
Math. Z. 224, 49– 63 (1997)

Self-dual manifolds with positive Ricci curvature

Claude LeBrun1,?, Shin Nayatani2, Takashi Nitta3

1 Department of Mathematics, State University of New York, Stony Brook, NY 11794, USA
2 Max-Planck-Institut f �ur Mathematik, Gottfried-Claren-Stra�e 26, D-53225 Bonn, Germany
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Introduction

An oriented Riemannian 4-manifold (M; g) is said to be self-dual if its Weyl
curvature W, thought of as a bundle-valued 2-form, satis�es W = ?W, where
? denotes the Hodge star operator. Because both W and ? are unchanged if
the metric is multiplied by a positive function, this property is conformally
invariant, and the term self-dual is thus often used to describe the conformal
class [g] := {ug | u : M C∞→ R+} rather than the metric g which represents it.
Two familiar examples of compact self-dual manifolds are provided by

the symmetric spaces S4 = SO(5)=SO(4) and CP2 =SU (3)=U (2). For many
years, these were the only known examples of compact simply-connected
self-dual manifolds with positive scalar curvature, and it was therefore a
major breakthrough when Poon [15] constructed a one-parameter family of
positive-scalar-curvature self-dual metrics on CP2 #CP2; here the connected
sum operation # is carried out by deleting balls from the given manifolds
and then identifying the resulting boundaries in a manner compatible with the
given orientations. Motivated by this discovery, Donaldson–Friedman [6] and
Floer [7] abstractly proved the existence of self-dual metrics on the n-fold co-
nnected sum

nCP2 := CP2 # · · · #CP2︸ ︷︷ ︸
n

for every n. The �rst author [12] then realized that such metrics on nCP2
can be constructed explicitly by means of the so-called “hyperbolic ansatz”
reviewed below in Sect. 2. This last method has the added advantage that each
of the conformal classes so constructed can be seen to contain a representative
of positive scalar curvature.
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On the other hand, the examples provided by S4 and CP2 actually have pos-
itive Ricci curvature, and, in light of the work of Cheeger [4], Anderson [1] and
Sha–Yang [16], it is natural to ask whether there are other compact 4-manifolds
which admit self-dual metrics with this property. Our objective here is to show
that the answer to this question is yes. We will accomplish this (Sect. 4) by
explicitly constructing such metrics on nCP2 when n = 2 and 3; moreover,
it will turn out that each of Poon’s conformal classes on 2CP2 contains such
a metric. On the other hand, it is rather easy (Sect. 1) to see that a com-
pact self-dual manifold with positive Ricci curvature must be homeomorphic
to nCP2 for some n= 0, where by convention 0CP2 := S4. This raises the fas-
cinating question, left unanswered here, of whether nCP2 admits such metrics
when n= 4.
On a related front, Gauduchon [8] has studied self-dual manifolds with

non-negative Ricci operator (cf. Sect. 1), and asked whether 2CP2 and
3CP2 admit such metrics. Our metrics on 2CP2 will be seen to satisfy both
this condition and another, which we call strongly positive Ricci curvature.
In order to prove these positivity results, we will �rst (Sect. 2) need to

compute the Ricci curvature of the general self-dual metric of hyperbolic-ansatz
type. Our results will then follow once we have introduced a suitable choice of
conformal gauge, motivated (Sect. 3) by a re-examination of the Fubini–Study
metric of CP2.

1 Topological preliminaries

The present article is largely motivated by the following easy observation:

Proposition 1.1 Let (M; g) be a compact self-dual 4-manifold with positive
Ricci curvature. Then M is homeomorphic to nCP2 for some n= 0. Moreover;
M is di�eomorphic to nCP2 if n5 4.

