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1 Introduction

In this paper we study global solutions, including self-similar solutions, of
the initial value problem for the following nonlinear Schrödinger equation

iut + 4u = γ|u|αu, (1.1)

u(0, x) = ϕ(x) (1.2)

Here,u = u(t, x) is a complex valued function defined on[0,∞) × R
N , γ

is a real number,α > 0, and the initial conditionϕ(x) is a complex valued
function defined onRN . Also, at the end of the paper, we will extend some
of our results to include the nonlinear heat equation analogous to (1.1)

There is a well known principle which has frequently been used to prove
existence of global solutions of nonlinear equations. Suppose the set of
solutions of some nonlinear equation is invariant under a certain group of
transformations. For example, the set of solutions of (1.1) is invariant under
the transformationsu 7→ uλ , whereuλ(t, x) = λ

2
αu(λ2t, λx), for allλ > 0.

Suppose next that some norm‖ · ‖, defined on a space of initial valuesϕ, is
invariant with respect to this group of transformations (restricted to spatial
functions). In our situation, this means that‖ϕλ‖ = ‖ϕ‖, for all λ > 0,
whereϕλ(x) = λ

2
αϕ(λx). Under these circumstances, one can often prove

that initial dataϕ for which ‖ϕ‖ is sufficiently small give rise to global
solutions of the nonlinear equation.

To our knowledge, this idea was first discovered by T. Kato and H. Fu-
jita [9, 24], for the Navier-Stokes system, who proved that data small in
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H
1
2 (R3) yield global solutions. The second author [32] used this idea to

prove that data small with respect to either theL
Nα
2 (RN ) norm, if

Nα

2
> 1,

or the norm
∫ ∞

0
‖et4ϕ‖αL∞ dt give rise to global solutions of the nonlinear

heat equation analogous to (1.1). Kato [21] then showed that solutions of
the Navier-Stokes equations with data small inLN (RN ) are global. Y. Giga
and T. Miyakawa [14] and Y. Giga [10] extended these arguments to more
general nonlinear heat equations and to fractional power spaces inLr in the
case of the Navier-Stokes equation. Developing this idea further, Y. Giga and
T. Miyakawa [15] subsequently proved global existence of solutions to the
Navier-Stokes system, expressed in terms of the vorticity, with initial vor-
ticity small in certain Morrey spaces of measures. In [4], the authors applied
this principle to (1.1) to show global existence of solutions for data small
with respect to fractional homogeneous Sobolev norms (see T. Kato [23] and
H. Pecher [27] for recent related results); and in [6], we again applied this
principle to equation (1.1), using a norm on functionsϕ defined in terms of
a time integral of||S(t)ϕ||Lα+2 , whereS(t) is the linear Schr̈odinger group.
As a corollary, we showed, for certain values ofα, that sufficiently oscilla-
tory data (defined in a somewhat restricted sense: see Corollary 2.5 in [6])
give rise to global solutions. More recently, this principle was applied by
M. Cannone [1] and M. Cannone and F. Planchon [2] to the Navier-Stokes
system using Besov norms. In particular, as proved for (1.1), highly os-
cillatory initial data (in a more general context than defined in [6]) give
rise to global solutions. Moreover, [1, 2, 15] all include results on the ex-
istence of self-similar solutions. Indeed, both the Morrey spaces used by
Y. Giga and T. Miyakawa and the Besov spaces used by M. Cannone and
F. Planchon are sufficiently weak to include homogeneous data, for which
the resulting global solutions are necessarily self-similar. One advantage
of this method of investigating self-similar solutions is that one easily ob-
tains self-similar solutions which are not radially symmetric. These ideas
have been applied to a general nonlinear heat equation by F. Ribaud [29].
In this brief historical survey, we have focused on the Navier-Stokes equa-
tion, parabolic equations and the nonlinear Schrödinger equation. We hope
that authors of similar results for other nonlinear equations will forgive the
omission.

One purpose of this paper is to prove the existence of global solu-
tions, including self-similar solutions, to the nonlinear Schrödinger equa-
tion (1.1) using norms analagous to those used by Cannone and Planchon.
There is, however, a serious difficulty in applying these ideas to (1.1).
Besov norms for dataϕ(x) are equivalent to weighted norms of the type
|||ϕ||| = sup

t>0
tβ‖et4ϕ‖Lp , and it is these latter norms which are well suited
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to prove global existence. For (1.1), as we shall see, it is relatively easy to
prove global existence of solutions with dataϕ which are small with re-
spect to a certain norm|||ϕ||| = sup

t>0
tβ‖S(t)ϕ‖Lp , where instead of the

heat semigroupet4, the Schr̈odinger groupS(t) is used. Since these norms
do not seem to have any well known equivalent forms, it is more difficult
to determine which functions are finite with respect to this norm. Indeed,
to obtain self-similar solutions, one needs homogeneous initial data. A sig-
nificant portion of this paper is therefore devoted to explicitly calculating
S(t)ϕ for functions of the typeϕ(x) = |x|−p.

Once self-similar and other global solutions are proved to exist by this
method, it is important to compare them to solutions inH1(RN ), known
to exist since the work of Ginibre and Velo [16]. It turns out, at least for
α in a certain range, that a class of globalH1 solutions are asymptotically
self-similar. In other words, the difference between such a solution and one
of the self-similar solutions constructed below tends to zero inLα+2(RN )
more rapidly than either of them do separately.

Many of the results in this paper concerning equation (1.1) are valid for
the range ofα given by

α0 < α <
4

N − 2
, (1.3)

whereα0 is the positive root of the equation

Nα2 + (N − 2)α− 4 = 0.

Throughout the entire paper, the hypothesis (1.3) is to be interpreted as
α0 < α < ∞ if N = 1 or 2.

The powerα0 in the study of equation (1.1) was first encountered by
Strauss [31]. One way to understandα0 is that it is the value ofα for which
Nα

2
=
α+ 2
α+ 1

. The equality of these two numbers is “significant” since the

L
Nα
2 (RN ) norm is invariant under the dilationsϕλ(x) = λ

2
αϕ(λx) men-

tioned above, and the normL
α+2
α+1 (RN ) is the dual of the normLα+2(RN ),

which appears in the energy of (regular) solutions of (1.1). Also,L
α+2
α+1 (RN )

is the image ofLα+2(RN ) under the nonlinear mapu 7→ |u|αu. In fact, the
condition (1.3) is equivalent to the condition

α+ 2
α+ 1

<
Nα

2
< α+ 2.

(If the reader finds this explanation ofα0 a bit far fetched, we invite him/her
to find a better one.)



86 T. Cazenave, F.B. Weissler

The Schr̈odinger groupS(t) = eit4 and the heat semigroupet4 are
both part of the analytic semigroup defined by convolutionez4ϕ = Gz ?ϕ,
where

Gz(x) = (4πz)− N
2 e−

|x|2
4z ,

is defined for all nonzero complex numbersz with Re z ≥ 0. Equivalently,
these operators can be defined via the Fourier transform as

ez4ϕ = F−1
(
e−4zπ2|·|2Fϕ

)
,

for all complexz with Re z ≥ 0. It follows that for eacht ∈ R, S(t) is a
continuous map on the space of tempered distributionsS ′(RN ) and that for
eachϕ ∈ S ′(RN ), the mapt 7→ S(t)ϕ is continuous fromR into S ′(RN ).

Our approach to self-similar solutions of (1.1) is via the corresponding
integral equation (2.1) below. Previous work [20, 25, 26] on self-similar
solutions of (1.1) has been based on an analysis of the ordinary differential
equation verified by the profile of the self-similar solution. The focus has
been to study the asymptotic behavior (in space) of this profile in order to
determine the regularity of the self-similar solution. Our work has a very
different orientation and does not immediately recover these previous results.

Clearly, the methods we use here apply equally well, if not more easily,
to the nonlinear heat equation corresponding to (1.1). While this has been
done to some extent [29], it has not yet been proved that a class of global
solutions are asymptotic to the self-similar solutions constructed by this
method.

The outline of the rest of this paper is as follows. In the next section
we prove the basic global existence theorem (Theorem 2.1) and show how
it relates to some of the previously known results for equation (1.1). In
Sect. 3 we study the action of the linear Schrödinger groupS(t) on ho-
mogeneous functions of the typeϕ(x) = |x|−p andϕ(x) = ω(x)|x|−p,
where0 < Re p < N andω is homogeneous of degree 0. It turns out
(for certainω) that for allt > 0, S(t)ϕ is C∞ and belongs toLr(RN ) for
larger (Corollary 3.4 and Propositions 3.7 and 3.9). Moreover, we show in
Sect. 4 (Proposition 4.3) that these functions can verify the hypotheses of
Theorem 2.1, thereby giving rise to global, self-similar solutions of (1.1),
both with and without radially symmetry. Also in Sect. 4, we show that cer-
tainH1 solutions are asymptotically self-similar (Propositions 4.7 and 4.8).
TheH1 initial valuesϕ which lead to this behavior decay like|x|− 2

α as

|x| → ∞, whereα is such thatϕ ∈ H1(RN ), butϕ 6∈ L
α+2
α+1 (RN )), i.e.

α0 < α < 4/N . In Sect. 5, we establish an analogue of Theorem 2.1 for
an equation related to (1.1) by the pseudo-conformal transformation. By
constructing asymptotically self-similarH1 solutions of that equation, and



Nonlinear Schr̈odinger and heat equations 87

by applying the inverse pseudo-conformal transformation, we obtain solu-
tions of (1.1) on(−∞, 0) which have an asymptotically self-similar blow
up behavior at 0. However, these solutions of (1.1) are notH1 solutions (see
Theorem 5.7 and Remark 5.10 below). Finally, in Sect. 6, we outline how
these methods can be applied to the nonlinear heat equation. In particular,

if α >
2
N

, we show that a large class of global solutions are asymptoti-

cally self-similar. As in the case of the nonlinear Schrödinger equation, the
initial values giving rise to such behavior decay like|x|− 2

α as |x| → ∞.
These results differ from those of Escobedo and Kavian [7] and Escobedo,
Kavian and Matano [8], who study asymptotically self-similar solutions of

the nonlinear heat equation whenα <
2
N

. Finally, we mention that Plan-

chon [28] has recently proved, by methods rather different from those in the
current article, that a large class of solutions of the Navier-Stokes system
are asymptotically self-similar.

2 Existence of global solutions

In this section we prove the existence of global solutions to the integral
equation corresponding to (1.1), i.e.

u(t) = S(t)ϕ− iγ

∫ t

0
S(t− s) (|u(s)|αu(s)) ds, (2.1)

whereS(t) is the linear Schr̈odinger group (Theorem 2.1 below). The proof
uses only the most basic properties of the linear Schrödinger groupS(t),
i.e.

‖S(t)ϕ‖Lα+2 ≤ |4πt|− Nα
2(α+2) ‖ϕ‖

L
α+2
α+1

.

