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Abstract. We prove a Mihlin–type multiplier theorem for operator–valued multiplier functions
on UMD–spaces. The essential assumption isR–boundedness of the multiplier function. As an
application we give a characterization of maximalLp–regularity for the generator of an analytic
semigroupTt in terms of theR–boundedness of the resolvent ofA or the semigroupTt .

1. Introduction

LetX andY be Banach spaces,B(X, Y ) be the space of bounded linear operators
from X to Y , andS(X) be the space of rapidly decreasing functions fromR to
X. Forf ∈ L1(R, X) we write f̂ (t) = ∫

e−itsf (s)ds for the Fourier transform
of f andf̌ for the inverse Fourier transform off .

We say that a functionM : R \ {0} → B(X, Y ) is aFourier multiplier on
Lp(R, X) if the expressions

Kf = (M(·)[f̂ (·)])̌ wheref ∈ S(X)(1)

are well defined andK extends to a bounded operatorK : Lp(R, X) →
Lp(R, Y ).

It is a well known result of L. Schwartz (see e. g. [BL], Sect. 6.1) that, in the
case thatX andY are both Hilbert spaces, the Mihlin multiplier theorem extends
to operator–valued multiplier functions: ifM : R \ {0} → B(X, Y ) satisfies, for
some constantC,

‖M(t)‖ ≤ C, ‖tM ′(t)‖ ≤ C for eacht ∈ R \ {0}(2)

thenM is a Fourier multiplier onLp(R, X) with 1 < p < ∞, in the sense of
(1). Pisier observed that the converse is true: ifX = Y and allM satisfying (2)
are Fourier multipliers onL2(R, X), thenX is isomorphic to a Hilbert space.
Therefore, additional hypotheses are needed to obtain multiplier theorems in
more general Banach spaces.
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In [Bou 2] (see also [Zi]) Bourgain has shown that forM(t) = m(t)I , with a
scalar–valued functionm, the Mihlin multiplier theorem holds providedX is an
UMD–space. UMD spaces may be defined by the fact that the Hilbert transform

Hf (t) = PV −
∫

1

t − s
f (s)ds, f ∈ S(X)

extends to a bounded operator onLp(R, X) for 1 < p < ∞, i. e.m(t) = sign(t)
is a Fourier multiplier onLp(R, X). All closed subspaces and quotient spaces
of a Lq(Ω,µ)–space with 1< q < ∞ are examples of UMD–spaces (see
e. g. [Bu]).

In Sect. 3 of this paper we extend Bourgain’s result to operator–valued func-
tionsM(t) ∈ B(X, Y ) for UMD–spacesX andY : if M satisfies in place of (2)
the stronger assumption that the sets

{M(t) : t ∈ R \ {0}} and{tM ′(t) : t ∈ R \ {0}}(3)

areR–bounded, thenM is a Fourier multiplier onLp(R, X) for all 1 < p < ∞.
A setτ ⊂ B(X, Y ) is calledR–bounded if there is a constantC such that for

all T1, . . . , Tn ∈ τ, x1, . . . , xn ∈ X, n ∈ N

1∫
0

∣∣∣∣
∣∣∣∣

n∑
j=0

rj (u)Tj (xj )

∣∣∣∣
∣∣∣∣
Y

du ≤ C

1∫
0

∣∣∣∣
∣∣∣∣

n∑
j=0

rj (u)xj

∣∣∣∣
∣∣∣∣
X

du(4)

where(rj ) is a sequence of independent symmetric{−1,1}–valued random vari-
ables on[0,1], e. g. the Rademacher functionsrj (t) = sign(sin(2jπt)). This
concept was already used in [Bou2] and [BG] in connection with multiplier the-
orems and more recently a detailed study was given in [CPSW]. IfX = Y is a
Lq(Ω,µ) space, then (4) is equivalent to∣∣∣∣

∣∣∣∣
( n∑

j=1

|Tjxj |2
)1/2∣∣∣∣

∣∣∣∣
Lq

≤ C

∣∣∣∣
∣∣∣∣
( n∑

j=1

|xj |2
)1/2∣∣∣∣

∣∣∣∣
Lq

(5)

and so the connection with square function estimates and Paley–Littlewood de-
compositions in harmonic analysis becomes clear. Note that in a Hilbert space
every norm–bounded setτ isR–bounded; therefore, our result can be viewed as
an extention of the theorem of Schwartz from the Hilbert space to the Banach
space setting. We also show thatR–boundedness conditions for the multiplier
function are necessary for the multiplier theorem to hold.

