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1. Introduction

This is the second in a series of papers constructing explicit examples of special
Lagrangian submanifolds (Sk-folds) in C™. The first paper of the series [7]
studied SLmn-folds with large symmetry groups, and subsequent papers [8—11]
construct examples of SL 3-folds @@ using evolution equations, symmetries,
ruled submanifolds and integrable systems.

The principal motivation for these papers is to lay the foundations for a study
of the singularities of compact special Lagrangiasfolds in Calabi—Yaun-
folds, particularly in low dimensions suchas= 3. Special Lagrangiam-folds
in C™, and especiallgpecial Lagrangian coneshould provide local models for
singularities of SLm-folds in Calabi—Yaun-folds.

Understanding such singularities will be essential in making rigorous the
explanation of Mirror Symmetry of Calabi—Yau 3-folds X proposed by Stro-
minger, Yau and Zaslow [13], which involves dual ‘fibrations>af X by special
Lagrangian 3-tori, with some singular fibres. It will also be important in resolv-
ing conjectures made by the author [6], which attempt to define an invariant of
Calabi—Yau 3-folds by counting special Lagrangian homology 3-spheres.

The paper falls into three parts. The first, this section and Sect. 2, is intro-
ductory. The second part, Sects. 3—4, describes a general construction of special
Lagrangiann-folds N in C™, depending on a set ef/olution datg P, x), where
P is an(m—1)-submanifold inR". ThenN is the subset o™ swept out by the
image of P under a 1-parameter family of linear or affine maps R" — C™,
which satisfy a first-order, nonlinear o.d.ezin

Examples of sets of evolution data will be given in Sect. 4, together with some
progress towards a classification of such data. The simplest interesting sets of
evolution data occur whem = m and P is a nondegenerate quadricif. In
the third part, Sects. 5-7, we apply the construction to these examples.
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In this casep, (R™) must be a Lagrangian plane@f" for eachs. ThusN is
fibred by quadrics in Lagrangian plarie in C™. The construction of Sects. 3—4
will also be used in the sequel to this paper [8], with different evolution data, to
construct families of SL 3-folds ifr>.

The construction has both a linear and an affine version. In the linear version
we begin with a centred quadr@ in R™, such as an ellipsoid or a hyperboloid,
and evolve its image under linear mafys: R”™ — C™. This will be studied in
Sect.5 forC™, and in more detail whem = 3 in Sect. 6. In the affine version
we begin with a non-centred quadiicin R™, such as a paraboloid, and evolve
its image under affine mags : R” — C™. This will be studied in Sect. 7.

In some cases the familly, : ¢+ € R} turns out to beperiodicin 7. The
corresponding Slx-folds in C™ are then closed, and are interesting as local
models for singular behaviour of Sk-folds in Calabi—Yaun-folds. Section 5.5
studies the periodicity conditions, and proves our main result, Theorem 5.9, on
the existence of large families of Sk-folds in C™ with interesting topology,
including cones oi* x S x St fora 4+ b = m — 2. Whenm = 3 this gives
many new examples of SL'?-cones inC2, which are discussed in Sect. 6.

In contrast to the manifolds of [7], the Sk-folds N in C™ that we con-
struct generically have only finite symmetry groups. However, we shall show in
Sect. 4.3 that every set of evolution dam ) actually admits a large symmetry
groupG, which is locally transitive orP. This ‘internal symmetry group’ does
act onN, but not by automorphisms &f". So we can think of the construction
as embodying a symmetry assumption, but not of the most obvious kind.

Some of the Slm-folds we construct (those in Sect.5 from evolving ellip-
soids) are already known, having been found by Lawlor [12] and completed by
Harvey [4, p. 139-143]. But as far as the author knows, the other examples are
new. The SLT2-cones irC? are related to integrable systems results on harmonic
tori in CP"'. We discuss the connection in Sect. 6.2.

2. Special Lagrangian submanifolds inC™

We begin by definingalibrationsandcalibrated submanifoldgollowing Har-
vey and Lawson [5].

Definition 2.1. Let (M, g) be a Riemannian manifold. An oriented tangént
planeV on M is a vector subspac¥ of some tangent spadg M to M with
dimV = k, equipped with an orientation. I¥ is an oriented tangerit-plane on
M theng|y is a Euclidean metric o¥, so combiningz|y with the orientation
onV gives a natural volume forwoly, on V, which is ak-form onV.

Now letg be a closedt-form onM. We say thap is a calibration onM if
for every orientedk-planeV on M we havep|y < voly. Heregp|y = o - voly
for somex € R, andg|y < voly if @ < 1. Let N be an oriented submanifold
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of M with dimensiork. Then each tangent spa@eN for x € N is an oriented
tangentk-plane. We say thaw is a calibrated submanifold it |7, y = volr,
forall x € N.

It is easy to show that calibrated submanifolds are automatioaihymal
submanifoldg5, Th. 11.4.2]. Here is the definition of special Lagrangian sub-
manifolds inC™, taken from [5, Sect. Il].

Definition 2.2. Let C™ have complex coordinateg,, ..., z,,), and define a
metricg, a real 2-form w and a complex:-form 2 on C" by

i _ -
g= |dz1]? + - - + |dzul? o = E(dzl/\ dzq + - +dz, Adz,),

and 2 =dz; A--- Adz,.

ThenRe£2 andIm 2 are realm-forms onC™. Let L be an oriented real sub-
manifold of C" of real dimensionn, and leté € [0, 27). We say thatl is a
special Lagrangian submanifold @™ if L is calibrated with respect tRes2,

in the sense of Definition 2.1. We will often abbreviate ‘special Lagrangian’ by
‘SL’, and ‘m-dimensional submanifold’ bys-fold’, so that we shall talk about
SLm-folds inC™.

As in [6,7] there is also a more general definition of special Lagrangian
submanifolds involving phasee?, but we will not use it in this paper. Harvey
and Lawson [5, Cor. 111.1.11] give the following alternative characterization of
special Lagrangian submanifolds.

Proposition 2.3. Let L be a realm-dimensional submanifold &™. ThenL
admits an orientation making it into an SL submanifold@f if and only if
w|p =0andIim 2|, =0.

Note that ann-dimensional submanifold in C™ is calledLagrangianif
w|;, = 0. Thus special Lagrangian submanifolds are Lagrangian submanifolds
satisfying the extra condition that 12|, = 0, which is how they get their name.

3. SL m-folds from evolution equations

The construction of special Lagrangianfolds we shall study in this paper is
based on the following theorem, which was proved in [7, Th. 3.3].

Theorem 3.1. Let P be a compact, orientable, real analyii@ — 1)-manifold,
x a real analytic, nonvanishing section of "7 P, and¢ : P — C™ areal
analytic embedding (immersion) such tht(w) = 0 on P. Then there exists
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e > 0and aunique family¢, : 1 € (—¢, €)} of real analytic mapg, : P — C”
with ¢g = ¢, satisfying the equation

dd)l b ag...am—1 amb
E = (¢I)*(X) (Reg)al,..am,lamg ) (31)
using the index notation for (real) tensors @fi. Define® : (—¢,e) x P — C™

by @, p) = ¢.(p). ThenN = Im @ is a nonsingular embedded (immersed)
special Lagrangian submanifold di™.

The proof relies on a result of Harvey and Lawson [5, Th. 111.5.5], which
says that ifP is a real analytigm — 1)-submanifold ofC™ with w|p = 0, then
there is a locally unique SL submanifaMcontainingP. They assume is real
analytic as their proof uses Cartaraér theory, which works only in the real
analytic category. But this is no loss, as by [5, Th. 111.2.7] all nonsingular SL
m-folds inC™ are real analytic.

We interpret equation (3.1) as awmolution equatiorior (compact) real ana-
lytic (m—1)-submanifolds (P) of C" with w|4p) = 0, and think of the variable
¢t as time. The theorem says that given such a submanijf@R), there is a 1-
parameter family of diffeomorphic submanifolgs(P) satisfying a first-order
o.d.e., with¢g(P) = ¢ (P), that sweep out an St-fold in C™.

The condition thatP be compact is not always necessary in Theorem 3.1.
WhetherP is compact or not, in a small neighbourhood of ang P the maps
¢, always exist for € (—¢, €) and some > 0, which may depend op. If P
is compact we can choose an- 0 valid for all p, but if P is noncompact there
may not exist such aq If P is not compact but we know for other reasons that
there exists a familf¢, : 1 € (—¢, €)} satisfying (3.1) andby = ¢, then the
conclusions of the theorem still hold.

Now Theorem 3.1 should be thought of asiainite-dimensionaévolution
problem, since the evolution takes place in an infinite-dimensional family of real
analytic(m—1)-submanifolds. This makes the o.d.e. difficult to solve explicitly,
so that the theorem, in its current form, is unsuitable for constructing explicit SL
m-folds. However, there is a method to reduce it fmée-dimensionaévolution
problem.

Suppose we find a special clasef real analytiom — 1)-submanifoldsP of
C™ with w|p = 0, depending on finitely many real parameters .. , ¢,, such
that the evolution equation (3.1) stays within the cl&s§hen (3.1) reduces
to a first order o.d.e. onq, ..., ¢,, as functions of. Thus we have reduced
the infinite-dimensional problem of evolving submanifolds(fi to a finite-
dimensional 0.d.e., which we may be able to solve explicitly.

This method was used in [7], whefavas a set ofm — 1)-dimensional group
orbits. We now present a more advanced construction based on the same idea, in
whichC consists of the images of & — 1)-submanifoldP in R” under linear
or affine mapR” — C™. We describe the linear case first.
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Definition 3.2. Let 2 < m < n be integers. A set of linear evolution data is
a pair (P, x), where P is an (m — 1)-dimensional submanifold oR”, and
x : R" - A™1R" is a linear map, such thag (p) is a nonzero element of
A™IT P in A™~1R" for each nonsingular poinp € P. We suppose also that
P is not contained in any proper vector subspaeof R”.

Let Hom(R", C™) be the real vector space of linear mags: R" — C™",
and define’p to be the subset ap € Hom(R”", C™) such that

(i) ¢*(w)p=0,and
(i) ¢lr,p: T,P — C™isinjective for all p in a dense open subset &*.

If @ € Hom(R", C™) then(i) holds if and only if¢*(w) € Vp, whereVp is
the vector subspace of elementsAf(R")* which restrict to zero orP. This is
a quadratic condition orgp. Also (ii) is an open condition op. ThusCp is an
open set in the intersection of a finite number of quadriddam(R”, C™). Let
R™ be a Lagrangian plane if©™”. Then any linear map : R” — R™ satisfies
(), and generic linear mapg : R" — R™ satisfy(ii). HenceCp is nonempty.

Note that the requirement thatoe both linear irR” and tangent t@ at every
pointis a very strong condition ah andy . Thus sets of linear evolution data are
quite rigid things, and not that easy to construct. We will give some examples in
Sect. 4. First we show how to construct &kfolds in C™ using linear evolution
data.

Theorem 3.3. Let (P, x) be a set of linear evolution data, and use the notation
above. Suppos¢ € Cp. Then there exists > 0 and a unique real analytic
family {¢, i1 € (—e, e)} in Cp with ¢g = ¢, satisfying the equation

dd)l ’ ar...dm—1 amb
(E(x)) = () (x (X)) H(Re82)ay...a 10, 8™ (3.2)

for all x € R", using the index notation for tensors @'. Furthermore,N =
{¢:(p) : 1 € (—e,€), p € P} is a special Lagrangian submanifold i&"
wherever it is nonsingular.

