|| £a
>0

is finite (by dilation properties®||e*® || 1« does not depend an> 0).

(d) sup t”||e"® sz is finite (by an argument similar to the proof of
>0
Lemma 4.6).

(The first part of each of statements (a) and (b) follows easily by integrating

with polar coordinates.) The following theorem is now straightforward to
prove by the same arguments as in Sect. 4.

Theorem 6.2. Letp = @1 + ¢ as above, except that we multiply
by a sufficiently small constant. Lett,z) = tféf (\2) be the self-

similar solution of (6.1) with initial datap, constructed by Theorem 6.1.
Letwv(¢, ) be the global solution of (6.1) with initial data,, constructed
by Theorem 6.1 (which corresponds to the “classical” solution of (6.1)
sincep, € LY(RY) andq > % see Weissler [33]). Seb(t,z) =
u(t,z) — t_éf (a:

Vit

). It follows that for alle > 0,

_Na
[w(t)]|Le < Ot 20 )

and
N(a+1)

1
If = tav(t,aVE)||pe < Cot™ 20 Tate
ast — oo. Both converge t0 ast — o if ¢ is sufficiently small.

Itis clear that the decompositign= ¢; + ¢ in Theorem 6.2 is not the
most general for which the conclusion is true (cf. Sect. 4).
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