The multiplier theorem provides a useful characterization of maximalLp–
regularity. LetA be the generator of a bounded analytic semigroupTt on X.
Consider the Cauchy problem

y ′(t) = Ay(t) + f (t), t ≥ 0, y(0) = 0(6)
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for a givenf ∈ Lp(R+, X). We say thatA has maximalLp–regularity if the
unique solutiony of (6) satisfies

‖y ′‖Lp(R+,X) + ‖Ay‖Lp(R+,X) ≤ C‖f ‖Lp(R+,X).(7)

It is well known that every bounded analytic semigroup on a Hilbert space has
maximalLp–regularity. Indeed, if we differentiate the solution formula

y(t) =
t∫

0

Tt−s(f (s))ds

we see that maximalLp–regularity is equivalent to the boundedness of the “con-
volution operator"

Kf (t) =
t∫

0

ATt−s(f (s))ds(8)

onLp(R+, X) for 1 < p < ∞. Since‖ATt‖ ∼ 1
t

ast → 0 this operator looks
like a singular integral operator. By the analyticity ofTt ,

M(t) = (AT·)̂ (t) = AR(it, A) = itR(it, A) − I(9)

satisfies‖M(t)‖ ≤ C, ‖t ′M(t)‖ ≤ C, and so we may apply the Schwartz mul-
tiplier theorem for Hilbert spaces.

On the other hand, it was shown quite recently by Kalton and Lancien [KL],
that on every separable Banach lattice, which is not isomorphic to a Hilbert
space, there are analytic semigroups without maximalLp–regularity. While this
characterizes Banach spaces in which all analytic semigroups have maximal
Lp–regularity, we can apply our multiplier theorem to (8) and (9) to obtain a
characterization of maximalLp-regularity for individual generatorsA of analytic
semigroups on an UMD-spaceX.

We will show thatA has maximalLp–regularity if and only if the sets
{tR(it, A) : t ∈ R \ {0}} or {Tz : | arg(z)| ≤ ϕ} for some smallϕ > 0 areR–
bounded. (see Sect. 4 for details; an independent proof using a different method
was given by N. Kalton.)

A large number of sufficient conditions for maximalLp–regularity are known:
e. g., ifTt is a contraction semigroup onLq(Ω) for all 1 ≤ q ≤ ∞ ([La]), Tt

has Gaussian bounds ([HP], [CD]), orA has bounded imaginary powers with
‖(−A)it‖ ≤ Ced|t |, d < π

2 , andX is an UMD–space ([DV]). In Sect. 5 and in
some further papers ([We 1], [We 2]) we will show how these conditions can be
obtained and, in some cases, also improved by using our characterization.

In Sect. 2 we give some general properties ofR–bounded sets which will be
useful for our main results.

The author would like to thank Ph. Cl´ement, J. Pr¨uß andŽ. Štrkalj for some
helpful discussions on an earlier version of this paper.
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2. R–boundedness

The notion ofR–bounded collections of operators is basic for our results. In
this section we collect some examples ofR–bounded sets and some methods to
obtain newR–bounded sets from known ones.

2.1. Definition. τ ⊂ B(X, Y ) is calledR–bounded, if there is a constantC <

∞ such that for allT1, . . . , Tn ∈ τ, x1, . . . , xn ∈ X andn ∈ N

1∫
0

∣∣∣∣
∣∣∣∣

n∑
j=1

rj (u)Tj (xj )

∣∣∣∣
∣∣∣∣du ≤ C

1∫
0

∣∣∣∣
∣∣∣∣

n∑
j=1

rj (u)xj

∣∣∣∣
∣∣∣∣du ,(1)

where (rj ) is a sequence of independent, symmetric{1,−1}–valued random
variables on[0,1], e. g. the Rademacher functions. The smallest constantC, for
which (1) holds is denoted byR(τ).

2.2. Remark.This notion appears implicitly in [Bou2] and was named Riesz–
property in [BG]. [CPSW] contains a detailed study of property (1) and "R "
was reinterpreted as ’Randomized bounded’. Note that for a Banach function
spaceX, which is concave for someq < ∞, (see [LT], Theorem 1.d.6), (1) is
equivalent to ∣∣∣∣

∣∣∣∣
( n∑

j=1

|Tj (xj )|2
)1/2∣∣∣∣

∣∣∣∣
X

≤ C

∣∣∣∣
∣∣∣∣
( n∑

j=1

|xj |2
)1/2∣∣∣∣

∣∣∣∣
X

.(2)

In this form and forX = Lq(Ω,µ) the condition is well known in harmonic
analysis in connection with square function estimates.

If X is a Hilbert space, e. g.X = L2(Ω,µ), then Fubini’s theorem applied
to (2) shows thateverybounded set inB(X) is R–bounded.