Before we prove the theorem, here are some remarks about it. Equation (3.2)
is a first-order o.d.e. upo#,, and should be compared with equation (3.1) of
Theorem 3.1. The key point to note is thatyass linear, the right hand side of
(3.2) is linear inx, and so (3.2) makes sense as an evolution equation for linear
mapsg,. However, the right hand side of (3.2) is a homogeneous polynomial of
orderm — 1in ¢,, so form > 2 itis anonlinearo.d.e.

Also observe that (3.2) works fgr, in Hom(R”, C™), and not justp. If the
evolution starts irCp, then it stays irCp for smallz. But it can be helpful to
think of the evolution as happening in HoRr', C™) rather than irCp, because
Cp may be singular, but Ho®R", C™) is nonsingular. Thus, we do not run into
problems when the evolution hits a singular poin€Cef
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Proof. As above, (3.2) is a well-defined, first-order o.d.e. uppm Hom(R",
C™) of the form% = Q(¢;), whereQ : HomR", C") — Hom(R", C™) is

a homogeneous polynomial of degree— 1. The existence for some > 0

of a unique, real analytic solutiohp, it € (—€, e)} in Hom(R", C™) with
initial value ¢y = ¢ follows easily from standard results on ordinary differential
equations.

The rest of the proof follows that of Theorem 3.1, given in [7, Th. 3.3],
with small modifications. The compactnessiin Theorem 3.1 was used only
to prove existence of the familfy, : 1 € (—¢, )}, which we have already
established, so we don’t need to supp@sis compact. The evolution equation
(3.1) in Theorem 3.1 is exactly the restriction of (3.2) fr@&hto P. Thus the
proof in Theorem 3.1 thaV is special Lagrangian also applies here, wherever
N is nonsingular.

It remains only to show thdi, : 1 € (—¢, €)} lies inCp, rather than just in
Hom(R", C™). Now w|y = 0 asN is special Lagrangian, and this implies that
¢ (w)|p =0fort € (—e, €). So part (i) of Definition 3.2 holds fap,. But part
(ii) is an open condition, and it holds feg = ¢ as¢ € Cp. Thus, making > 0
smaller if necessary, we see tlgate Cp forall t € (—¢, ¢). O

Next we generalize the ideas above from lineaftme(linear plus constant)
maps¢. Here are the analogues of Definition 3.2 and Theorem 3.3.

Definition 3.4. Let 2 < m < n be integers. A set of affine evolution data is
a pair (P, x), where P is an (m — 1)-dimensional submanifold oR”, and
x : R" - A" 1R" is an affine map, such that(p) is a nonzero element of
A™IT P in AR for each nonsingulap € P. We suppose also that is
not contained in any proper affine subsp&feof R”.

Let Aff (R", C™) be the affine space of affine mapsR” — C™, and define
Cp to be the subset ap € Aff (R”, C™) satisfying partgi) and (i) of Definition
3.2. TherCp is nonempty, and is an open setin the intersection of a finite number
of quadrics inAff (R", C™).

Theorem 3.5. Let (P, x) be a set of affine evolution data, and use the notation
above. Supposg € Cp. Thenthere exists > 0and a unique real analytic family
{¢: 1t € (=€, €)} in Cp with g = ¢, satisfying(3.2) for all x € R", using
the index notation for tensors 1@". Furthermore, N = {¢,(p) it € (—¢€,¢€),

pE P} is a special Lagrangian submanifold @" wherever it is nonsingular.

Now the affine case iR” can in fact be reduced to the linear cas®liri?, by
regardingR” as the hyperplan®” x {1} in R"*! = R" x R. Then any affine map
¢ : R" — C™ extends to a unique linear map: R*** — C™. Thus Theorem
3.5 follows immediately from Theorem 3.3.
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4. Examples of evolution data

We now give examples of sets of linear and affine evolution d&tay), in

order to apply the construction of Sect. 3. We begin in Sect. 4.1 by showing that
quadrics inR™ are examples of evolution data with = n. The corresponding

SL m-folds will be studied in Sect.5-7.

Section 4.2 gives two trivial examples of evolution data, and classifies sets
of evolution data in the cases = 2 andm = n. Then Sect.4.3 considers
the symmetrie®f sets of evolution data, and shows that every set of evolution
data(P, x) has a large symmetry group which acts locally transitively o®.
Finally Sect. 4.4 discusses the classification of evolution data, andlthefithe
symmetry group.

4.1. Quadrics inR™ as examples of evolution data

A large class of examples of evolution data arisq@edricsin R”, with n = m.

Theorem 4.1. LetR™ have coordinateéxy, .. . , x,),and forl < j < m define
ej € R"byx; = landx, = Ofor j # k. Let Q0 : R" — R be a quadratic
polynomial. Defing : R" — A" R™ by

x(x) =dO(x) - (e A -+ Aey)

" 40 :
— Z(—l)-"lﬁelA---Aej,l/\ejﬂ/\---/\em. (4.1)
N Bxy
j=1
Let P be the quadridx € R" : Q(x) = c} for somec € R, and suppose is
nonempty and nondegenerate.
If O is a homogeneous quadratic polynomial théh x) is a set of linear
evolution data in the sense of Definition 3.2 with= m, and otherwisd P, x)

is a set of affine evolution data in the sense of Definition 3.4 mithm.

The proof of this theorem is simple. A3 is quadratic, @ is linear or affine,
sox (x) is linear or affine ink. Sincexy = dQ-(exA---Ae,) andP is alevel set
of Q, itis clear thaty lies in A”~1T P on P. We leave the details to the reader.

Here are three exampleskf’, using notation as above.

Example 4.2.Let 1 < a < m, and defineP andy by
P={(x1,...,xy) €eR” :xf—l—---—i—xs—xfﬂ—---—xn% =1},

a
X = ZZ(—l)j_lxj erN- - ANe_1Ne 1N Ney
j=1

m
-2 E (—1)j_1xjel/\---/\ej_l/\ej+1/\---/\em.
Jj=a+1
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Then P is nonsingular irR™, and(P, yx) is a set of linear evolution data.
Example 4.3.Letm/2 < a < m, and defineP andy by

P:{(xl,...,xm)eRm:x%—l—n'—l-xf—xfﬂ—---—xi:O},

a
X = 22(—1)j_1xj exN--ANej_1Nej1 N Aey
=1

-2 Z (—1)j_1xjel/\---/\ej,l/\eﬁl/\---/\em.
j=a+1
Then P is a quadric cone iR with an isolated singular point at 0, a#, x)
is a set of linear evolution data.

Example 4.4.Let m — 1)/2 < a < m — 1, and defineg® andx by
P={(xt ..., xn) eR" :xZ+ - +x2
_'x3+l_ —X,i_l—i-me :O}’

X = 2(—1)'”_161 Ao A epm_1

a
+ ZZ(—l)j_lxj e1N - ANei_1Ae 1A Ney
j=1

m—1
-2 Z (—l)j_lxjel/\~-/\ej_1/\ej+1/\---/\em.
j=a+1

ThenP is nonsingular irR™, and(P, x) is a set of affine evolution data.

The classifications of centred quadricsRA up to linear automorphisms,
and of general quadrics IR” up to affine automorphisms, are well known.
Our construction is unchanged under linear or affine automorphisriRé' oft
can be shown that all interesting sets of evolution data arising from Theorem
4.1 are isomorphic to one of the cases of Examples 4.2—4.4, under an affine
automorphism oR™ and a rescaling of .

Here we exclude quadrics admitting a translational symmetry gRjufor
k > 1 as uninteresting, since they lead to special Lagrangian submanNolds
in C™ with the same translational symmetry group. It then follows thais
a productN’ x R¥ in C"* x C*, where N’ is special Lagrangian ifc"*.
Degenerate quadrics with dimension less than 1 are also excluded.

4.2. Two trivial constructions of evolution data

Next we consider evolution data not arising from the quadric construction above.
The following two examples are rather trivial constructions of evolution data,
which do not yield interesting Skz-folds in C™.
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Example 4.5.Letn > 2, choose any nonzero linear or affine mapR” — R”,
and letP be any mtegral curve of, regarded as a vector fieldiRf. Then(P, x)
is a set of linear or affine evolution data with= 2. Furthermore, every set of
evolution data withn = 2 comes from this construction.

Thus, using the method of Sect. 3, one can construct many examples of special
Lagrangian 2-folds irC2. But special Lagrangian 2-folds ifi? are equivalent
to holomorphic curves with respect to an alternative complex structure, and so
are anyway very easy to construct.

Example 4.6.Let (P, x) be a set of evolution data iR", with P an (m — 1)-

manifold, and lek > 1. Write R"** = R” x R*, with coordinategxy, ... , x,,
Xnil, - - - > Xnak). Define
k )
P—PXR andX—X dx”_ﬂ/\“‘/\ﬁ.

Then(P’, x') is a set of evolution data iR"**, with P’ an (m+k—1)-manifold.
All SL (m +k)-folds N’ in C"** constructed usingP’, x’) split as products
N x R¥in C™ x Ck, whereN is an SLm-fold in C™ constructed usingP, x).

Combining these two examples we can make (uninteresting) examples of
evolution data for any:, n with 2 < m < n. In particular, whem = m we have:

Example 4.7 .Leta,..., f e R be not all zero, and let be an integral curve
of the vector flelotaxl + bxy + €)== s (cx1 +dxp + f)— inRR2. Letm > 2,

write R” = R? x R"~2, and defineP = y x R"2 and

d
—(GXl+bX2+€)E/\d—xs/\"'/\m

Hlexs+dxa+ e A A g

Then(P, x) is a set of evolution data with = m. If e = f = O thenitis linear,
and otherwise affine.

These and the examples of Sect. 4.1 exhaust the examples with.

Proposition 4.8. Every set of linear or affine evolution data with= n is iso-
morphic either to one of the quadric examples of Sect. 4.1, or to one constructed
in Example 4.7.

Proof. Let (P, x) be a set of linear or affine evolution datah= R™, with
m = n. Let o be a nonzero element of”V*, and defined : Vv — V* by
B =« - x, where ‘.’ is the natural producA” V* x A"~V — V*. Theng is
a linear or affine 1-form orv.

The zeros ofg form a distributionD of hyperplanes inV whereverg is
nonzero. Theurvatureof D is (dB)|p. Now clearlys|p = 0, sincey is nonzero
and tangent taP at each point ofP, so g is nonzero along® andD|p = T P.
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ThereforeP is anintegral submanifoldof D, so the curvature b vanishes
alongP.

This shows that d|p = 0. Clearly, this is equivalent t8 A dS being zero
alongP, that is, zero imM3V* rather than restricted t8. But 8 is linear or affine
and @3 is constant, s@ A dg is linear or affine. AsP is not contained in any
proper linear or affine subspaceWf(as appropriate), we see thiat dg is zero
onallofV.

There are now two possibilities:

(@) d3 =0, or
(b) dB8 = y A S for linearly independeny, § € V*, andg € (y, §)r at each
pointinV.

This is because if 8l is nonzero and not of the form A 8, theng A dB = 0 if
and only if 8 = 0, but we knowgs is nonzero onP.

In case (a), we can writ8 = dQ for Q0 : V — R a quadratic polynomial,
which is homogeneous # is linear. ThenQ is constant along® (assumingP
connected), s@ is a subset of?’ = {v € V : Q(v) = c}. Thus, case (a)
is one of the quadric examples of Sect.4.1. In case (b), we choose coordinates
(x1,...,xy) 0NV with y = dx; ands = dx;, and it is then easy to show that
we are in the situation of Example 4.7. ]

4.3. Symmetry groups of evolution data

We shall now show that every set of evolution d@®a x ) has a symmetry group

G which is locally transitive orP. For simplicity we work in the linear case; the
corresponding result for affine evolution data may easily be obtained by replacing
linear by affine actions.