The calculation used is not so different from the calculation near the end of
Sect. 5 in [32]. Indeed, the simplicity of the proof is somewhat remarkable
given the long history of very technical proofs of local and global existence
of solutions of (1.1) and (2.1), [16, 17, 22, 3, 4]. The relationship of The-
orem 2.1 to previous results will be explained below in Remark 2.2 and
Proposition 2.3. We note that the results in this paper apply, as do the results
in [6], to equation (2.1) withγ being of either sign.

Before stating Theorem 2.1, we need one more definition. Ifα veri-
fies (1.3), let

β =
4 − (N − 2)α

2α(α+ 2)
. (2.2)

It follows easily that

β(α+ 1) < 1,
Nα

2(α+ 2)
< 1, (2.3)
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and

β + 1 − Nα

2(α+ 2)
− β(α+ 1) = 0. (2.4)

One verifies thatsup
t>0

tβ‖S(t)ϕ‖Lα+2 is invariant under the transformations

ϕλ(x) = λ
2
αϕ(λx), (see formula (3.6) in Sect. 3), though this fact is not

explicitly needed for the proof of Theorem 2.1.

Theorem 2.1. Suppose (1.3), and letβ be given by (2.2). Suppose further
thatρ > 0 andM > 0 satisfy the inequality

ρ+KMα+1 ≤ M,

whereK = K(α,N, γ) is given explicitly below by (2.12). Letϕ be a
tempered distribution such that

sup
t>0

|t|β‖S(t)ϕ‖Lα+2 ≤ ρ. (2.5)

It follows that there exists a unique positively global (i.e. defined for all
t ≥ 0) solutionu of (2.1) such that

sup
t>0

|t|β‖u(t)‖Lα+2 ≤ M. (2.6)

Furthermore,

(a) u(t) − S(t)ϕ ∈ C([0,∞), H− Nα
2(α+2) (RN ));

(b) lim
t↓0

u(t) = ϕ as tempered distributions.

Supposeϕ andψ verify (2.5) and letu andv be respectively the solutions
of (2.1) satisfying (2.6) with initial valuesϕ andψ. It follows that

sup
t>0

|t|β‖u(t) − v(t)‖Lα+2 ≤ (1 −KMα)−1 sup
t>0

|t|β‖S(t)(ϕ− ψ)‖Lα+2 .

If, in addition,S(t)(ϕ− ψ) has the stronger decay property

sup
t>0

|t|β(1 + |t|)δ‖S(t)(ϕ− ψ)‖Lα+2 < ∞, (2.7)

for someδ > 0 such thatβ(α + 1) + δ < 1, and ifK ′Mα < 1, whereK ′
is given by (2.13) below, then

sup
t>0

|t|β(1 + |t|)δ‖u(t) − v(t)‖Lα+2

≤ (1 −K ′Mα)−1 sup
t>0

|t|β(1 + |t|)δ‖S(t)(ϕ− ψ)‖Lα+2 . (2.8)
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Remarks 2.2.

(a) The estimate (2.5), interpreted as a decay rate for large|t|, is slower than

the decay rate of‖S(t)ϕ‖Lα+2 if ϕ ∈ L
α+2
α+1 (RN ), i.e.β <

Nα

2(α+ 2)
.

The last part of the theorem imposes additional decay properties only on
the differenceϕ−ψ, not on the initial values separately. As an example,

supposeϕ andψ verify (2.5) and thatϕ − ψ ∈ L
α+2
α+1 (RN ). It follows

that
‖S(t)(ϕ− ψ)‖Lα+2 ≤ (4πt)− Nα

2(α+2) ‖ϕ− ψ‖
L

α+2
α+1

.

In particular, (2.7) is satisfied withδ = δ0 =
Nα

2(α+ 2)
− β. (In fact,

δ0 = σ in Proposition 2.3 (d).) One easily checks that

β(α+ 1) + δ0 = βα+ (β + δ0) = 1.

Therefore, (2.7) and (2.8) hold for allδ with 0 ≤ δ < δ0. In other words,
for larget,

‖u(t) − v(t)‖Lα+2 ≤ Cεt
− Nα

2(α+2)+ε, (2.9)

for all ε > 0.
(b) If sup

t<0
|t|β‖S(t)ϕ‖Lα+2 ≤ ρ, instead of (2.5), the same conclusions hold

for negatively global solutions, i.e. solutions defined for allt ≤ 0.
(c) If the estimate (2.5) is verified only on the finite interval(0, T ], re-

spectively[−T, 0), the proof of Theorem 2.1 will show that the same
conclusions hold for solutions defined on[0, T ], respectively[−T, 0]. In
particular, uniqueness is a local property. For example, ifϕ ∈ H1(RN ),
then for allt ∈ R, ‖S(t)ϕ‖Lα+2 ≤ C‖S(t)ϕ‖H1 = C‖ϕ‖H1 . Thus, for
sufficiently smallT > 0, sup

t∈[−T,T ]
|t|β‖S(t)‖Lα+2 ≤ ρ, and so by The-

orem 2.1, there exists a unique solutionu(t) of (2.1) on[−T, T ] such
that

sup
t∈[−T,T ]

|t|β‖u(t)‖Lα+2 ≤ M.

On the other hand, sinceα <
4

N − 2
, there is a “classical” (in the sense

that it is well known) solutionu1(t) of (2.1),

u1 ∈ C([−T1, T1], H1(RN )),

for someT1 > 0. Clearly then, (after possibly choosingT > 0 a bit
smaller),

sup
t∈[−T,T ]

|t|β‖u1(t)‖Lα+2 ≤ M.
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It follows that the “weak” solution constructed by Theorem 2.1 coincides
with the classical solution on[−T, T ]. As another consequence of “local
uniqueness”, letϕ verify (2.5) and letube the (positively) global solution
constructed by Theorem 2.1. In addition, suppose for somet0 > 0 that
ψ = u(t0) verifies sup

t∈[0,T ]
tβ‖S(t)ψ‖Lα+2 ≤ ρ. (This is not a priori

true since the only information we know from Theorem 2.1 is thatψ =
u(t0) ∈ Lα+2(RN ).) Let v(t) be the solution of (2.1) on[0, T ] with
initial valueψ. It follows thatv(t) = u(t + t0) for small t ≥ 0 since
tβ‖u(t+t0)‖Lα+2 ≤ M for sufficiently smallt. (Again, a similar remark
holds if sup

t∈[−T,0]
|t|β‖S(t)ψ‖Lα+2 ≤ ρ.)

(d) Sinceα <
4

N − 2
, it follows that

Nα

2(α+ 2)
< 1, and so property (a)

after (2.6) implies thatu(t) − S(t)ϕ ∈ C([0,∞), H−1(RN )).
(e) Theorem 2.1, while providing new cases where global solutions of (2.1)

exist, does not include most of the standard results of local and global
existence. First of all, the standardH1 theory is valid for0 < α <

4
N − 2

, without the lower limitα0 . Also, while Theorem 2.1 does imply

local existence and uniqueness forϕ ∈ H1(RN ) (remark (c) above),
there is no mechanism for continuing solutions which verify a priori
estimates. Thus, the known global existence results based on Sobolev
inequalities and energy conservation do not follow from Theorem 2.1.
Finally, Theorem 2.1 does not even include all the previous results of
global existence based on smallness of a certain norm, as in [4], for
example.

(f) The last part of Theorem 2.1 was inspired by some of the arguments of
Kato [21].

Proof of Theorem 2.1. LetX be the set of Bochner measurable functions
u : (0,∞) → Lα+2(RN ) such thatsup

t>0
tβ‖u(t)‖Lα+2 is finite. We denote

byXM the set ofu ∈ X such that

sup
t>0

tβ‖u(t)‖Lα+2 ≤ M.

Endowed with the metric,d(u, v) = sup
t>0

tβ‖u(t) − v(t)‖Lα+2 , XM is a

complete metric space. We will show that the mapping defined formally by

Pϕu(t) = S(t)ϕ− iγ

∫ t

0
S(t− s) (|u(s)|αu(s)) ds, (2.10)

is a strict contraction onXM .
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Note that ifϕ ∈ S ′(RN ), thenS(t)ϕ ∈ C(R,S ′(RN )). Therefore, if
ϕ verifies (2.5), thenS(t)ϕ : (0,∞) → Lα+2(RN ) is weakly continuous,
hence Bochner measurable.

We observe first that ifu ∈ X, then by the Sobolev embedding theorem

‖S(t− s) (|u(s)|αu(s)) ‖
H

− Nα
2(α+2)

= ‖ |u(s)|αu(s)‖
H

− Nα
2(α+2)

≤ C‖ |u(s)|αu(s)‖
L

α+2
α+1

= C‖u(s)‖α+1
Lα+2

≤ Cs−β(α+1)

It follows from (2.3) that∫ t

0
S(t− s)(|u(s)|αu(s)) ds

is in C([0,∞);H− Nα
2(α+2) (RN )), taking on the value 0 att = 0. Thus, the

right hand side of (2.10) can be interpreted as a continuous function into the
space of tempered distributions, with initial valueϕ.

Next, suppose thatϕ andψ verify (2.5) and thatu andv are inXM . It
follows that

tβ‖Pϕu(t) − Pψv(t)‖Lα+2 ≤
tβ‖S(t)ϕ− S(t)ψ‖Lα+2+

tβ|γ|
∫ t

0
‖S(t− s) (|u(s)|αu(s) − |v(s)|αv(s)) ‖Lα+2 ds.

Since

‖S(t− s) (|u(s)|αu(s) − |v(s)|αv(s)) ‖Lα+2

≤ (4π(t− s))− Nα
2(α+2) ‖ |u(s)|αu(s) − |v(s)|αv(s)‖

L
α+2
α+1

≤ (α+ 1)(4π(t− s))− Nα
2(α+2)(‖u(s)‖αLα+2 + ‖v(s)‖αLα+2

) ‖u(s) − v(s)‖Lα+2

≤ 2(α+ 1)(4π(t− s))− Nα
2(α+2) s−β(α+1)Mαd(u, v),

we obtain

tβ‖Pϕu(t) − Pψv(t)‖Lα+2 ≤ tβ‖S(t)ϕ− S(t)ψ‖Lα+2 +KMαd(u, v),
(2.11)

where

K = K(α,N, γ) (2.12)

= 2|γ|(α+ 1)(4π)− Nα
2(α+2)B

(
1 − Nα

2(α+ 2)
, 1 − β(α+ 1)

)
,
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whereB(·, ·) is the beta function. (Properties (2.3) and (2.4) have been used
in the above calculation.)

Settingψ = 0 in (2.11), we see that

sup
t>0

tβ‖Pϕu(t)‖Lα+2 < ρ+KMα+1 ≤ M.

Thus,Pϕ mapsXM into itself. Next, settingψ = ϕ in (2.11), we see that

d(Pϕu− Pϕv) < KMαd(u, v).

SinceKMα < 1, it follows thatPϕ is a strict contraction onXM , and so
has a unique fixed point. This proves the first part of the theorem, including
statements (a) and (b).

