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1 Introduction

We shall study the global existence and blow up of the following semilinear
parabolic Cauchy problem
(1.1){

Hu ≡ H0u + up = X∗
i (aijXju) − ∂tu + up = 0 in Rn × (0,∞),

u(x, 0) = u0(x) > 0 in Rn,

whereaij = aij(x, t) are bounded measurable functions and the matrix
A = (aij) is uniformly elliptic.Xj , j = 1, ..., k are smooth vector fields in
Rn andX∗

j is the formal adjoint ofXj .

Basic assumptions.
(i). We assume thatXj satisfy the Ḧormander’s condition for hypo-

ellipticity i.e. the rank of the Lie algebra generated byX1, ... Xp equals
n. Given two pointsx, y ∈ Rn, d(x, y) will be the (X1, ..., Xp)-control
distance;|x| denotes the Euclidean distance;d(x) ≡ d(x, 0); B(x, r) will
represent the metric ball{y ∈ Rn|d(x, y) 6 r}. Properties of the dis-
tance, metric balls and the fundamental solutions ofH0 have been studied
extensively in [NSW], [FeS], [KS1, 2] and [Sa];

(ii). There are positive constantsQ, B, C andb such that

(1.2) |B(x, r)| = BrQ; lim
|x|→∞

d(x) = ∞; lim
d(x)→∞

|x| = ∞;

(iii). G, the fundamental solutionG of the linear operatorH0 in (1.1),
satisfies

(1.3)
1

C(t − s)Q/2 e
− d(x,y)2

b(t−s) 6 G(x, t; y, s) 6 C

(t − s)Q/2 e−b
d(x,y)2

t−s ,
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for all x, y ∈ Rn and allt > s. XjG(., t; y, s) ∈ L2
loc(R

n) for j = 1, ..., k
andt > s.

Equation (1.1) contains two important special cases. WhenXj = ∂xj ,
j = 1, ..., n, the distance is just the Euclidean distance and (1.1) is just an
uniformly parabolic equation onRn × (0,∞). The well-known result by
Aronson in [A] assures (1.3) is true forQ = n.

Another case is whenA = I, n = 2m + 1, and

Xj =
∂

∂xj
+ 2yj

∂

∂l
, Xm+j =

∂

∂yj
− 2xj

∂

∂l

whenj = 1, ..., m. Here(x1, ..., xm), (y1, ..., ym) ∈ Rm andl ∈ R1. We
all realize thatX1, ..., X2m is a basis for the Lie algebra of left invariant
vector fields on the Heisenberg groupHm, which is the Lie group whose
underlying manifold isR2m+1 endowed with the group law

(v, w, l)(v′, w′, l′) = (v + v′, w + w′, l + l′ + 2(v′w − vw′)),

wherev, v′, w, w′ ∈ Rm, l, l′ ∈ R1. Then the equationHu = 0 in (1.1)
is the semilinear heat equation onHm × (0,∞). It is well-known that (1.2)
and (1.3) hold withQ = 2m+2 which is the homogeneous dimension. Let
z = (v, w) then the distance function isd((z, l), (0, 0)) = (|z|4 + l2)1/4.

In the Euclidean case problem (1.1) has been studied by many authors. In
the famous paper [Fu], Fujita proved the following results: (a) whenA = I,
1 < p < 1 + 2

n andu0 > 0, problem (1.1) possesses no global positive
solutions;

(b) whenA = I, p > 1 + 2
n andu0 is smaller than a small Gaussian,

then (1.1) has global positive solutions. So1 + 2
n is the critical exponent.

When A is no longer the identity matrix, Meier [Me] showed that a
critical exponent also exists.

In many occasions people would like to see the existence of global pos-
itive solutions for a wider choice of initial values than those that decay
exponentially. It is also desirable to know the range of the critical exponents
whenA is not just the identity matrix. In this paper we pick up the study in
these matters.

In the general case, again we are mainly interested on the existence of
global positive solutions. In recent years many authors have undertaken the
research on linear subelliptic operators and their parabolic counter part. Our
motivation for the study of the general semi-linear problem not only comes
from a desire of generalization but also from the apparent need for new
techniques. In fact the prevailing method in treating (1.1) relies on certain
comparison results controlling solutions of (1.1) by those of some equations
with constant coefficients. However this method does not seem to fit the
new case because the intrinsic operators on the Heisenberg group and many
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other Lie groups are not of constant coefficients. The method we are using,
which are based on some new estimates of heat kernels, are able to produce
the following theorems which are new not only to the group case but also to
the old Euclidean case.

Definition 1.1. A functionu = u(x, t) such thatu, X1u, ..., Xku ∈ L2
loc

(Rn × (0, ∞)) is called a solution of (1.1) if

u(x, t) =
∫
Rn

G(x, t; y, 0)u0(y)dy +
∫ t

0

∫
Rn

G(x, t; y, s)up(y, s)dyds

for all (x, t) ∈ Rn × (0,∞).

The main results of the paper are the next three theorems.

Theorem A. (global existence) Supposep > 1+ 2
Q . There exists a constant

b0 > 0, such that for each nonnegativeu0 ∈ C2(Rn) ∩ L1(Rn) satisfying
u0(x) 6 b0

1+d(x)Q for all x ∈ Rn, there exists a positive and continuous
solution of (1.1).