Theorem 4.9. Let (P, x) be a set of linear evolution data, with a connected,
nonsingular(m — 1)-submanifold inR”". Then there exists a connected Lie sub-
groupG in GL(n, R) with Lie algebrag, such thatP is an open set in &-orbit

in R", and x is G-invariant. Furthermore, there is a natural, surjective;
equivariant linear mag. : A" 2(R")* — g.

Proof. Define a linear mag. : A" 1(R")* — gl(n, R) by L(«) = x - «, where
we regardy as an element aiR”)* ® A”~1R", and ‘- ’is the natural contraction
AR x AM2(RM)* — R”, sothaty -« € (R")*®R" = gl(n, R). Letg be the
Lie subalgebra ofil(n, R) generated by Ink, so thatL. mapsA™—?(R")* — g.
Let G be the unique connected Lie subgroup of(@LR) with Lie algebrag.
Regard elements gfi(n, R) as linear vector fields oR". Then at eachp e
P C R" we haveL(x)|, = x|, - «. Sincex|, € A" 1T, P by definition, we
see thatL ()|, € T,P. So the vector fieldd.(«) are tangent ta?. But the Lie
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bracket of two vector fields tangent ® is also tangent ta?. Hence, ag is
generated from Ink by the Lie bracket, every vector field inis tangent taP.

SinceP is nonsingular, we havg|, # 0 for all p € P, by definition. Thus
the mapA™~2(R")* — T, P given bya — L(a)|, is surjective So the vector
fields ing spanT, P for all p € P. Therefore the action of the Lie algelyyan
P islocally transitive It follows that P is locally isomorphic to an orbit of; in
R", and asP is connected, it must be an open set iG-@rbit.

Next we prove thay is G-invariant, which is not quite as obvious as it looks.
Lletl<ii < - <ip_2<n,Seta =dx;; A---Adyx;, ,, and define = L(«).
We shall show that, x = 0, whereL, is the Lie derivative. First observe that
v is a linear combination of termﬁ% with j Ai fork=1,..., m —2. 1t
follows easily that,« = 0. But then

O0=Lwv=L(x -a)=Lyx) a+x- (Lya)=(Lyx) . (4.2)

Now | » is @ nonvanishing section of"~17 P andv is tangent taP, we see
thatL, x|p = Ax|p for some smooth functioh: P — R.As(L,x) -« = 0 by
(4.2), restricting toP givesiy -« = 0 on P, that is,Av = 0 on P. Therefore
A=0o0rv=0o0nP.Butif v=0thenclearlyh = 0. ThusL,x =0onP.

Since P lies in no proper vector subspace Rf, and £, x is linear, this
implies thatL,x = 0. This holds whenevey = L(dx;, A --- A dx;, ,) for
1<iy <+ <in_o < n. Such forms are a basis far"—?(R")*. SoL,x = 0
forall v € Im L, and therefore for alb € g. As G is connected, this shows that
x is G-invariant.

It remains to show that : A"~ 1(R")* — g is G-equivariant and surjective.
TheG-equivariance is now obvious, gds G-invariant. So Im is aG-invariant
subspace df, that is, anidealin g. Butthen ImL is closed under the Lie bracket.
As Im L generateg we haveg = Im L, andL is surjective. O

As an example, consider the linear evolution ddtay) given in Examples
4.2 and 4.3. In both caseas is the identity component of S@, m — a). In
Example 4.2, each connected componen® @ an orbit ofG. In Example 4.3,
P is singular at 0, and each componentrof, {0} is an orbit ofG.

Now fix m = 3. ThenL maps(R")* — g. It can be shown that either

(a) P is contained in no affine hyperplanelitt, and KerL = 0O; or
(b) There exists a nonzero linear m@gp R" — R such thatP is contained in
the affine hyperplang = 1 inR”, and KerL = (df ).

In case (a).L is an isomorphism, so th&" = g*. Thus, P is an open set in
G-orbit in the coadjoint representati@i of G, that is, P is locally acoadjoint
orbit. In case (b) we will see in [8, Sect. 4] th@&™")* is also a Lie algebra, an
extension ofy by R, andP is again a coadjoint orbit. Note that in case(B) x)
reduces to a set of affine evolution dataritT .
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In the sequel to this paper [8], we will use these ideas to construct a correspon-
dence between sets of evolution data with= 3, and symplectic 2-manifolds
with a transitive, Hamiltonian symmetry group. This will enable us to write down
several interesting sets of evolution data with= 3 andrn > 3, and study the
corresponding families of SL 3-folds ifi°.

4.4, Discussion

Let us survey what we know about of sets of evolution data so far. Evolution
data depends on two integensn with 2 < m < n. In Sect. 4.2 we classified all
sets of evolution data witm = 2 andm = n, and constructed some not very
interesting examples for any, n with 2 < m < n. The ideas of [8, Sect. 4]
will give us a good picture of the set of all evolution data with= 3, and could
probably be developed into a classification without great difficulty.

What we lack at present is an understanding of sets of evolution data with
3 < m < n. We can state this as:

Problem. Find and classify examples of sets of evolution data with@& < n,
which do not arise from lower-dimensional examples via the product construction
of Example 4.6.

Theorem 4.9 suggests a possible method of constructing examples. One
should start with a likely-looking connected Lie groGpand a representation
V of G, and find thgm — 1)-dimensional orbit®) of G in V, and then look for
G-invariant elementg of V* ® A™~1V which are tangent t@. Note that ify
is nonzero and tangent & at one point, then it is at every point.

The casen = m + 1 may also be tractable by a more direct approach.
For instance, affine evolution data with= m, which we understand, can be
interpreted as linear evolution data with=m + 1.

Next we discuss the geometric meaning of Theorem 4.9. It shows that any
set of evolution dat&P, x) in R” has a symmetry grou@, acting onR” in a
locally transitive way onP and preserving . Take P to be aG-orbit in R”, so
that G acts globally onP, rather than just locally. Let us ask, howdsrelated
to the special Lagrangian-folds NV in C™ constructed froniP, x) in Sect.3?

As N is naturally isomorphic taP x (—¢,€) or P x R, andG acts onP,
there is a natural action & on N. However, in general this action i®ot by
automorphisms of™. That is,N is the image of6 : P x (—¢,¢) — C™ and
in general there is nGg'-action onC™ such tha is G-equivariant.

Nor does; act nontrivially on the set of Skz-folds N in C™ constructed from
(P, x). Instead, we should rega€das acting on the set parametrizationsb of
N constructed in Sect. 3, so that onesstfold N will arise from the construction
with many different parametrizatiors, related byG.

Here is another way to say this. The mapsvere constructed as solutions
of an o.d.e. (3.2), with initial datg, in a setCp given in Definitions 3.2 and 3.4.
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It turns out thatG acts naturally o€ », and two sets of initial data in the same
G-orbit in Cp yield the same Skxz-fold N in C™.

We shall use these ideas to predict the dimension of the fatily ,, of
distinct SLm-folds N in C™ constructed from(P, x) in Sect.3. Suppose as
above thatP is aG-orbit, and defing5’ to be the Lie group of linear (or affine)
automorphisms oR” preservingP, and preserving up to scale. Thei& is a
subgroup ofG’, but may not be the whole thing.

For instance, in Example 4.B is invariant undedilationsx +— ¢x in R™
for + > 0, which do not lie inG for ¢t # 1, and multiplyx by 2. In this case
G is the identity component of S@, m — a), and the identity component of
G'is G x Ry, that is,G together with the dilations. In [8] we will give other
examples wher& needs to be augmented by a ‘dilation’ group, which acts in a
more complex way ofR".

We constructV from the integral curve of an o.d.e. {fp. The set of such
curves has dimension di@fp — 1. Two curves give the same Sh-fold N if
they are equivalent under the action@fonCp. Supposing tha;’ acts locally
freely onCp, we guess that diM(p ,) = dimCp — 1 —dimG’.

In doing this calculation we have factored out the ‘internal’ symmetry group
G’ of the construction, which acts on the data used in the construction, but not
on the set of Sl -folds we construct. However, there still remains the ‘external’
symmetry group of automorphisms @f*, which is SUm) in the linear case
(where the origin is a privileged point) and &k) x C™ in the affine case.

Thus, if genericn-folds in M,y have no continuous symmetries, then
the moduli space of Skxn-folds up to automorphisms d&” has dimension
dim M p_,,—m?+1 in the linear case, and dimt p_,,—m? —2m+ 1 in the affine
case. This is probably the best measure of the number of ‘interesting parameters’
in the construction, once all symmetries are taken into account.

5. Examples from evolving centred quadrics

We will now apply the construction of Sect.3 to the family of sets of linear
evolution data(P, x) defined using centred quadrics R’ in Examples 4.2
and 4.3. In Sect.5.1 we reduce the problem to an o.d.e. in complex functions
wy, ..., w, Of areal variable, and in Sect.5.2 we rewrite the o.d.e. in terms
of functionsu, 6 andé,, ... , 6, of . Then in Sect.5.3 we solve the equations
explicitly, as far as we can; the solutions are written in ternelgdtic integrals
Section 5.4 considers global properties of the solutions, and describes the
resulting SLm-folds in four different cases. Finally, Sect.5.5 considers one
particularly interesting case in which the time evolution maypbeodicin z,
and investigates the conditions for periodicity.
It turns out that in the case th& is a sphereS” ! in R™, the SLm-folds
we construct have already been found using a different method by Lawlor [12],
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and completed by Harvey [4, p. 139-143]. Lawlor used his examples to prove
theangle conjecturea result on when the union of twe-planes inR” is area-
minimizing. The other cases of this section can also be studied using Lawlor and
Harvey’s method, and may well be known to them, but the author has not found
the other cases published anywhere.

Much of this section runs parallel to the construction @il —2-invariant
special Lagrangian cones@i" in [7, Sect. 7] and uses the same ideas, because
the o.d.e.s involved are very similar. However, the geometric interpretations are
significantly different.

5.1. Reduction of the problem to an o.d.e.

Letl<a < mandc € R, withc > 0if a = m, and defineP and by

P = {(xl,... , Xn) € R™ :xf+---—l—x(f—x(fﬂ—---—xi:c}, (5.2)

a
X = ZZ(—l)j_lxj exN- - ANej_1Nej1 N Aey
j=1

” (5.2)
-2 Z (—1)j_lxjel/\---/\ej,l/\ejJrl/\---/\em,
j=a+1
wheree; = % Then(P, x) is a set of linear evolution data. Consider linear
mapsey : R™ — C™ of the form
G (X1, ... Xpm) > (WiX, ..., WyX,) forw; inC\ {0} (5.3)

Theng is injective and Imp is a Lagrangiam:-plane inC™, so thatp lies in the
subsetp, of Hom(R™, C™) given in Definition 3.2.

We will see that the evolution equation (3.2) #in Cp preserves of the
form (5.3). So, consider a 1-parameter fan{i&y 1t € (—€, e)} given by

G (X1, X)) > (Wi(OXL, - W (X)), (5.4)
wherews, ... , w, are differentiable functions frorft+e¢, ¢) to C\ {0}. We shall
rewrite (3.2) as a first-order o.d.e. upon, ... , w,,.

