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1 Introduction

We shall study the global existence and blow up of the following semilinear
parabolic Cauchy problem
(1.1)

Hu = Hou+uP = X (a;j Xju) — 0w+ uP = 0in R™ x (0, 00),

u(x,0) = ug(z) = 0in R",

wherea;; = a;;(z,t) are bounded measurable functions and the matrix
A = (a;5) is uniformly elliptic. X;, j = 1, ..., k are smooth vector fields in
R"™ and X7 is the formal adjoint ofX ;.

Basic assumptions.

(). We assume thak; satisfy the Hhrmander’s condition for hypo-
ellipticity i.e. the rank of the Lie algebra generated Ny, ... X,, equals
n. Given two pointse,y € R”, d(z,y) will be the (X3, ..., X,)-control
distance; x| denotes the Euclidean distanegx) = d(x,0); B(x,r) will
represent the metric bafly € R"|d(z,y) < r}. Properties of the dis-
tance, metric balls and the fundamental solutioné/gthave been studied
extensively in [NSW], [FeS], [KS1, 2] and [Sa];

(ii). There are positive constanty, B, C andb such that
(1.2) |B(x,7)| = Br?; lim d(z) = oo; lim |z| = oo

|x|—o00 d(z)—o0

(iii). G, the fundamental solutio@' of the linear operatof in (1.1),
satisfies
1 _ d(z.y)? C _pdew)?

b(t—s) . [ — t—s
C(t—S)Q/2e i <G(fcat7y73)< (t—S)Q/Qe )

(1.3)
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forallz,y € R"and allt > s. X,;G(.,t;y,s) € L7 (R")forj=1,....k
andt > s.

Equation (1.1) contains two important special cases. WXign-= 0,
j =1,...,n, the distance is just the Euclidean distance and (1.1) is just an
uniformly parabolic equation oR"™ x (0, c0). The well-known result by
Aronson in [A] assures (1.3) is true faf = n.
Another caseiswhed = I, n = 2m + 1, and
0 0 0 0
Xi = g, TGy K = g T Mgy
whenj = 1,...,m. Here(x1,...,zm), (y1, ..., ym) € R™ andl € R'. We
all realize thatXy, ..., X5, is a basis for the Lie algebra of left invariant
vector fields on the Heisenberg grolf”, which is the Lie group whose
underlying manifold iSR?"+! endowed with the group law

(v,w, (W W' 1) = (v+ 0w+ w1+ 1+ 200w —vw')),

wherev, v/, w, w’ € R™, 1,1’ € R'. Then the equatiof{v = 0 in (1.1)

is the semilinear heat equation BE" x (0, c0). Itis well-known that (1.2)
and (1.3) hold with) = 2m + 2 which is the homogeneous dimension. Let
z = (v, w) then the distance function i (z,1), (0,0)) = (|z|* + 12)/4.

Inthe Euclidean case problem (1.1) has been studied by many authors. In
the famous paper [Fu], Fujita proved the following results: (a) when I,
l<p<1+ % andug > 0, problem (1.1) possesses no global positive
solutions;

(b)whenA =1,p > 1+ % anduy is smaller than a small Gaussian,
then (1.1) has global positive solutions. 5 % is the critical exponent.

When A is no longer the identity matrix, Meier [Me] showed that a
critical exponent also exists.

In many occasions people would like to see the existence of global pos-
itive solutions for a wider choice of initial values than those that decay
exponentially. Itis also desirable to know the range of the critical exponents
whenA is not just the identity matrix. In this paper we pick up the study in
these matters.

In the general case, again we are mainly interested on the existence of
global positive solutions. In recent years many authors have undertaken the
research on linear subelliptic operators and their parabolic counter part. Our
motivation for the study of the general semi-linear problem not only comes
from a desire of generalization but also from the apparent need for new
techniques. In fact the prevailing method in treating (1.1) relies on certain
comparison results controlling solutions of (1.1) by those of some equations
with constant coefficients. However this method does not seem to fit the
new case because the intrinsic operators on the Heisenberg group and many
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other Lie groups are not of constant coefficients. The method we are using,
which are based on some new estimates of heat kernels, are able to produce
the following theorems which are new not only to the group case but also to
the old Euclidean case.

Definition 1.1. A functionu = u(z,t) such thatu, Xiu, ..., Xyu € L3 .
(R™ x (0,00)) is called a solution of (1.1) if

t
u(z,t) = N G(w,t;y,O)UO(y)dy+/o - G(x,t;y, s)uP(y, s)dyds

forall (z,t) € R" x (0, 00).
The main results of the paper are the next three theorems.

