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0 Introduction 

This work can be regarded as a natural continuation of [BCM], where a study of 
the regularity of  the global solutions to certain systems of  vector fields defined 
over compact manifolds was presented. The general fact (already pointed out 
in the late fifties by F. Treves; see [TI], Theorem 52.2) that a hypoelliptic 
linear partial differential operator has a locally solvable transpose, leads us to 
consider the question of the global solvability for the transpose of  the systems 
considered in [BCM]. 

Our study is inserted in the context of  involutive structures as described 
in [T3]. Let M denote a compact, connected, orientable, real analytic mani- 
fold of  dimension n. To a real analytic, complex, closed 1-form 09 over M 
we associate, in a natural way, an involutive structure over M x S l (S 1 is the 
unit circle); furthermore, to such a structure we attach a complex of  differen- 
tial operators {ILJ}o<=j<n_l defined by the vector fields orthogonal to dx - tn 
(x denotes the angular coordinate in S I ). 

One of the results in [BCM] gives, when the characteristic set of  the invo- 
lutive structure is free from singularities, a necessary and sufficient condition 
for the global hypoellipticity of  IL °. The transpose of IL ° is identified to IL n-l 
and the standard functional analysis argument applies: the global hypoellipticity 
of ll° implies the global solvability of  L n-I . This fact is the starting point of  
our study and, under the above mentioned hypothesis on the characteristic set, 
a necessary and sufficient condition for the global solvability of  IL " -  1 can then 
be derived (Theorem 1.9). As one would expect in this situation, the presence 
of the imaginary part of  to brings to the picture the natural generalization of 
the so-called Condition (P) of  Nirenberg-Treves whereas the real part of  09 
contributes with the diophantine approximation aspects of  the problem. It is 
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worth recalling that the latter is just relevant because we are dealing with a 
global question: the corresponding local solvability can be described simply in 
terms of  Condition (P) ([Co-Ho]). 

There are two cases for which Theorem 1.9 is a consequence of  results 
obtained previously: when n = 1 it follows from results in [H] and when 09 is 
exact it is contained in the main theorem in [Ca-Ho]. 

Finally we point out that our arguments can be carried out under the 
hypothesis o f  the real part o f  o9 being only r~o.  Furthermore, when the imag- 
inary part o f  o9 vanishes identically, even M can be assumed only cg~. 

1 Preliminaries and statement of the main theorem 

In this work M denotes a compact, orientable, connected, real-analytic manifold 
of  dimension n > 1 and S 1 is the unit circle. 

Our basic datum is a complex, real-analytic, closed 1-form o9 defined on M. 
To co we associate the line subbundle T' C 112 ® T*(M × S 1 ) spanned by the 
1-form 0 = dx - oJ, where x denotes the angular variable in S t . Its orthogonal 

= (T')  ± C C ® T(M × S 1 ) is then a vector subbundle of  • @ T(M x S 1 ) 
of  fiber dimension n that can locally be described as follows: if  (V, tl . . . . .  tn) 
is a coordinate system on M such that d2 = o9 in V for some 2 E C~'(V), the 
pairwise commuting vector fields 

O O2 O 
Lj = -~j + Otj Ox' j 1 . . . . .  n (1.1) 

span £~ over V x S  1. Thus ~ defines a locally integrable structure ofcodimen- 
sion one over M × S 1, see [T3]. 

To the structure £¢ it is possible to associate, in a natural way, a complex 
of  differential operators. The intrinsic construction of  such a complex is given 
in [T3]; here we briefly recall the definition. 

Let A p'° (0 ~ p <-_ n) be the subbundle o f  AP(C ® T*(M x $1)) char- 
acterized by the following property: if (V, tl . . . . .  t .)  is a coordinate system 
on M then AP,°[v×s 1 is spanned by dtj,  ]JI = P; we are using the notation 
J = ( j l , . . . , j p ) ,  1 =<jl < j 2  < " "  < j p < n ,  dtj = d t  h A . . . A d t j p .  Due to the 

isomorphism C ~ ( M  x $1; A p,°) ~- C~(SI ;  A P C ~ ( M ) )  the exterior derivative 
dt in M may be thought o f  as an operator 

dt : C ~ ( M  x S1; A p'°) --* C°° (M × S1; Ap+I'°).  