To prove the continuous dependence result, it suffices to observe that
(2.11) implies

d(u, v) ≤ sup
t>0

tβ‖S(t)ϕ− S(t)ψ‖Lα+2 +KMαd(u, v).

To prove the stronger decay estimate, we modify the calculation (2.11) as
follows:

tβ(1 + t)δ‖u(t) − v(t)‖Lα+2 ≤ tβ(1 + t)δ‖S(t)ϕ− S(t)ψ‖Lα+2+

tβ(1 + t)δ|γ|
∫ t

0
‖S(t− s) (|u(s)|αu(s) − |v(s)|αv(s)) ‖Lα+2ds.

Since

(1 + t)δ‖S(t− s) (|u(s)|αu(s) − |v(s)αv(s)|) ‖Lα+2 ≤

2(α+ 1)
(

1 + t

1 + s

)δ

(4π(t− s))− Nα
2(α+2) s−β(α+1)Mα

sup
0<τ≤t

τβ(1 + τ)δ‖u(τ) − v(τ)‖Lα+2 ,

and

(
1 + t

1 + s

)δ

≤
(
t

s

)δ

, we deduce

tβ(1 + t)δ‖u(t) − v(t)‖Lα+2

≤ tβ(1 + t)δ‖S(t)ϕ− S(t)ψ‖Lα+2+
K ′Mα sup

0<τ≤t
τβ(1 + τ)δ‖u(τ) − v(τ)‖Lα+2 ,

where

K ′ = K ′(α,N, γ, δ) (2.13)

= 2|γ|(α+ 1)(4π)− Nα
2(α+2)B

(
1 − Nα

2(α+ 2)
, 1 − β(α+ 1) − δ

)
.
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This completes the proof.

Proposition 2.3. Letα, β, ρ andM be as in the statement of Theorem 2.1.

(a) If ξ is a tempered distribution such thatlim sup
t↓0

tβ‖S(t)ξ‖Lα+2 < ρ,

thenϕ = e
ic|x|2

4 ξ verifies (2.5) for all sufficiently largec > 0. This
applies in particular ifξ ∈ H1(RN ).

(b) Let ξ ∈ L
α+2
α+1 (RN ). There existsT > 0 such that ifτ > T andϕ =

S(τ)ξ, thenϕ verifies (2.5).

(c) Ifϕand its Fourier transform are inL
α+2
α+1 (RN ), thensup

t∈R

|t|β‖S(t)ϕ‖Lα+2

< ∞. In particular, a sufficiently small multiple ofϕ satisfies (2.5), as
well as (2.5) witht > 0 replaced byt < 0.

(d) If (−4)
σ
2ϕ ∈ Lq(RN ), where

σ =
Nα2 + (N − 2)α− 4

2α(α+ 2)
and

N

q
=
Nα2 + (N + 2)α+ 4

2α(α+ 2)
,

thensup
t∈R

|t|β‖S(t)ϕ‖Lα+2 ≤ C‖(−4)
σ
2ϕ‖Lq . In particular, if‖(−4)

σ
2

ϕ‖Lq is sufficiently small, thenϕ satisfies (2.5), as well as (2.5) with
t > 0 replaced byt < 0. (Remark: as is the norm‖ϕ‖

L
Nα
2

, the norm

‖(−4)
σ
2ϕ‖Lq is invariant under the dilationsϕλ(x) = λ

2
αϕ(λx). More-

over,‖ϕ‖
L

Nα
2

≤ C‖(−4)
σ
2ϕ‖Lq since

1
q

− 2
Nα

=
σ

N
.)

(e) If the tempered distributionϕ is such thatlim sup
t↓0

tβ‖S(t)ϕ‖Lα+2 < ∞,

thenϕ ∈ W−2,α+2(RN ).
(f) Supposeϕ ∈ H1(RN ) satisfies (2.5). The solution of (2.1) constructed

in Theorem 2.1 coincides for allt ≥ 0 with the “classical”H1 solution,
which is therefore global.

(g) Letϕ be a tempered distribution verifying (2.5), and letu(t) be the so-
lution of equation (2.1) constructed in Theorem 2.1. Ifu(t0) ∈ H1(RN )
for somet0 > 0, then the same is true for allt > 0 and u is a
“classical” H1 solution on(0,∞). In particular, ϕ ∈ L2(RN ). Fi-
nally, if lim sup

t↓0
tβ‖u(t)‖Lα+2 is sufficiently small, thenϕ ∈ H1(RN ).

(If α <
4
N

or if γ ≥ 0, this is always verified.)

Proof. (a) One can easily check, using the explicit representation ofS(t)
as a convolution operator, that

[S(t)ϕ](x) = (1 + ct)− N
2 e

ic|x|2
4(1+ct)

[
S

(
t

1 + ct

)
ξ

] (
x

1 + ct

)
.
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Settingτ =
t

1 + ct
, one readily computes that

sup
t>0

tβ‖S(t)ϕ‖Lα+2 = sup
0<τ< 1

c

(1 − cτ)στβ‖S(τ)ξ‖Lα+2 ,

where

σ =
Nα2 + (N − 2)α− 4

2α(α+ 2)
> 0,

(positive sinceα > α0). This proves (a).
(b) This is a simple consequence of

tβ‖S(t)ϕ‖Lα+2 = tβ‖S(t+ τ)ξ‖Lα+2 ≤ Ctβ(t+ τ)− Nα
2(α+2) ‖ξ‖

L
α+2
α+1

,

and the fact thatβ <
Nα

2(α+ 2)
. (Statements (a) and (b) are analogous to

Corollary 2.5 in [6].)

(c) Sinceϕ ∈ L
α+2
α+1 (RN ), it follows that

‖S(t)ϕ‖Lα+2 ≤ |4πt|− Nα
2(α+2) ‖ϕ‖

L
α+2
α+1

.

SinceFϕ ∈ L
α+2
α+1 (RN ), it follows that

‖S(t)ϕ‖Lα+2 =
∥∥∥F−1

(
e−4itπ2|·|2Fϕ

)∥∥∥
Lα+2

≤ C‖e−4itπ2|·|2Fϕ‖
L

α+2
α+1

= C‖Fϕ‖
L

α+2
α+1

.

The result (c) now easily follows since0 < β <
Nα

2(α+ 2)
.

(d) The indicesσ andq verify

N

q
− N

2
= β,

1
q′ − 1

α+ 2
=

σ

N
,

α+ 2
α+ 1

< q < 2, 2 < q′ < α+ 2.

Therefore,

‖S(t)ϕ‖Lα+2 = ‖(−4)− σ
2 S(t)(−4)

σ
2ϕ‖Lα+2

≤ C‖S(t)(−4)
σ
2ϕ‖Lq′ ≤ C|t|−β‖(−4)

σ
2ϕ‖Lq ,

which establishes the result.
(e) Using the Fourier transform representation ofS(t), one readily

verifies that

i4
∫ t

0
S(τ)ϕdτ = S(t)ϕ− ϕ.
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Sinceβ < 1, the assumptionsup
t↓0

tβ‖S(t)ϕ‖Lα+2 < ∞ implies that

ψ =
∫ t

0
S(τ)ϕdτ ∈ Lα+2(RN ),

for t > 0 sufficiently small. Thus,ϕ = S(t)ϕ− i4ψ ∈ W−2,α+2(RN ).
(f) Supposeϕ ∈ H1(RN ). Let I ⊂ [0,∞) be the largest interval

containing 0 such that the two solutions coincide onI. The arguments in
Remark 2.2 (c) show thatI is nontrivial and thatI is an open subset of[0,∞).
Thus,I is of the form[0, T ∗). Suppose thatT ∗ < ∞. Conservation of energy
(for the classical solution) and the estimate (2.6) imply that‖∇u(t)‖L2

remains bounded ast ↑ T ∗. Thus, the classical solution can be continued up
to and pastT ∗. Since both the classical solution and the solution constructed

by Theorem 2.1 are inC([0, T ∗], H− Nα
2(α+2) (RN )), they must agree atT ∗,

i.e.T ∗ ∈ I. This contradiction proves thatI = [0,∞).
(g) Thatu(t) is a classicalH1 solution on(0,∞) follows from Re-

mark 2.2 (c) and conservation of energy as in the preceding argument. Since
‖u(t)‖L2 is a constant forH1 solutions, it follows thatϕ ∈ L2(RN ). By
Theorem 1.1 in [4], there existsC > 0 such that ifϕ 6∈ H1(RN ), then

t
1
α

− N−2
4 ‖∇u(t)‖L2 ≥ C for smallt > 0. Energy conservation then implies

thattβ‖u(t)‖Lα+2 ≥ C1, which completes the proof.

3 Homogeneous data and the linear Schrödinger group

In this section we study the action of the linear Schrödinger groupS(t)
on homogeneous functions. The main results, given in Corollary 3.4 and
Propositions 3.7 and 3.9, are that for a wide class of homogeneous functions
ϕ, S(t)ϕ (for all t > 0) is in C∞(RN ) and belongs toLr(RN ) for large
enoughr. This is true in spite of the fact thatϕ itself belongs to no Lebesgue
space onRN . The proofs of these results depend on explicit calculations with
the gamma function and analytic continuation arguments.

We begin by establishing notation, recalling some well-known facts,
and making some definitions. The gamma function satisfies the following
relation

c−zΓ (z) =
∫ ∞

0
e−cttz−1 dt, (3.1)

valid for c > 0 andz ∈ C with Re z > 0. Also, if Ω denotes the domain of
the standard branch of the logarithm, i.e.

Ω = {z ∈ C; z is not a negative real number or0},
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then for a fixed complex numberp, the functionf(z) = zp = ep log z is
analytic inΩ. Note that ifr > 0, then(rz)p = rpzp for all z ∈ Ω. Also,
|rp| = rRe p if r > 0.

Another function that plays a central role in the analysis is given by

H(y; a, b) =
∫ 1

0
eiyrra−1(1 − r)b−1 dr, (3.2)

wherea, b ∈ C with Re a > 0 andRe b > 0, andy ∈ R (or C). Note that
H(y; a, b) is separately analytic as a function ofy, a, andb in the domains
just specified. In addition, ify ∈ R, then

|H(y; a, b)| ≤ H(0; Re a,Re b) = B(Re a,Re b) =
Γ (Re a)Γ (Re b)
Γ (Re (a+ b))

,

(3.3)
whereB(·, ·) is the beta function.