Now (¢;).(ej) = wjzj’Tj + a)ja‘%. It is convenient to get rid of thg; term
by taking the (1,0)-component, givirg,).(e;)*? = wja%. In the same way,
from (5.2) the(m —1, 0) componente,).(x) ™19 of (¢,).(x) is

a
G Y ST . O AL AD A D AL AO
2 Z ( 1) Xjwr: - WjiaWji: -+ Wm 971 A A dzj1 "' 0z Zm
Jj=1
m
_ AV ST PRI P O A AD A D AL A
2 Z (=D xjwy - wjiawipg- - wy 3 N A gAY T ASERAS

j=a+1
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As 2 is an(m, 0)-tensor, we see that the contraction(¢f)..(x) with £2 is
the same as that @,)..(x)™ 19 with £2. Hence, using the index notation for
tensors orC™, we get

(d)t)* (X (x))al...am_l Qal...amflam =

2 E XjW1 - Wi W1 - - Wy (dz)g,,

-2 E XjW1 - Wi_qWjg1 - - Wy (dz))g,, -
j=a+1

Hence
(@0 LDy, 10,8 =

a
j : 9 \b
2 -Xle ... w]ile+1 ... wm (E)

9 \b
-2 E xjwl...wj_le+l...wm(a) .
Jj=a+1

Since(¢,).(x (x)) andg are real tensors, taking real parts gives
(@)« (X ()" (RE)ay...a 10, 8" =

Z - - - - 9 \b
x‘]wl' .. w]*lw‘]+l. .. wm(g)

Z - - - - 9 \b
— x]wl .o w]_le+1 DTS wm (g)
j=a+1

9 \b
+ § :xjwl"'wj—leJrl"'U)M(E)

j : 9 \b
— 'xjwl ... w]_le+1 ... wm(@) .

j=a+1
From (3.2) each side of this equatior’(ﬂé”&)b, which satisfies

dw; [ 3 di b
(2)" = S x; (;lt)l(az]) + 2y ()

by (5.4). Equating coefficients in the last two equations gives

dwj_ Wi W_Wjt1- W, Jj=1...,a,

dr — Wi W AWj41 - Wy, Jj=a+1l ..., m
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This is the first-order o.d.e. upam, ... , w,, that we seek. Applying Theorem
3.3, we have proved:

Theorem5.1. Letl < a < mandc € R, withc > 0if a = m. Suppose

wy, ... , wy, are differentiable functions); : (—e¢, €) — C\ {0} satisfying
% — wl"'wj*leJrl“'wm’ J =1a"' 7aa (55)
dr — W1 W W1 Wy, J=a+1l ..., m.

Define a subse¥ of C™ by

N = {(wl(t)xl, ... ,wm(t)xm) it e(—e€,6), x;eR,
(5.6)

2 2 2 2 _
x1+---+xa—xa+1—---—xm—c}.

ThenN is a special Lagrangian submanifold @&".

Observe that (5.5) agrees with [7, eq. (8)], with= 1for j < aanda; = -1
for j > a. Thus, we can follow the analysis of [7, Sect. 7] to understand the
solutions of (5.5). Furthermore, we showed in [7, Sect. 7.6] that [7, eq. (8)] is a
completely integrable Hamiltonian systeamd the proof also applies to (5.5).

5.2. Rewriting these equations

We now rewrite Theorem 5.1 using different variableg. K a then (5.5) gives

d|wj dlI)J _ dwj

|2_
o Witg TV

= Wy Wy + BL By = 2REwy ),

and in the same way we get

diw;* _ ) 2Re(ws--wpy), j=L...a, 5.7)
dr —2Rewi - wy), j=a+l, ...,m.
Let A € R be a constant, to be chosen later. Detipe. . . , o, by
lw; 02 —*, j=1...,a,
aj = / 2 - (58)
lw;O)*+x, j=a+1...,m,

and a function: : (—¢, €) — R by

t
u) =1+ 2/ Re(wl(s) e wm(s))ds,
0

so thatu(0) = A. Then (5.7) gives
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o +u, j=1...,a,
|wj|2=[f . (5.9)
o —u, j=a+1, ... m.

Thus we may write

(1) = gt o + u(t), j=1...,a,
J - é@j(t)\/m’ J = a+1, oo, m,

for differentiable function®s, ... , 0, : (—¢,¢) — R.
Define

O=01++6, and Q) =[] +w [] (@ —w.
j=1

j=a+1
Then we see that
du

&= 2Rew; - - - wy) = 20 u)Y? cosh.

Furthermore, expanding out (5.5) shows that

_ 0wY?sing .
%: TR j=1...,a,
dr

Qw2 sing
Otj*u

, j=a+1, ... m.

Summing this equation from = 1 tom gives

do . a m
5= 02 sing (Zj:l ﬁ - %L_u) .

Thus, we may rewrite Theorem 5.1 in the following way.

Theorem 5.2. Letu and 6, . .. , 6,, be differentiable functions
(—€, €) — R satisfying
d
& =202 coss (5.10)
w2 sing .
do; — QWS j=1,...,a,
and @ [ Q(uo)f/_zlfine’ i—a+1.....m. (5.11)
J
wheref = 6y + - - - + 6,,, so that
d_e = - Q(M)l/z sin@ (Za 1 _ Zm L) (5 12)
dr j=1 aj+u j=a+1aj—u ) * .

Suppose that; +u > Ofor j =1,... ,aande; —u > Ofor j =a+1,... ,m
andr € (—e¢, ¢). Define a subseV of C™ to be
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{(xleml(’)\/ozl +u(t), ..., x.€%0a, +u),
Xa1€%01D S —u(r), ..., %€ S, — u(r) ): (5.13)

te(—ee€), x;eR, xit- Axi—x2 — - —x2 =c}.

ThenN is a special Lagrangian submanifold @".

Now (5.10) and (5.12) glv%— and - as functions oft andé. Dividing one

by the other gives an expression %r ellmlnatlngt Suppose for the moment
that sin@(0)) # 0. Then separating variables gives

/u(f) 0]
- du = —2/ cotd dg,
u(0) JZ i T u Z (% —u 0(0)

which integrates explicitly to

log Q(u) = —2logsind + C

forallr € (—e, €), forsomeC e R. Exponentiating give® () sin 6 = e > 0.

If on the other hand sif(0) = 0 then (5.12) shows that is constant
in (—e, €), S0 Qu)sitd = 0. In both case (1) sirn’ 6 is constant, so its
square rootQ (1)?siné is also constant, as it is continuous. Thus we have
Q(u)Y?sing = A for someA € R.

This simplifies (5.11) and (5.12), by replacing the faafu)'/2 sind by A.
Also, from (5.10) we find that

()% = 40 (u) cog 6 = 4(Q(u) — Q) SiIMP6) = 4(Qu) — A?).
Thus we have proved the following analogue of [7, Prop. 7.3]:

Proposition 5.3. In the situation of Theorem 5.2 we have

Ow)Y?sing = A (5.14)
for someA € R and allt € (—e, €), and(5.10)(5.12)are equivalent to
du\2 9
<E) = 4(Q@u) — A?), (5.15)

ao; —-fé—, '=:1,...,a,
_,:{ ajta (5.16)

dr A j=a+1,... ,m,

oj—Uu

and 3—9 =—A (5.17)
4 j=l j=a+1 o =
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5.3. Explicit solution using elliptic integrals

Next we will write down the Sln-fold N of Theorem 5.2 in a more simple and
explicit way. A nice way of doing this is to eliminate and write everything
instead as a function of. Now “ has the same sign as @by (5.10). Thus,
if cosO changes sign iii—e, €) then we cannot write as a function of:, but if
cost has constant sign then we can.

Let us assume th&t(¢) € (—n/2, w/2) for all t € (—e, €), so that co§ is

positive. Then (5.15) give%ti = 2,/Q(u) — A?, and integrating gives

fu(t) du td
—_— = I =1.
w(© 2¢/0(u) — A2 0

This defines: implicitly as a function of. From (5.15) and (5.16) we get

A ;o 1
. — =1...,a,
do; 2@ +fow-nz’ !

du e — i=a+1, ..., m
2(aj—u)A/ Q(u)—A2? J T

Integrating these gives expressionsdpm terms ofu, and we have proved:

Theorem 5.4. Supposé (r) € (—n/2, w/2)forall r € (—¢, €). Thenthe special
Lagrangianm-fold N of Theorem 5.2 is given explicitly by

N = {(xleiel(“)«/al +u,... ,xaem“(”)«/oza + u,
xa+1ei6“+1(”)«/oza+1 U, ..., x, € e u ) :

€ (u(—e),u(e)), x; €R, xf+---+x3—x3+l—---—xnz1 =c},

where the functions; («) are given by

0, () Qj(u(O)) u(O) (a+v)m j=1...,a,
i) =

( (O)) + 3 fu(O) (- Q(U) ek _] = Cl+l, ..., Nl

5.4. A gualitative description of the solutions

We now describe the Slu-folds N in C™ emerging from the construction of
Theorem 5.2, dividing into four cases, depending on the valudsaofda.
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Case(a):A =0. WhenA = 0,we seefrom (5.16) thét, ... , 6,, are constant
with 61 + - - - + 6,, = n for somen € Z, and the Slm-fold N of (5.13) is a
subset of the special Lagrangianplane

{(xleigl,... ,xmeie’”) TX1y ... Xy € R}.

Thus the casd = 0 is not very interesting. If we repla¢e by 6; + = and
t by —t then A changes sign, but the manifoM of (5.13) is unchanged. So
we may assume in the remaining cases that 0. Then it turns out that the
equations behave very differently depending on whetherm ora < m. We
consider the: = m case first.

Case (b):a = m,c > 0and A > 0. This case has already been studied by
Lawlor [12] and Harvey [4, p. 139-143], using somewhat different methods.
After some changes of notation, one can show that Harvey [4, Th. 7.78, p. 140] is
equivalent to the case= m, ¢ > 0 of Theorem 5.4. Lawlor used his examples

to prove theangle conjecturea result on when the union of twa-planes inR”

is area-minimizing. Whem; = --- = «,,, the manifolds are S@:)-invariant,

and are given in [5, Sect. 11.3.B].

Whenm > 3, it can be shown that equation (5.5) admits solutions on a
bounded open interval, §) with y < 0 < §, such thau(r) — co ast — y,
andr — §_, sothatthe solutions cannot be extended continuously ouisjde.
Whenm = 2, solutions exist ofR, with u(r) — oo ast — +o0, SO we can put
‘y = —oo’and ‘§ = oo’in this case.

The SLm-fold N defined using the full solution intervé}, §) is a closed,
embedded special Lagrangianfold diffeomorphic toS”~! x R. It is the total
space of a family of ellipsoidg; in C™, parametrized by. Ast approacheg or
8 these ellipsoids go to infinity if”, and also become more and more spherical.

At infinity, N is asymptotic to order~" to the union of two special La-
grangianm-planesR”™ in C" meeting at 0, and we can think &fas aconnected
sumof two copies ofR™. These examples are interesting because they provide
local models for the creation of new Sk-folds in Calabi—Yaun-folds as con-
nected sums of other Sk-folds, as in [6, Sect. 6—Sect. 7] when= 3.

It remains to consider the cases in whigh- 0 and 1< ¢ < m — 1. Recall
that the definition (5.8) od;, . .. , «,, depended on an arbltrary constant R.