Similarly the operator Ox may be considered as an endomorphism 

Ox : C ~ ( M  × S1; A p'°) ---* C°~(M × S1; AP'°) , 

For p E {0, 1 . . . .  ,n} we define 

IL = ]L p : C°~(M x S I ; A  p'°) --* C ~ ( M  x S1;A p+I'°) (1.2) 
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by the expression 

I L u = ( d t + c O A ~ x ) U ,  u E C ~ ( M x S 1 ; A P ' ° ) .  

Since lLo IL = 0 (which is in fact equivalent to do9 = 0), (1.2) indeed defines 
a complex of  differential operators. 

A similar construction can be carried out if  we allow the coefficients o f  
the forms to be distributions: we obtain a new complex by replacing C a 
by ~ '  in (1.2). Notice that, if  (V, tl . . . . .  tn) is a coordinate system on M and if 
U C ~/(M × S I ; A  p'O) then we can represent Ulv×sl = ~ [ j l = p  uj(t,x)dtj and 

(LU)lv×sl = ~ ~ Lyuj(t,x)dtj AdO.  
j=l  [ J l=p  

(1.3) 

Our main goal is to find conditions for the global solvability o f  ]Ln-lu = f 
where f E C~(M × S1;A n'°) is given and u C ~ I ( M  × S I ; A  n- l ' ° )  is sought. 
There exist natural compatibility conditions on f for the solution u to exist, 
namely 

Lemma 1.1 I f  f E C~(M×S1; A n'°) and if there exists u E ~ ' ( M × S 1 ;  A n- l ' ° )  
with IL n-1 u = f then 

f h(t,x)f(t,x) A dx = 0 (1.4) 
M × S  1 

for every h C C~(M × S 1 ) satisfyin9 lL°h = O. 

Proof First notice that if v E ~ I ( M  × S1;A p'°) then ILPv A ~ = d(v A 0), 
where d is the exterior derivative in M × $1; moreover, when p = n - 1 we 
also have ]Ln-lv/~ dx = ]Ln-lv A ~. Hence, if u, f and h are as above we 

obtain 

f h f A d x =  f h lLn - luAdx= f hd(uA~9) 
M × S  I M x S  1 M × S  I 

= -  f d h A u A O = -  f l L ° h A u A O = O .  
M × S  1 M × S  1 

Q 

In view of  this lemma it is natural to pose the following 

Definition 1.2 Let IE be the set 

IE= { f  EC~(MxS1;An ' ° ) :MxS  I f  h f  A d x = O  

for all h E C~(M × S ~) such that ]L°h = 0~.  
J 

We say that IL "-l is globally solvable ( GS) if  for every f E E there exists 
u E ~ ' (M x S1;A n-l'O) such that lLn-~u = f .  
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As will be seen, there is an intimate connection between the global solv- 
ability of  IL n-l and the global hypoellipticity of  L°; the latter property was 
the subject of [BCM] and we recall its definition. 

Definition 1.3 We say that L ° is globally hylmelliptic ( GH) i f  the conditions 
u E ~ ' ( M  × S 1) and L°u E C ~ ( M  × S1;A 1'°) imply u E C ~ ( M  × Sl). 

In order to state our theorem we now recall a few definitions and results. 

Definition 1.4 (See [BCM]) For a closed, real a E A I C ~ ( M ) ,  we define: 

(i) a is integral i f  ~ f~ a E 7 / for  any 1-cycle a in M. 

(ii) a is rational if  there exists q E IN such that qa is an integral 1-form. 

(iii) a is Liouviile i f  a is not rational and there exist a sequence o f  closed, 
integral 1-forms {aj} and a sequence o f  integers qj > 2 such that {qJ(a - 

~aj )}  is bounded in A~C°°(M). 

As in [BCM] we use the notations a~ --- a+ib  and Z = {t E M : b(t) = 0}. 

Proposition 1.5 (See [BCM], Proposition 3.1 ) There exist an open set oil with 
c og C M and a function q9 C C~(~ll) such that dq~ = b in ql, ~o = 0 on Z. 

Moreover ~o is uniquely determined as a germ of  an analytic function on Z. 

In this work we always assume that the following condition is satisfied: 

Each component o f  2; is an embedded analytic submanifold of  M .  (1.5) 

We will denote by ~¢ the set of all connected components Z' of 2; such that 
either ~p = 0 or q~ > 0 or q~ < 0 in q/'\27 for some open subset U C q/' c ~/. 
Notice that ~t = {M} when b = 0. 