To fix notation, we letDλ = Dλ,p be the dilation operator

Dλϕ(x) = Dλ,pϕ(x) = λpϕ(λx). (3.4)

whereλ > 0 andp is a fixed complex power such that0 < Re p < N . It is
easy to check that:

‖Dλ,pϕ‖Lr = λRe p− N
r ‖ϕ‖Lr ,

and that

S(t) = DλS(λ2t)D 1
λ
, (3.5)

t
Re p

2 − N
2r ‖S(t)Dλϕ‖Lr = (λ2t)

Re p
2 − N

2r ‖S(λ2t)ϕ‖Lr , (3.6)

for all λ > 0.
We are interested in studying the action of the Schrödinger groupS(t)

on functionsϕwhich are fixed byDλ i.e. such thatDλϕ(x) = Dλ,pϕ(x) =
ϕ(x) for all λ > 0. Such functions will be calledp-homogeneous, (rather
than “homogeneous of degree−p” sincep is not necessarily real). For ex-
ample,ϕ(x) = |x|−p is ap-homogeneous function, as are all functions of
the formϕ(x) = ω(x)|x|−p, whereω(x) is homogeneous of degree 0. Ifϕ
is p-homogeneous, we see that

S(t)ϕ = D 1√
t
S(1)ϕ, (3.7)

for all t > 0. If in additionS(1)ϕ ∈ Lr(RN ) for somer, then the same is
true forS(t)ϕ for all t > 0 and

‖S(t)ϕ‖Lr = t
N
2r

−Re p
2 ‖S(1)ϕ‖Lr . (3.8)
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It turns out that‖S(1)ϕ‖Lr is finite for a large class ofp-homogeneous
functionsϕ, for large enough values ofr. This motivates the following
definition.

Definition 3.1. Thep-homogeneous functionϕ, where0 < Re p < N , is
SC-regular ifS(t)ϕ ∈ Lr(RN ) ∩ C(RN ) for all t > 0 and all r such that

r > max
{

N

Re p
,

N

N − Re p

}
.

For suchr, ‖S(t)ϕ‖Lr clearly verifies formula (3.8). If in addition,S(t)ϕ ∈
C∞(RN ) for all t > 0, thenϕ is SC∞-regular.

Remark 3.2. If ap-homogeneous functionϕ is SC∞-regular, then it follows
from formula (3.7) thatS(t)ϕ ∈ C∞((0,∞) × R

N ).

The main results of this section are that|x|−p, and more generally
Pk(x)|x|−p−k, 0 < Re p < N , are SC∞-regularp-homogeneous functions,
wherePk is a homogeneous harmonic polynomial of degreek. (See Corol-
lary 3.4 and Propositions 3.7 and 3.9 below.) It follows that the set of homo-
geneous functionsω(x) of degree 0 such thatϕ(x) = ω(x)|x|−p is an SC∞-
regularp-homogeneous function is dense as a subset ofL2(SN−1). Indeed,
they include all linear combination of functions of the formPk(x)|x|−k,
wherePk is a homogeneous harmonic polynomial of degreek. At the end
of this section we give some results concerning the action ofS(t) separately
on the part of|x|−p near the origin and on the part of|x|−p “near infinity.”

Our analysis begins with the simplestp-homogeneous function.

Proposition 3.3. Letϕ(x) = |x|−p where0 < Re p < N . For t > 0 and
x ∈ R

N ,

[S(t)ϕ](x) = (4it)− p
2Γ (p/2)−1H

( |x|2
4t

;
p

2
,
N − p

2

)
, (3.9)

where the functionH is defined by (3.2).

Proof. The basic idea is to express|x|−p using the gamma function, then
change variables so that the Gauss kernel appears in the integral. It will then
be possible to apply the operatorez4.

By formula (3.1), ifx 6= 0

|x|−p = Γ (p/2)−1 ∫ ∞
0 e−|x|2tt

p
2 −1 dt

= 4− p
2Γ (p/2)−1 ∫ ∞

0 e−
|x|2
4s s− p

2 −1 ds

= 4− p
2 (4π)

N
2 Γ (p/2)−1 ∫ ∞

0 Gs(x)s
N
2 − p

2 −1 ds.

This integral, in addition to being absolutely convergent for eachx 6= 0, is
an absolutely convergent Bochner integral inL1(RN ) + C0(RN ). In other
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words

ϕ = 4− p
2 (4π)

N
2 Γ (p/2)−1

∫ ∞

0
Gs(·)sN

2 − p
2 −1 ds.

Next, we apply the heat semigroup,et4 for t > 0, which gives

et4ϕ = 4− p
2 (4π)

N
2 Γ (p/2)−1

∫ ∞

0
Gs+t(·)sN

2 − p
2 −1 ds.

This integral now is absolutely convergent inC0(RN ), where pointwise
evaluation is a bounded linear functional. Making the change of variables

r =
t

s+ t
, we see that for allx ∈ R

N

(et4ϕ)(x) = 4− p
2 (4π)

N
2 Γ (p/2)−1 ∫ 1

0 G t
r
(x)

(
t−tr
r

)N
2 − p

2 −1 t
r2
dr

= (4t)− p
2 (4πt)

N
2 Γ (p/2)−1 ∫ 1

0 G t
r
(x)r

p
2 − N

2 −1(1 − r)
N
2 − p

2 −1 dr

= (4t)− p
2Γ (p/2)−1 ∫ 1

0 e
− r|x|2

4t r
p
2 −1(1 − r)

N
2 − p

2 −1 dr.
(3.10)

We next claim that formula (3.10) is valid not only fort > 0, but for all
t ∈ C with Re t > 0. Indeed, ifη ∈ S(RN ), then〈et4ϕ, η〉 is an analytic
function oft on the open half planeRe t > 0, and continuous on the closed
half planeRe t ≥ 0. Next, if we integrate the right side of (3.10) against
η(x) overR

N , the result is also an analytic function oft on the right half
planeRe t > 0, continuous at least on the closed half plane witht = 0
removed. By the identity theorem, these two functions are equal on the open
half plane. By continuity, they are equal also fort = iτ , τ ∈ R, τ 6= 0.
Sinceη is an arbitrary Schwartz function, (3.10), as an identity between
two tempered distributions, has been proved for all complext 6= 0 with
Re t ≥ 0. This establishes the proposition.

Corollary 3.4. Under the hypotheses of Proposition 3.3, it follows that

(a) S(t)ϕ isC∞ on R
N for all t > 0;

(b) S(t)ϕ ∈ L∞(RN ) for all t > 0, and‖S(t)ϕ‖L∞ ≤ C(p)t−
Re p

2 . If in
additionp ∈ R, then

‖S(t)ϕ‖L∞ = |S(t)ϕ(0)| = (4t)− p
2

Γ
(
N−p

2

)
Γ

(
N
2

) .

Lemma 3.5. If y > 0, Re a > 0 and Re b > 0, and if n andm are
nonnegative integers such that

n+ 2 > Re a andm+ 2 > Re b,
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then

H(y; a, b) = y−a
m∑
k=0

Ck(a, b)e
(a+k)πi

2 y−k + Cm+1(a, b)y−a−m−1×

m+ 1
Γ (m+ 2 − b)

∫ ∞

0

∫ 1

0
(1 − s)m

(
−i− st

y

)−a−m−1

ds e−ttm+1−bdt

+eiyy−b
n∑
k=0

Ck(b, a)e−
(b+k)πi

2 y−k + Cn+1(b, a)eiyy−b−n−1×

n+ 1
Γ (n+ 2 − a)

∫ ∞

0

∫ 1

0
(1−s)n

(
i− st

y

)−b−n−1

ds e−ttn+1−a dt, (3.11)

where

Ck(a, b) =
Γ (a+ k)

k!
Γ (k + 1 − b)
Γ (1 − b)

(3.12)

=
Γ (a)
k!

a(a+ 1) · · · (a+ k − 1)(1 − b)(2 − b) · · · (k − b).

Remark 3.6. If b is a positive integer, thenCk(a, b) = 0 for k ≥ b, and the
coefficient of the first integral term

Cm+1(a, b)
Γ (m+ 2 − b)

=
Γ (a+m− 1)

(m+ 1)!Γ (1 − b)

is zero sinceΓ (z) has poles at0,−1,−2, . . . Thus, the first part of the
expansion has preciselyb terms and no integral remainder. Similarly, ifa
is a positive integer, then the second part of the expansion has preciselya
terms and no integral remainder.

Proof of Lemma 3.5. For the moment, we assume that

0 < Re a < 1, 0 < Re b < 1.

Using formula (3.1) twice, first withc = r, z = 1 − a, and then with
c = 1 − r, z = 1 − b, we rewrite formula (3.2) as follows.

Γ (1 − a)Γ (1 − b)H(y; a, b)
=

∫ ∞
0

∫ ∞
0

∫ 1
0 e

iyre−rss−ae−(1−r)tt−b dr ds dt
=

∫ ∞
0

∫ ∞
0

∫ 1
0 e

(iy−s+t)r dr s−ae−tt−b ds dt
=

∫ ∞
0

∫ ∞
0

eiy−s+t−1
iy−s+t s−ae−tt−b ds dt

=
∫ ∞
0

∫ ∞
0

s−a

−iy−t+se
−tt−b ds dt+ eiy

∫ ∞
0

∫ ∞
0

t−b

iy−s+te
−ss−a dt ds

=
∫ ∞
0

∫ ∞
0

s−a

−iy−t+s ds e
−tt−b dt+ eiy

∫ ∞
0

∫ ∞
0

s−b

iy−t+s ds e
−tt−a dt.

(3.13)
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We therefore consider the integral

f(w) =
∫ ∞

0

s−a

w + s
ds, (3.14)

wherew ∈ Ω (the domain of the standard branch of the logarithm), and
0 < Re a < 1. It is known (by changing variables in the beta function) that
f(1) = Γ (1 − a)Γ (a). Next, ifw is a positive real number, we sets = wt;
and so

f(w) =
∫ ∞

0

(wt)−a

w + wt
w dt = w−aΓ (1 − a)Γ (a), w > 0. (3.15)

Sincef(w) andw−a = e−a logw are both holomorphic inΩ, (3.15) is true
for all w ∈ Ω. Substituting (3.15) back into (3.13), withw = ±iy − t, we
see that

H(y; a, b) =
Γ (a)
Γ (1−b)

∫ ∞
0 (−iy − t)−ae−tt−b dt+ Γ (b)

Γ (1−a)e
iy

∫ ∞
0 (iy − t)−be−tt−a dt.

(3.16)
The next step is to replace(−iy − t)−a and(iy − t)−b in (3.16) by their
finite Taylor formulas aroundt = 0 with integral remainder terms. Iff(t) =
(−iy − t)−a andg(t) = (iy − t)−b, then

f (k)(t) = a(a+ 1) · · · (a+ k − 1)(−iy − t)−a−k,
g(k)(t) = b(b+ 1) · · · (b+ k − 1)(−iy − t)−b−k.

Since,

f(t) =
m∑
k=0

1
k!
f (k)(0)tk +

1
m!

∫ t

0
(t− s)mf (m+1)(s) ds,

and similarly forg(t), we see that

H(y; a, b) =
Γ (a)

Γ (1 − b)

m∑
k=0

f (k)(0)
k!

∫ ∞

0
e−tt−b+k dt

+
Γ (a)

Γ (1 − b)

∫ ∞

0

1
m!