Proof. Let the universal cover M̃ of M be equipped with the pull-back met-
ric. Since the Ricci curvature of M̃ is then bounded below by a positive
constant, Myers’ theorem tells us that M̃ is compact, and M̃ → M is there-
fore a �nite-sheeted covering. However, a simple Bochner–Weitzenb�ock argu-
ment [3, 11] implies that a compact self-dual 4-manifold with positive scalar
curvature must have b− = 0. Thus for both M and M̃ , we have b1 = b− = 0,
and hence both have � − � = 2(1 − b1 + b−) = 2, where � is the Euler
characteristic and � is the signature. But � − � is multiplicative under �-
nite coverings because it can be computed from a Gauss–Bonnet formula.
Hence M̃ → M is the trivial covering, and M is simply connected. It now
follows from the work of Donaldson [5] and Freedman that M is homeo-
morphic to nCP2 for some n = 0. On the other hand, a self-dual manifold
with positive scalar curvature, b1 = 0, and � 5 4 must [14] be di�eomor-
phic to nCP2 because its twistor space contains a rational hypersurface of
degree 2.
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It is now natural to ask whether, conversely, the manifolds nCP2 admit
self-dual metrics with positive Ricci curvature. For small values of n we shall
see that the answer is in fact a�rmative.
Rather than merely asking for the Ricci curvature Ric to be positive, one

might ask for its trace-free part Ric0 to be small enough with respect to its
scalar curvature s ¿ 0 so as to guarantee a priori that Ric¿ 0. This motivates
the following de�nition:

De�nition 1.1 Let (M; g) be a Riemannian 4-manifold. Then we will say that
M has strongly positive Ricci curvature if; at each point of M; we have

|Ric0|¡ s

2
√
3
:

Similarly; we will say that M has strongly non-negative Ricci curvature if
s ¿ 0 and

|Ric0|5 s

2
√
3

at every point of M .

Observe that strongly positive Ricci curvature implies positive Ricci cur-
vature. Indeed, if (�1; : : : ; �4) are the eigenvalues of Ric=s, then, in the 3-
plane �1 + · · · + �4 = 1, positive Ricci curvature corresponds to the tetra-
hedron with corners (1; 0; 0; 0); : : : ; (0; 0; 0; 1), whereas strongly positive Ricci
curvature corresponds to the ball of radius 1=2

√
3 around ( 14 ; : : : ;

1
4 ), and this

ball just �lls the in-sphere of the tetrahedron. By the same argument, we
also see that strongly non-negative Ricci curvature implies non-negative Ricci
curvature.

Proposition 1.2 Let (M; g) be a self-dual 4-manifold with strongly positive
Ricci curvature. Then M is di�eomorphic to nCP2; where 05 n5 3.

Proof. The Gauss–Bonnet formulae for the signature and Euler characteristic
of a compact oriented Riemannian 4-manifold (M; g) are

�(M) =
1
12�2

∫
M
(|W+|2 − |W−|2)vg

and

�(M) =
1
8�2

∫
M

(
|W+|2 + |W−|2 − |Ric0|2

2
+
s2

24

)
vg ;

where vg is the metric volume form. Thus any compact self-dual 4-manifold
satis�es

(2� − 3�)(M) = 1
8�2

∫
M

(
s2

12
− |Ric0|2

)
vg ;

and the right-hand side is manifestly positive if the Ricci curvature is strongly
positive. Now M is homeomorphic to nCP2 by Proposition 1.1, and even
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di�eomorphic if n5 4. But the inequality 2�− 3� ¿ 0 implies that n ¡ 4, as
desired.

Rather than focusing on the Ricci tensor of a Riemannian 4-manifold (M; g),
one may instead choose [8] to consider an algebraically equivalent object Ric,
called the Ricci operator, which is de�ned as the full curvature operator minus
its Weyl component. If we let Q denote Schouten’s modi�ed Ricci tensor

Q = Ric− s
6
g ;

the Ricci operator is explicitly given by

Ric(X ∧ Y ) = 1
2
(Q](X ) ∧ Y + X ∧ Q](Y )) ;

where Q] is the endomorphism of TM corresponding to Q and X; Y are any
tangent vectors. It follows that the Ricci operator is positive (respectively, non-
negative) if and only if the sum of the lowest two eigenvalues of Q is positive
(respectively, non-negative). In terms of �1; : : : ; �4, this corresponds to requiring
that

2
3
¿ (resp:=)�i + �j ¿ (resp:=)

1
3

∀i-j ;

which is to say that (�1; : : : ; �4) is a point of the open (respectively, closed)
cube with corners ( 13 ;

1
3 ;
1
3 ; 0); : : : ; (0;

1
3 ;
1
3 ;
1
3 ); (

1
6 ;
1
6 ;
1
6 ;
1
2 ); : : : ; (

1
2 ;
1
6 ;
1
6 ;
1
6 ): Since

this cube is contained in the in-sphere, we therefore have

positive Ricci operator ⇒
strongly positive Ricci curvature ⇒
positive Ricci curvature,

and

non-negative Ricci operator and s ¿ 0⇒
strongly non-negative Ricci curvature ⇒
non-negative Ricci curvature.