Proposition 1.6 (See [BCM], Corollary 5.4) Assume that (1.5) holds. The 
operator IL ° is globally hypoelliptic i f  and only i f  each Z' E s / h a s  dimension 

1 and the pull-back, i~,(a), o f  the 1-form a to Z' is neither rational nor 
Liouville. 

Next we recall condition (~9)n-1 from IT2] (see also [Ca-Ho]). Assume that 
b is exact, that is, there exists ~p. E C ~ ( M )  such that dq~° = b. Set, for an 
arbitrary real number r, M Z = {t C M : qao(t) < r}, Mr + = {t E M : (p°(t) > 
r}, and consider the natural homomorphisms 

i~_ 1 : Hn- I (M~)  ~ Hn-I(M) 

induced by the inclusion maps M ~  CM, where H . - I ( M ~ )  and Hn- l (M)  stand, 
respectively, for the (n - 1 )th de Rham homology space of Mfi and M over C. 

Definition 1.7 (See [T2],[Ca-Ho]) We say that property (qJ).-i holds (for 
]L ~-1 ) i f  i~_ 1 are injective for every real number r. 

Proposition 1.8 (See [Ca-Ho]) I f  w is exact then IL ~-I is globally solvable i f  
and only i f  (ql),_! holds. 

We are now ready to state the main result of  the present work. 
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Theorem 1.9 I f ( l . 5 )  holds then the property 

(I) IL n-1 is globally solvable, 
is equivalent to 
(II) One o f  the following conditions is satisfied: 

(II)1 L ° is globally hypoelliptic; 
(II)2 b is exact, (O)n-I holds, a is rational, and i f  q E IN is the smallest 

integer such that qa is integral then q = min{l  E IN : li~,(a) is integral} for  
every Z ~ E ~¢. 

We now present an example in order to clarify the meaning of  condition 
(II)2: Let M = lR2/2zt2~ 2 be the two-dimensional toms, where the coordinates 
are written as t = (h,t2).  Take a = zdtl + ( l /3 )d t2 ,  where z is a rational 
number, and b = c o s q d q .  It is easily seen that condition (~b)l is satisfied. 
Moreover Z = {t : tl = +zt/2} and both o f  its components belong to ~¢. If  
r = 4/3 then q = 3 and (11)2 is satisfied whereas if  z = 1/2 then q = 6 and 
(II)2 is not satisfied. 

2 Study of  Ker L ° 

The purpose o f  this section is to describe Ker L °, where IL ° = d t  + (a + ib) A Ox 
is the operator defined in Sect. 1, acting on C ~ ( M  x S 1). 

In the statements below we will make use o f  the universal covering of  M, 
A 

I I  : M--~ M.  

Lemma 2.1 Let  ~,fl E A1C°~(M) be real and closed and consider the operator 
ID : C ~ ( M )  ~ A~C°~(M) defined by 

ID = dt + fret + i fl ) A . 

Then: 

(i) / f  either fl is non-exact or ~ is non-integral then K e r n ) =  {0}; 
(ii) i f  fl is exact and a is integral then KerlD is spanned by the function 

e - i~ .  e ~° where O C C ~ ( ~ I )  is such that dO = H*~ and ~pO E C°~(M) is 
such that dtp° = ft. 

Proof. Let u C C ~ ( M )  be such that Du  = 0. Take Z E C°~(/k ¢) such that 
dg = FI*(~ + ifl). Then we have dt(lI* u) + idg(H*u) = 0 and, consequently, 

dt(eigl--[*u) : 0 in ~¢.  

Hence H*u = ce -iz,  for some constant c E C. 
For all A,B  E ~1 with H(A)  = H(B)  = p we have u(p)  = ce -ix(A) = 

ce -gx(B). I f  c # O  then, writing X = Oo + i ~ ,  we must have 

e iN'°(B)-~'°('4)]-~(B)-'~(A)] = 1 . 



266 A.P. Bergamaseo et al. 

This implies ~(A) = ~(B)  and e it~°(8)-¢'(A)] = 1 for all A,B as above; these 
facts imply, respectively, that 13 is exact and ~ is integral. Thus part (i) is 
proved. 

Furthermore, when /~ is exact and ~ is integral, it is easy to see that the 

function e -i¢~. e ~°° indeed belongs to Ker ID. The proof  is complete. [] 

We can now describe Ker L °. 