∫ t

0
(t− s)mf (m+1)(s) ds e−tt−b dt

+
Γ (b)

Γ (1 − a)
eiy

n∑
k=0

g(k)(0)
k!

∫ ∞

0
e−tt−a+k dt

+
Γ (b)

Γ (1 − a)
eiy

∫ ∞

0

1
n!

∫ t

0
(t− s)ng(n+1)(s) ds e−tt−a dt;
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and so

H(y; a, b) =

Γ (a)
Γ (1 − b)

m∑
k=0

a(a+ 1) · · · (a+ k − 1)
k!

(−iy)−a−kΓ (k + 1 − b)

+
Γ (a)

Γ (1 − b)

∫ ∞

0

1
m!

∫ t

0
(t− s)ma(a+ 1) · · ·

(a+m)(−iy − s)−a−m−1 ds e−tt−b dt

+
Γ (b)

Γ (1 − a)
eiy

n∑
k=0

b(b+ 1) · · · (b+ k − 1)
k!

(iy)−b−kΓ (k + 1 − a)

+
Γ (b)

Γ (1 − a)
eiy

∫ ∞

0

1
n!

∫ t

0
(t− s)nb(b+ 1) · · ·

(b+ n)(iy − s)−b−n−1 ds e−tt−a dt.

Furthermore, sincey > 0,∫ ∞

0

∫ t

0
(t− s)m(−iy − s)−a−m−1 ds e−tt−b dt

= y−a−m−1
∫ ∞

0

∫ 1

0
(1 − s)m

(
−i− st

y

)−a−m−1

ds e−ttm+1−b dt;

and so we obtain the formulation (3.11)–(3.12).
Formula (3.11) has been proved only fory > 0, 0 < Re a < 1, and

0 < Re b < 1. On the other hand, the right hand side is an analytic function
in a for 0 < Re a < n + 2, with y > 0 andb (0 < Re b < m + 2) fixed,
and also an analytic function inb for 0 < Re b < m+ 2, with y > 0 anda
(0 < Re a < n+ 2) fixed. (Recall that the1/Γ (z) is an entire function.) It
follows that (3.11) is true for ally > 0, and alla andb in the region stated
in the lemma.

Proposition 3.7. Let ϕ(x) = |x|−p where0 < Re p < N . S(t)ϕ ∈
Lr(RN ) for all t > 0 and all r such that

r > max
{

N

Re p
,

N

N − Re p

}
;

and‖S(t)ϕ‖Lr verifies formula (3.8). Moreover,S(t)ϕ(x) is given by the
explicit formula (3.17) below forx 6= 0.

Remark 3.8. This result along with Corollary 3.4 shows thatϕ(x) = |x|−p
where0 < Re p < N is an SC∞-regularp-homogeneous function.
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Proof. Applying the asymptotic expression from Lemma 3.5 to the for-
mula (3.9) in Proposition 3.3, we see that, under the combined hypotheses
of the proposition and the lemma, witha = p/2 andb = (N − p)/2, if
τ > 0 andx 6= 0, then (still denotingϕ(x) = |x|−p)

[S(τ)ϕ](x) = |x|−p
m∑
k=0

Ak(a, b)e
kπi
2

( |x|2
4τ

)−k
+

Am+1(a, b)|x|−p
( |x|2

4τ

)−m−1 (m+ 1)e−
aπi
2

Γ (m+ 2 − b)
×

∫ ∞

0

∫ 1

0
(1 − s)m

(
−i− 4τst

|x|2
)−a−m−1

ds e−ttm+1−b dt+

e
i|x|2
4τ |x|−N+p(4τ)

N
2 −p

n∑
k=0

Bk(b, a)e−
(N+2k)πi

4

( |x|2
4τ

)−k
+

e
i|x|2
4τ |x|−N+p(4τ)

N
2 −pBn+1(b, a)

( |x|2
4τ

)−n−1 (n+ 1)e−
aπi
2

Γ (n+ 2 − a)
×

∫ ∞

0

∫ 1

0
(1 − s)n

(
i− 4τst

|x|2
)−b−n−1

ds e−ttn+1−a dt, (3.17)

where

Ak(a, b) =
Ck(a, b)
Γ (a)

=
Γ (a+ k)
Γ (a)k!

Γ (k + 1 − b)
Γ (1 − b)

(3.18)

=
1
k!
a(a+ 1) · · · (a+ k − 1)(1 − b)(2 − b) · · · (k − b),

and

Bk(b, a) =
Ck(b, a)
Γ (a)

=
Γ (b+ k)
Γ (a)k!

Γ (k + 1 − a)
Γ (1 − a)

(3.19)

=
Γ (b)
Γ (a)k!

b(b+ 1) · · · (b+ k − 1)(1 − a)(2 − a) · · · (k − a).

Note thatA0(a, b) = 1.
By Corollary 3.4,S(t)ϕ ∈ C∞(RN ) for t > 0. Thus, to determine

whetherS(t)ϕ ∈ Lr(RN ), it suffices to consider|x| large. Proposition 3.7
now follows immmediately from formula (3.17).

Proposition 3.9. The function given byϕ(x) = ω(x)|x|−p, where0 <
Re p < N , andω(x) = Pk(x)|x|−k, Pk being a homogeneous harmonic
polynomial of degreek, is an SC∞-regularp-homogeneous function.
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Proof. It follows from the representation of the Schrödinger group via the
Fourier transform,

S(t)ϕ = eit4ϕ = F−1
(
e−4itπ2|·|2Fϕ

)
,

and the considerations in Sect. 3.2 of Chapter 3 of Stein [30] that

S(t)[Pk | · |−p−k] = Pk[SN+2k(t) | · |−p−k], (3.20)

where on the right side of (3.20)| · |−p−k is interpreted as a tempered
distribution onR

N+2k andSN+2k(t) is the Schr̈odinger group onRN+2k.
The resulting radially symmetric functionSN+2k(t) | · |−p−k is then re-
interpreted as a function onRN . The result then follows from Corollary 3.4
and formula (3.17) withN replaced byN + 2k.

Proposition 3.10. Letϕ be an SC-regularp-homogeneous function, with
0 < Re p < N . Letq andr be dual exponents such that

r > max
{

N

Re p
,

N

N − Re p

}
.

Setf = S(1)ϕ, sof ∈ Lr(RN ).
Supposeϕ = ϕ1 + ϕ2, whereϕ1 ∈ Lq(RN ). It follows thatS(t)ϕ2 ∈

Lr(RN ) for all t > 0 and

‖f −D√
tS(t)ϕ2‖Lr ≤ Ct

− N
2q

+Re p
2 ‖ϕ1‖Lq , ∀t > 0, (3.21)

which converges to 0 ast → ∞. If ϕ1 ∈ L1(RN ), thent
p
2S(t)ϕ2 ∈ C(RN )

for all t > 0 and converges tof(0) uniformly on compact subsets ofR
N as

t → ∞. Finally, suppose in additionϕ is SC∞-regular andϕ1 ∈ L1(RN )
has compact support. It follows thatS(t)ϕ2 ∈ C∞(RN ) for all t > 0.

Proof. The condition onr implies thatr ≥ 2. Thus, on the one hand,

‖S(t)ϕ1‖Lr ≤ Ct−
N(r−2)

2r ‖ϕ1‖Lq ,

for all t > 0. On the other hand, by (3.7)

‖S(t)ϕ1‖Lr = ‖S(t)(ϕ− ϕ2)‖Lr

= ‖D 1√
t
S(1)ϕ− S(t)ϕ2]‖Lr = t

N
2r

−Re p
2 ‖f −D√

tS(t)ϕ2‖Lr .

These two estimates immediately give (3.21).
Suppose next thatϕ1 ∈ L1(RN ). It follows thatS(t)ϕ1 ∈ C(RN ) for

all t > 0. Sinceϕ is SC-regular, it is also true thatS(t)ϕ2 ∈ C(RN ) for
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all t > 0. Since dilating the spatial variable only does not change theL∞
norm, (3.21) implies that∥∥∥∥f

( ·√
t

)
− t

p
2S(t)ϕ2

∥∥∥∥
L∞

≤ Ct−
N
2 +Re p

2 ‖ϕ1‖L1 ,

from which it follows thatt
p
2S(t)ϕ2 converges tof(0)uniformly on compact

sets.
Finally, if ϕ1 ∈ L1(RN ) has compact support, then for allt > 0,S(t)ϕ1

is C∞. Sinceϕ is SC∞-regular, the same is true forS(t)ϕ, and therefore
also forS(t)ϕ2. This proves the proposition.

Intuitively, ϕ1 contains the singular part ofϕ near the origin andϕ2
contains the slowly decaying part ofϕ for large|x|. Indeed,ϕ ∈ Lq({|x| <
1}) if and only ifq <

N

Re p
, i.e.r >

N

N − Re p
. Thus, the above proposition

can be applied withϕ1 = ηϕ+ψ, whereη is anyL∞ function with compact
support andψ is inLq(RN ) for all

q < max
{

N

Re p
,

N

N − Re p

}
.

In particular, data which decay enough like|x|−p (or another SC-regular
p-homogeneous function) as|x| → ∞, give rise to solutions of the linear
Schr̈odinger equation which are asymptotic (in time) to the solutions with
pure homogeneous data.

The final result of this section (Proposition 3.11 below) shows, at least
to some extent, that the oscillating part of the development (3.17) is due to
the singularity of|x|−p near the origin.

Notation. To simplify the reading and printing of what follows, we denote
byΣ1, R1, Σ2, andR2 the four terms on the right side of formula (3.17). In
other words,Σ1 andΣ2 are the two finite sums,Σ1 beginning with|x|−p, and
R1 andR2 are the two integral remainder terms. Of courseΣ1 = Σ1(t, x),
etc. Thus, (3.17) reads simply

[S(t)ϕ](x) = Σ1(t, x) +R1(t, x) +Σ2(t, x) +R2(t, x).

Proposition 3.11. Letϕ(x) = |x|−p, 0 < Re p < N ; and letη be aC∞
cut-off function, i.e. identically1 in a neighborhood of the origin and of

compact support. IfRe p >
N

2
, then

S(t)(ηϕ) − (1 − η)(Σ2 +R2) ∈ H∞(RN ),

for all t > 0.
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Proof. Let η be aC∞ cut-off function. Clearly then

S(t)ϕ = S(t)(ηϕ) + S(t)[(1 − η)ϕ], (3.22)

S(t)ϕ = ηS(t)ϕ+ (1 − η)S(t)ϕ. (3.23)

SinceS(t)ϕ isC∞ onR
N , and sinceηϕ is inL1(RN ) with compact support,

it follows that each term in (3.22) and (3.23) isC∞ on R
N , with ηS(t)ϕ

being of compact support.
Also, (1 − η)ϕ, (1 − η)Σ1 and (1 − η)R1 (for a fixed t) are all in

W∞,r(RN ) for all r >
N

Re p
. We write

S(t)[ηϕ] −(1 − η)(Σ2 +R2)
= S(t)ϕ− S(t)[(1 − η)ϕ] − (1 − η)(Σ2 +R2)
= ηS(t)ϕ+ (1 − η)S(t)ϕ− S(t)[(1 − η)ϕ] − (1 − η)(Σ2 +R2)
= ηS(t)ϕ+ (1 − η)(Σ1 +R1) − S(t)[(1 − η)ϕ].