Moreover, non-negative Ricci operator and s ¿ 0 fail to imply that the Ricci
curvature is strongly positive only when (�1; : : : ; �4) is a corner of the cube.
Using this observation, we now prove a slightly sharpened version of a result
discovered by Gauduchon [8], using di�erent methods.

Theorem 1.3 Let (M; g) be a compact self-dual 4-manifold with positive
scalar curvature and non-negative Ricci operator. Then either M is di�eo-
morphic to nCP2; 0 5 n 5 3; or else the universal cover of (M; g) is the
Riemannian product R× S3.
Proof. Since the Ricci curvature is strongly non-negative,

(2� − 3�)(M) = 1
8�2

∫
M

(
s2

12
− |Ric0|2

)
vg = 0 ;
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with equality i� |Ric0| ≡ s=2
√
3. If the inequality is strict, 2� − 3� ¿ 0. Thus

b1(M) = 0 and �(M) ¡ 4. The proof of Proposition 1.1 thus implies that
M ≈ nCP2 for n ¡ 4.

If equality holds, (�1; : : : ; �4) must everywhere be one of the corners of the
previously mentioned cube, and Ric therefore has exactly two eigenvalues at
each point of M , one with multiplicity 3 and one with multiplicity 1. It follows
that there is a line sub-bundle of TM , and �(M) = 0. Moreover, b+(M) =
�(M)= 3

2�(M)=0, so that b2(M)=b+(M)=0. Hence 0=�(M)=2− 2b1(M),
and b1(M)=1. Since M has non-negative Ricci curvature, the classical Bochner
argument [2] now says that M admits a parallel 1-form, and thus locally splits
as the Riemannian product of R × N , where N is a 3-manifold. But since
Ric everywhere has a positive eigenvalue of multiplicity 3, N is an Einstein
3-manifold of positive scalar curvature. Thus N has positive constant sectional
curvature, and the universal cover of M is R× S3.

2 Ricci curvature and the hyperbolic ansatz

In this section, we shall compute the Ricci curvature of those self-dual metrics
which arise from the following “hyperbolic ansatz” construction:

Proposition 2.1 [12] Let (H3; h) denote hyperbolic 3-space; which we equip
with a �xed orientation; and let V be a positive harmonic function on some
open set V ⊂H3. Suppose that the cohomology class of 1

2�?dV is integral;
where ? is the Hodge star operator of H3. Let M →V be a circle bundle
with a connection 1-form � whose curvature is ?dV. Then the conformal
class

[g] = [Vh+ V−1�2]

of Riemannian metrics on M is self-dual with respect to the orientation de-
termined by � ∧ vh; where vh is the volume form of H3.

We now wish to calculate the Ricci curvature of metrics in these self-
dual conformal classes. With the most obvious choice of conformal factor, the
answer turns out to be surprisingly simple:

Proposition 2.2 For any positive harmonic function V on a region of H3; the
Ricci curvature of the self-dual metric g = Vh+ V−1�2 is Ricg = −2h.

The V-independence of this Ricci curvature is analogous to the Ricci-
atness of the metrics produced via the Gibbons–Hawking ansatz [9].
While this answer is beguilingly simple, it is also depressingly negative!

Fortunately, the picture will become less bleak once we conformally rescale
our metric:

Proposition 2.3 Let f and V be respectively a smooth function and a positive
harmonic function on a domain V ⊂ H3. Then the Ricci curvature of the
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corresponding self-dual metric g = e2f(Vh+ V−1�2) is given by

Ricg = (−2−4f − 2|df|2 − V−1〈dV; df〉)h− 2Ddf

+2(df)2 + 2V−1dV � df + (−4f − 2|df|2

+V−1〈dV; df〉)(V−1�)2 − 2V−1?(dV ∧ df)� V−1� : (2.1)

Here D;4; and ? are respectively the Levi–Civit�a connection; negative
Laplace–Beltrami operator; and Hodge star operator of hyperbolic 3-space
(H3; h); while | · | and 〈 · ; · 〉 are the corresponding norm and inner product
on 1-forms.