L e m m a  2.2 (i) I f  either b is non-exact or a is not rational then Ker IL ° = IE; 
(ii) i f  b is exact and a is rational then Ker IL ° consists of  the functions 

h E C°°(M × S 1 ) whose x-Fourier series are of the form h(t,x) +~ = Ej=--oo hj(t) 
e ijx where 

0, i f j 4 :qN ,  VNET~ 

hj = CqNe -iN'~. e qm',  i f  j = qN, N E Z 

where q = min{l  E iN - la is integral}, ~ E C°°(~I) with d~ = lI*(qa), 
qg. E C°°(M) with d~p° ~ b, and Cqm E ~. 

Proof. Let h E C~°(M ×S t ). By using the x-Fourier series we see that lL°h = 0 
if  and only if  IDjhj(t) = 0, for all j E Z,  where lDj = d t  + ij(a + ib)A. 

I f  b is non-exact (respectively, a is not rational) then jb is non-exact (re- 
spectively, j a  is non-integral) for all j C 7/\{0}. Now Lemma 2.1 implies 
hi(t) = 0, for all j E 71\{0}. 

I f  j = 0 then Do = d t  and so ho(t) = constant, since M is connected. 
Assume now that b is exact and a is rational. Then jb is exact for 

all j E 7l. Also ja is integral i f  and only if j = qN, with N E 71. Now 
Lemma 2.1 implies that hj(t) = 0, for all j ~ q71. Lemma 2.1 also implies 

that, for j = qN, N E 71, hqN(t) = CqN e-iN-(t)" e qNq~'(t), where dt~ = II*(qa). 
Thus if  lL°h = 0 then h has the form stated in lemma. 

It is easy to see that ftmctions of  this form indeed belong to Ker IL °. This 
concludes the proof. [] 

3 Necessity 

Assume that neither (II)1 nor (II)2 hold and reason in the following way. 
Suppose first that b is not exact; then Proposition 1.6 implies that (3.3) below 
holds. I f  otherwise b is exact then the conjunction of  Proposition 1.6 with the 
negation o f  (II)2 implies that we are in one o f  the remaining four situations 
below: 

(3.1) b - 0 and a is Liouville; 
(3.2) b is exact, a is rational, and (~k)n-1 does not hold; 
(3.3) b is non-exact and there exists 27 E ~¢ such that i~t(a ) is either 

rational or Liouville; 
(3.4) b is exact, b ~ 0 ,  a is riot rational, and there exists S ~ E d such that 

i~,(a) is either rational or Liouville; 
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(3.5) b is exact, b ~0 ,  a is rational, (qJ),-I holds, and there exist 1 E N 
and S t E d such that li~,(a) is integral but la is not integral. 

We will show that each of these conditions implies IL "-~ not globally 
solvable by violating the inequality appearing in the next lemma. The latter 
is a variation of the classical result Lemma 6.1.2 of H6rrnander [HI], and its 
proof will be omitted. 

Lemma 3.1 I f  lL n-I is globally solvable then there exist C > 0 and m E 71,+ 
such that 

I f Adx < CIIfllmllL°Otlm, g(t ,x) f ( t ,x)  
M 1 

for all g E C ~ ( M  × S 1 ) and all f E IE (here I[ [[,, denotes some norm which 
defines the C" topology). 

In order to violate this inequality we will construct sequences { J ) } : N  C ~,  
{gj}jer~ C C ~ ( M  × S 1 ) such that, for arbitrary m E Z+, 

IIf:llmlllL°g:ll,.  ~ 0 as j ~ cx~ 

and 
f (bf2 A dx ~ a nonzero number.  

M × S  J 

In cases (3.3)-(3.5)  where there is 2: t E .4  we will reason under the 
assumption that tp > 0 in Ur\S r, the case cp < 0 being similar. 

(3.1) =¢---~ (I). By assumption there exist a sequence of closed, integral 
1-forms {aj} and a sequence of integers qj > 2 such that {qJ(a - ±a.)~ is qj J J 

bounded in A1C~(M).  Let ~bj E C~(34)  be such that d~bj = H*aj and let 
also f2 E A"C~(M)  be nowhere vanishing. Recalling that eiq's E C ~ ( M )  (cf. 
Lemma 2.3 in [BCM]) we set, for j - -  1,2 . . . . .  

f j ( t , x )  : e - i ( q j x - ¢ ] ( t ) ) o ( t ) ,  g j ( t , x )  -~  e i ( q j x - ~ j ( t ) )  . 