Theorem A. (global existence) Suppoge> 1 + % There exists a constant

bo > 0, such that for each nonnegativg € C?(R") N L'(R") satisfying
up(z) < m?% for all x € R"™, there exists a positive and continuous
solution of (1.1).

Theorem B. Supposey > 3 + %. There exists a constahy > 0, such

that for each nonnegative, € C?(R") satisfyingug(z) < H"TO(I) for all

x € R", there exists a positive and continuous solution of (1.1).
In the next theorem we present a blow up result.

Theorem C. (a). Supposey; = d,,, j = 1,2...,n. If p < 1 + 2, then the
only global non-negative solution of (1.1) is zero.

(b). Supposédj in (1.1) is the heat operator dH™ x (0, co) whereH™
is the Heisenberg group. f < 1 + 2, then the only global non-negative
solution of (1.1) is zero. Her® = 2m + 2 is the homogeneous dimension
of H™.

Remark 1.1In the papers [LN] and [W], Lee, Ni and Wang studied (1.1)
in the case wheifi is the heat equation iR™ x (0, ). They provided

a nice condition ony so that (1.1) has global positive solutions. However
their methods seem to rely on the assumption Hiats the heat equation,
which is of constant coefficients. It would be interesting to see whether their
condition onug would suffice for the general case we are studying here.

Remark 1.20ne may ask whether Theorem C holds for (1.1) in general.
At this moment we do not know the anwser. We will explain the difficulty
in Sect.5. Wher: = (a;;) are smooth and time-independent, part (a) of
Theorem C was proved in [U].

Let us briefly discuss the method we are going to adopt. We will use
the Schauder fixed point theorem to achieve existence. This requires us to
obtain a number of new estimates involving the heat kernel. These estimates
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are presented in sections two and six. Theorem A, B and C will be proved
in sections three, four and five respectively.

We conclude the introduction by listing notations that will be used fre-
quently in the paper.

G = G(z,t;y,s) will denote the fundamental solution of the linear
operatorH in (1.1). For any > 0, we write
1 d(z,y)’

(1.4) Ge(z,t;y,s) = i ser exp(—c P—

)s t>s.
Let ug be a positive function ir>°(R") anda > 0, we write

(1.5) ha(z,t) = Ga(x,t;y,0)uo(y)dy;
Rn

(1.6) h(z,t) = o G(z,t;y,0)up(y)dy.

GivenV = V(x,t) andc > 0, we define

t
Neoo(V) =SUP,. / / Vg, )|Gela, t;y, )dyds
(1.7) —oo JRE

+ sup, s Viz,t)|Ge(z,t;y, s)dxdt.
R, [V (z, 1) y

We note that the quantityV. (V') may be infinite for somé& . However
Proposition 6.1 below shows that . (V') < ooforallc > 0if [V (y,s)| <
C/(1 + d(y)P) for a@ > 2. This fact, which seems unrelevant right know,
will allow us to use the Schauder fixed point theorem via Lemma 6.1 in
Sect. 6. Before going to the next section we remark éhatill always be
absolute constants that may change from line to line.

2 Preliminaries

Inthis section we provide two lemmas concernjigg G (z, t; y, 0)uo(y)dy.
Lemma 2.1.Givena > 0, let
(2‘1) ha(xat) = Ga(x7t; y>0)u0(y)dy7

R'VL

whereu is a bounded non-negative function. The following two statements
are true.
(a). Givenp > 1, there exists a constant(p) such that

(2.2) h2(2,t) < C(p) [Juol [} = ha(z,1),
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forall t > 0.
(). If limg () o0 uo(z) = 0, thenlimg,) o ha(x,t) = 0 uniformly
with respect ta > 0.

Proof. (a). Clearly

_ L d@y)?/t) L o d@y)?/(at)
- /... @ wolv) a7 w

wheregq is the conjugate gb. By Holder’s inequality and since

R”

we have
1 2 1 2
p _ - —ad(zy)?/t P _ = —ad(zy)?/t 7.1p/q
et < [ ane by [ e dy)
1 2
p—1 —a d(z, t
<C) llllf | e M0 oty

The last inequality implies (2.2). This proves (a).
Next we prove (b). For any > 0, let R > 0 be such thaty(y) < §/2
whend(y) > R. Whend(x) > 2R we have

_ L —ad@y?
ha(z,t) = /d(y)>R me uo(y)dy

_%// e D uo(y)dy
d(y)