To prove these statements, let us �rst observe that (2.1) is valid i� it
holds for some particular f ; in particular, Propositions 2.2 and 2.3 are logically
equivalent. Indeed, if g0 = Vh+V−1�2 and g = e2fg0, the standard formula [2]
governing the alteration of curvature by conformal rescaling yields

Ricg = Ricg0 − 2∇df + 2(df)2 − (�f + 2|df|2g0 )g0 ;
where ∇ and � are respectively the Levi–Civit�a connection and negative
Laplace–Beltrami operator of g0. Now since

∇df = 1
2
Lgradg0f

g0 =
1
2
Lgradg0f

Vh+
1
2
Lgradg0f

V−1�2

=
1
2
LV−1gradhfVh+

1
2
(LV−1gradhfV

−1)�2 + V−1�� (V−1gradhf5d�)

=
1
2
(LV−1gradhfV )h+ V symm(DV

−1df)

− 〈dV; df〉
2V 3

�2 +
�� (gradhf5?dV )

V 2

= Ddf − dV � df
V

+
〈dV; df〉
2V

h− 〈dV; df〉
2V 3

�2 +
�� ?(dV ∧ df)

V 2
;

it follows that
�f = V−14f ;

and we therefore have

Ricg = Ricg0 − 2Ddf + 2V−1dV � df − V−1〈dV; df〉h
+V−3〈dV; df〉�2 − 2V−2�� ?(dV ∧ df) + 2(df)2

− (V−14f + 2V−1|df|2)(Vh+ V−1�2)
= Ricg0 − (4f + 2|df|2 + V−1〈dV; df〉)h
− 2Ddf + 2(df)2 + 2V−1dV � df
+(−4f − 2|df|2 + V−1〈dV; df〉)(V−1�)2 − 2V−2�� ?(dV ∧ df) :

But this will coincide with (2.1) for any particular f i� Ricg0 = −2h.



Self-dual manifolds 55

We now complete our proof by verifying (2.1) for a slightly peculiar choice
of f, best described in terms of the upper-half-space model

h =
dx2 + dy2 + dz2

z2
; z¿0 ;

of H3. We will now set f = log z because [13, Sect. 3] the corresponding
metric

g = z2(Vh+ V−1�2)

is K�ahler with respect to the integrable almost-complex structure

dx 7→ dy; dz 7→ z
V
� ;

with Ricci form

P = −d(V−1�) = −?dV
V

+
dV ∧ �
V 2

:

The Ricci curvature of this metric is therefore

Ricg =
Vz
zV

[
−dx2 − dy2 + dz2 +

( z
V
�
)2]
+
2Vx
zV

[
dx � dz + dy � z

V
�
]

+
2Vy
zV

[
dy � dz − dx � z

V
�
]
:

But, since |df|2 = 1,

Ddf =
1
2
Lgradhfh =

1
2
Lz @@z

(
dx2 + dy2 + dz2

z2

)
= −dx

2 + dy2

z2
;

and 4f = −2, this is exactly the result predicted by (2.1) with f = log z.
Thus (2.1) holds for our particular f, and Propositions 2.2 and 2.3 therefore
follow.
To conclude this section, let us point out that the scalar curvature sg and

the modi�ed Ricci tensor Qg = Ricg − 1
6 sgg are now respectively given by

sg = 6e−2fV−1(−1−4f − |df|2) (2.2)

and

Qg = (−1− |df|2 − 〈 ; df〉)h− 2Ddf + 2(df)2 + 2 � df
+(1− |df|2 + 〈 ; df〉)(V−1�)2 − 2?( ∧ df)� V−1� ; (2.3)

where  = V−1dV = d logV . Notice that the sign of sg is independent of V ;
for applications, cf. [12, 10].
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3 Choosing a conformal factor

The hyperbolic ansatz described in the last section can be used [12] to con-
struct self-dual metrics on nCP2. When n = 1, this construction gives metrics
conformal to the Fubini–Study metric on CP2, and our main tasks here will
be to re-examine the type of conformal factor this entails.
Let {p1; : : : ; pn} be an arbitrary collection of n points in H3, and let