2.3. Remark.Here are some technical, but very useful points:

a) In the definition we allow that some of theTj ’s are identical. It is shown in
[CPSW], Lemma 3.3, that we can add the restrictionTi �= Tj for i �= j in
2.1. and obtain an equivalent definition.

b) By Kahane’s inequality condition (1) is equivalent to

( 1∫
0

∣∣∣∣
∣∣∣∣

n∑
j=1

rj (u)Tj (xj )

∣∣∣∣
∣∣∣∣pdu)1/p ≤ Cp

( 1∫
0

∣∣∣∣
∣∣∣∣

n∑
j=1

rj (u)xj

∣∣∣∣
∣∣∣∣pdu

)1/p

(3)

for all 1 ≤ p < ∞.
c) If τ is R–bounded, then the closure ofτ in the strong operator topology is

alsoR–bounded.
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d) By Khintchine’s inequality, we have for allxi ∈ X, i = 1 . . . n, that

sup
1≤i≤n

‖xi‖ ≤ sup{(
n∑

i=1

|y∗(xi)|2)1/2 : y∗ ∈ Y ∗, ‖y∗‖ ≤ 1}

≤ C ′
1∫

0

‖
n∑

i=1

ri(u)xi‖du
(4)

2.4. Lemma. LetG be an index set and assume that

T (µ) =
∞∑
n=1

Tn(µ), µ ∈ G

converges in the strong operator topology ofB(X, Y ) for all µ ∈ G. Then

R({T (µ) : µ ∈ G}) ≤
∞∑
n=1

R({Tn(µ) : µ ∈ G}).

Proof. PutSN(µ) =
N∑

n=1

Tn(µ). For all x1, . . . , xm ∈ X andµ1, . . . , µm ∈ G

we have

1∫
0

‖
m∑

j=1

rj (u)SN(µj )(xj )‖du

≤
N∑

n=1

1∫
0

‖
m∑

j=1

rj (u)Tn(µj )(xj )‖du

≤
N∑

n=1

R({Tn(µ) : µ ∈ G})
1∫

0

‖
m∑

j=1

rj (u)xj‖du .

(5)

SinceT (µ) = lim
N→∞ SN(µ) in the strong operator topology we appeal to 2.3.c).

��
The following proposition holds more generally for functions of bounded

variation (see [SW]).

2.5. Proposition. Let J ⊂ R be an interval andt ∈ J → M(t) ∈ B(X, Y )

have an integrable derivative. Then{M(t) : t ∈ J } isR–bounded.
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Proof. For a singletonτ = {T }we haveR(τ) = ‖T ‖. If J = [a, b),a < b ≤ ∞,
andσ = {t0, t1, . . . , tn} is a partition ofJ , put

Mσ(t) = M(a) +
n∑

j=1

χ[tj−1,b)(t)

tj∫
tj−1

M ′(s)ds.

By our first observation, Remark 2.3 a) and Lemma 2.4 we have

R({Mσ(t) : t ∈ J }) ≤ ‖M(a)‖ +
n∑

j=1

∣∣∣∣
∣∣∣∣

tj∫
tj−1

M ′(s)ds
∣∣∣∣
∣∣∣∣

≤ ‖M(a)‖ +
b∫

a

‖M ′(s)‖ds.

Choosing a sequenceσn of partitions withMσn
(t) → M(t) for t ∈ J , the claim

follows from 2.3. c). ��
In a similar way we can show:

2.6. Proposition. Let λ ∈ G → M(λ) ∈ B(X, Y ) be analytic on the open set
G andK ⊂ G be compact. Then{M(λ) : λ ∈ K} isR–bounded.

Proof. Forµ ∈ K consider the power series expansion

M(λ) =
∞∑

j=0

(λ − µ)j
1

j !M
(j)(µ), |λ − µ| < r(µ)

with radius of convergencer(µ). Then by Lemma 2.4 andR({T }) = ‖T ‖

R({M(λ) : |λ − µ| < r(µ)

2
}) ≤

∞∑
j=0

(
r(µ)

2

)j 1

j !‖M
(j)(µ)‖ < ∞.

SinceK is covered by finitely many balls{λ : |λ − µi | <
r(µi)

2 }, the claim
follows. ��

We quote an extremely useful result from [CPSW], Lemma 3.2.

2.7. Lemma. Letτ ⊂ B(X) be aR–bounded collection withR–boundM. Then
the closure of the absolute convex hull ofτ in the strong operator topology is
alsoR–bounded. For the real absolute convex hull theR–bound is againM; for
the complex convex hull theR–bound is at most2M.

As a first consequence of this convexity result we present
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2.8. Proposition. LetG ⊂ C be a simply connected Jordan region such that
C\G has interior points. Letλ ∈ G → N(t) ∈ B(X, Y ) be a bounded, strongly
measurable function, analytic inG. Assume that{N(λ) : λ ∈ ∂G} isR–bounded.