Itis easy to show that there exists a unique R such thaty; > 0 for all j, and

Z Z = (5.18)

o j=a+1 o
Let us choose this value af
Since Q(u) = |w1l?--- |w,|?, and Q) > A2 > 0 asA > 0, we have
|wj|2 > 0 for all j. Thus, from (5.9) we see thair) is confined to the open
interval
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(- min o;, min o)) (5.19)
for all ¢ for which the solution exists. It follows from (5.18) th&'(0) = O.
As the roots—aq, ..., —og, 041, ... , a, Of Q(u) are all real and none lie in
(5.19), zero is the only turning point @f in the interval (5.19). Thug? achieves
its maximum in (5.19) at 0, an@(0) = a1 - - - oy,
But Q(u) > A? by (5.14). Hence, for all we have

0<A?< Q) <o dy. (5.20)
In particular, this shows that < (s - - - «,,)Y/2. We divide into two more cases,

depending on whethet = (a1« - - a,)Y2 0r A < (ag- - - a,,) Y2

Case(c):1<a<m-1landA = (a;---a,)Y?% Inthis case, (5.20) gives
a1y, < Ow) < o1 0,,,500) = ay - - - ap,. Iteasily follows that: = 0,
cosf = 0andsirw = 1, sothat = (2n + %)n for somen € Z. Equation (5.16)
then gives

Qj(O)—At/C{j j=1,...,(l,
0;(t) = .
0j(0)+Af/(Xj ]=a+l,...,m.
Thus solutions exist for all € R. Define

0 —AJa; j=1,...,a,
/ Alaj j=a+l, ..., m,

and y; = ajl/zxj.

Then we find thati; + - - - + a,, = 0, andN is given by
{(ei(91(0)+alf) V..., @EnOTG0y ) e Ry e R,
alyf + - —i-amyf1 = —Ac}.

Now apart from the constant phase factdfs®, this is one of the Slu-
folds constructed in [7, Prop. 9.3] using the ‘perpendicular symmetry’ idea of
[7, Sect. 9], with = m andG = U(1) or R. Whenay, ... , a,, are integers, this
example is discussed in [7, Ex. 9.4].

Case(d):1<a<m—-1and0< A < (a1 ---a,)2. Thisis very similar to
case (c) of [7, Sect. 7], and following the proof of [7, Prop. 7.11] we can show:

Proposition 5.5. Supposd < a <m —1,anday, ... , a, satisfye; > 0and
(5.18) Letu(0) and 61(0), ... , 6,,(0) be given, such thak; + u(0) > 0 for
j=1...,aande; —u(0) > O0for j =a+1,...,m,and

0< A= Qw0)¥?sino0) < (ay---am)?,
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whered (0) = 61(0)+- - -+6,,(0). Then there exist unique solutiang), 0;(¢) and
0(t) to equationg5.10)}{(5.12)of Theorem 5.2 for all € R, with these values at
t = 0. Furthermorex and 6 are nonconstant and periodic with peridd > O,
and there exisBy, - - - B, € Rwith 8; < Owhenj =1,... ,aandpg; > Owhen
j=a+1,... ,mandpi+---+ B, =0, suchthaw,;(r + T) = 0;(¢t) + p; for
j=1...,mandallr € R.

Here solutions, 6 to equations (5.10) and (5.12) are periodic with pefiod
justasin[7, Sect. 7.5]. Thereforg(%i is periodic with periodl’ by (5.11), which

implies thatd;(r + T) = 0;(t) + p; for somep; € R. But d(’[ < Oforj <

and f >0forj >a by (5.16), so thap; < O when;j < a andg; > 0 When
Jj > a Alsof =0, +---+6,,s0thad(t +T) =0(#) + B1+--- + Bn.ASO
is periodic with periodT, we see thag; + --- + B, = 0.

What this means is that whengoes through one cycle of length, the
complex coordinateg,, ... , z,, don’t return to their starting points, but instead
are taken to'éizy, ..., €Pnz,.

5.5. Periodic solutions in case (d)

We have seen that in case (d) abavando are periodic functions with periaf,
butfs, ..., 6, are not periodic, and satisfy(t +7) = 0;(t)+p; for 1, ..., Bu
real numbers witl; < 0if j <aandg; > 0if j > a. ButN in (5.13) depends
only on &% rather than or9;, so thatés, ... , 6,, matter only up to multiples
of 2.

Thus, ifB4, ... , B, are integer multiples of:2, then the evolution defining
N repeats after timé&. Actually it's enough forg; to be multiples ofr, as we
can change the sign af in (5.13). More generally, iB4, ... , B, are rational
multiples of , then the evolution repeats after tim&, wheren > O is the
lowest common multiple of the denominators of the rational factors.

For our later applications, these periodic solutions are more interesting than
the non-periodic ones, because they give rise to closed special Lagrangian
folds in C™ that can be local models for singularities of special Lagrangian
m-folds in Calabi—Yau manifolds. But the non-periodic solutions are not closed
in C™, and are not suitable as local models in the same way.

Therefore we will study the dependence of fyeupon the initial data. It is
easy to see thatt, ... , 8,, depend only o, m, oy, ... , a,, andA, and not on
u(0) or61(0), ..., 6,(0). Also, from above the;; and A satisfy

a; >0, Z Z and 0< A < (a1---am)Y2 (5.21)
Jj=a+1 %
Given anyxy, . .. , a,, andA satisfying these conditions, there exists a set of ini-
tial datau (0), 6.(0), ... , 6,,(0) with these values. For instance, we candi) =

0, and then take ang(0), ... , 6,,(0) such that si#(0) = A(cs - - - o) Y2,
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Consider what happens to the data when we reg¢alea constant factor >
0. Calculation shows that we should replacé;, «; andA by u’ ,6);, o) andA’,
whereu' (1) = k?u(k"%1),0/(1) = 6; (k" ?1), &) = k%a; andA’ = <" A. These
give new solutions to the equatlons with peribti = «> T, and unchanged
values ofy, ... , B,. The corresponding Skz-fold N'isk N = {kz:z € N}.

We can now do a parameter count. Sirge+ --- + B, = 0, there are
only m — 1 independeng;. These depend on the + 1 variablesxy, ... , a,
and A, which satisfy one equatiop;_; ;- = Y7 .1 ;- Thus, theg; can be
regarded as: — 1 functions ofm variables. However, rescaling yleaves the
B; unchanged, but removes one degree of freedom from taadA.

Thus, in the initial datav,, ... , o, andA there are onlyn — 1 interesting
degrees of freedom, and there are- 1 independeng; depending on them. The
obvious conjecture is that these two setsnof 1 parameters correspond, and
that the map from sets ef; and A satisfying (5.21) and sets @ satisfying
Bi+---+B8,=0is generlcally locally surjective, and locally injective modulo
rescallng by > 0 as above. In our next few results we shall show that this is
true.

In the following proposition, modelled on [7, Prop. 7.13], we regardathe
as fixed, and evaluate the limits of tAeasA — 0 andA — (ay - - - &) Y/2. For
simplicity we order ther; so thato; < -+ < o andog1 < - -+ < oy

Proposition 5.6. Supposd. < a <m anday, ... , o, > 0satisfy
o] = -+ =0y <ak+l<"' <aa’
5.22
O[a+1< KUy <Opiy1 ="' "=0p and Z Z ( )

j1//a+1/

Regardingyy, ... , a,, as fixed and lettingt vary in (0, (a1 - - - &) ?), we find
that asA — 0, we have

_%1 l<j<k7
Bi — 0, k<j<m-—I, (5.23)
%, m—I1<j<m,

and asA — (a1 -- - a,,)Y2, we have

22y e 1< <a,

_ 5.24
27101171(22?1:105[_2) V2 oav1<j<m (5.:24)

B —
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Proof. Let y, § be the minimum and maximum valueswfThen—a; < y <
0<6 <a,andQ(y) = Q(8) = A2, and using the ideas of Sect.5.3 we find
that

fls%, j:l,...,a,
oj+v - v)—
B = 5 IV ATew) (5.25)

) | = a l, ce.,m.
fV (aj—v)/A72Q(v)—-1 J +

As A — Owe havey — —a1ands — «,,. Also, the factor§A—2Q (v) — 1)~ 1/?

in (5.25) tend to zero, except nearands. Hence, ast — 0, the integrands in

(5.25) get large near ~ —a; ands$ ~ «,,, and very close to zero in between.
So to understand the; asA — O, itis enough to study the integrals (5.25)

neary ands. We shall model them at. Then neaw = —a; we have

Q) ~ Cw+ay', where C= [ (e —an [T @ +aw.
i=k+1 i=a+1
SinceA? = Q(y) this givesA? ~ C(y + a1)¥, so thaty ~ AZ*C—Y* — .
Therefore, when ~ y we haveA=2Q(v) — 1~ A~?C(v + a1)* — 1, so
whenA issmallandj =1, ... , k we have

0 dv
/y (¢ +v)y/A20() - 1

N /0 dv
A2kC—Vk_qq (001 + v)\/A—ZC(v +a)k -1

© 2dw T
| ferm=r
changing variableste = \/A*2C(v + ap)* — 1, where in the second line some
surprising cancellations happen, and we have also approximated the upper limit
VA 2Caf — 1 by oo.
Whenk + 1 < j < a andA is small we have

0 dv
/y (@j +v)y/A720(v) — 1
~ /0 dv ~0
A2ECVi gy ajJA2C(0 +ap)k —1

and similarly wherz + 1 < j < m andA is small we have

0 dv
~0
/y (o — v)y/A2Q(v) — 1
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Soon[y, 0] the integrals (5.25) are closetor/kfor1 < j < kandOforj > k
for small A. In the same way, ofD, §] the integrals (5 25) are close g/l for
m—1<j<mandOforj <m —1[forsmallA. This proves (5.23).
Next consider the behaviour gf asA — (a1 - - )Y2.WhenA is close to
(o1 - - - o) Y?, u is small and sim close to 1, s®@ remains close ter/2. Write
6 = % + ¢, for ¢ small. Then, settin@ (u) ~ ay - - - o, and

co

m
j=1

j= 1Y j=a+1 o=

taking only the highest order terms, equations (5.10) and (5.12) become

du 1 do no

RPN /2 AP 1/22: -2

dr ~ 2(0‘1 am) ¢ and dr u(al am) . a; -,

so thatu andé undergo approximately simple harmonic oscillations with period

T =27(201- o >t aj_z)—l/z_ Then (5.11) shows that

d9; f-o; @ an)? 1< j<a,
dr Otjfl(al-'-am)l/z, a+1<j<m

Sop; ~ de’ T,as% d - is approximately constant. This proves (5.24). O
We can use these limits to show that the nfagrom oy, ..., a,, A t0O
Bi, ..., Bm With 81 + - -- + B,, = 0 is generically locally surjective.

Proposition 5.7. RegardB = (84, ... , B.») as a function of
(a1,...,au, A). ThenB is a real analytic map front/ to V, where

U = {(al,... Oy A) T aj > 0, 27:15 = Z}"zﬁl%,
0<A<(a1a,)*?} and
V={(1....x) € (—00,0% x (0,00)" " :x1+ -+ x,, = 0}

Whenm = 2 we haveB(u) = (—mx, ) forall u € U. Whenm > 3, the image
B(U) is (m—1)-dimensional, and for a dense open subset ef U the derivative
dBl. : R™ — {(x1, ..., xy) € R™ i x1 + -+ - + x,, = O} is surjective.

Proof. From Sect. 5.4 we know th@f < Owhen; < a andg; > Owhen; > aq,
andB; +--- + B, = 0, so that does map/ to V. As A, y ands are clearly
real analytic functions of the; andA, we see from (5.25) tha is real analytic.
Whenm = 2 we must haver = 1, and going back to Theorem 5.1 we see
that the equations oms, w, are &1 = @, and &2 = —w,, which arereal
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linear, and admit simple harmonic solutions with period fr any nonzero
initial data. Translating this into the notation of Theorem 5.2, we find:tteatd
0 have periodr ands, = —m, B, = = for any initial data inU.