For each j we have J) E E since Ker L ° = C and 

( fei¢:f2~ ( f e i q y X d x ) : 0 .  f:Adx= 
k , M  ] 

f 
M × S  1 

Also 

M x S  1 

On the other hand 

gj~.  A dx = f f2 A dx = 2rc f f2#O . (3.6) 
M x S  1 M 

and a simple computation shows that, for each m E Z+, there exists Cm > 0 
such that, for all j E N,  

Ilfjl}m < C,nq7 
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and 

ltL°gjll  __< Cmq  + l - j  . 
Thus 

Itfjllmll]L°ajll .  ~ 0, as j ~ c~ .  (3.7) 

Now the conjunction of  (3.6) and (3.7) shows that the inequality in 
Lemma 3.1 is violated. 

(3.2) ~ , , ,  (I). Here Ker~,  is spanned by the functions 

e -iN(~+iqq~')° e iqNx, N E Z ,  

where q is the smallest natural number such that qa is integral, d~  = II*(qa), 
and dq~. = b. 

Since (¢ ) , -1  does not hold we may assume (changing x ~ - x  i f  neces- 
sary) that, for some r, #- is not injective. Thus there exist a closed 1-form 
v E A1C~(M~ -) such that v is exact in M but not compactly exact in Mr-. 
This allows us to choose ;~ E C ~ ( M )  such that dz = v and also, due to 
de Rham's  theorem, a form # E A ' - 1 C ~ ( M Z )  such that d/~ = 0 in M Z and 
fM # A v 4= O. Next take r0 < r such that supp v C M~ o and for a fixed e > 0 

with r0 + 2e < r we also select ~ C Cc~(Mro+2~) with ~ = 1 in Mro+e. We have 

o , f  p A y  = f ~ # A d z =  - f d ( ~ / ~ )  A Z = - f  f iA z ,  
M M M 

where we have set fi = d(~#). We note that q~°(t) > r0 + e on supp ft. 
Set, for N = 1,2 . . . . .  

fN(t ,x)  = e--iqN(x--icp'(t))+iN"~(t)~fi(t), gN(t,x) = eiqN(x-i~°(t))-iN~(t)z(t) . 

Since ~ is exact it follows that each fN belongs to IF.. Furthermore, 

]LO gN = e iqN(x-i~°e(t))-iN~(t) " Y ( t )  

IIn,°gkll  -5_ Cm N m  er°Nq 

IITNII  C,, Nme-N(~°+~)q 

f g N f N A d x = 2 n f ~ A z : t : O .  
M x S l  M 

Thus the inequality in Lemma 3. I is also violated in this case. 
We now proceed to prove that each of  the conditions (3.3), (3.4) and (3.5) 

imply the negation of  (I). First, however, we pause to state a result that will 
be necessary in the argument. 

Lemma 3.2 Let S ~ be a component o f  Z,H' : £t ~ $1 a universal covering 
and let U D_ S r be a tubular neighborhood of S ~ in M with an analytic 
retraction map p : U ~ Z ~. Let finally a E A l C ~ ( M )  be real and closed and 
take ~l E C ~ ( U )  so that d~l = a - p*(i~,(a)). 

(A) I f  i~l(a) is integral then there is ~° E C°°(£ ') such that ei~'° E C ~ ( Z  ') 

and (dr - ia)[(e i~°) o pe in] = 0 in U. 
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(B) / f  i~,(a) is Liouville then there are {flo} c ca(2~ ' )  and {qj}C~E+, 

2 < qj ~ oo such that {(e/c°) o p} and {qj(RelL°)[e-iqj(x-n)(e i¢° o p)]} are 
bounded sequences in C a ( U )  and A 1 C a (  U x $1), respectively. 

Proof  (A) If fl°E C~(2~ ') is such that d~,(fl °) = II'*i~,(a) then e i~° C C a ( Z  ') 
[cf. Lemma 2.3 in [BCM]). The remaining conclusions in this part follows from 
direct computation. 

(B) We take sequences {qj} c_ Z+, 2 < qj ~ oo, and {aj} C_ A 1 C a ( Z ' ) ,  
j .* 

each aj integral, such that {q).(tz,(a ) - ~)} is bounded in A1C~(Z ' ) .  We 

also take flo E C~(2~ ')  such that d$ , f  ° = H'*(aj). Since {aj} is bounded 

in A I C ~ ( Z  ') we obtain, by the chain rule, that {e iq~° o p} is bounded in 

J * "* ~ ) ] ~  is bounded in C a ( U ) .  The chain role also implies that {q)(p Iu (a  ) -  qJ . 