a) Then{N(λ) : λ ∈ G} isR–bounded.
b) For all n ∈ N, {d(λ)nN(n)(λ) : λ ∈ G} is R–bounded, whered(λ) =

inf {|λ − µ| : µ ∈ ∂G}.
Proof. a) By the Riemann mapping theorem there is a conformal mappingg

from D = {λ : |λ| < 1} ontoG which extends to a bijection of the boundary,
i. e.g(∂D) = ∂G (see e. g. [Ru] 14.19, 14.20). So we may restrict ourselves to
the caseG = D. If pr(θ) denotes the Poisson kernel

pr(θ) = 1 − r2

1 − 2r cosθ + r2

for D, then for allλ = reiθ ∈ D

N(λ) = 1

2π

π∫
−π

pr(θ − t)N(eit )dt

and the claim follows from 2.7 since

1

2π

π∫
−π

pr(θ)dθ = 1 for all r ∈ (0,1).

b) If λ ∈ G andΓ (λ) = {µ : |µ − λ| = d(λ)}, then by Cauchy’s formula

N(n)(λ) = n! 1

2πi

∫
Γ (λ)

1

(µ − λ)n+1
N(µ)dµ

with n!
2π

∫
Γ (λ)

|µ−λ|−n−1dµ = n!d(λ)−n. Hence we may appeal to 2.7 again.��

The following special case is of particular interest to us.

2.9. Example.PutΣ(θ) = {λ ∈ C : | arg(λ)| < θ}. For a bounded analytic
functionλ ∈ Σ(θ) → M(λ) ∈ B(X, Y ) we get from 2.7:

a) If {M(λ) : | argλ| = θ1}, θ1 < θ , is R–bounded, then so is{M(λ) : λ ∈
Σ(θ1)}.

b) If {M(λ) : λ ∈ Σ(θ)} is R–bounded, then so is{λM ′(λ) : λ ∈ Σ(θ1)} for
θ1 < θ .
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(Of course a) follows directly from 2.7 and Poisson’s formula for the halfplane
applied toλ ∈ C+ → M(λα), α = 2θ1

π
, and b) follows from 2.7 and the formula

λM ′(λ) = 1

2πi

∫
Γ (λ)

λ

(µ − λ)2
M(µ)dµ

with Γ (λ) = {µ : |µ − λ| = |λ| · sin(θ − θ1)}.) ��
Next we consider the Laplace transform. Lett ∈ R+ → N(t) ∈ B(X, Y ) be

bounded and put

N̂(λ) :=
∞∫

0

e−λtN(t)dt, Reλ > 0.(6)

Then, ifN = {N(t) : t ∈ R+} is R–bounded, so iŝNϕ = {λN̂(λ) : λ ∈ Σ(ϕ)},
with ϕ < π

2 . Indeed, by 2.7

R(N̂ϕ) ≤ 2CR(N ) with C =
∞∫

0

re−r cosϕtdt = 1

cosϕ
.

If N(t) extends analytically to a sectorΣ(θ) we can show:

2.10. Theorem.Let λ ∈ Σ(θ) → N(λ) ∈ B(X, Y ) be bounded and analytic
and lim

λ→0
N(λ) exists for the weak operator topology. If we defineN̂(λ) by (6),

thenN̂(·) extends toΣ(θ + π
2 ) and the following conditions are equivalent:

a) {N(λ) : λ ∈ Σ(θ1)} isR–bounded for allθ1 < θ

b) {λN̂(λ) : λ ∈ Σ(π
2 + θ1)} isR–bounded for allθ1 < θ.

Proof. We fix θ1, θ2 andψ with θ1 < ψ < θ2 < θ . By Cauchy’s formula we can
representλN̂(λ) for Reλ > 0 as a contour integral

λN̂(λ) =
∫
γ

λe−λµN(µ)dµ, γ = {te−iψ : t ∈ R+}.(7)

By analytic continuation this holds for allλ = sei( π2 +ϕ) with 0 < ϕ < θ1 and
s > 0, since forµ ∈ γ

Reµλ = st Re(i cos(ϕ − ψ) + sin(ψ − ϕ))

= st sin(ψ − ϕ) ≥ st sin(ψ − θ1)
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and
∞∫
0

|λe−λµ|dµ ≤ (sin(ψ−θ1))
−1. If −θ1 < ϕ < 0 we can useγ = {teiψt : t ∈

R+} to get a similar representation forλN̂(λ). Hence{λN̂(λ) : λ ∈ Σ(π
2 + θ1)}

is R–bounded if{N(λ) : λ ∈ Σ(θ2)} is R–bounded (by 2.7).
Conversely, we assume that{λN̂(λ) : λ ∈ Σ(π

2 +θ2)} isR–bounded for some

θ2 < θ . Then‖λN̂(λ)‖ is uniformly bounded onΣ(π
2 + θ2). Fix θ1 < θ2 and a

ψ > π
2 with ψ− π

2 < θ2−θ1. By the inversion formula for the Laplace transform
(see e. g. [Wi] Sect. II.7; the necessary deformation of the path of integration
is possible sinceN(λ)x → N0x for λ → 0 implies thatλN̂(λ)x → N0x for
λ → ∞ by [Wi] Sect. V.1) we have