Gj =
1
2
(coth rj − 1)

be the hyperbolic Green’s function centered at pj; here rj is the hyperbolic
distance from pj, and our normalization is chosen so that d?dGj = −2��pj .
Thus

V := 1 +
n∑
j=1
Gj = 1 +

1
2

n∑
j=1
(coth rj − 1) (3.1)

is a positive harmonic function on V=H3\{p1; : : : ; pn} satisfying the inte-
grality condition of Proposition 2.1. Letting (M; �) be the circle bundle with
connection 1-form as in Proposition 2.1, which is uniquely determined up to
gauge equivalence since V is simply connected, we thus obtain a self-dual
metric

g0 = Vh+ V−1�2

on M. If we now use the Klein projective model to identify H3 with the
interior of the closed 3-disk D3, there is a smooth compacti�cation M of M
such that the bundle projection M→H3\{pj} extends to a surjective smooth
map M → D3, and D3 is thereby identi�ed with the orbit space of an S1-action
on M ; in fact, M\M is the set of �xed points of this action, and consists of
a 2-sphere Ŝ2, which projects di�eomorphically to @D3, and n isolated �xed
points p̂j, one for each pj ∈H3. Moreover, g = e2fg0 extends to a self-dual
metric on the compact manifold M ≈ nCP2 whenever f : H3 → R is a smooth
function which behaves like −r near in�nity, where r is the hyperbolic distance
from an arbitrary reference point. When n=0; 1, this construction produces the
conformal classes of the standard metrics on S4 and CP2; when n=2, it instead
yields the self-dual metrics on 2CP2 �rst discovered by Poon [15].

In the above discussion, we assumed for simplicity that f was a smooth
function onH3; and onH3\{pj} smoothness is obviously needed to guarantee
that e2fg0 is smooth on M. On the other hand, the derivative of the natural
projection M → D3 vanishes at each p̂j, and the pull-back of the function
rj is consequently smooth on M\S2. Choices of f with this sort of behavior
near the pj are also allowable, and will in fact turn out to be crucial for our
purposes.
To see why, let us look more closely at the n = 1 case. In geodesic polar

coordinates about p = p1, the hyperbolic metric on H3\p can be written as

h = dr2 + sinh2 r gS2 ;
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where gS2 is the standard metric on the unit 2-sphere. Now the ansatz stipulates
that V = 1 + 1

2(coth r − 1) = (1− e−2r)−1, and hence ?dV = − 1
2!, where !

is the standard area form on the 2-sphere. In order to produce a circle bundle
with this curvature, let � : S3 → S2 be the Hopf map, and let the unit 3-sphere
S3 = Sp(1) be equipped with a left-invariant orthonormal coframe {�1; �2; �3}
such that �∗gS2 = 4(�21 + �

2
2). Then �

∗(− 1
2!) = −2�1 ∧ �2 = d(−�3), and the

desired circle bundle � :M→H3\p may be taken to be the pull-back of �,
with connection form � = −�3, to S2 × R+. Thus

g0 = Vh+ V−1�2 =
1

1− e−2r [dr
2 + 4 sinh2 r(�21 + �

2
2)] + (1− e−2r)�23 :

Setting � = cos−1(e−r), we now have

e−2rg0 = cot2�[tan2�d�2 + tan2� sin2�(�21 + �
2
2)] + cos

2� sin2� �23

= d�2 + sin2�(�21 + �
2
2 + cos

2��23) ;

which is exactly the Fubini–Study metric of CP2, expressed in geodesic polar
coordinates. So far as positive Ricci curvature is concerned, the best possible
choice of f when n = 1 is thus f = −r, and the challenge now facing us is to
suitably generalize this for n¿1. Since we will still need f ∼ −r as r →∞,
one obvious generalization is

f=− r1 + · · ·+ rn
n

:

In the next section, we will see that this choice actually works surprisingly
well when n5 3.

4 Positive Ricci curvature

In the previous section, we associated a conformal class of self-dual metrics on
nCP2 to any con�guration of points {p1; : : : ; pn} in H3. We will henceforth
denote this conformal class by Cp1 ;:::; pn .