<R t@/2
< é / %e—a d(z,y)Q/tdy
2 Jay>r 19

+:/ 1 d(z,y)?
<R d(z, y)Q tQ/2
« e~ d@y)?/(2t) ;—a d(z’y)Q/(Qt)UO(?/)dy

c / oo d(:c,y)2/(2t)uo(y>dy
d(y)<R

<06/2+m

RO

<C62+C——~— oo

< 09,

whend(z) is sufficiently large. This proves (b). g.e.d.
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Lemma 2.2.(a). Givena € (0, 1], supposery € L, uy > 0 andug(z) <
C/d(x)* whend(x) is large, then

(2.3) ha(2,1) < C(L+ [[ug =) /d(2) 217,

whend(z) is large.
(b). Suppose < ug(x) < C/(1 +d(z)?) andug € L'(R™), then

ha(@,t) < C(1 + |luoll1)/(1 + d(x)®),

forall t > 0 andz € R™.

Proof. First we prove (a). The proof starts as that of part (b) of the previous
lemma. Without loss of generality we assume that ug(z) < C/(1 +
d(z)*) for a constantC. GivenR > 0 and whend(z) > R we have

1 2
hale,t) = / L e d@n/t g (y)dy
d(y)>R t9/?

C L —ady)?
< - —ad(zy) /td
1+ Re /d(y)>R 12" !
aw<r A, y)? 12
x =0 dwy)* /(20 g=a dxy)*/ (20 (1)) dy
C c ’
. N / e~ A )/ (200 (1) dy
1+ R (d(z) — R)? Jaw)<r o
c R®
< oo,
St re T —ma el

In the above we have used the fact tifigt, -e @ d@y)*/tqy < C.
For eachr, we pick R so thatd(z) = R(1 + d(x)'/(@+1)). Then

C CHUOHLOO

"l S T @) A+ dw V@ @@

Whend(z) > 1, the last inequality implies

C(L + [Juol|r=)

whena € (0, 1].
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Next we prove (b). Following the proof of part (a) of the lemma (replace
a by Q) we find, ford(z) > R,

<Y Y
ST1+RQC T (d(x) — R MONE®RY:

Part (b) is thus proved by taking so thatd(z) = 2R. g.e.d.

3 Proof of Theorem A

This section is divided into three parts. In the first part we list a number of
notations and symbols, which include an integral operator and an appropriate
function space. In the next part we will prove Lemma 3.1 which states that
the integral operator has a fixed point in the function space. Theorem A will
be proved in the end of the section.

First we recall and define a number of notations. Given a positjve
L>(R™), write

(3.1) h(z,t) = . G(z,t;y, 0)uo(y)dy.
Here G is the fundamental solution of the operafdy in (1.1). By (1.3),
there are positive constantsandb such that

d(z,y)?

. < - - _
G($7t7y?8) ~ (t—S)Q/Q exp( b t_S

) = CGy(x,t;y,s),

forallt > sandz,y € R™.
Foru € L>°(R" x [0,00)), we defin€el” to be the integral operator:

t
32 Tul)=het+ [ [ Gty sdyds
0o JR»
For any constants > 0,d > 1 andM > 1, the spaceS, is defined by
Sqg = {u(z,t) € C(R" x [0,d]) | 0 < u(z,t) < Mhqo(x,t)}

where the functiork,, is given by (2.1).
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From this moment, we fix the numbeito be a positive number strictly
less tharb, which is the constant in the Gaussian upper bound-fofhis
choice ofa is crucial when we prove Lemma 3.1 below. Since< b we
have

G(z,t;y,s) < CGy(2, 5y, 5) < CGa(z, 13y, 5),
h(z,t) < Chyp(z,t) < Chq(x,t).

Next we present a Lemma which will lead to a proof of Theorem A. The
idea is to show that the operatbrhas a fixed point irb,.

Lemma 3.1.Givenp > 1+ 2, for anyd > 1, there exist constants > 1,
M > 1 andby > 0 independent of such that the integral operator (3.2)
has a fixed point inS,;, provided thatu, € C?(R"™) N L}(R™) and0 <
ug < bo/(1+d(2)?).
Proof. Step 1We want to use the Schauder fixed point theorem. To this end
we need to check the following conditions.

(i). Sg is nonempty, closed, bounded and convex.

(i). TSy C Sy.

(iii). TS, is a compact subset &f; in L norm.

(iv). T is continuous.