N(t) = 1

2πi

∫
γt

etλN̂(λ)dλ

= 1

2πi

∫
γt

eλ[N̂(λ/t)λ/t]dλ
λ

,

(8)

whereγt = {se±iψ : |s| ≥ 1
t
} ∪ {1

t
eis : |s| < ψ}. By analytic continuation, we

get forµ = teiϕ

N(µ) = 1

2πi

∫
γt

eλ[N̂(λµ−1)λµ−1]dλ
λ

as long as arg(λµ−1) = ±ψ − ϕ ∈ (−π
2 − θ2,

π
2 + θ2) and this is the case if

ψ − π
2 < θ2 − θ1 and|ϕ| < θ1. Since

∫
γt

| 1
λ
eλ|dλ < ∞, we can use 2.7 to obtain

theR–boundedness of{N(λ) : λ ∈ Σ(θ1)}. ��
We will need the following extension result:

2.11. Proposition. For 1 ≤ p < ∞ andT ∈ B(X, Y ) denote byT̃ ∈ B(Lp(R,

X), Lp(R, Y )) the operator(T̃ f )(t) = T (f (t)) for f ∈ Lp(R, X) and t ∈ R.
Then, if τ ⊂ B(X, Y ) is R–bounded the collectioñτ = {T̃ : T ∈ τ } ⊂
B(Lp(R, X), Lp(R, Y )) is alsoR–bounded.

Proof. For f1, . . . , fn ∈ Lp(R, X) and T̃1 . . . T̃n ∈ τ̃ we get by 2.3.b) and
Fubini’s theorem

1∫
0

‖
∑

rj (u)T̃j (fj )‖p

Lp(R,Y )
du =

∫
R

1∫
0

‖
∑

rj (u)Tj (fj (t))‖p

Xdu dt

≤
∫
R

1∫
0

‖
∑

rj (u)fj (t)‖p

Y du dt =
1∫

0

‖
∑

rj (u)fj‖p

Lp(R,X)
du ��
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Besides Hilbert spaces there is another interesting situation, where bounded
sets of operators are automaticallyR–bounded.

2.12. Example.If Y is a Banach space of type 2 andX is a Banach space of
cotype 2, then every bounded setτ ⊂ B(X, Y ) is R–bounded.

This follows directly from the definitions (cf. [LT)]:Y hastype 2, if there is
a constantC, such that for ally1 . . . yn ∈ Y we have∫

‖Σrj(u)yj‖du ≤ C

(
Σ‖yj‖2

)1/2

andX hascotype 2, if for all x1, . . . xn ∈ X∫
‖Σrj(u)xj‖du ≥ 1

c

(∑
j

‖xj‖2

)1/2

.

3. Multiplier Theorems

To obtain our multiplier theorems we will combineR-boundedness of the multi-
plier function with the following vector-valued Paley-Littlewood decomposition
from [Bou2] and [Zi]. In this statement we will need the so called ’partial sum
operators’Sj that we define by

(Sjf )̂ = χjf
ˆ .

Hereχj are the characteristic functions of{t ∈ R : 2j ≤ |t | ≤ 2j+1}, j ∈ Z.
By (rj )j∈Z we denote a sequence of independent symmetric{1,−1}–valued

random variables on[0,1].
3.1. Theorem. Let X be an UMD–space and1 < p < ∞. Then there is a
constantCp such that

1

Cp

‖f ‖Lp(R,X) ≤
1∫

0

‖
∑
j∈Z

rj (u)Sjf ‖du ≤ Cp‖f ‖Lp(R,X)

Proof. Proposition 4 of [Zi] gives for all 1≤ q ≤ ∞

(

1∫
0

‖
∑
j∈Z

rj (u)Sjf ‖qdu)1/q ≤ Cq‖f ‖ .(1)

To obtain the converse inequality, we choose ag ∈ Lp′(R, X∗), ‖g‖ ≤ 1, with
‖f ‖ =< g, f >.
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Since< Sjg, Skf >=< (Sjg)̂ , (Skf )̂ >= 0 for j �= k we get

‖f ‖ = < g, f > =
∫ 1

0
<

∑
rj (u)Sjg,

∑
rj (u)Sjf > du

≤ Cp

∫ 1

0
‖
∑

rj (u)Sjf ‖du

where we applied (1) tog andX∗ with q = ∞. For the discrete case, see also
[Bou2], Theorem 3. ��

As a first step towards a Mihlin–type multiplier theorem, we extend the
Marcinkiewicz type multiplier theorem from [Bou2].

3.2. Theorem. LetX andY beUMD–spaces.Consider a functionM : R\{0} →
B(X, Y ) of the form

M(t) =
∑
j∈Z

χj(t)m(t)Mj ,

where the scalar functionm satisfiessup
j

Var (χjm) < ∞ and the set{Mj, j ∈
Z} ⊂ B(X, Y ) isR–bounded. Then

Kf = [M(·)f̂ (·)]∨, f ∈ S(X),

extends to a bounded operatorK : Lp(R, X) → Lp(R, Y ) for all 1 < p < ∞.