A 1 c a ( u ) .  Finally we have 

• i 0 
(Re lL°)[e-'qj(x-n)(e ~) o p)] 

: + , , +  l q ,  

---- --iqj [p*(i~,(a)) p*(aj)] [e_iqj(x_n)(eiOjop) ] 
qj J 

qj J 

= --iqj [p*(i~,(a))  P*(-~jJ)] [e-iqj(x-U'(eiOJ o p)] 

where in the last equality we have used the fact that 

dt[(eiqJJ ) o p] = p*[dz,(ei~J )] = p*[iaje iq(j] = ip*(aj )(e iq~j o p) . [] 

We now prove the implications (3.3) ~,-~ (I) and (3.4) = ~  (I). 

Case (i). Assume that there exists 2;' ~ d such that i~,(a) is rational. 
Let q = min{l E IN : li~,(a) is integral}. Lemma 3.2(A) implies the 

existence of fl0 E C a ( ~  ')  such that dfl ° = H'*(qi*z,(a)), e i~b° E C°°(St), and, 
for j =  1,2, . . . ,  

(dr - ijqa)[(e ij~° o p)e ij~] = 0 in U .  (3.8) 

Take Z C C ~ ( U )  with Z = 1 in a neighborhood of  S t and ~o(t) > e > 0 
on supp(dg), for some e > 0. Finally we select 0 E Cc~(U) with ~o(t) < e/2 
on supp 0 and 

f O(t)X(t)f2(t) ~ O. (3.9) 
M 

For j = 1,2 . . . . .  we define 

f j ( t , x )  = eijq(x-i~°(t))(e -ij~O o p)e-iJ'l(t)O(t)f2(t) 
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and 
gj( t,X ) -= e-ijq(x-i~p(t) )(e ij~° o p )eiJ~(t)x( t ) . 

We have { J)} C E since Ker IL ° = IE and 

f f j A d x =  ( f e J q ° (  e uO° ) ( f  ) • -'" o p)e-iJnoQ e ijqx dx = 0. 
M x S  1 \ S  1 

Also, by (3.9), 
f o j f j A d x : C 4 : 0  (3.10) 

M x S  1 

with C independent o f j .  On the other hand, by using (3.8), we obtain 

]L° gj : ( d ~ ( ) e - i j q ( x - i t p ( t ) ) ( e  ijtpO o p)e ij~(t) . 

We have 
II])llm ___< CmJ meEj/2, [IL°gjllm =< Cmj me-ej 

and, consequently, 

HfjHm ]lLOgjllm ~ 0 as j ---* oc .  (3.11) 

The conjunction of  (3.10) and (3.11) show that the inequality in 
Lemma  3.1 is also violated in this case. 

Case (ii). Assume that there exists S t E ~¢ such that i},(a) is Liouville. 
We take X as in Case (i) and select to E S '  and a chart (V,y) with 
y :  V ~ B - B ( O ,  1), y(to) = 0 and V C {Z = 1}. Since ~o(t0) = 0 we have 
~o(t) =< ClT(t)[ , for all t ~  V and some constant C > 0. Next,  choose 0 ~ C~(B)  
with f 0 4:0 and set, for j = 1 ,2 , . . . ,  

: ~ O(qj7(t)), t E V 
O j ( t )  

I 0, t C M \ V ,  

where {qy} is as in L e m m a  3.2(B). We have ~p(t) __< C/qj on supp 0j. 
According to Lemma 3.2(B) we  set, for j = 1,2 . . . .  

f j ( t , x )  : q~Oj(t)eqJ~(t)eiqy(x-"(t))(e-i~° o p)f2(t), 

gj( t,x ) = Z(  t )e-qJ~p(t) e - iq j (x -n( t )  )( e i#° o p ) . 