Step 2Condition (i) is obviously true. So let’s verify (ii), which requires us
to show that) < Tu < Mh, when0 < u < Mh,.
Sincep > 1+ % we can writep = p; + p» such thatp; > 1 and

P2 > % For anyu € Sy, u < Mh,; hence Lemma 2.1 (a) implies, since
[[uo|[ Lo < bo,

uP (y, s) < CMPHJuo| [ haly, ) < CMPbE " ha(y, 5).

Lemma 2.2 (b) implies
(3.3)

C
uP?(y,s) < MP2hE? (y,s) < MP?|

e V 2
1+d(y)Q] TseM

D2
1+ d(y)r=Q’

for all s > 0. For convenience we write

1

Vi(y) = W-

Therefore
uP?(y,s) < CMP2V (y).

Recalling the definition oh,, in (2.1) and using the previous inequalities,
we have
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uP(y, s) = uP' (y, s)ul(y, s)

(3.4) < C’M/pbgr1 / Go(y, s;2,0)ug(z)dz.

Substituting (3.4) into (3.2) and using Fubini’s theorem we obtain

Tu(z,t) < (mt+CMpbp11/n//n

(3.5) xG(z,t;y,5)|V(y)|Galy, s; 2,0)dyds ug(z)dz,

Remembering that

s o7z &p(=bd(x,y)*/(t — 5)) = CGy(x, Ly, 5),

G t: < ——
(JJ, 7975) (t—S)

we have
t
/ Gz, t; 9, 9)|V ()| Caly, 5; 2, 0)dyds
0 R"L

t
<cC / G, £, 5)|V ()| Galy, 5: 2, 0)dyds
0 Rn

At this stage we quote the following inequality (3.6) which was first
proved in [Zhang3] for the Euclidean case. We will prove (3.6) as part of
Lemma 6.1 in Sect. 6. Given> a,

t
/ /R Gl 1, 9)|V (1) Ga(y, 5 2, 0)dyds
0 n

(3.6) < CCupNeoo(V)Go(2,t; 2,0),

for all t > 0 and some positive andC,, ;. Here the expressioN, (1),

defined in (1.7), denotes a number related to any given fundtioBy

Proposition 6.1 in Sect. 5, we know that (V') is a finite number since

V(y) =1/(1+ d(y)"?) andp»Q > 2 by our choice o, > 3.
Combining (3.6) with (3.5), we reach

Tu(z,t) < h(x,t) + CMPHE " CoyNe oo (V) G(z,t;2,0)up(2)dz,
R”

which yields

(3.7) Tu(z,t) < (C 4+ CMPW ' CfyNe oo (V) ha(, t)
By taking M > 2C' andb, suitably small we find that

(3.8) 0 < Tu(z,t) < Mhg(x,t).
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Thus condition (ii) is satisfied.

Step 3Now we need to check condition (iii). We note that the local regularity
theory for solutions of uniformly parabolic equations can be transplanted
to the operatotH, in (1.1). For brevity we refer the reader to the papers
[KS1] or [Sa] for details. By our choice, functionsin S; are uniformly
bounded and therefor&yu is equicontinuous and in factdtder continuous.
This is becaus&'u actually satisfies, in the weak sengg,(Tu) = —uP in
R" x (0,d) andTu(x,0) = up(z) andug € C?(R™). Taking into account
that

0< lim Tu(z,t) <C lim hg(z,t)=0

d(z)—o0 d(z)—o0

uniformly (by Lemma 2.1 (b)), we know, from (1.2), that
lim Tu(z,t) =0

|z|—o00

HenceTl S, is arelatively compact subset§f. This is an easy modification
of the classical Ascoli-Arzela theorem (see [Zhao]). Hence we have verified

(iii).
Step 4 Finally we need to check condition (iv).

Givenu; andus in Sy, we have, by (3.2),
(3.9)

(T =Two)e.t) = [ ] Glantin.s) () — (o, o)y

Next we notice that

—1 —1
[uf (y, s) —uh(y, s)| < pmax{ul™ (y,s),ud" (y,s)}Hui(y, s) —ua(y, s)|.

Using (3.3) onu? " andu’ ™" we have

Cmpr-1

(1 + d(y)P2@)P=1)/p2 lu1(y, s) —u2(y, s)|.

[uf (y, s) — uy(y, s)| <
i.e.
4 (y, 5) — ub(y, s)| < CMPHV ()] P~V P2y (y, 5) — ua(y, 5)].

Substituting the last inequality to (3.9) we obtain

t
HTul - TUQHLoo < Hul - u2||Loo/0 /R G(:U,t; Y, S)[V(y)](p—l)/mdyds
< Cllug — up|| e Neoo(VED/P2),

Herec is a suitable constant. Singe= p; + p2 andp; > 1 we know that
p—1 > po. Taking into account thdt (z) < 1 we haveN, .. (VP-1/rz) <
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N (V). The later is a finite constant due to Proposition 6.1. This proves
the continuity of7" and the lemma. g.e.d.