Theorem 4.1 Each conformal class Cp1 ; p2 of self-dual metrics on CP2#CP2
contains a metric with strongly positive Ricci curvature and non-negative Ricci
operator.

In fact, the metric g = e2f(Vh + V−1�2) has these properties provided we
set

f=− r1 + r2
2

;

where r1 and r2 are respectively the hyperbolic distances from p1; p2 ∈ H3.
We will prove this by �rst showing that the Ricci operator is non-negative, and
then observing that the Ricci curvature is still strongly positive at the points
where the Ricci operator has non-trivial kernel.
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On an open dense subset ofM⊂M , and with respect to the metric V−1g0 =
h+ V−2�2, we may de�ne an oriented orthonormal coframe {e1; : : : ; e4} by

e1 =
dr1 + dr2
|dr1 + dr2| ; e2 =

dr1 − dr2
|dr1 − dr2| ; and e4 = V−1� :

Let ’ := sin−1〈dr1; e1〉 be the oriented angle between dr1 and e1. Then
df = −(cos’)e1 ;

dV = −1
2

[
dr1

sinh2 r1
+

dr2
sinh2r2

]
= −1

2

[
cos’

(
1

sinh2 r1
+

1

sinh2 r2

)
e1 + sin’

(
1

sinh2 r1
− 1

sinh2 r2

)
e2
]
;

Ddf = −1
2
[coth r1(h− dr21) + coth r2(h− dr22)]

= −1
2
[sin2’(coth r1 + coth r2)(e1)2

− 2 cos’ sin’(coth r1 − coth r2)e1 � e2

+ cos2’(coth r1 + coth r2)(e2)2 + (coth r1 + coth r2)(e3)2] :

Plugging these expressions into (2.3), we see that the components of Q with
respect to the dual frame {ej} of {e j} satisfy

Q11 = (�+ 1) sin
2’+ � cos2’ ¿ sin2’+ � ;

Q22 = (�− �) cos2’− sin2’ ¿ − sin2’ ;
Q33 = (�+ 1)− (� + 1) cos2’ ¿ (� + 1) sin2’ ;

Q34 = Q43 =  sin’ cos’ ;

Q44 = sin
2’+ � cos2’ ;

Q jk = 0 otherwise ;

where � := coth r1+coth r2−2; � := coth2 r1+coth2 r2−2
coth r1+coth r2

, and  := coth r1−coth r2
satisfy �¿�¿ ||.
Now since Q33 and Q44 both exceed sin

2’, and since∣∣∣∣Q33 − sin2’ Q34
Q43 Q44 − sin2’

∣∣∣∣¿ (� sin2’)(� cos2’)− 2 sin2’ cos2’

= (�2 − 2) sin2’ cos2’= 0 ;

the eigenvalues of [Qjk ] in the e3e4-plane exceed sin
2’. Hence three of the

eigenvalues of [Qjk ] exceed sin
2’, whereas the remaining eigenvalue Q22 is

greater than − sin2’. The sum of the lowest two eigenvalues of Q, calculated
with respect to any metric in the �xed conformal class, is therefore positive on
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the domain of our moving frame. But since this domain is actually dense, it
follows that the Ricci operator is non-negative on the entirety of M ≈ 2CP2.
Since Q11¿ (Q33 + Q44)=2 = (�=2) + sin2’, the largest two eigenvalues

of [Qjk ] are at least (�=2) + sin
2’ on the domain of our frame, and the sum

of the lowest and third lowest eigenvalues of [Qjk ] therefore exceeds �=2 on
this region. However, the frame {ej} we have been using is only conformally
orthonormal with respect to g = e2fV (h + V−2�2). We now remedy this by
introducing the g-orthonormal frame e′j := e

−fV−1=2ej, with respect to which
the components of Q become

Q′jk = e
−2fV−1Qjk =

2er1+r2

coth r1 + coth r2
Q jk :

If �1 5 �2 5 �3 5 �4 are the eigenvalues of [Q′jk ]; we therefore have

�1 + �3 ¿
�er1+r2

coth r1 + coth r2
= er1+r2

e2r1 + e2r2 − 2
e2(r1+r2) − 1

= er1+r2
2er1+r2 − 2
e2(r1+r2) − 1 =

2
1 + e−(r1+r2)

¿ 1 :

Because the domain of our frame is dense, the continuity of the spectrum
therefore implies that the sum �1+�3 of the lowest and third lowest eigenvalues
of Q, calculated with respect to g; is at least 1 on all of M . The sum �1 + �2
of the two lowest eigenvalues of Q can thus vanish only at points at which Q
does not have an eigenvalue of multiplicity 3, and the Ricci curvature of g is
therefore strongly positive on all of M .