Now the limits of By, ... , B, in (5.24) satisfyZ}":l ﬁjz = 272. Thus, from

(5.24) we see that the closupgU) contains a nonempty open subset of the
(m —2)-dimensional real hypersurfade’ , x? = 272 in V. This implies that
B(U) is at leastm — 2)-dimensional.

Sincep is real analytic and/ is connected, there are only two possibilities:

(@) B(U) is (im — 1)-dimensional, or
(b) B(U) lies in the real hypersurface)/_; x? = 27%in V.

However, whenn > 3 we can use (5.23) to eliminate possibility (b). BaiU)
must contain the limit in (5.23), which satisfigs]" , 7 = 7%(; + 7). This lies
iny", sz = 2r2onlyif £ + 7 = 2, thatis, ifk =1 = 1, sincek, ! > 1.

Now the ranges of and/ arek = 1,... ,aandl = 1,... ,m—a. When
m = 2 we are forced to take = I = a = 1 and we cannot eliminate possibility
(b), as it is actually true. But when > 3 we are always free to choogke> 1
or!/ > 1, soB(U) contains a point not on the hypersurface. Thus (b) is false,
so () is true, an@(U) is (m — 1)-dimensional. This shows thapdl, must be
surjective at some € U, and as this is an open condition ghdbk real analytic,
dg|, is surjective for a dense open subsetcf U. O

This yields the following rough analogue of [7, Cor. 7.14].

Corollary 5.8. In the situation above, we haw, ... , B8, € 7Q for a dense
subset ofu in U.

Here is the main result of this section.

Theorem 5.9. For eachm > 3 and1 < a < m, the construction above pro-
duces a countably infinite collection dfparameter families of distinct special
Lagrangianm-folds N in C" parametrized by € R, given by

{(xleiel([)\/al +u(t), ..., x,€8%0 Ja, + u(t),
X 1€%11D S —u(r), ..., €O e, —u(r)): (5.26)

teR, x; eR, x2+~-+x§—x5+1—~--—x31=c},

such that

(@) if ¢ > OthenN is a closed, nonsingular, immersed submanifold diffeomor-
phic toS¢~1x R™~4 x S, or to a free quotient of this b,

(b) if ¢ < OthenN is a closed, nonsingular, immersed submanifold diffeomor-
phic toR¢ x S"~“~1x S, or to a free quotient of this bg,, and
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(c) if ¢ =0thenN is a closed, immersed cone with an isolated singular point
at 0, diffeomorphic to the cone af* ! x S”"~“~1x S%, or to a cone on a
free quotient of this b{,.

Proof. We saw at the beginning of Sect.5.5 thagif ... , 8,, € #Q then the
time evolution of Theorem 5.2 exists for ajland is periodic with periodT for
somen > 1. But by Corollary 5.8 we havgy, ... , B, € 7Q for a dense subset
of u € U. Thus, the construction above yields a countable collection of families
of SLm-folds, locally parametrized b, . .. , B, € rQwith g1+---+8,, = 0.

Choose one of these families, and defisieby (5.26). ThenN is special
Lagrangian by Theorem 5.2. LEtbe the quadrigf+ - -+x2—x2,  — - -—x2 =
cinR™, ThenN istheimageofamag : P xR — C™ taking((xl, e X)), t)
to the point inC™ defined in (5.26). As the factor&&) /a; & u() are always
nonzero,® is animmersionexcept whernx; = --- = x,, = 0, which happens
only whenc = 0.

Thus, N is a nonsingular immersed submanifold whens 0, and when
¢ = 0it has just one singular point 0 as an immersed submanifold. Snise
periodic inz with periodn T, we can instead regadd as a mapP x St — C™,
whereS! = R/nT Z. It is also not difficult to see that the image of @ is
closed provided® is periodic.

Now P is diffeomorphic taS?~1x R”~¢ whenc > 0, toR“ x S”"~¢~! when
¢ < 0, and to the cone 0 *x S”~“~t whenc = 0. ThusN is diffeomorphic
under® as an immersed submanifold 8 1 x R”~% x St whenc > 0, to
R¢ x S"~4~1x St'whenc < 0, andtothe cone aff xS “~x Stwhenc = 0.

It remains only to discuss the parts about free quotien®in (a)—(c). We
could have left these bits out, as the result is true without them. The point is this:
supposes; = ma;/b, forintegersuy, ... , a, andbwithhcf(ay, ... ,a,,b) =1
andb > 0. Thenw;(t + bT) = (—1D)%w;(t), so thatw; has periodT if a; is
even, and 2T if a; is odd. Thusp satisfies

D((xg, ..., x), 1) = D(((-D)™xg, ..., (=D)™xy), 1 + bT).
SinceP is invariant undex; — (—1)%x;, the family of quadrics making up
N has periodhT. But it doesn’t simply repeat after tiniel’, but also changes
the signs of those; with a; odd. Let us regard® as mapping? x S* — C™,

whereS! = R/2bT Z. Then @ is generically 2:1, and filters through a map
(P x 8YY/Z, — C™, where the generator @, acts freely onP x S* by

(1o X)), 142bT Z) > (=D %1, ..., (=D)"xy), t+bT +2bT 7).

This completes the proof. O



784 D. Joyce

This theorem is analogous to [7, Th. 7.15]. However, [7, Th. 7.15] constructs
SL 7~1-conesN with rather large symmetry groups S§eV) = U(1)" 2, but
the most generic cones and more general5folds constructed above have
SymP(N) = {1}, so they have rather small symmetry groups. This is not true for
all them-folds of Theorem 5.9, but only when, . .. , o, ando, 1, ... , a, are
distinct.

Part (c) of the theorem is interesting, as it provides a large family of singular
special Lagrangian cones @" which are good local models for the singulari-
ties of special Lagrangiam-folds in Calabi—Yaun-folds. Parts (a) and (b) are
examples oAsymptotically Conicaspecial Lagrangiam-folds inC™, and also
give local models for how the singularities of part (c) can appear as limits of
families of nonsingular Ski-folds in Calabi—Yaun-folds.

Here is a crude ‘parameter count’ of the number of distinct families of spe-
cial Lagrangiann-folds produced by this construction. Locally the families are
parametrized by bg, ... , B, € tQwith 81+ - -+ 8,, = 0. There are unique
integersas, ... , an, b with ; = ma; /b, such that hofay, . .. , a,,b) = 1 and
b > 0.Buta; + --- +a,, = 0, so we can discard,.

Observe that the constructions of this section and of [7, Sect. 7] are strikingly
similar in some ways, despite their differences. The o.d.e.s (5.5) and [7, eq. (8)]
behind the two constructions are essentially the same. And although the period-
icity conditions considered above and in [7, Sect. 7.5] are very different, the end
results are similar, as above we saw tNatepends om integersuy, ... , a1, b
with highest common factor 1, whereas after [7, Th. 7.15] we concludedthat
depended om integersiy, ... , d,_1, a with highest common factor 1.

The author wonders whether there is some deep connection, or duality, be-
tween the constructions of [7, Sect. 7] and this section, which explains these
similarities. This could be an integrable systems phenomenon, some kind of
‘Backlund transformation’ between the two constructions which respects the
periodicity criteria, or something to do with mirror symmetry.

6. The 3-dimensional case

We now specialize to the case= 3 in the situation of Sect.5. The special La-
grangian 3-folds we discuss in this section were also considered from a different
point of view by Bryant [1, Sect. 3.5]. Bryant uses Cartaahl€r theory to study
special Lagrangian 3-folds in C® whose second fundamental fornsatisfies
certain conditions at every point.

In effect, Bryant shows [1, Th. 4] thdt is one of the SL 3-folds of parts
(b)—(d) of Sect.5.4 if and only ik has stabilizefZ, in a dense open subset of
L. His methods are local. They show that the family of such 3-folds is finite-
dimensional and compute the dimension, but give less information on the global
nature ofL.
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Ofthe four cases (a)—(d) in Sect. 5.4, cases (a), (b) and (c¢) are already well un-
derstood, so we will concentrate on case (d). Fixing: 3, the two possibilities
a = 1 anda = 2 in this case are exchanged by reversing the order,ab, z3
and changing the sign of so without loss of generality we shall choese- 1.
We begin by summarizing the results of Sect.5.1 and Sect. 5.2 wher8
anda = 1. From Theorem 5.1 we obtain

Theorem 6.1. Supposevs, wz, ws : (—¢, €) — C\ {0} satisfy

d d d
ﬂ = Wows3, w2 = —wzw; and ﬂ = — WiW>. (61)

dt dr dr
Letc € R, and define a subseé{ of C3to be

{(wl(t)xl, wo(t)xo, IU3(I)X3) it e€(—€,6), xj €R, xf—xzz—x:,z,:c}.

ThenN is a special Lagrangian submanifold @r.
Combining Theorem 5.2, Proposition 5.3 and ideas from Sect. 5.4, we get
Proposition 6.2. In the situation of Theorem 6.1 the functiansmay be written
wy =€ Jog +u, wy=6%Ja;—u and wz=€%Jaz —u,
so that
lwil> = o1 4+u, |wol?=ar—u and |wsl® = asz— u, (6.2)

wherea; € R and u, 01,6,,03 : (—€,€) — R are differentiable functions.
Define

Q) = (a1 +u)(az —u)(az —u) and 0 =601+ 6 + 63.

ThenQ(u)¥2sind = A for someA € R, andu and 6; satisfy

du\2 d91 A
—) =4 — A2 — =
(dt) (Q(u) )’ dr o+ u’ (6.3)
d92 A d93 A .
—~ = and — = .
dr oy — U dr o3 — U

If A s Othenw;, u andg; exist for allz in R, not just in(—e, €).

Inthe last line, thev; actually exist for all even whem = 0. Butin this case
at least one of the; will become zero at some timgand therg; is undefined
at timet, and should be regarded as jumping discontinuously-ty Note that
asm = 3, by following the method of [7, Sect. 8.2] we can solve equation (6.3)
explicitly using the Jacobi elliptic functions. But we will not do this here.
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We will explain the 3-dimensional analogue of Theorem 5.9 in a little more
detail. From Sect.5.5, when = 3 anda = 1 the SL 3-folds of Theorem 5.9
are locally parametrized by, B2, B3 € 7#Q with gy < 0, B2, 83 > 0 and
B1+ B2 + Bz = 0. We may write suctg; uniquely asp; = ma;/b, where
ai, az,az, b € 7Z with b > 0 and hcfay, az, az, b) = 1. Then the family of
quadrics making upV has periodT .

However, the functions;, wy, ws : R — C satisfyw;(t + bT) = (=1)%
w;(t) fort € R. Thus, ifa; is odd thenw; actually has period#I" rather than
bT . The family of quadrics making upy still has period T, because the quadric
x2 — x2 — x2 = c in R3is invariant under a change of signxf

Now in describing the topological type &f in parts (a)—(c) of Theorem 5.9,
we allowed the possibility of a free quotient By. Whenm = 3 anda = 1, how
this Z, acts depends on whetheris even or odd. For instance, when- 0 the
quadricx? — x2 — x3 = ¢ splits into two connected components, with> 0
andx; < 0. Replacing by ¢ + bT mapsx; to (—1)%x;. Whena, is even this
map fixes the two components of the quadric, so faplits into two pieces,
but whena; is odd the two components are swapped, so thabmes in only
one piece.

We shall state two versions of Theorem 5.9 whwen= 3 anda = 1, for
the two caseg; even and:; odd. Note that the sets of tripl€s1, B2, B3) with
B; € mQanda; even, and witly; odd, are both dense inthe set of@, 82, 53),
so by the argument of Corollary 5.8 the sets of initial data Wijtle 7Q anda;
even, and with; € #Q anda; odd, are both dense in the set of all initial data,
and for both cases there are a countably infinite number of solutions.