Now we are ready to give the
Proof of Theorem A.
Foranyd > 1, letuy be afixed point of"in the spacé&,; as givenin Lemma
3.1. Define
t t < d;
Ud(:c?t) = Ud(x7 )’
uq(z,d), t>d.

Then from the proof of Lemma 3.1 ( (3.8) e.g.), we know th&t;} is
uniformly bounded and equicontinuous. Hence there is a subseqiénce
m = 1,2,..} which converges uniformly to a functiomin any compact
region ofR”™ x [0, c0). Forany fixed z, t) € R™ x [0, oo) andm sufficiently
large, we know that

t
u%@¢>=h@¢w+/ Gl t;y, YU (y, 5)dyds.
0 R

This is becausé/,,, is a fixed point off" in Sy,,. Now by the dominated
convergence theorem,satisfies

t
) = hat)+ [ [ Glatiy s s

forall (z,t) € R™ x [0, 00). Moreover, by (3.8) We know
0 <u(x,t) < Mhg(z,t)

forall (x,t) € R™ x [0, 00). Clearlyu is a global positive solution of (1.1).
This finishes the proof. g.e.d.

4 Proof of Theorem B

In this section we shall prove Theorem B.

Proof of Theorem B.The proof closely follows the lines of that of Theorem
A except that we will choose a new initial function. From this moment, while
keeping other symbols unchanged, we assume that the initial fungtion
satisfies

(4.1) Uy € CQ(RH), 0<ug<by and UO(ZL‘) < bo/(l + d(:U))

Just like the proof of Theorem A, we start by proving the counter part of
Lemma 3.1, which is stated as the subsequent claim.
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Claim. Givenp > 3 + % forandd > 1, there existC > 1, M > 1
andby > 0 independent of such that the integral operator (3.2) has a fixed
point in .Sy, provided that the initial value, satisfies (4.1).

The proof of the claim is very similar to the proof of Lemma 3.1. We
need to verify that

(). Sg is nonempty, closed, bounded and convex;

(ii). T'Sq C Sg;

(iii). TS, is a compact subset &f; in L norm;

(iv). T is continuous.

Comparing to the proof of Lemma 3.1, the only significant difference
occurs in the proof of (ii), which, for simplicity, will be the only one given
in detail below.

We need to shoW'S,; C Sy. Sincep > 3 +3 2 we can writep = p; + po

suchthap; > 1andps > 2+§ Foranyu € Sd, < Mh,, hence Lemma
2.1 (a) implies

WP (y,8) < CMPH[uol [ ha(y, 5) < CMPUH ™ ha(y, 5).
Lemma 2.2 (a) withx = 1 implies

C
1+ d(y)Q/(QH)]

P2

uP(y, s) < MP2hi? (y, s) < MP2[

1
1 + d(y)rQ/@+1)’

(4.2) < CMP?

for all s > 0. For convenience we write

1
Wiy) = 1 + d(y)P2Q/(@+1)"

Therefore
uP(y,s) < CMPW (y)

for all s > 0. Recalling the definition ok, in (2.1) and using the last two
inequalities, we have

uP(y,s) = u’ (y, S)Um(y s)
4.3) < CMPHE™ 'w / Ga(y, s;2,0)up(2)dz.

Substituting (4.3) into (3.2) and using Fubini’'s theorem we obtain

Tu(z,t) < (xt+CMpbp11/n//n

(4.4) xXG(z,t;y,s)|[W(y)|Galy, s; z,0)dyds ug(z)dz,
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Remembering that

Gl by, 5) € o exp(—bd(z,y)*/(t — 5)) = CCu(a. i, 9).

(t—s)

we have
t
/ G(z,t;y, )W (y)|Galy, 3 2,0)dyds
o JRn

t
<c/ G, 9, 5)|W ()| Ga(y, 53 2, 0)dyds
0 R”
S CCupNeoo(W)Go(x,t; 2,0).

To reach the last inequality, we again quote (3.6) which will be proved as
Lemma 6.1 in Sect. 6. By Proposition 6.1 in Sect. 5, we knowahat, (W)
is a finite number sincd’ (y) = 1/(1+d(y)P2?/(@+D) andp2Q/(Q+1) >
2 by our choice ofp, > 2 + %.
Substituting the last inequality into (4.4), we obtain

Tu(x,t) < h(x,t) + CMpbgrlca’ch,oo(W) G(z,t; 2,0)up(2)dz,
Rn

which yields

(4.5) Tu(z,t) < (C + CMPOE ' Cf y Ne.oo (W) ha(z, )

By taking M > 2C' andbg suitably small we find that

(4.6) 0 < Tu(z,t) < Mhq(x,t).