3.3. Remark.By 3.1, theSj define an unconditional Schauder decomposition of
Lp(R, X). Therefore this result is related to Theorem 3.4 of [CPSW]. Higher
dimensional and discrete versions of Theorem 3.2. and 3.4. will be contained in
[SW].

Proof. We estimateKf using the Paley–Littlewood decomposition 3.1. and the
extension result 2.11.:

‖Kf ‖Lp(R,X) ≤ Cp

1∫
0

‖
∑
j

rj (u)[χjmMj(f̂ )]∨‖du

= Cp

1∫
0

‖
∑
j

rj (u)M̃j [χjmf̂ ]∨‖du

≤ CpD

1∫
0

‖
∑
j

rj (u)[χjmf̂ ]∨‖du

≤ C2
p · D supVar(χjm) ‖f ‖Lp(X).
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In the last step we used Proposition 5 of [Zi]. There it is assumed in addition
thatχjm has a distributional derivative inL1, but this is inessential in the one–
dimensional case, since there is always a sequenceϕk on suppχj with this
additional property andϕk(s) → (χjm)(s), Var (ϕk) ≤ Var (χjm) for all k. ��

By D0(X) we denote theC∞ functionsf : R → X with compact support in
R \ {0}. Note thatD0(X) is dense inLp(R, X) for 1 < p < ∞.

3.4. Theorem. Let X and Y be UMD–spaces. Lett ∈ R \ {0} → M(t) ∈
B(X, Y ) be a differentiable function such that the sets

{M(t) : t ∈ R \ {0}}, {tM ′(t); t ∈ R \ {0}}
areR–bounded.

ThenKf = [M(·)f̂ (·)]∨, f ∈ D0(X), extends to a bounded operatorK :
Lp(R, X) → Lp(R, Y ) for 1 < p < ∞.

3.5. Remark.a) The following formally weaker conditions are sufficient for the
conclusion of Theorem 3.4.:
i) ‖M(t)‖ ≤ C for all t ∈ R \ {0} andR({M(±2n) : n ∈ Z}) ≤ C

ii) ‖tM ′(t)‖ ≤ C for all t ∈ R \ {0} andR({a2nM ′(a2n) : n ∈ Z}) ≤ C for
all 1 ≤ |a| ≤ 2.

The following proof also shows that i) and ii) already imply theR-boundedness
of {M(t) : t ∈ R \ {0}}.

b) As we noted in 2.2 and 2.12, theR–boundedness of{M(t)} and{tM ′(t)}
follows from the norm boundedness of these sets, ifX is a Hilbert space, or ifY
has type 2 andX has cotype 2.

Proof. If f ∈ D0(X), f̂ (0) = 0 thenKf belongs toLp(R, X) for 1 < p < ∞.
To simplify our notation we may assume thatM(t) = 0 for t < 0.
In order to apply Theorem 3.2, we approximateM by a sequenceMk such that
eachMk is a convex combination of multipliers of the special form considered
in 3.2: Forj ∈ Z, k ∈ N we put

χk,j,l(t) = χ(2j+l2j−k,2j+1](t), l = 1 . . .2k .

ThenMk : (0,∞) → B(X, Y ) is defined by

Mk(t) =
∑
j∈Z

{χj(t)M(2j ) +

2k∑
l=1

χk,j,l(t)2
j−kM ′(2j + (l − 1)2j−k) .

Since‖M ′(t)‖ ≤ C/t we have for allt ∈ (0,∞)

‖Mk(t)‖ ≤ 2C, lim
k→∞Mk(t) = M(t) .(2)
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Indeed, e. g. fort ∈ [2j ,2j+1) we have fork → ∞

Mk(t) → M(2j ) +
t∫

2j

M ′(s)ds = M(t).

Now we decompose the functionsMk asMk = Mk,0 + 1
2k

2k∑
l=1

Mk,l, where

Mk,0(t) =
∑
j∈Z

χj(t)M(2j )

Mk,l(t) =
∑
j∈Z

χk,j,l(t)2
jM ′(2j + (l − 1)2j−k).

EachMk,l is a function of the form considered in 3.2. withm =
∑
r∈Z

χk,r,l and

Mj = 2jM ′(2j a), a = 1+ (l − 1)2−k ∈ [1,2]. Our assumptions allow to apply
3.2. and we obtain

‖(Mkf̂ )∨‖ ≤ D‖f ‖, k ∈ N.

This uniform estimate together with (2) gives the claim of the theorem fork →
∞.

To justify Remark 3.5., note that we only used i) and ii) of 3.5. to show that
the sets{Mk,l(t) : t ∈ R \ {0}} are uniformlyR–bounded. Hence{Mk(t) : t ∈
R \ {0}} is uniformly R–bounded with respect tok and theR–boundedness of
{M(t), t �= 0} follows from (2) and 2.3.c). ��

There is a partial converse to Theorem 3.4 showing that aR-boundedness
condition is necessary for the theorem to hold.