Here is the first version, with; even.

Theorem 6.3. The construction above gives a countably infinite collectiof+of
parameter families of distinct special Lagrangi&folds N in C3 parametrized
byc € R, given by

{(xleiel(t)\/al—ku(t), 126820 Jao —u(t), x3€%30/az—u(t) ) :
teR, x;eR, xf—x%—xgzc},

such that

(@) if ¢ > OthenAN is the union of two distinct piecg$, and N = —N,,
each of which is a closed, nonsingular, immersed submanifold diffeomorphic
to ST x R?.

(b) if ¢ < OthenN is a closed, nonsingular, immersed submanifold diffeomor-
phicto7? x R, with N = —N, and

(c) if ¢ = O0thenN is the union of two distinct piecg$, and N. = —N,
each of which is a closed, immersed conel@nwith an isolated singular
point atO.
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Here is the second version, with odd.

Theorem 6.4. The construction above gives a countably infinite collectiof-of
parameter families of distinct special Lagrangiafolds N in C3 parametrized
byc € R, given by

[ (52 V), 1280 oz =0). 26 Jaa—u(0)) :

2 2 2
teR, x;eR, xl—xz—x3—c},

such that

(@) if ¢ > 0thenN is a closed, nonsingular, immersed submanifold diffeomor-
phic toS* x R2.

(b) if ¢ < OthenN is a closed, nonsingular, immersed submanifold diffeomor-
phic to a free quotient off? x R by Z. It can be thought of as the total
space of a nontrivial real line bundle over the Klein bottle, and has only one
infinite end, diffeomorphic td? x (0, co).

(c) if ¢ = 0thenN is a closed, immersed cone @1, with an isolated singular
point atO.

In all three cases we havé = —N.

In part (c) of these two theorems, the author expectsTtheones to be
embeddedh nearly all cases.

6.1. Conformal parametrization of SL cones

Let us now putc = 0 in Theorem 6.1, so that the 3-fold is a cone. Define
¥ = NNS®, whereS® is the unit sphere it®. ThenX is aminimal Legendrian
surfacein 8, asN is a minimal Lagrangian 3-fold ift>.

We shall write down an explicitonformal parametrizatio® : R? — X.
Now by [3, p. 32], a conformal map from a Riemann surface to a Riemannian
manifold is harmonic if and only if its image in minimal. Thus,d&ss conformal
and its imagex is minimal,® is harmonic; and so we have constructeexsplicit
harmonic map® : R> — S°. Such maps are of interest to people who study
harmonic maps and integrable systems. We begin with a preliminary lemma.

Lemma 6.5. Letw; be asin Theorem 6.1 ang andu« be as in Proposition 6.2.
ThenX = N N S° may be written

{(wl(t)xl, wo(t)x2, wg(l))C3) :teR, xj eR,

a1x? +axdasxi =1, xZ—x3—x3= 0}.
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Proof. A point (wyx1, waxz, waxs) in N lies in X' if and only if |w]?x? +
lwa|?2x3 + |wa|?x3 = 1. Substituting in (6.2), this is equivalent to

(@axf + @px] + aax) + (6 — x5 —x5) = 1.
But by definitionxf — x22 — x?z, =0, and thumle + a2x22 + agxg = 1. O
This shows tha® is naturally isomorphic t@ x R, whereC is given by

2 2 2 2 2 2
C = {(xl, X2, X3) € R3: a1xy +oaoxs; +azxy =1, x7— x5 —x3= 0}.

Since we may assume as in Sect.5.4éhat Ofor j = 1, 2, 3, it follows thatC
divides into two connected componeidts, with x; > 0, andC_, with x; < 0O,
each of which is diffeomorphic t6*. This splitting intoC.. corresponds to the
splitting of N into N.. in part (c) of Theorem 6.4. There is also a corresponding
splitting of X' into X...

Let us parametrize the circté, with a parametes, so that

Cy = {(x1(5), x2(5), x3(5)) : 5 € R}.
This gives a parametrizatioh : R> — X, of X, by

D : (s,1) > (wi(t)xa(s), wa(t)xa(s), wa(t)xs(s)). (6.4)

We shall calculate the conditions upejy(s) for @ to be conformal, and solve
them.

Since thex; (s) satisfy1x? + apx3 + azxf = 1 andx? — x5 — x5 = 0,
differentiating with respect to gives

a1x1X1 + aox2xs + azxaxz = 0 and x1x1 — xpx2 — x3x3 = 0,

where “’is % Thus(xq, X2, x3) isorthogonaltdox1, aox,, azxz) and(xy, —xo,
—Xx3), SO it is parallel to their vector product. This gives

X1 =y(a2 —az)xoxs, X2 = —y (01 + @3)x3xy

6.5
and i3 = y (a1 + a2)x1x2, (6:5)

for some real nonzero functign(s). Also, asx1, xo, x3 satisfyozle + a2x§ +
azx3 = 1 andx? — x2 — x3 = 0, we may write

5 1+ (02 —az)v 5 l1— (a1 +az)v
1= X=

and x3 =v, (6.6)
o1+ az o1+ ap

X
for some real function(s).
Combining equations (6.1), (6.4) and (6.5) gives
92 = y ((a2 — az)wixoxs, — (a1 + az)wpxaxy, (a1 + @2)waxixz),

k)
ot

= (Waws x1, — W3W1 X2, — W1Wz X3).
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Thus

g(32, 22) =y ((az—a3) + (a1 +a3) — (1 +02)) Re(wiwpws)x1x2x3=0,

SO that% andf’a—‘f are orthogonal.

Using equations (6.2) and (6.6) to writ&® }2 and| %2 \2 in terms ofu andv,
after a lot of cancellation we find that

|%|2 = y?(az +u + (02 — a3) (a1 + az)v)

and |22° = as + u + (@ — as) (a1 + az)v.

Note that the coefficients ab, v anduv?in |22 ]2 and the coefficients ofv, u?
andu?v in ‘%‘2 all vanish. From these equations, we see thgfif= 1 then

|52 2 _ 8 ? so that® is conformal

So let us fixy = 1. Then we seek functions;(s), x2(s), x3(s) satisfying
the o.d.e. (6.5) withy = 1, and the restrictions (6.6). It turns out that we can
solve these equations explicitly in terms of thaeobi elliptic functionsto which
we now give a brief introduction. The following material can be found in Chan-
drasekharan [2, Ch. VII].

For eachk e [0, 1], the Jacobi elliptic functions sn k), cn(z, k), dn(z, k)

with modulusk are the unique solutions to the o.d.e.s

(Ssn(z, k))* = (L — s, k) (L — K2SrR(r, k),

(Sen(r, k))? = (1 — cr?(z, b)) (1 — k2 + k2eré (e, b)),

(Sdn(z, k))* = = (1 — drP(z, b)) (1 — k2 — dr(z, k),
with initial conditions

sn(0, k) = 0, cn(0, k) =1, dn(0, k) =1,
dsn(0, k) = 1, den(o, k) =0, ddn(0, k) = 0.

They satisfy the identities
sri(r, k) + cré(r, k) = 1 and k2sri(z, k) + drP(t, k) = 1, (6.7)
and the differential equations

dsn(t, k) = en(r, bydn(t, k), Sen(t, k) = —sn(t, kydn(, k)

q ) (6.8)
and gdn(t, k) = —k“sn(z, k)en(z, k).
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Returning to equations (6.5) and (6.6), supp@ses a3, and define
x1 = (o1 + o) 2dn(us, v),  x2 = (o1 + o) 2Cn(ps, v)
and  x3 = (a1 + a3) Y3sn(us, v),

where

a3 — o
w= (a1 +a3)¥? and v? = 3 2

o1 + a3

Then from (6.7) and (6.8), thesg satisfy (6.5) and (6.6) withv = (a; +
a3) " Isré(us, v). Drawing the above work together, we have proved:

Theorem 6.6. In the situation above, defing : R? — S° by

D (s, 1) > ((al + a2) " Y2dn(us, v)wa(r), (6.9)
(@1 + @)~ Y2en(us, v)wa(1), (a1 + az) " sn(us, v)ws (1)),
whereu = (a1 +a3)Y?, v = (a3 —a2)?(a1 +a3) "2 and S® is the unit sphere
in C3. Then® is a conformal, harmonic map.

We made the assumption above that< as. If ax > a3 then we can apply
the same method, but swapping oxgandxs, anda, andas, so that

x1 = (o1 + ag) 2dn(us, v), x2 = (o1 + a2) " ?sn(us, v)

and  x3 = (aq + az) Y2en(us, v),
where
oy — O
w= (01 +a2)¥? and v? = 2 3,
o1+ o2

Note also that all of our expressions for(s) depend only on the linear com-
binationsay + a2, a1 + a3 anday — a3 of a1, ay, a3. This is because the;
were defined in (5.8) up to an arbitrary constanand these combinations are
independent of.

6.2. Relation with harmonic tori i€P?> and S°

Theorem 6.6 constructed a family ekplicit conformal harmonic map® :
R? — S°. Furthermore, as the cone on the image&bos Lagrangian, one can
show that ifr : S° — CIP? is the Hopf projection them o @ is conformal and
harmonic, so we also have a family of explicit conformal harmonic maps
R? — CP?.

Now harmonic maps from Riemann surfaces into spheres and projective
spaces are aimtegrable systefmand have been intensively studied in the inte-
grable systems literature. For an introduction to the subject, see Fordy and Wood
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[3], in particular the articles by Bolton and Woodward [3, p. 59—-82], McIntosh
[3, p. 205—-220] and Burstall and Pedit [3, p. 221-272].

Therefore our examples can be analyzed from the integrable systems point
of view. We postpone this analysis to the sequel [11]. In [11, Sect. 5] we shall
realize the SL cones ifi® constructed in Theorem 6.1 with= 0 as special
cases of a more general construction of special Lagrangian cofi&s which
involves two commuting o.d.e.s.

Then in [11, Sect. 6] we work through the integrable systems framework for
the corresponding family of harmonic mags: R? — CP?, showing that they
are generically superconformal of finite type, and determining their harmonic
sequences, Toda solutions, algebras of polynomial Killing fields, and spectral
curves. From the integrable systems point of view, part (c) of Theorems 6.3
and 6.4 are interesting because they construct large familiesperconformal
harmonic toriin CP?.

7. Examples from evolving non-centred quadrics

We will now apply the construction of Sect. 3 to the family of sets of affine
evolution data P, x) defined using non-centred quadricsRifi in Example 4.4
of Sect. 4. Our treatment follows Sect. 5 closely, and so we will leave out many
of the details.

As in Example 4.4, letm — 1)/2 < a < m — 1, and defineP? and y by

P:{(XJ."..,xin)ERm:x]2_+...+x3
_xa2+l_"'_x,§,_1+2xm=0},

X = 2(—1)’"_161 Ao Aem_1

a
+ 22(—1)j_1xjel AN Nej_1Ne1 N Aey
j=1
m—1
—2 ) (DI Ter A A i ACi I A Al
j=a+1

whereg; is the vector withy; = 1 andx;, = O for j # k. ThenP is nonsingular

in R™, and(P, yx) is a set ofaffine evolution data
Consider affine mapg : R” — C™ of the form

O (X1, ..., %) > (WiX1, ..., Wy 1Xm—1, Xm + B) (7.1)

forwy, ..., w,_1inC\ {0} andg € C. Theng is injective and Imp is an affine
Lagrangiann-plane inC™, so thatp lies in the subseaf, of Aff (R™, C™) given
in Definition 3.4.
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Then as in Sect. 5, the evolution equation (3.2)fan Cp preserveg of the
form (7.1). So, consider a 1-parameter fan{idy : r € (—e, €)} given by

¢t : (Xl, .. ,Xm) = (W1(t)x1, cee wm—l(t)-xm—lv Xm + ,3([)),

wherews, ... ,w,_1 : (—€,¢) - C\ {0} andB : (—¢,€) — C are differ-
entiable functions. Following the method of Sect.5.1 one can rewrite (3.2) as
a first-order o.d.e. upomws, ..., w,_1 and 8. We end up with the following
analogue of Theorem 5.1.