Theorem B. Supposep > 3 + 2
Q . There exists a constantb0 > 0, such

that for each nonnegativeu0 ∈ C2(Rn) satisfyingu0(x) 6 b0
1+d(x) for all

x ∈ Rn, there exists a positive and continuous solution of (1.1).

In the next theorem we present a blow up result.

Theorem C. (a). SupposeXj = ∂xj , j = 1, 2..., n. If p < 1 + 2
n , then the

only global non-negative solution of (1.1) is zero.
(b). SupposeH0 in (1.1) is the heat operator onHm ×(0,∞) whereHm

is the Heisenberg group. Ifp < 1 + 2
Q , then the only global non-negative

solution of (1.1) is zero. HereQ = 2m + 2 is the homogeneous dimension
of Hm.

Remark 1.1.In the papers [LN] and [W], Lee, Ni and Wang studied (1.1)
in the case whenH0 is the heat equation inRn × (0,∞). They provided
a nice condition onu0 so that (1.1) has global positive solutions. However
their methods seem to rely on the assumption thatH0 is the heat equation,
which is of constant coefficients. It would be interesting to see whether their
condition onu0 would suffice for the general case we are studying here.

Remark 1.2.One may ask whether Theorem C holds for (1.1) in general.
At this moment we do not know the anwser. We will explain the difficulty
in Sect. 5. Whena = (aij) are smooth and time-independent, part (a) of
Theorem C was proved in [U].

Let us briefly discuss the method we are going to adopt. We will use
the Schauder fixed point theorem to achieve existence. This requires us to
obtain a number of new estimates involving the heat kernel. These estimates
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are presented in sections two and six. Theorem A, B and C will be proved
in sections three, four and five respectively.

We conclude the introduction by listing notations that will be used fre-
quently in the paper.

G = G(x, t; y, s) will denote the fundamental solution of the linear
operatorH0 in (1.1). For anyc > 0, we write

(1.4) Gc(x, t; y, s) ≡ 1
(t − s)Q/2 exp(−c

d(x, y)2

t − s
), t > s.

Let u0 be a positive function inL∞(Rn) anda > 0, we write

(1.5) ha(x, t) =
∫
Rn

Ga(x, t; y, 0)u0(y)dy;

(1.6) h(x, t) =
∫
Rn

G(x, t; y, 0)u0(y)dy.

GivenV = V (x, t) andc > 0, we define

(1.7)
Nc,∞(V ) ≡supx,t

∫ t

−∞

∫
Rn

|V (y, s)|Gc(x, t; y, s)dyds

+ supy,s

∫ ∞

s

∫
Rn

|V (x, t)|Gc(x, t; y, s)dxdt.

We note that the quantityNc,∞(V ) may be infinite for someV . However
Proposition 6.1 below shows thatNc,∞(V ) < ∞ for all c > 0 if |V (y, s)| 6
C/(1 + d(y)β) for aβ > 2. This fact, which seems unrelevant right know,
will allow us to use the Schauder fixed point theorem via Lemma 6.1 in
Sect. 6. Before going to the next section we remark thatC will always be
absolute constants that may change from line to line.

2 Preliminaries

In this section we provide two lemmas concerning
∫
Rn Ga(x, t; y, 0)u0(y)dy.

Lemma 2.1.Givena > 0, let

(2.1) ha(x, t) =
∫
Rn

Ga(x, t; y, 0)u0(y)dy,

whereu0 is a bounded non-negative function. The following two statements
are true.

(a). Givenp > 1, there exists a constantC(p) such that

(2.2) hp
a(x, t) 6 C(p) ||u0||p−1

L∞ ha(x, t),
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for all t > 0.
(b). If limd(x)→∞ u0(x) = 0, thenlimd(x)→∞ ha(x, t) = 0 uniformly

with respect tot > 0.

Proof. (a). Clearly

ha(x, t) =
∫
Rn

1
tQ/2 e−a d(x,y)2/t u0(y)dy

=
∫
Rn

1
tQ/(2p) e

−a d(x,y)2/(pt) u0(y)
1

tQ/(2q) e
−a d(x,y)2/(qt)dy,

whereq is the conjugate ofp. By Hölder’s inequality and since∫
Rn

1
tQ/2 e−a d(x,y)2/tdy 6 C,

we have

hp
a(x, t) 6

∫
Rn

1
tQ/2 e−a d(x,y)2/t up

0(y)dy [
∫
Rn

1
tQ/2 e−a d(x,y)2/tdy]p/q

6 C(p) ||u0||p−1
L∞

∫
Rn

1
tQ/2 e−a d(x,y)2/t u0(y)dy.

The last inequality implies (2.2). This proves (a).
Next we prove (b). For anyδ > 0, let R > 0 be such thatu0(y) < δ/2

whend(y) > R. Whend(x) > 2R we have

ha(x, t) =
∫

d(y)>R

1
tQ/2 e−a d(x,y)2/t u0(y)dy

+
∫

d(y)6R

1
tQ/2 e−a d(x,y)2/t u0(y)dy

6 δ

2

∫
d(y)>R

1
tQ/2 e−a d(x,y)2/tdy

+
∫

d(y)6R

1
d(x, y)Q

d(x, y)Q

tQ/2

× e−a d(x,y)2/(2t)e−a d(x,y)2/(2t)u0(y)dy

6 Cδ/2 +
C

(d(x) − R)Q

∫
d(y)6R

e−a d(x,y)2/(2t)u0(y)dy

6 Cδ/2 + C
RQ

(d(x) − R)Q
||u0||L∞

6 Cδ,

whend(x) is sufficiently large. This proves (b). q.e.d.
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Lemma 2.2.(a). Givenα ∈ (0, 1], supposeu0 ∈ L∞, u0 > 0 andu0(x) 6
C/d(x)α whend(x) is large, then

(2.3) ha(x, t) 6 C(1 + ||u0||L∞)/d(x)
Q

Q+1α
,

whend(x) is large.
(b). Suppose0 6 u0(x) 6 C/(1 + d(x)Q) andu0 ∈ L1(Rn), then

ha(x, t) 6 C(1 + ||u0||L1)/(1 + d(x)Q),

for all t > 0 andx ∈ Rn.