This proves the claim. The rest of the proof for Theorem B is identical to
that of Theorem A and is hence omitted. g.e.d.

5 Proof of Theorem C

Proof of part (a). In this part,Hy in (1.1) is just an uniformly parabolic

operator inR™ x (0, c0) and the distancé(z, y) is just the Euclidean one.
Supposeu is a global positive solution of (1.1), by Definition 1.1, we

know thatu solves the integral equation

(5.1)

t
u(z, ) :/HG(M; Y, O)uo(y)dy+/0 o G(x,t;y, s)uP(y, s)dyds,

for all (x,t) € R™ x [0,00). By the lower bound in (1.3) and using the
notation in (1.4), we can find positive constaatndC' such that

(5.2) G(z,t;y,s) = CGe(x, t;y, s)
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for all z,y € R™ andt > s. Merging (5.1) with (5.2), we obtain

u(x,t) = C Ge(z,t;y,0)up(y)dy
Rn

t
(5.3) -+c7j/ Gel, t;y, )P (y, s)dyds,
0 R"

forall (z,t) € R™ x [0, 00).
Givent > 0, choosindl’ > ¢, multiplying G.(x, T’;0,t) on both sides
of (5.3) and integrating with respect #f we obtain

Ge(z, T30, t)u(z, t)dr
R

= C/ Gc(xaT; O,t) Gc(wat;%o)dm UO(y)dy +
n Rn

t
(5.4) —|—C’/ / Ge(z,T;0,t) Geo(z,t;y, s)dx uP(y, s)dyds.
0 n JRn

Since we are dealing with Euclidean distance, we h&yéxr,T;0,t)
= G.(0,T;x,t). Therefore by the reproducing property of the heat ker-
nel, we reach

Ge(z,T;0,t) Go(x,t;y,0)de = CG.(0,T;y,0) = CG.(y,T;0,0),
Rn

Ge(z,T;0,t) Ge(x, t;y, s)de = CG(0,T;y,s) = CG.(y,T;0,s).
Rn
Substituting the last two equalities into (5.4), we see that
Ge(z, T30, t)u(z, t)dz
Rn
(5.5) 2C | Ge(y,T50,0)uo(y)dy
Rn
t
+C/ Goly, T:0, 5)u (y, 5)dyds.
0o JR»

Using Holder’s inequality and the fact thg};,, G.(y, T'; 0, s)dy = C, we
obtain

Ge(y,T50,s)u(y, s)dy
Rn

= [ GYi(y,T;0,5)GP(y, T;0,s)uly, s)dy
Rn

<Cl|  Ge(y, T;0,8)u(y, s)dy)"/?,
Rn
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wherel/p + 1/q = 1. Inequality (5.5) then implies
Ge(z,T50,t)u(z, t)d
Rn

(5.6) >C | Ge(y,T50,0)uo(y)dy
Rﬂ,

t
e / [ Goly.T:0, s)uly, s)dy)"ds.
0 Rn

Without loss of generality we can assume thgtr) > e whend(x) < §
wheree anddj are two small positive numbers. This assumption together with
(1.4) enable us to find a constarit> 0 so that

R Gc(y7 T7 07 O)uO (y)dy
(5.7) ’

> / ! 2€_Cd2(y)/T6dy > C/T”/Q, T>1.
d(y)<s T

Going back to (5.6) and writing () = [g. Ge(,T;0,t)u(z, t)dx, we
have

t
5.8) I >C/TV? 4 c/ JP(s)ds, T>tT>1.
0

Using the notatioy(t) = f(f JP(s)ds, we obtain, from (5.8),

(5.9) g1)/1/T" +g(t))" = C.
Integrating (5.9) frond to 7" and noticingg(0) = 0, we have
1

T
- (1/T™/2 + g(t))p—1 \o > (p—-1)CT

and therefore
(5.10) T P=D/2 > (p —1)CT,
forall 7 > 1. Thisis possible only whem > 1 + % Part (a) is thus proved.