Theorem 7.1. Let(m—1)/2 < a < m—1. Suppose, ... , wy,_1: (—€,€) —
C\ {0} and g8 : (—¢, €) — C\ {0} are differentiable functions satisfying

dw;, Wi Wi W1 Wp-1, 1< j <a, (7.2)
dr —W1 W W41 W1, a < j <m, '
d
and d—'f = W1-- " Wy—1- (73)
Define a subset of C™ by
N = {(wl(t)xl, e WA (DX 1, X + B()) 11 € (=€, €),
(7.4)
xj € R, x4 -+xaz—x3+1—- . -—x,i_l+2xm=0}.
ThenN is a special Lagrangian submanifold @".
Now (7.2) shows that the evolution afy, ... , w,_1 is independent op.

Furthermore, equation (7.2) coincides with equation (5.5) of Theorem 5.1, with
m replaced bym — 1. Thus, we can use the material of Sect.5.2—Sect.5.5 to

write wy, . .. , w,,_1 explicitly in terms of elliptic integrals, and to describe their
global behaviour.
Having foundws, ... , w,_1 as functions of, we can then use (7.3) to de-

termine the functiorB. Thus we can solve equations (7.2) and (7.3) in a fairly
explicit way, and use the solution to describe and understand the-Bld N
of (7.4).

So, following Sect.5.2, let € R, sete; = |w; (02— rforj =1,...,a
ando; = |w;(0)>+Afor j =a+1,...,m—1, and define : (—e, €) — R by
u(t) = 2+ 2 [y Re(wi(s) - - - w,_1(s))ds. Then we have

&0 Jo; T u®. j=1....a,

w; () e'el'(’),/aj—u(t), j=a+1l, ..., m—1,
for differentiable function®y, ... ,0,,_1 : (—¢, €) — R. Define

a m—1
=6+ +0,1 and Q) =[]t +uw [] @ —uw.
j=1

Jj=a+1
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Then following (5.10)—(5.12) we find thg¢ = 20(u)*?coss, and derive ex-
pressions for‘% and%.

As in (5.14) we show tha@ (1)¥?sind = A for some constart € R. Now
w1... wn_1 = Qu)Y?€?. Thus equation (7.3) gives

ag

e = Qw)Y?(cosh — i sinh) = %d

d_ —1iA,
asQu)Y?cosd = 1% and Q(u)*?sin® = A. Integrating this gives
B(t) = C + Ju(t) —iAt, (7.5)

whereC = B(0) — %u(O). As 8(0) is arbitrary we may as well fiK = 0. So we
obtain the following analogue of Theorem 5.2.

Theorem 7.2. Letu andé, ... , 9,,_1 be differentiable functions
(—e, €) — R satisfying

d

d_I: — 20(u)Y? cosp

Qw2 sing .
T
dr Q<‘2/_;'“9, j=a+1,...,m-1,
J

wheref =04 + --- +6,,_1, SO that
do 1 |
172 sm9< — )
dar - QW Zaj—}—u Z aj—u)
j=1 Jj=a+1

Thenu andé satisfyQ (u)Y/?sind = A forsomeA € R. Suppose that; +u > 0
forj=1,...,aando; —u > Ofor j =a+1,... m—1andt € (—¢,¢).
Define a subse¥ of C™ to be

{(xle'el(’)\/al—i—u(t ooy %a€8%O S, 4 u(r), Xa1€% 1 S —u(r),

s Xim 169/;1—1(0 am_l_u(t>’xm+§u(t)—lAt) .

te(—ee€), x;eR, xZ4- - FxZ—x2 — - —x2 +2x, = 0}.
ThenN is a special Lagrangian submanifold @&".

AsinSect.5.3,ifwe assumetttst) € (—r/2, 7/2) fort € (—e¢, €) thenuis
an increasing function af and we can choose to regard everything as a function
of u rather than of. This yields the following analogue of Theorem 5.4
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Theorem 7.3. Supposé (r) € (—n/2, w/2)forall r € (—e, €). Thenthe special
Lagrangianm-fold N of Theorem 7.1 is given explicitly by

[ (€™ Vo, @ o X 1€ =,
X 1€ S =, x, + %u - iAt(u)) :
ue€ (U_e,ue), xj €R, x%+- . -+x§—x§+l—- . -—x,i_l—l—Z)cm:O},
where the functiong; («) and¢(u) are given by

6,(0) — zu<o>(a+v)¢m j=l....a

A
9 (O) + u(o) (0[ v)m

u dv
and  1( )=/ E—
! u© 2/ 0(v) — A?

0; =
() j=a+1, ..., m—1,

This presentation has the advantage of defimihgery explicitly, but the
disadvantage that it is only valid for a certain range pand so oft. For un-
derstanding the global properties of the solutidhst is better to keep as the
variable, rather than.

Next we describe the qualitative behaviour of the solutions, following the
analysis of Sect.5.4. We again divide into four cases (a)—(d).

Case (a):A = 0. InthiscaseV is an open subset of a special Lagrangian plane
R™ in C™.

Case (b))a=m—1andA > 0. Whenm > 4, we find that (7.2) and (7.3)
admit solutions on a bounded open interyal §) with y < 0 < §, such that
u(t) - oo asr — y, andr — §_, so that the solutions cannot be extended
continuously outsidéy, §). Form = 3 the solutions exist oR, with u(z) — oo

ast — +o00, SO we can puty = —oo’and ‘6 = oo’ in this case.

The SLm-fold N defined using the full solution intervé}, §) is a closed,
embedded special Lagrangianfold diffeomorphic toR™, the total space of a
family of paraboloidspP; in C™, parametrized by € (y,8). Ast — y, and
t — &_, these paraboloids go to infinity it”, and also flatten out, so that they
come to resemble hyperplang&g 1,

At infinity, N is asymptotic (in a rather weak sense) to the union of two SL
m-planesR™ in C™ intersecting in{(0, ..., 0,x,) : x, € R}, a copy ofR.
We should think of these two planes as being joined whgre (—oo, 0], but
separated when,, € (0, o).

That is, N is a kind ofconnected surof two special Lagrangiam-planes
R™, but a connected sum performed along an infinite inte¢valo, 0] rather
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than a single point. Note that can be regarded as a limiting case of case (b) of
Sect. 5.4, inwhich the two special Lagrangiasplanes degenerate from meeting
at a point to meeting at a line, and at the same timextheoordinate of their
point of intersection goes tecc.

These solutions are interesting as local models for singularities af-&ilds
in Calabi—Yaun-folds. Whenn = 3 we can solve the equations very explicitly,
and will do so below.

For the two remaining cases withla < m — 2 andA > 0, as in Sect.5.4
we choose the constahtunlquely such thad; > O for all j andzj 19; g

Z;"_Lla_l Then 0< A? 1.

Case (€):1<a<m-2andA = (a1---0o,_1)"%2. As in Sect.5.4, this

is one of the SLn-folds constructed in [7, Prop. 9.3] using the ‘perpendicular
symmetry’idea of [7, Sect. 9], this time with= m—1 andG = R. An example

of this witha = 1 andm = 3 is given in [7, Ex. 9.6].

Case (d):1<a<m-2and0< A < (a1---a,_1)Y% AsinSect.5.4,in
this case solutlons exist for alle R, andu and® areperiodicin ¢, with period
T. For special values of the initial data we may also arrangevfor .. , w,,_1

to be periodic with period T for somen > 1.

However, by (7.5) we have Iffi(r) = Im 8(0) — At, andA > 0. Thusg is
neverperiodic, and so the time evolution does not repeat itself. So there is no
point in following the discussion of Sect.5.5. The corresponding:Siolds N
are embedded submanifolds diffeomorphidt®. For various reasons, they are
not credible as local models for singularities of special Lagrangiefolds in
Calabi—Yaun-folds.

Finally, we sein = 3. In this case equation (7.2) becomesal linear o.d.e.
in wy andw,, and so is far easier to solve. We consider the cases?2 and
a = 1, corresponding to cases (b) and (d) above, in the next two examples.

Example 7.4.Putm = 3 anda = 2 in Theorem 7.1. Then equations (7.2) and
(7.3) become

dwl _ dwz _ d,B
- R —_ = ) 7.
ar wo, ar w1 and ar wiWwa ( 6)
The first two equations have solutions
w;=Ce + De’ and wy, = Ce' — De™’,
whereC = 2(w1(0) + w2(0) ) andD = $(w1(0) — w2(0) ). Therefore

wiws = |C|%€” — |D|%e % + 2i Im(C D),
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and so integrating the third equation of (7.6) gives
B(t) = L|CI?&* + D% + 2i Im(C D)t + E,

whereE = B(0) — 3|C|? — 1| D|%. Thus the special Lagrangian 3-fakdin C*
defined in (7.4) is given parametrically by

{((Cet + De)xy, (C6' — De)xy, —1(x2 + x2)
] @.7)
+LCPe + LDPe® 4+ 20 IM(CD)t + E) : x1, X2, 1 € R}.

Here we have used the equatigh+ x3 + 2x3 = 0 of (7.4) to eliminatexs.
Equation (7.7) is a very explicit expression for a special Lagrangian 3-fold in

C3. Case (a) above, with = 0, corresponds to I D) = 0, and in this casg/

is a subset of an affine special Lagrangian 3-plaha C3. If Im (C D) # Othen

N is an embedded submanifold diffeomorphi®f?) with coordinatesx, x», 1).

Example 7.5.Putm = 3 anda = 1 in Theorem 7.1. Then equations (7.2) and

(7.3) become
dwl - dw2 _ _ dIB _
T = Wy, T = —w1 and a = wiwy. (78)

The first two equations have solutions

wy = Ce' + De" and w,=iDée" —iCe™",
whereC = 1(w1(0) — iwp(0)) andD = 3(w1(0) + iw(0)). Therefore
wiw; = iCDE”" —iCDe ' +i(|C|> — |DP),
and so integrating the third equation of (7.8) gives
B(t) = 1CDe”" + 3CDe ' +i(|C)* — |D*)t + E,

whereE = g(0) —Re(C D). Thus the SL 3-folaV in C2 defined in (7.4) is given
parametrically by

{((cé' + De)xy, (iDE' — iCe Mg, 102 — x)
+1CDE" + 1CDe ! +i(|C2 = |DP)t + E) : x1, %2, € R}.

Here we have used the equatigh— x2 + 2x3 = 0 of (7.4) to eliminatexs.

Case (a) above, with = 0, corresponds taC| = | D|, and in this case&V is
a subset of an affine special Lagrangian 3-pRaén C3. If |C| # |D| thenN
is an embedded submanifold diffeomorphidid, with coordinategx, x», 1).
The two case€ = 0 andD = 0 are constructed by [7, Prop. 9.3] with= 2,
m = 3 andG = R, asin [7, Ex. 9.6] and case (c) above, with the symmetry
groupG of N acting by(xy, x2, t) — (x1, x2, ¢ + ¢).
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