Proof. First we prove (a). The proof starts as that of part (b) of the previous
lemma. Without loss of generality we assume that0 < u0(x) 6 C/(1 +
d(x)α) for a constantC. GivenR > 0 and whend(x) > R we have

ha(x, t) =
∫

d(y)>R

1
tQ/2 e−a d(x,y)2/t u0(y)dy

+
∫

d(y)6R

1
tQ/2 e−a d(x,y)2/t u0(y)dy

6 C

1 + Rα

∫
d(y)>R

1
tQ/2 e−a d(x,y)2/tdy

+
∫

d(y)6R

1
d(x, y)Q

d(x, y)Q

tQ/2

× e−a d(x,y)2/(2t)e−a d(x,y)2/(2t)u0(y)dy

6 C

1 + Rα
+

C

(d(x) − R)Q

∫
d(y)6R

e−a d(x,y)2/(2t)u0(y)dy

6 C

1 + Rα
+ C

RQ

(d(x) − R)Q
||u0||L∞ .

In the above we have used the fact that
∫
Rn

1
tQ/2 e−a d(x,y)2/tdy 6 C.

For eachx, we pickR so thatd(x) = R(1 + d(x)1/(Q+1)). Then

ha(x, t) 6 C

1 + [d(x)/(1 + d(x)1/(Q+1))]α
+

C||u0||L∞

d(x)Q/(Q+1) .

Whend(x) > 1, the last inequality implies

ha(x, t) 6 C(1 + ||u0||L∞)
d(x)αQ/(Q+1) ,

whenα ∈ (0, 1].
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Next we prove (b). Following the proof of part (a) of the lemma (replace
α by Q) we find, ford(x) > R,

ha(x, t) =
∫

d(y)>R

1
tQ/2 e−a d(x,y)2/t u0(y)dy

+
∫

d(y)6R

1
tQ/2 e−a d(x,y)2/t u0(y)dy

6 C

1 + RQ
+

C

(d(x) − R)Q

∫
d(y)6R

e−a d(x,y)2/(2t)u0(y)dy

6 C

1 + RQ
+

C

(d(x) − R)Q
||u0||L1(Rn).

Part (b) is thus proved by takingR so thatd(x) = 2R. q.e.d.

3 Proof of Theorem A

This section is divided into three parts. In the first part we list a number of
notations and symbols, which include an integral operator and an appropriate
function space. In the next part we will prove Lemma 3.1 which states that
the integral operator has a fixed point in the function space. Theorem A will
be proved in the end of the section.

First we recall and define a number of notations. Given a positiveu0 ∈
L∞(Rn), write

(3.1) h(x, t) =
∫
Rn

G(x, t; y, 0)u0(y)dy.

HereG is the fundamental solution of the operatorH0 in (1.1). By (1.3),
there are positive constantsC andb such that

G(x, t; y, s) 6 C

(t − s)Q/2 exp(−b
d(x, y)2

t − s
) = CGb(x, t; y, s),

for all t > s andx, y ∈ Rn.
Foru ∈ L∞(Rn × [0,∞)), we defineT to be the integral operator:

(3.2) Tu (x, t) = h(x, t) +
∫ t

0

∫
Rn

G(x, t; y, s)up(y, s)dyds.

For any constantsa > 0, d > 1 andM > 1, the spaceSd is defined by

Sd = {u(x, t) ∈ C(Rn × [0, d]) | 0 6 u(x, t) 6 Mha(x, t)}
where the functionha is given by (2.1).
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From this moment, we fix the numbera to be a positive number strictly
less thanb, which is the constant in the Gaussian upper bound forG. This
choice ofa is crucial when we prove Lemma 3.1 below. Sincea < b we
have

G(x, t; y, s) 6 CGb(x, t; y, s) 6 CGa(x, t; y, s),

h(x, t) 6 Chb(x, t) 6 Cha(x, t).

Next we present a Lemma which will lead to a proof of Theorem A. The
idea is to show that the operatorT has a fixed point inSd.

Lemma 3.1.Givenp > 1 + 2
Q , for anyd > 1, there exist constantsC > 1,

M > 1 andb0 > 0 independent ofd such that the integral operator (3.2)
has a fixed point inSd, provided thatu0 ∈ C2(Rn) ∩ L1(Rn) and 0 6
u0 6 b0/(1 + d(x)Q).

Proof. Step 1.We want to use the Schauder fixed point theorem. To this end
we need to check the following conditions.

(i). Sd is nonempty, closed, bounded and convex.
(ii). TSd ⊂ Sd.
(iii). TSd is a compact subset ofSd in L∞ norm.
(iv). T is continuous.