Proof of part (b). Inthis part,Hj in (1.1) is the heat equation "™ x (0, 0o).
Supposeu is a global positive solution of (1.1), by Definition 1.1, we

know thatu solves the integral equation

(5.11)

t
ww,t) = [ Gla, by, 0)ug(y)dy + / G, t;y, 8)uP (y, 8)dyds,
R" 0o JRn

forall (z,t) € R" x [0,00). Heren = 2m + 1.
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Givent > 0, choosingdl" > ¢, multiplying G(x, T'; 0,t) on both sides of
(5.11) and integrating with respectotwe obtain
(5.12)

G(z,T;0,t)u(x,t)dx
Rﬂ,

>0 [ [ G Ti0.0) Glatiy, 0)ds uoly)dy +
n Rn
t
+ C/ / G(z,T;0,t) G(z,t;y, s)dx uP(y, s)dyds.
0o JrR® JRn

Even thoughH is an operator with variable coefficients, the fundamental
solutiond still enjoys the symmetry

Gz, T;y,t) = Gy, T;z,t)

forall z,y € H™ andT > t (see [G]). Therefore by the reproducing
property of the heat kernel, we reach

G(z,T;0,t) G(z,t;y,0)dz = CG(0,T;y,0) = CG(y,T;0,0),
Rn

Gz, T;0,t) Gz, t;y, s)de = CG(0, Ty, 5) = CG(y, T; 0, 5).
Rn

Substituting the last two equalities into (5.4), we see that

G(x,T;0,t)u(z, t)dx
R’ﬂ

(5.13) >C | G(y,T;0,0)uo(y)dy
Rn

t
+ C'/ G(y,T;0,s)uP(y, s)dyds.
0 JR™

Using Holder’s inequality and the fact thg,, G(y, T;0, s)dy = 1, we
obtain

G(y,T;0,s)u(y, s)dy
Rn

= [ GYUy,T;0,5)GY?(y, T;0, s)u(y, s)dy
Rn

<Ol Gy, T;0,8)uP(y, s)dy] /7,
Rn
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wherel/p + 1/q = 1. Inequality (5.13) then implies
G(z,T;0,t)u(z, t)dx
R’IL

(5.14) >C | Gy, T;0,0)uo(y)dy
Rn

t
v [1] G0 suly.s)yps
0 JRn
The rest of the proof is similar to part (a).
Without loss of generality we assume that is strictly positive in a

neighborhood of. Using the lower bound in (1.3) faF, we can then find
a constant” > 0 so that

(5.15) G(y,T;0,0)uo(y)dy > C/T9?, T >1.
Rn

Going back to (5.14) and writind (t) = [g. G(x,T;0,t)u(z,t)dz, we
have

t
(5.16) J(t) = C/T?? + C/ JP(s)ds, T >tT>1.
0

As in part (a), (5.16) implies
TRP=V/2 > (p — 1)CT,

for all 7" > 1. This is possible only whenp > 1 + % g.e.d.
Remark 5.1In the general case we do not know whether the relations
Ge(a,t;2,7)Ge(2, 73y, 8)dz = CGe(x, 3y, 5)
Rn

or G(z,t;y,s) = G(y,t;z,s) still hold. This is the difficulty in adopting
the proof of this section to treat (1.1) under the basic assumptions in Sect. 1.

6 Two inequalities

In this section we mainly present Proposition 6.1 and Lemma 6.1. The later
contains two new inequalities involving heat kernels, including (3.6) which
we used in the proof of the Theorems A and B. The proof of the inequalities
in the Euclidean case was first given in [Zhang3].
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Proposition 6.1.Supposé’” = V(x, t) satifies) < V(z,t) < for

B > 2, then

_C
1+d(z)8
Neoo(V) < 0 forall ¢ > 0.
Proof. Observing that
t
| Gelastiy s < (e,

[ee]
/ Golas by, 8)dt < CJd(r, )%,

we know

C C
Neoo(V) < su d
(V) xa5/;11+dwwd@%wQ2 y

/ ¢ ¢ dy +
= sup —
zeR™ Jd(x,y)=d(y) 1+ d(y)ﬁ d(x, y)Q 2
C C
sup —
zeR™ Jd(z,y)<d(y) 1+ d(y)ﬂ d(.%’, y>Q 2

dy

_ / C C s
X Sup —
zeR™ Jd(x,y)<d(y) 1+ d(y)ﬁ d(y>Q 2

/ C C dy
sup —
zeR™ Jd(z,y)<d(y) 1+ d(.%', y)ﬁ d(x, y)Q 2

Ll
S Jre 1+ d(y)P d(y)@2?

v [ OO
su
J:ERI.)" R" 1+ d(l’, y)ﬂ d(.T, y)Q_2 Y

* 7
QC'/ —dr.
0 1+'I"B

Sincef > 2, we knowN, (V) < co.g.e.d.