As in Case (i) we  have {J ) }  C E.  We also have 

]L° gj = (dz)e-qJ~° e-iqj(x-n)(e i#° o p) + Z(t). Re ]L°[e-iqj(x-n)(e i¢° o p)]e-qJ ~ 

and thus, since Lemma 3.2(B) implies the estimates 

ll ( dz )e-qy~ e-iqy(x-n)( e i¢° o P)llm ~ Cmq~ e-eqj 
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and 

we obtain 

We also have 

• • 0 

IlZ(t)RelL°[e-'qJ(x-n)(e 'q') o p)]e-V~°llm ~ Cmqy  +m , 

IIL0gjllm _--< Cmq~(e-eqJ + q'j-J). 

q C__ t~  n+m n m Jq ~ ll llm <-- Cmqjqj e J ~mqj 

which then give 

~, 2m+nz  --sqi " " . II~l[mllL°g~llm < Cm~mqj ~e ~ +qy)J_7__~ 0 

On the other hand, writing (7-1)*~2 = hdsj A . - .  A ds~, 

f g j f j  A dx = q~ f Oj(t)Z(t)f2(t) A dx = 2tcq7 f Oj(t)f2(t) 
M x S  1 M x S  1 V 

(3.12) 

B B 

and the last expression converges, as j ~ c~, to the non-zero value 2rth(0) f 0. 
Thus the inequality in Lemma 3.1 is violated. 

Finally we show that (3.5) : : ~  (I). 
Take q , l ,S '  as in the assumption and i1 E C ~ ( U )  such that dr/ = l a -  

p*(li~,(a)). Next we apply Lemma 3.2(A), with a replaced by la, and get the 

existence of  ~b ° E C ~ ( S  ' )  such that e i~'° C C ~ ( Z  ') and 

(dr - ila)[(e i~° o p)e in] = 0 in U .  

With the notation qj = l + q j ,  qj -- qffl we note that, for j = 1,2 . . . . .  

(dr - iqja)[(e iqj'¢° o p)eiq~ "] = 0 in U .  

Finally we select Z E C ~ ( U )  with X = 1 in a neighborhood of  Z '  and ~p(t) > 
e > 0 on supp(dz) ,  and also 0 E C ~ ( U )  such that ~o(t) =< s/2 on supp0  and 
such that (3.9) holds. Set, for j = 1,2 . . . . .  

f j ( t , x )  = e i q j ( x - i ~ p ( t ) ) ( e  -iq)q'O o p)e-iqJ~o(t)I2(t) , 

gj( t,x ) = e-iqj(x-i~°(t))( e iq~O0 o p )eiq~tz( t ) . 

We have {j~} C IE because Ker L ° is spanned by the functions 

h N = e-iNC~+iqq'°)e iqNx, N E Z ,  

and, for all j E IN and N E Z, we have 

f e i (q j+qN)x  d x  = 0 .  

s 1 
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Now, 

]L ° gj : ( dx )e-iqj(x-icp(t) )( eiq5 ~jO o p )eiq5" 

and hence we obtain 

[IL°gjllm < Cmjme--tqJ. 

On the other hand 

and so 

Finally, since 

[IJ)llm ~ Cmj megqj/2 

Ila~ll,~llL%llm ~ C~nj 2me-~qj/2 ---> O, as j ~ ~ .  

f f joj  A dx = 2re f O(t)Z(t)f2(t) 4: O, 
M×S 1 M 

the inequality in Lemma 3.1 is also violated in this final case. 

4 Sufficiency 

For the proof of  the sufficiency it will be convenient for us to split the action 
of ILP into certain subspaces, as follows. Let A C Z. Define 

~J(M x S1) = {u  E ~ t (M × Sl) : u(t'x) = ~'~ uj(t)eiJx} 

The space ~J(M × S1;A p'O) is defined in an analogous fashion. More generally, 
i f F  C ~ ' ( M  x SI;A p'°) then we set FA = F N ~ J ( M  × SI;AP'°). Notice that 
if  LPF C G then ILPFA C GA; we use the notation L ff for the operator ]LP 
acting from FA into GA. Also, any decomposition Z = A U B with A n B = 0 
induces direct sum decompositions F = Fa • FB and LPF = ILPFA ® ILPFi~. 
Furthermore, when F is a Hilbert space these decompositions are orthogonal 
direct sums. 

We may talk about global solvability and global hypoellipticity of  ILP rel- 
ative to the subspaces FA; more precisely, 

Definition 4.1 Let A C 7I.. We say that L~ - l  is globally solvable (GS) if, for 
every f E lEA, there exists u E ~J( M × S1; A "-l '°) such that "-~ IL A u = f .  We 
say that IL ° is globally hypoelliptic (GH) if  the conditions u E @J(M x S ~ ) 
and lL°u E C ~ ( M  x S1;A 1,°) imply u E C ~ ( M  x $1). 