Step 2.Condition (i) is obviously true. So let’s verify (ii), which requires us
to show that0 6 Tu 6 Mha when0 6 u 6 Mha.

Sincep > 1 + 2
Q we can writep = p1 + p2 such thatp1 > 1 and

p2 > 2
Q . For anyu ∈ Sd, u 6 Mha; hence Lemma 2.1 (a) implies, since

||u0||L∞ 6 b0,

up1(y, s) 6 CMp1 ||u0||p1−1
L∞ ha(y, s) 6 CMp1bp1−1

0 ha(y, s).

Lemma 2.2 (b) implies
(3.3)

up2(y, s) 6 Mp2hp2
a (y, s) 6 Mp2 [

C

1 + d(y)Q
]p2 6 CMp2

1
1 + d(y)p2Q

,

for all s > 0. For convenience we write

V (y) =
1

1 + d(y)p2Q
.

Therefore
up2(y, s) 6 CMp2V (y).

Recalling the definition ofha in (2.1) and using the previous inequalities,
we have
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up(y, s) = up1(y, s)up2(y, s)

6 CMpbp1−1
0 V (y)

∫
Rn

Ga(y, s; z, 0)u0(z)dz.(3.4)

Substituting (3.4) into (3.2) and using Fubini’s theorem we obtain

Tu(x, t) 6 h(x, t) + CMpbp1−1
0

∫
Rn

∫ t

0

∫
Rn

×G(x, t; y, s)|V (y)|Ga(y, s; z, 0)dyds u0(z)dz,(3.5)

Remembering that

G(x, t; y, s) 6 C

(t − s)Q/2 exp(−b d(x, y)2/(t − s)) = CGb(x, t; y, s),

we have∫ t

0

∫
Rn

G(x, t; y, s)|V (y)|Ga(y, s; z, 0)dyds

6 C

∫ t

0

∫
Rn

Gb(x, t; y, s)|V (y)|Ga(y, s; z, 0)dyds

At this stage we quote the following inequality (3.6) which was first
proved in [Zhang3] for the Euclidean case. We will prove (3.6) as part of
Lemma 6.1 in Sect. 6. Givenb > a,∫ t

0

∫
Rn

Gb(x, t; y, s)|V (y)|Ga(y, s; z, 0)dyds

6 CCa,bNc,∞(V )Ga(x, t; z, 0),(3.6)

for all t > 0 and some positivec andCa,b. Here the expressionNc,∞(V ),
defined in (1.7), denotes a number related to any given functionV . By
Proposition 6.1 in Sect. 5, we know thatNc,∞(V ) is a finite number since
V (y) = 1/(1 + d(y)p2Q) andp2Q > 2 by our choice ofp2 > 2

Q .
Combining (3.6) with (3.5), we reach

Tu(x, t) 6 h(x, t) + CMpbp1−1
0 Ca,bNc,∞(V )

∫
Rn

G(x, t; z, 0)u0(z)dz,

which yields

(3.7) Tu(x, t) 6 (C + CMpbp1−1
0 Ca,bNc,∞(V ))ha(x, t)

By takingM > 2C andb0 suitably small we find that

(3.8) 0 6 Tu(x, t) 6 Mha(x, t).
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Thus condition (ii) is satisfied.

Step 3.Now we need to check condition (iii). We note that the local regularity
theory for solutions of uniformly parabolic equations can be transplanted
to the operatorH0 in (1.1). For brevity we refer the reader to the papers
[KS1] or [Sa] for details. By our choice, functionsu in Sd are uniformly
bounded and therefore,Tu is equicontinuous and in fact Ḧolder continuous.
This is becauseTu actually satisfies, in the weak sense,H0(Tu) = −up in
Rn × (0, d) andTu(x, 0) = u0(x) andu0 ∈ C2(Rn). Taking into account
that

0 6 lim
d(x)→∞

Tu(x, t) 6 C lim
d(x)→∞

ha(x, t) = 0

uniformly (by Lemma 2.1 (b)), we know, from (1.2), that

lim
|x|→∞

Tu(x, t) = 0

HenceTSd is a relatively compact subset ofSd. This is an easy modification
of the classical Ascoli-Arzela theorem (see [Zhao]). Hence we have verified
(iii).

Step 4.Finally we need to check condition (iv).
Givenu1 andu2 in Sd, we have, by (3.2),

(3.9)

(Tu1 − Tu2)(x, t) =
∫ t

0

∫
Rn

G(x, t; y, s)) [up
1(y, s) − up

2(y, s)]dyds.

Next we notice that

|up
1(y, s)−up

2(y, s)| 6 p max{up−1
1 (y, s), up−1

2 (y, s)}|u1(y, s)−u2(y, s)|.
Using (3.3) onup−1

1 andup−1
2 we have

|up
1(y, s) − up

2(y, s)| 6 CMp−1

(1 + d(y)p2Q)(p−1)/p2
|u1(y, s) − u2(y, s)|.

i.e.

|up
1(y, s) − up

2(y, s)| 6 CMp−1[V (y)](p−1)/p2 |u1(y, s) − u2(y, s)|.
Substituting the last inequality to (3.9) we obtain

||Tu1 − Tu2||L∞ 6 ||u1 − u2||L∞

∫ t

0

∫
Rn

G(x, t; y, s)[V (y)](p−1)/p2dyds

6 C||u1 − u2||L∞Nc,∞(V (p−1)/p2).

Herec is a suitable constant. Sincep = p1 + p2 andp1 > 1 we know that
p−1 > p2. Taking into account thatV (x) 6 1 we haveNc,∞(V (p−1)/p2) 6
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Nc,∞(V ). The later is a finite constant due to Proposition 6.1. This proves
the continuity ofT and the lemma. q.e.d.