If Re p >
N

2
, then(1 − η)ϕ, (1 − η)Σ1 and(1 − η)R1 (for a fixedt) are

all inH∞(RN ), as must beS(t)[(1−η)ϕ], sinceS(t) preservesH∞(RN ).
SinceηS(t)ϕ isC∞ with compact support, this proves the proposition.

Conjecture: S(t)[ηϕ] − (1 − η)(Σ2 +R2) ∈ S(RN ), S(t)[(1 − η)ϕ] −
(1 − η)(Σ1 +R1) ∈ S(RN ).

4 Self-similar solutions

We recall the notion of self-similar solutions.

Definition 4.1. A solutionu(t, x) of (2.1) is self-similar if for somep with

Re p =
2
α

, u(t, x) = λpu(λ2t, λx) for all λ > 0. Note that a self similar

solution verifies

u(t, x) = t−
p
2 f

(
x√
t

)
, (4.1)

wheref = u(1, ·).
Remark 4.2. Note that ifu is a self-similar solution, then

‖u(t)‖Lr = t
N
2r

− 1
α ‖f‖Lr ,

for every1 ≤ r ≤ ∞ such thatf ∈ Lr(RN ). In particular, iff ∈ L2(RN ),
then

‖u(t)‖L2 = t
N
4 − 1

α ‖f‖L2 .
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This implies that, except in the caseα =
4
N

, a self-similar solutioncannot

be a classicalH1 solution, sinceH1 solutions satisfy the conservation of
charge.

Proposition 4.3. Assume (1.3), and supposeRe p =
2
α

. If ϕ(x) is a finite

linear combination of functions of the formPk(x)|x|−p−k, wherePk is a
homogeneous harmonic polynomial of degreek (including k = 0), then
‖S(1)ϕ‖Lα+2 is finite and

tβ‖S(t)ϕ‖Lα+2 = ‖S(1)ϕ‖Lα+2 , ∀t > 0, (4.2)

whereβ is given by (2.2). If, in addition,‖S(1)ϕ‖Lα+2 is sufficiently small,
there exists a self-similar solutionu of (2.1) with initial valueϕ, having all
the properties described in Theorem 2.1.

Proof. It follows from the conditions onα andp that

(i) 0 < Re p < N ,

(ii) α+ 2 > max
{

N

Re p
,

N

N − Re p

}
.

(Statement (i) is true sinceα0 >
2
N

.) The finiteness of‖S(1)ϕ‖Lα+2 there-

fore follows from Propositions 3.7 and 3.9; and formula (4.2) is the same as

formula (3.8) withr = α+ 2, Re p =
2
α

, andβ given by (2.2).

The fact that the solutionu with initial valueϕ is self-similar is a conse-
quence of the uniqueness provision. Sinceλpϕ(λx) = ϕ(x) for all λ > 0,
the functionsλpu(λ2t, λx) are all solutions of (2.1) with the same initial
valueϕ and all verifying (2.6).

Remark 4.4. One may even allow an infinite sumϕ =
∑
ϕm , where each

ϕm is as in the statement of Proposition 4.3. One need only impose two
conditions: that the sumϕ =

∑
ϕm converges in the sense of tempered

distributions and that
∑ ‖S(1)ϕm‖Lα+2 < ∞. This gives a very wide class

of self-similar solutions. It would of course be quite interesting to character-
ize the set of tempered distributions (homogeneous or otherwise) such that
sup
t>0

tβ‖S(t)ϕ‖Lα+2 < ∞.

Remark 4.5. While we do not know how smooth these self-similar solu-
tions are, we can at least note thatu ∈ C((0,∞), Lα+2(RN )). Indeed, since
u ∈ L∞

loc((0,∞), Lα+2(RN )), it follows from (4.1) thatf ∈ Lα+2(RN ).
The operators 7→ f(s · ) being continuous(0,∞) → Lα+2(RN ), continu-
ity follows from (4.1).
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Lemma 4.6. Supposeϕ verifiessup
t>0

tβ‖S(t)ϕ‖Lα+2 < ∞, whereα veri-

fies (1.3). Ifϕ = ϕ1 +ϕ2 whereϕ1 ∈ L
α+2
α+1 (RN ) andϕ2 ∈ H1(RN ), then

sup
t>0

tβ‖S(t)ϕ2‖Lα+2 < ∞.

Proof. Sinceϕ2 ∈ H1(RN ) andα <
4

N − 2
, we see that

‖S(t)ϕ2‖Lα+2 ≤ C‖S(t)ϕ2‖H1 ≤ C‖ϕ2‖H1 < ∞.

In particular,
lim
t↓0

tβ‖S(t)ϕ2‖Lα+2 < ∞.

Next,

tβ‖S(t)ϕ2‖Lα+2 = tβ‖S(t)(ϕ− ϕ1)‖Lα+2

≤ tβ‖S(t)ϕ‖Lα+2 + tβ‖S(t)ϕ1‖Lα+2

≤ C + Ctβt
− Nα

2(α+2) ‖ϕ1‖
L

α+2
α+1

= C + Ct−σ‖ϕ1‖
L

α+2
α+1

,

whereσ is given in Proposition 2.3 (d);σ > 0 sinceα > α0. Thus

lim sup
t→∞

tβ‖S(t)ϕ2‖Lα+2 < ∞.

This proves the lemma.

Proposition 4.7. Suppose (1.3) and thatϕ is a p-homogeneous function,

with Re p =
2
α

, such that

(i) sup
t>0

tβ‖S(t)ϕ‖Lα+2 < ∞;

(ii) ϕ = ϕ1 + ϕ2 whereϕ1 ∈ L
α+2
α+1 (RN ) andϕ2 ∈ H1(RN ).

After multiplyingϕ by a sufficiently small constant so thatϕ andϕ2 ver-
ify the formula (2.5) withM small enough to apply the last part of The-
orem 2.1, letv(t) be the globalH1 solution with initial valueϕ2, let

u(t, x) = t−
p
2 f

(
x√
t

)
be the self-similar solution with initial valueϕ,

and set

w(t, x) = v(t, x) − t−
p
2 f

(
x√
t

)
.

It follows that for allε > 0,

‖w(t)‖Lα+2 = O(t−
Nα

2(α+2)+ε),
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and

‖f − t
p
2 v(t, x

√
t)‖Lα+2 ≤ Cεt

− N(α+1)
2(α+2) + 1

α
+ε
,

ast → ∞. Both converge to0 ast → ∞ if ε is sufficiently small.

Proof. This is an immediate consequence of Lemma 4.6, Theorem 2.1,
and formula (2.9) in Remark 2.2 (a). Also, compare formula (3.21).

Proposition 4.8. If α0 < α <
4
N

, the decompositionϕ = ϕ1 + ϕ2 as

described in Lemma 4.6 can be realized withϕ as in Proposition 4.3 and
ϕ1 = ηϕ+ ψ, whereη andψ are such that

(i) η ∈ W 1,∞(RN ),
(ii) η(x) = 1 for x in a neighborhood ofx = 0,

(iii) η(x)|x|− 2
α ∈ L

α+2
α+1 (RN ),

(iv) ψ ∈ L
α+2
α+1 (RN ) ∩H1(RN ).

For example,η could be aC1 cut-off function with compact support.

Proof. This is trivial to verify. Unfortunately, to verify that(1 − η)ϕ ∈
H1(RN ), one has to impose the additional restrictionα <

4
N

.

Remark 4.9. The results of this section show that ifα0 < α <
4
N

, then a

wide class of initial values inH1(RN ) which are “asymptotically homoge-
neous” inR

N (i.e. the functionsϕ2 in Proposition 4.8), give rise to global,
asymptotically (in time) self-similar solutions of equation (2.1). Note that
for such solutions, the known scattering theories donot apply. Indeed, the
H1 scattering theory does not apply becauseα < 4/N ; and the scattering
theory inX = H1 ∩ L2(|x|2dx) does not apply beacuseϕ2 6∈ X.

5 Self-similar blow up

In Sect. 4, we constructed self-similar solutions of (1.1), and also a class
of classicalH1 solutions that are asymptotically self-similar ast → ∞.
However, self-similar solutions can also describe blow up behavior, as in
the case of certain nonlinear heat equations (see for example Y. Giga and
R.V. Kohn [11, 12, 13] and M.A. Herrero and J.J.L. Velázquez [18, 19]). In
this section, we exhibit a class of negatively global solutions of (1.1) which
are asymptotically self-similar at the “blow up” timet = 0 (see Theorem 5.7
below). To accomplish this, we apply the pseudo-conformal transformation,
which interchanges the behaviors att = 0 and att = ∞. More precisely,
consider a solutionu of the equation (1.1) on(−∞, 0), and set

v(s, y) = s− N
2 ei

|y|2
4s u

(
−1
s
,
y

s

)
, (5.1)
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for y ∈ R
N and s > 0. It follows (formally) thatv satisfies the (non-

autonomous) nonlinear Schrödinger equation

ivs + 4v = γs
Nα−4

2 |v|αv, (5.2)

on(0,∞). We write the Cauchy problem for the equation (5.2) in the integral
form

v(s) = S(s)ψ − iγ

∫ s

0
S(s− τ)τ

Nα−4
2 (|v(τ)|αv(τ)) dτ. (5.3)

For (5.3), we have the following analogue of Theorem 2.1.

Theorem 5.1. Suppose (1.3), and letσ be given by

σ =
Nα2 + (N − 2)α− 4

2α(α+ 2)
. (5.4)

Suppose further thatρ > 0 andM > 0 satisfy the inequality

ρ+ K̃Mα+1 ≤ M,

whereK̃ = K̃(α,N, γ) is given by

K̃ = 2|γ|(α+ 1)(4π)− Nα
2(α+2)B

(
1 − Nα

2(α+ 2)
,
Nα

2
− 1 − σ(α+ 1)

)
.

Letψ be a tempered distribution such that

sup
s>0

|s|σ‖S(s)ψ‖Lα+2 ≤ ρ. (5.5)

It follows that there exists a unique positively global (i.e. defined for all
s ≥ 0) solutionv of (5.3) such that

sup
s>0

|s|σ‖v(s)‖Lα+2 ≤ M. (5.6)

Furthermore,

(a) v(s) − S(s)ψ ∈ C([0,∞), H− Nα
2(α+2) (RN ));

(b) lim
s↓0

v(s) = ψ as tempered distributions.