3.6. Proposition. LetX andY be Banach spaces and lett ∈ R\ {0} → M(t) ∈
B(X, Y ) satisfy

‖M(t)‖ ≤ C, ‖tM ′(t)‖ ≤ C for all t ∈ R.(3)

Assume thatKf = [M(·)f̂ (·)]∨, f ∈ D0(X), defines a bounded operatorK :
Lp(R, X) → Lp(R, Y ), for some1 < p < ∞. Then

{a2nM(a2n) : n ∈ Z, a �= 0}

isR-bounded.
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Proof. For allxn ∈ X and 1< p < ∞ we have the inequality (cf [Pi])

1

Dp

1∫
0

‖
∑
n

rn(u)xn‖pdu ≤
π∫

−π

‖
∞∑
n=0

ei2ntxn‖pdt ≤ Dp

1∫
0

‖
∑
n

rn(u)xn‖pdu,

wherern denote the Rademacher functions. Hence our claim is equivalent to the
inequality

π∫
−π

‖
∞∑
n=0

ei2ntM(a2n)xn‖pdt ≤ Cp

π∫
−π

‖
∞∑
n=0

ei2ntxn‖pdt(4)

for a �= 0. First we puta = 1. For f (t) =
∑
n

ei2nte−|t |xn and fM(t) =∑
n

ei2nte−|t |M(2n)xn we have

( π∫
−π

‖
∑

ei2ntM(2n)xn‖pdt

)1/p

≤ ‖(fM − Kf )χ[−π,π ]‖Lp
+ ‖Kf ‖Lp(X)

≤ 2π‖fM − Kf ‖L∞(X) + ‖K‖ ‖f ‖Lp(X).

(5)

Note that

‖f ‖p

Lp(R,X)
≤

∞∑
k=0

e−πkp

π∫
−π

‖
∑
n

ei2nte−|t |xn‖pdt

≤ C

π∫
−π

‖
∑
n

ei2ntxn‖pdt .

(6)

To obtain (4) fora = 1 from (5) and (6) it remains to show that

‖fn − Kf ‖L∞(X) ≤ C

(∫ π

−π

‖
∞∑
n=0

ei2ntxn‖pdt

)1/p

.(7)

To see (7) we use the Fourier transform. Forg(t) = e−|t | we haveĝ(t) = 2

1 + t2
.

Furthermore,

(fM)̂ (s) =
∞∑
n=0

ĝ(s − 2n)M(2n)xn ,

(Kf )̂ (s) =
∞∑
n=0

ĝ(s − 2n)M(s)xn .
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Then, withEn = [2n − n2,2n + n2], Fn = R \ En, we get

∞∫
−∞

‖
∑
n≥5

ĝ(s − 2n)[M(s)xn − M(2n)xn]‖ds

≤
∑
n≥5

[
∫
En

‖ĝ‖∞‖M(s) − M(2n)‖ds +
∫
Fn

|ĝ(s − 2n)2‖M‖∞ds] sup
m

‖xm‖

≤ 2
∑
n≥5

[sup
s∈En

‖M ′(s)(s − 2n)‖µ(En) + ‖M‖∞
∫

|s|≥n2

ĝ(s)ds] sup
m

‖xm‖

≤ 2
∑
n≥5

[2n2 · n2

2n − n2
‖sM ′(s)‖∞ + C0

1

n2
‖M‖∞] sup

m

‖xm‖

≤ C[‖M‖∞ + ‖sM(s)‖∞] sup
m

‖xm‖.

Hence

‖fM − Kf ‖L∞ ≤ ‖f̂n − (Kf )̂ ‖L1 ≤ C1[‖M‖∞ + ‖sM(s)‖∞] sup
m

‖xm‖.

Furthermore,

sup
n

‖xn‖ ≤ sup

{
(

∞∑
n=0

|x∗(xn)|2)1/2 : ‖x∗‖ ≤ 1, x∗ ∈ X∗
}

≤
( π∫
−π

‖
∞∑
n=0

ei2ntxn‖pdt

)1/p

,

since the lacunary sequence(ei2nt ) in Lp[−π, π ] is equivalent to the unit vector
basis ofl2. The last two estimates prove (7) and therefore (4) fora = 1.

For generala, in particulara = 2−k, considerfa(t) = 1
a
f ( 1

a
) andKa defined

by

(Kag)̂ (s) = Ma(s)ĝ(s) ,

whereMa(s) = M(as). ThenKa(fa) = (Kf )a and

‖Ka‖ = ‖K‖, ‖Ma‖∞ = ‖M‖∞, ‖sM ′
a(s)‖∞ = ‖sM ′(s)‖∞.