Now we are ready to give the

Proof of Theorem A.
For anyd > 1, letud be a fixed point ofT in the spaceSd as given in Lemma
3.1. Define

Ud(x, t) =

{
ud(x, t), t 6 d;
ud(x, d), t > d.

Then from the proof of Lemma 3.1 ( (3.8) e.g.), we know that{Ud} is
uniformly bounded and equicontinuous. Hence there is a subsequence{Udm |
m = 1, 2, ..} which converges uniformly to a functionu in any compact
region ofRn×[0,∞). For any fixed(x, t) ∈ Rn×[0,∞) andm sufficiently
large, we know that

Udm(x, t) = h(x, t) +
∫ t

0

∫
Rn

G(x, t; y, s)Up
dm

(y, s)dyds.

This is becauseUdm is a fixed point ofT in Sdm . Now by the dominated
convergence theorem,u satisfies

u(x, t) = h(x, t) +
∫ t

0

∫
Rn

G(x, t; y, s)up(y, s)dyds,

for all (x, t) ∈ Rn × [0,∞). Moreover, by (3.8) We know

0 < u(x, t) 6 Mha(x, t)

for all (x, t) ∈ Rn × [0,∞). Clearlyu is a global positive solution of (1.1).
This finishes the proof. q.e.d.

4 Proof of Theorem B

In this section we shall prove Theorem B.

Proof of Theorem B.The proof closely follows the lines of that of Theorem
A except that we will choose a new initial function. From this moment, while
keeping other symbols unchanged, we assume that the initial functionu0
satisfies

(4.1) u0 ∈ C2(Rn), 0 6 u0 6 b0 and u0(x) 6 b0/(1 + d(x)).

Just like the proof of Theorem A, we start by proving the counter part of
Lemma 3.1, which is stated as the subsequent claim.
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Claim. Givenp > 3 + 2
Q , for andd > 1, there existC > 1, M > 1

andb0 > 0 independent ofd such that the integral operator (3.2) has a fixed
point inSd, provided that the initial valueu0 satisfies (4.1).

The proof of the claim is very similar to the proof of Lemma 3.1. We
need to verify that

(i). Sd is nonempty, closed, bounded and convex;
(ii). TSd ⊂ Sd;
(iii). TSd is a compact subset ofSd in L∞ norm;
(iv). T is continuous.
Comparing to the proof of Lemma 3.1, the only significant difference

occurs in the proof of (ii), which, for simplicity, will be the only one given
in detail below.

We need to showTSd ⊂ Sd. Sincep > 3+ 2
Q we can writep = p1 +p2

such thatp1 > 1 andp2 > 2+ 2
Q . For anyu ∈ Sd, u 6 Mha; hence Lemma

2.1 (a) implies

up1(y, s) 6 CMp1 ||u0||p1−1
L∞ ha(y, s) 6 CMp1bp1−1

0 ha(y, s).

Lemma 2.2 (a) withα = 1 implies

up2(y, s) 6 Mp2hp2
a (y, s) 6 Mp2 [

C

1 + d(y)Q/(Q+1) ]
p2

6 CMp2
1

1 + d(y)p2Q/(Q+1) ,(4.2)

for all s > 0. For convenience we write

W (y) =
1

1 + d(y)p2Q/(Q+1) .

Therefore
up2(y, s) 6 CMp2W (y)

for all s > 0. Recalling the definition ofha in (2.1) and using the last two
inequalities, we have

up(y, s) = up1(y, s)up2(y, s)

6 CMpbp1−1
0 W (y)

∫
Rn

Ga(y, s; z, 0)u0(z)dz.(4.3)

Substituting (4.3) into (3.2) and using Fubini’s theorem we obtain

Tu(x, t) 6 h(x, t) + CMpbp1−1
0

∫
Rn

∫ t

0

∫
Rn

×G(x, t; y, s)|W (y)|Ga(y, s; z, 0)dyds u0(z)dz,(4.4)
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Remembering that

G(x, t; y, s) 6 C

(t − s)Q/2 exp(−b d(x, y)2/(t − s)) = CGb(x, t; y, s),

we have∫ t

0

∫
Rn

G(x, t; y, s)|W (y)|Ga(y, s; z, 0)dyds

6 C

∫ t

0

∫
Rn

Gb(x, t; y, s)|W (y)|Ga(y, s; z, 0)dyds

6 CCa,bNc,∞(W )Ga(x, t; z, 0).

To reach the last inequality, we again quote (3.6) which will be proved as
Lemma 6.1 in Sect. 6. By Proposition 6.1 in Sect. 5, we know thatNc,∞(W )
is a finite number sinceW (y) = 1/(1+d(y)p2Q/(Q+1)) andp2Q/(Q+1) >
2 by our choice ofp2 > 2 + 2

Q .
Substituting the last inequality into (4.4), we obtain

Tu(x, t) 6 h(x, t) + CMpbp1−1
0 Ca,bNc,∞(W )

∫
Rn

G(x, t; z, 0)u0(z)dz,

which yields

(4.5) Tu(x, t) 6 (C + CMpbp1−1
0 Ca,bNc,∞(W ))ha(x, t)

By takingM > 2C andb0 suitably small we find that

(4.6) 0 6 Tu(x, t) 6 Mha(x, t).