Supposeψ andψ̃ verify (5.5) and letv andṽ be respectively the solutions
of (5.3) satisfying (5.6) with initial valuesψ andψ̃. It follows that

sup
s>0

|s|σ‖v(s) − ṽ(s)‖Lα+2 ≤ (1 − K̃Mα)−1 sup
s>0

|s|σ‖S(s)(ψ− ψ̃)‖Lα+2 .
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If, in addition,S(s)(ψ − ψ̃) has the stronger decay property

sup
s>0

|s|σ(1 + |s|)δ‖S(s)(ψ − ψ̃)‖Lα+2 < ∞, (5.7)

for someδ > 0 such thatσ(α + 1) + δ <
Nα

2
− 1, and if K̃ ′Mα < 1,

whereK̃ ′ is given by

K̃ ′ = 2|γ|(α+1)(4π)− Nα
2(α+2)B

(
1 − Nα

2(α+ 2)
,
Nα

2
− 1 − σ(α+ 1) − δ

)
,

then

sup
s>0

|s|σ(1 + |s|)δ‖v(s) − ṽ(s)‖Lα+2

≤ (1 − K̃ ′Mα)−1 sup
s>0

|s|σ(1 + |s|)δ‖S(s)(ψ − ψ̃)‖Lα+2 . (5.8)

Proof. The proof is identical to the proof of Theorem 2.1, replacingβ by
σ.

Remark 5.2. The value ofσ given by (5.4) is the same as defined in Propo-

sition 2.3 (d). Moreover,β + σ =
Nα

2(α+ 2)
, whereβ is given by (2.2).

Indeed,β andσ play analagous (and dual) roles in Sects. 2 and 4, on the one
hand, and Sect. 5 on the other hand. As another example, the limiting value
of δ as used in Remark 2.2 (a) is preciselyσ. In the analogous remark for
equation (5.3), which we invite the reader to formulate, the limiting value
of δ is preciselyβ.

Remark 5.3. As is the case for equation (1.1), the set of solutions of equa-
tion (5.2) is invariant under a group of dilations; and this allows one to
define self-similar solutions (see Proposition 5.5 below). These dilations,
when restricted to spatial functions (i.e. initial values) are preciselyDλ,q,

whereRe q = N − 2
α

andλ > 0. (Recall formula (3.4).) The norm de-

fined by the left side of (5.5) is invariant with respect to these transforma-
tions. Moreover, the Lebesgue norm left invariant by these transformation is

L
Nα

Nα−2 (RN ), which is the dual ofL
Nα
2 (RN ), the invariant Lebesgue norm

for equation (1.1).

Remark 5.4. It follows from Theorem 3.4, p. 90 of [6] that the initial value
problem for (5.2) is locally well-posed in the spaceH1(RN ). Moreover (by
Theorem 3.8, p. 91 of [6]), we have the energy identity

d

ds
E(s) = s

Nα−6
2

Nα− 4
2

γ

α+ 2
‖v(s)‖α+2

Lα+2 ,
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where

E(s) =
1
2
‖∇v(s)‖2

L2 +
γ

α+ 2
s

Nα−4
2 ‖v(s)‖α+2

Lα+2 ,

and conservation of charge

d

ds
‖v(s)‖L2 = 0

(Note that the energy identity is established in [6] for solutions inH1(RN )∩
L2(RN , |x|2dx), but that it holds forH1 solutions by the continuous depen-
dence property (iv) of Theorem 3.4 of [6].) It follows in particular that
property (f) of Proposition 2.3 holds as well for the equation (5.2). There-
fore, ifψ ∈ H1(RN ) satisfies (5.5), then the solution of (5.3) constructed in
Theorem 5.1 coincides for alls ≥ 0 with the “classical”H1 solution, which
is therefore global.

Let nowψ̃(y) = |y|−q (or more generally a finite combination of func-
tions of the formPk(y)|y|−q−k, wherePk is a homogeneous harmonic poly-
nomial of degreek ≥ 0), whereq ∈ C verifies

Re q = N − 2
α
.

By Proposition 3.9̃ψ is an SC∞-regularq-homogeneous function (see Def-
inition 3.1). Condition (1.3) implies that

α+ 2 ≥ max
{

N

Re q
,

N

N − Re q

}
.

In particular, by formula (3.8) withr = α+2 (andp replaced byq), we see
that

sup
s>0

sσ‖S(s)ψ̃‖Lα+2 = ‖S(1)ψ̃‖Lα+2 < ∞;

and so we may apply Theorem 5.1 withψ = cψ̃wherec is a sufficiently small
constant. The following proposition is now proved by the same arguments
as in the proof of Proposition 4.3.

Proposition 5.5. Assume (1.3) and let̃ψ be as above. Ifc is small enough,
then there exists a solutionv of (5.3) having all the properties described in
Theorem 5.1. Moreover,v is self-similar, i.e.

v(s, y) ≡ λqv(λ2s, λy),

for all λ > 0. In particular,

v(s, y) ≡ s− q
2 f

(
y√
s

)
,
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wheref(·) = v(1, ·).
Let ψ̃ be as above, and letη be aC∞ cut-off function, i.e. identically 1

in a neighborhood of the origin and of compact support. One verifies easily

that(1 − η)ψ̃ ∈ H1(RN ) providedα >
4
N

. In addition,ηψ̃ ∈ L
α+2
α+1 (RN )

becauseα <
4

N − 2
. Therefore, adapting the proofs of Lemma 4.6 and

Propositions 4.7 and 4.8, we obtain the following result.

Proposition 5.6. Suppose
4
N

< α <
4

N − 2
. Let ψ̃ be as in Proposi-

tion 5.5 andη a cut-off function as described above. Letψ = cψ̃, ψ1 = ηψ,
andψ2 = (1 − η)ψ. If c is small enough, thenψ, ψ1 andψ2 all verify
the assumptions of the first part of Theorem 5.1, andψ andψ2 verify the
assumptions of the last part of Theorem 5.1. If we denote byv, v1 andv2
the corresponding solutions of (5.3), thenv is self-similar as described in
Proposition 5.5, and for allε > 0,∥∥∥∥v2(s, ·) − s− q

2 f

( ·√
s

)∥∥∥∥
Lα+2

= O
(
s
− Nα

2(α+2)+ε
)
, (5.9)

ass → ∞, wheref(·) = v(1, ·). Finally, v2 is a “classical” H1 solution
of (5.2).

The following theorem now follows by expressing the above results,
via the inverse pseudo-conformal transformation, in terms of solutions of
equation (1.1).

Theorem 5.7. Suppose
4
N

< α <
4

N − 2
, and letv and v2 be as in

Proposition 5.6. Letu be defined by

u(t, x) = (−t)− N
2 ei

|x|2
4t v

(
−1
t
,−x

t

)
, (5.10)

for x ∈ R
N andt < 0, and letu2 be defined similarly in terms ofv2. Then

bothu andu2 are solutions of (1.1) on(−∞, 0) in the sense of Theorem 2.1.
Moreover,u is self similar, i.e.

u(t, x) = (−t)− p
2 g

(
x√−t

)
,

with p = N − q andg(x) = e−i
|x|2
4 v(1, x). Furthermore, for anyε > 0,

‖(−t) p
2u2(t, x

√−t) − g(x)‖Lα+2 = O

(
(−t)

4−(N−2)α
2α(α+2) −ε

)
, (5.11)
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ast ↑ 0, which converges to0 ast ↑ 0 for ε sufficiently small. In addition,

u2 ∈ C((−∞, 0), Lr(RN )) for anyr ∈
[
2,

2N
N − 2

]
,‖u2(t)‖L2 is constant,

andu2 ∈ C((−∞, 0), H1
loc(R

N )).

Remark 5.8. Of course, the construction of self-similar solutionsu of (1.1)
by formula (5.10) in Theorem 5.7 is valid for the full rangeα0 < α <

4
N − 2

. It is not clear if these are the same self-similar solutions - up to

complex conjugation - described in Proposition 4.3.

In the proof of Theorem 5.7, we will use the following lemma.

Lemma 5.9. Assume (1.3), and letσ andβ be given respectively by (5.4)
and (2.2). Letψ ∈ S ′(RN ) be such thatsup

s>0
sσ‖S(s)ψ‖Lα+2 < ∞, and

let v ∈ L∞
loc((0,∞), Lα+2(RN )) be such thatsup

s>0
sσ‖v(s)‖Lα+2 < ∞.

Suppose thatv satisfies equation (5.3) fors > 0, and letu be defined
by (5.10) forx ∈ R

N andt < 0. Then the following conclusions hold.

(i) (−t)βu(t) ∈ L∞((−∞, 0), Lα+2(RN ));
(ii) there existsϕ ∈ S ′(RN ) such thatu(t) −→

t↑0
ϕ in S ′(RN );

(iii) sup
t<0

(−t)β‖S(t)ϕ‖Lα+2 < ∞;

(iv) u satisfies the equation (2.1) on(−∞, 0).

Proof. An elementary calculation shows that

(−t)β‖u(t)‖Lα+2 =
(

−1
t

)σ ∥∥∥∥v
(

−1
t

)∥∥∥∥
Lα+2

,

and (i) follows.
We claim that

v(s) = S(s− τ)v(τ) − iγ

∫ s

τ
S(s− µ)µ

Nα−4
2 |v(µ)|αv(µ) dµ, (5.12)

for all τ, s > 0. Note first that (5.12) makes sense. Indeed,v(τ) ∈ Lα+2(RN )
↪→ S ′(RN ), so thats 7→ S(s− τ)v(τ) belongs toC(R,S ′(RN )). Further-

more,µ
Nα−4

2 |v(µ)|αv(µ) ∈ L∞
loc((0,∞), L

α+2
α+1 (RN )). Note thatL

α+2
α+1 (RN )

↪→ H−1(RN ) and that(S(s))s∈R is a group of isometries inH`(RN ) for
every` ∈ R. Therefore, the integral on the right hand side of (5.12) belongs
to C((0,∞), H−1(RN )) as a function ofs. We now establish (5.12). Set
w(s) = v(s) − S(s)ψ. It follows from (5.3) that

w(s) = −iγ
∫ s

0
S(s− µ)µ

Nα−4
2 |v(µ)|αv(µ) dµ,
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for all s > 0. Sinceµ
Nα−4

2 |v(µ)|αv(µ) ∈ L1((0, T ), L
α+2
α+1 (RN )) and

L
α+2
α+1 (RN ) ↪→ H−1(RN ), it follows from standard semigroup theory that

w ∈ C([0,∞), H−1(RN )) and that

w(s) = S(s− τ)w(τ) − iγ

∫ s

τ
S(s− µ)µ

Nα−4
2 |v(µ)|αv(µ) dµ.

AddingS(s)ψ = S(s− τ)S(τ)ψ to both sides of the above identity yields
(5.12).

Consider now the dilation operatorDλ and the multiplierMb defined by

(Dλω)(x) = λ
N
2 ω(λx), (Mbω)(x) = ei

b|x|2
4 ω(x).