Corollary 4.2 Any self-dual metric of positive scalar curvature on CP2#CP2
is conformal to a metric of strongly positive Ricci curvature and non-negative
Ricci operator.

Proof. Any self-dual conformal class on CP2#CP2 with a representative of
positive scalar curvature is [12, p. 251] of the form Cp1 ;p2 .

With this success in hand, it seems reasonable, more generally, to inves-
tigate the Ricci curvature of metrics of the form e2f(Vh + V−1�2) on nCP2,
where V is de�ned by 3.1 and

f = − r1 + · · ·+ rn
n

:

In fact, a rough picture is not di�cult to obtain when the points p1; : : : ; pn ∈
H3 are extremely close together. Indeed, consider a sequence of con�gurations
of n distinct points inH3 which converges to the degenerate con�guration con-
sisting of a single point p∈H3 counted with multiplicity n. On the complement
of any ball about p, the curvature of these metrics will converge uniformally
to that of the orbifold metric corresponding to V = 1+nG and f = −r, where
r is the hyperbolic distance from p and G = (coth r− 1)=2. But (2.1) predicts
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that the Ricci tensor of this orbifold limit is

Ric = �[dr2 + (V−1�)2] + �(h− dr2) ;
where

�=
coth r − 1

2 + n(coth r − 1)(4 + 3n coth r − n) ;

�=
coth r − 1

2 + n(coth r − 1)(8 + 3n coth r − 5n) :

Observe that � is positive everywhere on H3 i� n5 4; and that limr→∞ �=� =
0 if n = 4; moreover, we always have � = �. Hence the Ricci curvature of
this orbifold limit is everywhere positive if and only if n 5 3: (When n = 4;
it is still non-negative, but fails to be positive along Ŝ2.) In short, the only
encouraging news pertains to the n=3 case, where the above computation will
help us to prove the following:

Theorem 4.3 If p1; p2; p3 ∈H3 are nearly geodesically collinear and are suf-
�ciently close to each other; then the conformal class Cp1 ;p2 ;p3 of self-dual
metrics on 3CP2 contains a metric with positive Ricci curvature.

To produce self-dual metrics with the positive Ricci curvature on 3CP2,
we start with the above singular model and pull the centers p1; p2; p3 slightly
apart, keeping them geodesically collinear. Outside a neighborhood of p, the
Ricci curvature remains positive by our previous computation. Theorem 4.3 is
thus implied by the following:

Lemma 4.4 There exists an � ¿ 0 such that; for all collinear con�gurations
{p1; p2; p3} ⊂H3; the Ricci curvature of g is positive on the inverse image
of

⋃3
j=1B�(pj).

Proof. Ignoring bounded terms, Ddf ∼ − 1
3

∑
j
1
rj
(h−dr2j );4f ∼ − 2

3 (
1
r1
+ 1
r2
+

1
r3
); V ∼ 1

2 (
1
r1
+ 1
r2
+ 1
r3
); and dV ∼ − 1

2 (
dr1
r21
+ dr2

r22
+ dr3

r23
): Equation (2.1) therefore

tells us that

6V Ric ∼
[
2
(
1
r1
+
1
r2
+
1
r3

)2
−
〈
dr1
r21
+
dr2
r22
+
dr3
r23
; dr1 + dr2 + dr3

〉]
h

+2
(
1
r1
+
1
r2
+
1
r3

)∑
j

1
rj
(h− dr2j )

+2
(
dr1
r21
+
dr2
r22
+
dr3
r23

)
� (dr1+dr2+dr3) +

[
2
(
1
r1
+
1
r2
+
1
r3

)2
+
〈
dr1
r21
+
dr2
r22
+
dr3
r23
; dr1 + dr2 + dr3

〉]
(V−1�)2

−2?
[(
dr1
r21
+
dr2
r22
+
dr3
r23

)
∧ (dr1 + dr2 + dr3)