This proves the claim. The rest of the proof for Theorem B is identical to
that of Theorem A and is hence omitted. q.e.d.

5 Proof of Theorem C

Proof of part (a). In this part,H0 in (1.1) is just an uniformly parabolic
operator inRn × (0,∞) and the distanced(x, y) is just the Euclidean one.

Supposeu is a global positive solution of (1.1), by Definition 1.1, we
know thatu solves the integral equation
(5.1)

u(x, t) =
∫
Rn

G(x, t; y, 0)u0(y)dy +
∫ t

0

∫
Rn

G(x, t; y, s)up(y, s)dyds,

for all (x, t) ∈ Rn × [0,∞). By the lower bound in (1.3) and using the
notation in (1.4), we can find positive constantsc andC such that

(5.2) G(x, t; y, s) > CGc(x, t; y, s)
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for all x, y ∈ Rn andt > s. Merging (5.1) with (5.2), we obtain

u(x, t) > C

∫
Rn

Gc(x, t; y, 0)u0(y)dy

+C

∫ t

0

∫
Rn

Gc(x, t; y, s)up(y, s)dyds,(5.3)

for all (x, t) ∈ Rn × [0,∞).
Given t > 0, choosingT > t, multiplying Gc(x, T ; 0, t) on both sides

of (5.3) and integrating with respect otx, we obtain∫
Rn

Gc(x, T ; 0, t)u(x, t)dx

> C

∫
Rn

∫
Rn

Gc(x, T ; 0, t) Gc(x, t; y, 0)dx u0(y)dy +

+C

∫ t

0

∫
Rn

∫
Rn

Gc(x, T ; 0, t) Gc(x, t; y, s)dx up(y, s)dyds.(5.4)

Since we are dealing with Euclidean distance, we haveGc(x, T ; 0, t)
= Gc(0, T ;x, t). Therefore by the reproducing property of the heat ker-
nel, we reach∫

Rn

Gc(x, T ; 0, t) Gc(x, t; y, 0)dx = CGc(0, T ; y, 0) = CGc(y, T ; 0, 0),

∫
Rn

Gc(x, T ; 0, t) Gc(x, t; y, s)dx = CGc(0, T ; y, s) = CGc(y, T ; 0, s).

Substituting the last two equalities into (5.4), we see that

(5.5)

∫
Rn

Gc(x, T ; 0, t)u(x, t)dx

> C

∫
Rn

Gc(y, T ; 0, 0)u0(y)dy

+ C

∫ t

0

∫
Rn

Gc(y, T ; 0, s)up(y, s)dyds.

Using Hölder’s inequality and the fact that
∫
Rn Gc(y, T ; 0, s)dy = C, we

obtain ∫
Rn

Gc(y, T ; 0, s)u(y, s)dy

=
∫
Rn

G1/q
c (y, T ; 0, s)G1/p

c (y, T ; 0, s)u(y, s)dy

6 C[
∫
Rn

Gc(y, T ; 0, s)up(y, s)dy]1/p,
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where1/p + 1/q = 1. Inequality (5.5) then implies

(5.6)

∫
Rn

Gc(x, T ; 0, t)u(x, t)dx

> C

∫
Rn

Gc(y, T ; 0, 0)u0(y)dy

+ C

∫ t

0
[
∫
Rn

Gc(y, T ; 0, s)u(y, s)dy]pds.

Without loss of generality we can assume thatu0(x) > ε whend(x) 6 δ
whereε andδ are two small positive numbers. This assumption together with
(1.4) enable us to find a constantC > 0 so that

(5.7)

∫
Rn

Gc(y, T ; 0, 0)u0(y)dy

>
∫

d(y)6δ

1
Tn/2 e−cd2(y)/T εdy > C/Tn/2, T > 1.

Going back to (5.6) and writingJ(t) ≡ ∫
Rn Gc(x, T ; 0, t)u(x, t)dx, we

have

(5.8) J(t) > C/Tn/2 + C

∫ t

0
Jp(s)ds, T > t, T > 1.

Using the notationg(t) ≡ ∫ t
0 Jp(s)ds, we obtain, from (5.8),

(5.9) g′(t)/(1/Tn/2 + g(t))p > C.

Integrating (5.9) from0 to T and noticingg(0) = 0, we have

− 1
(1/Tn/2 + g(t))p−1

∣∣T
0 > (p − 1)CT

and therefore

(5.10) Tn(p−1)/2 > (p − 1)CT,

for all T > 1. This is possible only whenp > 1+ 2
n . Part (a) is thus proved.

Proof of part (b). In this part,H0 in (1.1) is the heat equation inHm×(0,∞).
Supposeu is a global positive solution of (1.1), by Definition 1.1, we

know thatu solves the integral equation
(5.11)

u(x, t) =
∫
Rn

G(x, t; y, 0)u0(y)dy +
∫ t

0

∫
Rn

G(x, t; y, s)up(y, s)dyds,

for all (x, t) ∈ Rn × [0,∞). Heren = 2m + 1.
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Givent > 0, choosingT > t, multiplyingG(x, T ; 0, t) on both sides of
(5.11) and integrating with respect otx, we obtain
(5.12)∫

Rn

G(x, T ; 0, t)u(x, t)dx

> C

∫
Rn

∫
Rn

G(x, T ; 0, t) G(x, t; y, 0)dx u0(y)dy +

+ C

∫ t

0

∫
Rn

∫
Rn

G(x, T ; 0, t) G(x, t; y, s)dx up(y, s)dyds.