When A = Z we of course recover the previous notions of (GS) and (GH); 
it is also clear that IL n-t is (GS) if and only if  ILl -1 and L~ - l  are (GS). 

The next result is a variation of  Theorem 26.1.7 in [H2]; the proof will be 
omitted. 
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Proposition 4.2 Let B C Z and assume that IL ° is ( GH) and that Ker L ° = {0}. 
Then: 

(i) there exist C > 0 and k E 77+ such that 

l[ul](~) < Cl[lL°ull(k), for all u ~ C ~ ( M  x S1) ,  

where I111(1> and II II(k> are  S o b o l e v  n o r m s  on M × 

(ii) IL~ -1 is (GS). 

We now move on to the proof  of  the sufficiency. 

(II)1 ~ (I). In this case Ker IL ° = • by Proposition 1.6 and Lemma  2.2(i). 
We choose A = {0} and B = 77\{0}. Notice that ~ J ( M  × S l) ~ ~ ' ( M ) ,  
ILnA -I  =dt,  KerlL ° = ~ ,  and EA ~ { f  E A n C ~ ( M ) : f M f  = 0}. Thus each 
f E lEA is an exact n-form on M, that is, there exists u E A"-IC°~(M) such 
that dcu = f.  Therefore ILl -1 is (GS). 

Since IL ° is (GH)  the same is true of  IL °. Also Ker L ° = {0} and then 
Proposition 4.2 applies to yield the fact that ILl -1 is (GS). Thus IL n-I  is (GS). 

(II)2 :=> (I). Here we choose A = q77 and B = 77\q77. We have KerlL ° C 
C ~ ( M  x S 1 ) and so Ker IL ° = {0}. 

In order to show that IL~ - l  is (GS) we will make use of  the following 
isomorphism of  ~J(M × S1;Ap,°): 

T N~ ~ UqN(t)e iqNx = ~ UqN(t)e-iNO(t)e iqNx , 
E7£ NE 7l 

where E is such that = m ( q a ) .  Notice that T is also an 
isomorphism of  C ~ ( M  × $1; A p'0) and a direct computation gives 

T-11LnA-1T = dt + ib A Ox . 

Let f E lEA be given. Since b is exact and (~')n-t  holds, it is easily seen 
that Proposition 1.8 applies to yield the existence of  v E ~ ( M  × S1;A n-l ,°)  
with (dt+ibAO~)v = T - i f .  Since 1I, "-1 acts in an invariant way the component 
VA of  V satisfies I L ] - I ( T v A ) =  f .  Hence IL~ - l  is (GS). 

In particular the proof  is complete when B = 0 (which is equivalent to 
the property that a is integral). From now on we assume q ~ 2 and proceed 
to show that Los is (GH) which, according to Proposition 4.2, will finish the 
proof. 

Let then u E ~ ( M  × S 1) be such that lL°u E C ~ ( M  x S1;A1,°). We will 
show that ( { p )  × S l) N s ingsupp(u)  -- 0 for all p E M;  we consider three 
separate cases. 

Case (i). p E M \ Z .  Here it suffices to recall that IL ° is elliptic in the set 
( M \ S )  × S ~. 

Case (ii). p E Z \ ( U s ' ~  S/). In this case q~ is an open map at some point in 
the same connected component of  p in Z. Corollary 4.8 in [BCM] yields then 
the desired conclusion. 
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Case (iii). p E z~ I, with 27E ~ .  For this case we need to recall some facts 
from [BCM], p. 271ff. We take the pullback i~,(a) and associate to it the 

l Zv (cf. Proposition 2.2 in [BCM]). It is easy to vector ~ ' -  I([i*~,(a)]) E 
see that there exists ~ > 0 such that I ~ ' -  F/s[ >= ¢3/Is [ for all F E Z ~ and all 
s E B. Thus ~' is non-Liouville with respect to denominators belonging to B. 

Consider then the operator L° '  : ~ l ( Z  r x S 1) ---* ~ t (Z '  x S I ; A  l,°) defined by 

1I. °' = d~+ i~,(a)A G, where d ~ denotes the exterior derivative on 27. A minor 

modification o f  the p roof  of  Theorem 2.4 in [BCM] implies that K °' is (GH),  
hence u ( p , .  ) E C~°(S1). Finally, Theorem 4.1 in [BCM] implies the desired 
result, namely ({p}  x S 1 ) N s i n g s u p p ( u ) =  0. 
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