]
� V−1� ;
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where ∼ means that the di�erence between the left- and right-hand sides is of
order g0 = Vh + V−1�2 on

⋃3
j=1B�(pj). Letting R̂ denote the right-hand side

of the above expression, it will thus su�ce for us to show that R̂ dominates
Vg0 = V 2h+ �2, since Ric will then dominate 1−CV−1

6 g0 for some constant C,
and so will be positive-de�nite on

⋃3
j=1B�(pj) for � su�ciently small.

Because we are only considering collinear con�gurations, dr1+dr2+dr3-0
on H3\{p1; p2; p3}; and we may let e1 be the unit covector in this direction.
At any given point, choose e2 so that the drj are all linear combinations of e1

and e2:
drj = cos’j e1 + sin’j e2 :

Extend this to an oriented orthonormal coframe {e1; e2; e3} for h, and set e4 =
V−1�. Then, letting � :=

∑
j cos’j; the components of R̂ with respect to the

dual frame {ej} are

R̂11 =
∑
j

1
r2j
(2 + � cos’j + 2 sin

2’j) + 2
∑
j¡k

1
rjrk

(2 + sin2’j + sin
2’k) ;

R̂22 =
∑
j

1
r2j
(2− � cos’j + 2 cos2’j) + 2

∑
j¡k

1
rjrk

(2 + cos2’j + cos2’k) ;

R̂12 = R̂21

=
∑
j

1
r2j
(� − 2 cos’j) sin’j − 2

∑
j¡k

1
rjrk

(cos’j sin’j + cos’k sin’k) ;

R̂33 =
∑
j

1
r2j
(4− � cos’j) + 8

∑
j¡k

1
rjrk

;

R̂44 =
∑
j

1
r2j
(2 + � cos’j) + 4

∑
j¡k

1
rjrk

;

R̂34 = R̂43 =
∑
j

1
r2j
� sin’j ;

R̂jk = 0 otherwise :

We now just need to show that the eigenvalues of [R̂jk ] are all bigger than
V 2. To do this, �rst notice that

∑
k sin’k = 0; and so

� cos(’j − 2#) =
(∑

k
cos’k

)
cos(’j − 2#)−

(∑
k
sin’k

)
sin(’j − 2#)

=
∑
k
cos(’j + ’k − 2#)

for any #. Thus

cos2 #R̂11 + 2 cos# sin #R̂12 + sin
2 #R̂22 =

∑
j

aj(#)
r2j

+
∑
j¡k

ajk(#)
rjrk
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and

cos2 #R̂33 + 2 cos# sin #R̂34 + sin
2 #R̂44 =

∑
j

bj(#)
r2j

+
∑
j¡k

bjk(#)
rjrk

;

where

aj(#) := cos2 #(2 + � cos’j + 2 sin
2’j) + sin

2 #(2− � cos’j + 2 cos2’j)
+2 cos# sin #(� − 2 cos’j) sin’j

= 3 + � cos(’j − 2#)− cos(2’j − 2#)
= 3 +

∑
k-j

cos(’j + ’k − 2#)= 1 ;

bj(#) := cos2 #(4− � cos’j) + 2 cos# sin #� sin’j + sin2 #(2 + � cos’j)
= 3 + cos 2#− � cos(’j + 2#)
= 3− ∑

k-j
cos(’j − ’k + 2#)= 1 ;

ajk(#) := 2 cos2 #(2 + sin
2’j + sin

2’k) + 2 sin
2 #(2 + cos2’j + cos2’k)

−4 sin # cos#(cos’j sin’j + cos’k sin’k)
= 6− cos(2’j − 2#)− cos(2’k − 2#)= 4¿ 2 ;

bjk(#) := 8 cos2 #+ 4 sin
2 # = 4 + 4 cos2 #= 4¿ 2 :

Hence every eigenvalue of [R̂jk ] exceeds
∑

j
1
r2j
+

∑
j¡k

2
rjrk

= (
∑

j
1
rj
)2; and

hence exceeds V 2 on
⋃
jB�(pj) for any � ¡

1
2 . The result follows.
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