Even thoughH0 is an operator with variable coefficients, the fundamental
solutionG still enjoys the symmetry

G(x, T ; y, t) = G(y, T ;x, t)

for all x, y ∈ Hm and T > t (see [G]). Therefore by the reproducing
property of the heat kernel, we reach

∫
Rn

G(x, T ; 0, t) G(x, t; y, 0)dx = CG(0, T ; y, 0) = CG(y, T ; 0, 0),

∫
Rn

G(x, T ; 0, t) G(x, t; y, s)dx = CG(0, T ; y, s) = CG(y, T ; 0, s).

Substituting the last two equalities into (5.4), we see that

(5.13)

∫
Rn

G(x, T ; 0, t)u(x, t)dx

> C

∫
Rn

G(y, T ; 0, 0)u0(y)dy

+ C

∫ t

0

∫
Rn

G(y, T ; 0, s)up(y, s)dyds.

Using Hölder’s inequality and the fact that
∫
Rn G(y, T ; 0, s)dy = 1, we

obtain ∫
Rn

G(y, T ; 0, s)u(y, s)dy

=
∫
Rn

G1/q(y, T ; 0, s)G1/p(y, T ; 0, s)u(y, s)dy

6 C[
∫
Rn

G(y, T ; 0, s)up(y, s)dy]1/p,
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where1/p + 1/q = 1. Inequality (5.13) then implies

(5.14)

∫
Rn

G(x, T ; 0, t)u(x, t)dx

> C

∫
Rn

G(y, T ; 0, 0)u0(y)dy

+ C

∫ t

0
[
∫
Rn

G(y, T ; 0, s)u(y, s)dy]pds.

The rest of the proof is similar to part (a).
Without loss of generality we assume thatu0 is strictly positive in a

neighborhood of0. Using the lower bound in (1.3) forG, we can then find
a constantC > 0 so that

(5.15)
∫
Rn

G(y, T ; 0, 0)u0(y)dy > C/TQ/2, T > 1.

Going back to (5.14) and writingJ(t) ≡ ∫
Rn G(x, T ; 0, t)u(x, t)dx, we

have

(5.16) J(t) > C/TQ/2 + C

∫ t

0
Jp(s)ds, T > t, T > 1.

As in part (a), (5.16) implies

TQ(p−1)/2 > (p − 1)CT,

for all T > 1. This is possible only whenp > 1 + 2
Q . q.e.d.

Remark 5.1.In the general case we do not know whether the relations∫
Rn

Gc(x, t; z, τ)Gc(z, τ ; y, s)dz > CGc(x, t; y, s)

or G(x, t; y, s) = G(y, t;x, s) still hold. This is the difficulty in adopting
the proof of this section to treat (1.1) under the basic assumptions in Sect. 1.

6 Two inequalities

In this section we mainly present Proposition 6.1 and Lemma 6.1. The later
contains two new inequalities involving heat kernels, including (3.6) which
we used in the proof of the Theorems A and B. The proof of the inequalities
in the Euclidean case was first given in [Zhang3].
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Proposition 6.1.SupposeV = V (x, t) satifies0 6 V (x, t) 6 C
1+d(x)β for

β > 2, then
Nc,∞(V ) < ∞ for all c > 0.

Proof. Observing that∫ t

−∞
Gc(x, t; y, s)ds 6 C/d(x, y)Q−2,∫ ∞

s
Gc(x, t; y, s)dt 6 C/d(x, y)Q−2,

we know

Nc,∞(V ) 6 sup
x∈Rn

∫
Rn

C

1 + d(y)β

C

d(x, y)Q−2 dy

= sup
x∈Rn

∫
d(x,y)>d(y)

C

1 + d(y)β

C

d(x, y)Q−2 dy +

sup
x∈Rn

∫
d(x,y)6d(y)

C

1 + d(y)β

C

d(x, y)Q−2 dy

6 sup
x∈Rn

∫
d(x,y)6d(y)

C

1 + d(y)β

C

d(y)Q−2 dy +

sup
x∈Rn

∫
d(x,y)6d(y)

C

1 + d(x, y)β

C

d(x, y)Q−2 dy

6
∫
Rn

C

1 + d(y)β

C

d(y)Q−2 dy

+ sup
x∈Rn

∫
Rn

C

1 + d(x, y)β

C

d(x, y)Q−2 dy

6 C

∫ ∞

0

r

1 + rβ
dr.

Sinceβ > 2, we knowNc,∞(V ) < ∞.q.e.d.

Lemma 6.1. Suppose0 < a < b, there exist positive constantsCa,b andc
depending only ona andb such that

(i).
∫ t

s

∫
Rn

Ga(x, t; z, τ) |V (z, τ)| Gb(z, τ ; y, s)dzdτ

6 Ca,b Nc,∞(V )Ga(x, t; y, s);

(ii).
∫ t

s

∫
Rn

Gb(x, t; z, τ) |V (z, τ)| Ga(z, τ ; y, s)dzdτ

6 Ca,b Nc,∞(V )Ga(x, t; y, s).
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Remark 6.1.The conditiona < b is indispensable for Lemma 6.1.