We have

u

(
−1
s

)
= M−sDsv(s). (5.13)

On the other hand, it follows from [5, formulas (3.2) and (3.3)], that

M−sDsS(s− τ) = S

(
−1
s

+
1
τ

)
M−τDτ , (5.14)

for s, τ > 0. By applyingM−sDs to both sides of (5.12), and by using (5.14)
then (5.13), we obtain

u
(−1

s

)
= S

(−1
s + 1

τ

)
u

(− 1
τ

)
−iγ ∫ s

τ S
(
−1
s + 1

µ

)
µ

Nα−4
2 M−µDµ(|v(µ)|αv(µ)) dµ

= S
(−1

s + 1
τ

)
u

(− 1
τ

)
−iγ ∫ s

τ S
(
−1
s + 1

µ

)
µ−2

∣∣∣u(
− 1
µ

)∣∣∣α u(
− 1
µ

)
dµ.

Settingt = −1
s

, θ = −1
τ

, and making the change of variablesµ = −1
η

, we

obtain

u(t) = S(t− θ)u(θ) − iγ

∫ t

θ
S(t− η)|u(η)|αu(η) dη, (5.15)

for all t, η < 0.

Fix t < 0. Since|u|αu ∈ L1((0, T ), L
α+2
α+1 (RN )) ⊂ L1((0, T ), H−1

(RN )) for all T > 0, the integral in the right hand side of (5.15) converges
to ∫ t

0
S(t− η)|u(η)|αu(η) dη,

in H−1(RN ) asθ ↑ 0. On the other hand,u(t) ∈ Lα+2(RN ) is fixed; and
so, by lettingθ ↑ 0 in (5.15), we see thatS(t − θ)u(θ) has a limitω in
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H−1(RN ) + Lα+2(RN ) asθ ↑ 0. In particular,ω ∈ S ′(RN ), and we may
setϕ = S(−t)ω ∈ S ′(RN ). It follows thatS(t − θ)u(θ) −→

θ↑0
S(t)ϕ in

S ′(RN ). Therefore, lettingθ ↑ 0 in (5.15), we obtain thatu satisfies the
equation (2.1) on(−∞, 0). This proves (ii) and (iv). Finally, (iii) follows
from (i) and the estimates used in the proof of (2.11). This completes the
proof.

Proof of Theorem 5.7. The property thatu andu2 are solutions of (1.1)
on (−∞, 0) in the sense of Theorem 2.1 follows from Lemma 5.9. Since

v(s, y) ≡ s− q
2 f

(
y√
s

)
by Proposition 5.5, we have

u(t, x) = (−t)− N
2 (−t) q

2 ei
|x|2
4t f

(
x√−t

)
= (−t)− p

2 g

(
x√−t

)
,

with p andg defined above (note thatRe p =
2
α

). Writing (5.9) in terms of

u andu2, we obtain

O
(
s
− Nα

2(α+2)+ε
)α+2

=
∫

RN

∣∣∣∣s− N
2 u2

(
−1
s
,
y

s

)
− s− q

2 g

(
y√
s

)∣∣∣∣α+2

dy.

Settingx =
y√
s

andt = −1
s

, we deduce

O
(
(−t) Nα

2(α+2)−ε)α+2

= (−t)− N
2

∫
RN

∣∣∣(−t)N
2 u2(t, x

√−t) − (−t) q
2 g(x)

∣∣∣α+2
dx

= (−t)− N
2 + (α+2)Re q

2
∫

RN

∣∣∣(−t)N−q
2 u2(t, x

√−t) − g(x)
∣∣∣α+2

dx;

and so,

‖(−t)N−q
2 u2(t, x

√−t) − g(x)‖Lα+2

= O
(
(−t) Nα

2(α+2)+
N

2(α+2)−Re q
2 −ε) = O

(
(−t)

4−(N−2)α
2α(α+2) −ε

)
,

which is estimate (5.11). Finally, the regularity properties ofu2 follow easily
from the regularity ofv2 described in Proposition 5.6.

Remark 5.10. It follows from (5.11) that‖(−t) p
2u2(t, x

√−t)‖Lα+2 →
‖g‖Lα+2 ast ↑ 0. Therefore,

‖u2(t)‖Lα+2 ≈ (−t)− 4−(N−2)α
2α(α+2) ‖g‖Lα+2 ,
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which blows up ast ↑ 0.
However, the relationship of these solutions to blow up of solutions inH1

is not clear. Indeed, the solutionu2 constructed in Theorem 5.7 is definitely
not inH1. If it were, thenv2 (which is anH1 solution) would be a solution in
X = H1(RN )∩L2(RN , |x|2dx), which is impossible since its initial value
ψ2 is not inX. Moreover, the above result is true regardless of the sign of
γ, and in particular ifγ > 0 (or evenγ = 0), in which case noH1 solution

blows up. It is nonetheless intriguing that, in the case
4
N

< α <
4

N − 2
andγ < 0, when there do existH1 solutions of (1.1) which blow up in finite
time, we can exhibit asymptotically self-similar blowing up solutions which
just fail to be inH1.

6 The nonlinear heat equation

In this section, we consider solutions of the integral equation

u(t) = et4ϕ− γ

∫ t

0
e(t−s)4 (|u(s)|αu(s)) ds (6.1)

whereγ ∈ R andα >
2
N

. Given such anα, one can always chooseq such

that

1 <
q

α+ 1
<
Nα

2
< q. (6.2)

While q is not uniquely determined by (6.2), we considerq fixed once and
for all. All the results below are valid with any value ofq verifying (6.2).
Next, we set

β =
1
α

− N

2q
. (6.3)

One verifies easily that

β(α+ 1) < 1,
Nα

2q
< 1, β + 1 − Nα

2q
− β(α+ 1) = 0. (6.4)

The proof of the following theorem parallels almost exactly the proof of
Theorem 2.1. The only additional features needed are the fact that(et4)t≥0
is a contractionC0 semigroup on allLr(RN ), 1 ≤ r < ∞ and the better
smoothing properties of the heat semigroup,

‖et4ϕ‖Lp ≤ (4πt)− N
2

(
1
r
− 1

p

)
‖ϕ‖Lr ,

whenever1 ≤ r ≤ p ≤ ∞ andt > 0. The first part of the theorem was
already proved by F. Ribaud [29], Theorem 4.5.2.
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Theorem 6.1. Letα >
2
N

and letq andβ verify (6.2) and (6.3). Suppose

further thatρ > 0 andM > 0 satisfy the inequality

ρ+KMα+1 ≤ M,

whereK = K(α,N, γ, q) can be explicitly computed. Letϕ be a tempered
distribution such that

sup
t>0

tβ‖et4ϕ‖Lq ≤ ρ. (6.5)

It follows that there exists a unique positively global (i.e. defined for all
t ≥ 0) solutionu of (6.1) such that

sup
t>0

tβ‖u(t)‖Lq ≤ M. (6.6)

Furthermore,

(a) u(t) − et4ϕ ∈ C([0,∞), L
q

α+1 (RN )), taking the value0 at t = 0;
(b) lim

t↓0
u(t) = ϕ, as tempered distributions.

Supposeϕ andψ verify (6.5) and letu andv be respectively the solutions
of (6.1) satisfying (6.6) with the initial valuesϕ andψ. It follows that

sup
t>0

tβ‖u(t) − v(t)‖Lq ≤ (1 −KMα)−1 sup
t>0

tβ‖et4(ϕ− ψ)‖Lq .

If, in addition,et4(ϕ− ψ) has the stronger decay property

sup
t>0

tβ(1 + t)δ‖et4(ϕ− ψ)‖Lq < ∞ (6.7)

for someδ > 0 such thatβ(α + 1) + δ < 1, and withM perhaps smaller,
then

sup
t>0

tβ(1+ t)δ‖u(t)−v(t)‖Lq ≤ C sup
t>0

tβ(1+ t)δ‖et4(ϕ−ψ)‖Lq . (6.8)

As in Remark 2.2 (a), if we suppose thatϕ−ψ ∈ L
q

α+1 (RN ), then (6.7)
is verified withδ = δ0, where

δ0 =
N(α+ 1)

2q
− 1
α
.

Sinceβ(α+ 1) + δ0 = 1, it follows that (6.8) holds for allδ ∈ (0, δ0).
Next, we need to identify those homogeneous functionsϕ such that

sup
t>0

tβ‖et4ϕ‖Lq is finite, since these initial data give rise to self-similar

solutions of (6.1). This question has been extensively studied [1, 2, 29].
In particular, F. Ribaud ([29], Theorem 4.5.3) has proved that ifϕ(x) =
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ω(x)|x|− 2
α , whereω is homogeneous of degree0 andω ∈ L∞(SN−1) with

small enough norm, then the solution of (6.1) with the initial valueϕ is
self-similar.

In fact, we can improve this with the following simple remarks. Letϕ(x)
be as above, whereω ∈ Lq(SN−1). Setϕ1 = ηϕ whereη is anL∞ (or
smoother) cut-off function (identically1 near the origin and of compact
support), and writeϕ = ϕ1 + ϕ2. We can draw the following conclusions.

(a) ϕ1 ∈ Lr(RN ) for all 1 ≤ r <
Nα

2
, and soet4ϕ1 ∈ Lq(RN ) for all

t > 0.
(b) ϕ2 ∈ Lq(RN ), and soet4ϕ2 ∈ Lq(RN ) for all t > 0.
(c) et4ϕ = et4ϕ1+et4ϕ2 ∈ Lq(RN ) for all t > 0, and sosup

t>0
tβ‖et4ϕ‖Lq

is finite (by dilation propertiestβ‖et4ϕ‖Lq does not depend ont > 0).
(d) sup

t>0
tβ‖et4ϕ2‖Lq is finite (by an argument similar to the proof of

Lemma 4.6).

(The first part of each of statements (a) and (b) follows easily by integrating
with polar coordinates.) The following theorem is now straightforward to
prove by the same arguments as in Sect. 4.

Theorem 6.2. Let ϕ = ϕ1 + ϕ2 as above, except that we multiplyϕ

by a sufficiently small constant. Letu(t, x) = t−
1
α f

(
x√
t

)
be the self-

similar solution of (6.1) with initial dataϕ, constructed by Theorem 6.1.
Let v(t, x) be the global solution of (6.1) with initial dataϕ2, constructed
by Theorem 6.1 (which corresponds to the “classical” solution of (6.1)

sinceϕ2 ∈ Lq(RN ) and q >
Nα

2
, see Weissler [33]). Setw(t, x) =

v(t, x) − t−
1
α f

(
x√
t

)
. It follows that for allε > 0,

‖w(t)‖Lq ≤ O(t−
Nα
2q

+ε)

and

‖f − t
1
α v(t, x

√
t)‖Lq ≤ Cεt

− N(α+1)
2q

+ 1
α

+ε
,

ast → ∞. Both converge to0 ast → ∞ if ε is sufficiently small.

It is clear that the decompositionϕ = ϕ1 +ϕ2 in Theorem 6.2 is not the
most general for which the conclusion is true (cf. Sect. 4).
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