Lemma 6.1 Supposé® < a < b, there exist positive constants, ;, and c
depending only oa andb such that

t

(7). // Gol(z,t;2,7) |V(2,7)| Gp(z, T3y, s)dzdT
s JR™
< Ca,b Nc,oo(V)Ga(xvt; Y, S);

t
(). [ [ Gulatizr) V()] Galesriys)dzdr
s JR"™
< Cop Neoo(V)Gal(z, ty, s).
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Remark 6.1The conditioru < b is indispensable for Lemma 6.1.

Proof of the Lemma. We will only give a proof of (i) since (ii) can be
handled similarly. For simplicity we write

t
(6.1) J(z,t;y,s) = / / Golz,t;2,7) |[V(2,7)| Gp(z, T3y, s)dzdT.
Clearly we can assume that= 0 and hence we only need to show that
(6.2) J(2,t;9,0) < CNeoo(V)Galz, t;y,0).

Letp € (0,1) to be chosen later, we have

pt t
J(z, t;y,0) = / G |V| Gydzdr +/ / dzdr
(6.3) o Jrn ot JRn

=Ji+ Jo.
We will estimate/; first. To this end let us recall the inequality

2 2 2
dlr.2? | d(zp)? _ da.y)®
t—T1 T—3S8 t—s

By (6.3) we know that

pt ex ad( I )2 bd(zvy)
J1 = / / p( ) |V (z,7)| Mdzdr

(6.4) 0<s<T<Lt.

T)Q/2 ()@
65) / / exp( a;(f o Q+/2 s LN
_ exp(- (bf)c;gd )
By (6.4),
exp(—afA22L JEVT) (o200

Moreovert — 7 > (1 — p)tfor 7 € (0, pt). Therefore (3.5) implies

7y) ,Ot _ _ d(zvy)Q
exp ) SR — )15
J1 < Q/2 / /n ()72 dzdr,

which means

(6'6) Jl < (1 - p)_Q/2Nbfa,oo(V)Ga(xa t; Y, O)'
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Next we estimate/s. From (6.3) we have
(6.7

d(zz d(z,y)>?
exp(— ) exp(—b )
/pt/n T Q/2 |V (z,7)] —( Ll dzdr

¢
:// ...dzdr+// .dzdr
pt Jd(z,y)2d(z,y)(a/b)/? pt Jd(z,y)<d(z,y)(a/b)1/2

= Jo1 + Joo.

Whend(z,y) > d(z,y)(a/b)/? andr € (pt, ), then

exp(—bid(z;y)2 ) exp(—ad(‘%’y)2 )

Therefore

¢ /d(z,y)20’/(%2,1)(60/17)1/2

\V(z,7)|dzdT,

which gives
(6.8) Jo1 < (p) " Nuoo (V) Gal, ;,0).
Finally we will estimate/,s. From (6.7), we have

(6.9)
2
_ad(Z‘,Z) )

¢ exp(
Joo < t_Q/2/ / T (2, 7)|dzdr.
2 s () ot Jazy)<d@y)amyz - (E—7)@/ Vel

If d(z,y) < d(z,y)(a/b)'/?, then

d(z,2) > d(z,y) — d(z,y) > d(z,y) (1 - (a/b)"/?).

B d(z, 2)? d(z, 2)?

- ) T evay ) ewltag

d(z,z)? d(z,y)?

o epl-ag (1 (a2
2

T 2
L exp(-ag 0 (1 /b)),

)

< exp(—a
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Here we have used the fact tilat ¢ — 7 < (1 — p)t. Now takingp so that
(1 - (a/b)'/?)?

6.10 =1,
(6.10) 21— p)
we obtain,
d(z, z)? d(z, z) d(z,y)*
: —a——") < exp(—a, = —a——").
(6.11) exp(—a T ) < exp( a2(t77_))exp( a— )
Substituting (6.11) to (6.9) we have
_,dzy)?y et
ng—exp( . 5 )//
()22 ot Jatzg)<d(w)(a/y /2
exp(—afrs)
R |V (z,7)|dzdT,
which yields
(612) Jaz < (p)iQ/zNa/Zoo(V)Ga(xat;yao)‘
Combining (6.8) and (6.12) we have
(6.13) J2 < 2(p) "2 Nyy2,00(V)Gal, 19, 0).

Inequalities (6.6) and (6.13) infer (6.2) with= min{b — a,a/2} and the
lemma. g.e.d.
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