Proof of the Lemma. We will only give a proof of (i) since (ii) can be
handled similarly. For simplicity we write

(6.1) J(x, t; y, s) =
∫ t

s

∫
Rn

Ga(x, t; z, τ) |V (z, τ)| Gb(z, τ ; y, s)dzdτ.

Clearly we can assume thats = 0 and hence we only need to show that

(6.2) J(x, t; y, 0) 6 CNc,∞(V )Ga(x, t; y, 0).

Let ρ ∈ (0, 1) to be chosen later, we have

(6.3)
J(x, t; y, 0) =

∫ ρt

0

∫
Rn

Ga |V | Gbdzdτ +
∫ t

ρt

∫
Rn

...dzdτ

≡ J1 + J2.

We will estimateJ1 first. To this end let us recall the inequality

(6.4)
d(x, z)2

t − τ
+

d(z, y)2

τ − s
> d(x, y)2

t − s
, 0 < s < τ < t.

By (6.3) we know that

(6.5)

J1 =
∫ ρt

0

∫
Rn

exp(−ad(x,z)2
t−τ )

(t − τ)Q/2 |V (z, τ)| exp(−bd(z,y)2
τ )

(τ)Q/2 dzdτ

=
∫ ρt

0

∫
Rn

exp(−a[d(x,z)2
t−τ + d(z,y)2

τ ])

(t − τ)Q/2 |V (z, τ)|

× exp(−(b − a)d(z,y)2
τ )

(τ)Q/2 dzdτ

By (6.4),

exp(−a[
d(x, z)2

t − τ
+

d(z, y)2

τ
]) 6 exp(−a

d(x, y)2

t
).

Moreovert − τ > (1 − ρ)t for τ ∈ (0, ρt). Therefore (3.5) implies

J1 6
exp(−ad(x,y)2

t )
((1 − ρ)t)Q/2

∫ ρt

0

∫
Rn

|V (z, τ)| exp(−(b − a)d(z,y)2
τ )

(τ)Q/2 dzdτ,

which means

(6.6) J1 6 (1 − ρ)−Q/2Nb−a,∞(V )Ga(x, t; y, 0).
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Next we estimateJ2. From (6.3) we have
(6.7)

J2 =
∫ t

ρt

∫
Rn

exp(−ad(x,z)2
t−τ )

(t − τ)Q/2 |V (z, τ)| exp(−bd(z,y)2
τ )

(τ)Q/2 dzdτ

=
∫ t

ρt

∫
d(z,y)>d(x,y)(a/b)1/2

...dzdτ +
∫ t

ρt

∫
d(z,y)6d(x,y)(a/b)1/2

...dzdτ

≡ J21 + J22.

Whend(z, y) > d(x, y)(a/b)1/2 andτ ∈ (ρt, t), then

exp(−bd(z,y)2
τ )

(τ)Q/2 6
exp(−ad(x,y)2

t )
(ρt)Q/2 .

Therefore

J21 6
exp(−ad(x,y)2

t )
(ρt)Q/2

∫ t

ρt

∫
d(z,y)>d(x,y)(a/b)1/2

×exp(−ad(x,z)2
t−τ )

(t − τ)Q/2 |V (z, τ)|dzdτ,

which gives

(6.8) J21 6 (ρ)−Q/2Na,∞(V )Ga(x, t; y, 0).

Finally we will estimateJ22. From (6.7), we have
(6.9)

J22 6 (ρt)−Q/2
∫ t

ρt

∫
d(z,y)6d(x,y)(a/b)1/2

exp(−ad(x,z)2
t−τ )

(t − τ)Q/2 |V (z, τ)|dzdτ.

If d(z, y) 6 d(x, y)(a/b)1/2, then

d(x, z) > d(x, y) − d(z, y) > d(x, y) (1 − (a/b)1/2).

Hence

exp(−a
d(x, z)2

t − τ
) = exp(−a

d(x, z)2

2(t − τ)
) exp(−a

d(x, z)2

2(t − τ)
)

6 exp(−a
d(x, z)2

2(t − τ)
) exp(−a

d(x, y)2

2(t − τ)
(1 − (a/b)1/2)2)

6 exp(−a
d(x, z)2

2(t − τ)
) exp(−a

d(x, y)2

2(1 − ρ)t
(1 − (a/b)1/2)2).
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Here we have used the fact that0 < t − τ 6 (1 − ρ)t. Now takingρ so that

(6.10)
(1 − (a/b)1/2)2

2(1 − ρ)
= 1,

we obtain,

(6.11) exp(−a
d(x, z)2

t − τ
) 6 exp(−a

d(x, z)2

2(t − τ)
) exp(−a

d(x, y)2

t
).

Substituting (6.11) to (6.9) we have

J22 6
exp(−ad(x,y)2

t )
(ρt)Q/2

∫ t

ρt

∫
d(z,y)6d(x,y)(a/b)1/2

exp(−ad(x,z)2
2(t−τ) )

(t − τ)Q/2 |V (z, τ)|dzdτ,

which yields

(6.12) J22 6 (ρ)−Q/2Na/2,∞(V )Ga(x, t; y, 0).

Combining (6.8) and (6.12) we have

(6.13) J2 6 2(ρ)−Q/2Na/2,∞(V )Ga(x, t; y, 0).

Inequalities (6.6) and (6.13) infer (6.2) withc = min{b − a, a/2} and the
lemma. q.e.d.
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