��
In the next corollary we use the notationS(θ) = {reiϕ : r ∈ R\ {0}, |ϕ| < θ}

for a double sector with 0< θ <
π

2
.
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3.7. Corollary. LetX andY beUMD–spaces.Assume thatλ ∈ S(θ) → M(λ) ∈
B(X, Y ) is a bounded analytic function. Then the following statements are equiv-
alent:
a) The operatorsKϕ = [M(eiϕ·)f̂ (·)]∨, f ∈ D0 extend to bounded operators
fromLp(R, X) toLp(R, Y ) with

sup{‖Kϕ‖p : |ϕ| < θ1} < ∞

for all θ1 < θ and1 < p < ∞.
b) For all θ1 < θ , there is a constantC such that

R({M(aeiϕ2n) : n ∈ Z}) ≤ C for all 1 ≤ |a| ≤ 2 and|ϕ| < θ1 .(8)

c) {M(λ) : λ ∈ S(θ1)} isR–bounded for allθ1 < θ .

Proof. a) !⇒ b) SinceM(λ) is bounded onS(θ), λM ′(λ) is bounded onS(θ1)

(cf the proof of Example 2.9). Hencea) !⇒ b) follows from Proposition 3.6.
b) !⇒ c) For θ1 < θ the following Lemma 3.8 shows that 8) implies

condition ii) of Remark 3.5.
c) !⇒ d) Example 2.9.b) shows that the assumption of Theorem 3. 4. is

fulfilled.

3.8. Lemma. Assume that the analytic functionλ ∈ S(θ1) → M(λ) ∈ B(X, Y )

satisfies (8). Then forθ2 < θ1 the set{M(λ) : λ ∈ S(θ2)} and {λM ′(λ) : λ ∈
S(θ2)} areR–bounded.

Proof. We show that (8) implies
(9) R{aeiϕ2jM ′(aeiϕ2j ) : j ∈ Z} ≤ D for all 1 ≤ |a| ≤ 2 and|ϕ| ≤ θ2.

Consider first the caseϕ = 0 anda ∈ [1,2]. By Cauchy’s formula we have for
s ∈ R \ {0}

sM ′(s) = 1

2πi

∫
Γs

s

(s − z)2
M(z)dz = 1

2π sinθ2

2π∫
0

e−iψM(zs(ψ))dψ,
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whereΓs = {z : |z − s| = (sinθ2)s} andzs(ψ) = s + s(sinθ2)eiψ . Forxj ∈ X

we obtain then
1∫

0

‖
∑
j

rj (t)a2jM ′(a2j )xj‖dt

= 1

2π sinθ2

1∫
0

‖
∑
j

rj (t)

2π∫
0

e−iψM(a2j (1 + sinθ2eiψ))xj dψ‖dt

≤ 1

2π sinθ2

2π∫
0

1∫
0

‖
∑
j

rj (t)M(ãeiψ̃2j )xj‖dtdψ

≤ C

sinθ2

1∫
0

‖
∑

rj (t)xj‖dt

by (8), wherẽa ∈ [0,2a] andψ̃ ∈ (−θ2, θ2) are determined bya(1+(sinθ2)eiψ)

= ãeiψ̃ . Sinceã is of the formã = 2k0a1 for somek0 ∈ Z anda1 ∈ [1,2], (9)
follows for ϕ = 0 anda ∈ [1,2]. This argument can be adopted to−a and all
|ϕ| < θ2.

TheR–boundedness of{M(λ), λM ′(λ) : λ ∈ S(θ2)} follows now from Re-
mark 3.5. ��

4. Maximal Lp–regularity

Let A be a generator of a bounded analytic semigroupTt on a Banach spaceX.
It is well known that the Cauchy problem

y ′(t) = Ay(t) + f (t), t ≥ 0, y(0) = 0(1)

has an unique mild solutiony ∈ Lp,loc(R, X+) for everyf ∈ Lp(R+, X).

4.1. Definition. We say that (1) has maximalLp–regularity,1 < p < ∞, on
[0, T ),0 < T ≤ ∞, if for everyf ∈ Lp([0, T ),X) the solution is almost
everywhere differentiable, has values inD(A) and there is a constantC < ∞
with

‖y ′‖Lp([0,T ),X) + ‖Ay‖Lp([0,T ),X) ≤ C‖f ‖Lp([0,T ),X).(2)

This definition is slightly weaker than the usual one, which also requires
y ∈ Lp([0, T ),X). But forT = ∞ this additional condition implies already that
s(A) = sup{Reλ : λ ∈ σ(A)} < 0. Since we want to include the case 0∈ σ(A)

in our analysis, we use (2). It is well known (cf [Do]) that the two definitions are
equivalent for semigroups withs(A) < 0. We state now our characterization of
maximalLp–regularity:
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4.2. Theorem. LetX be an UMD–space andTt a bounded analytic semigroup
with generatorA. Then the following conditions are equivalent:
1)A has maximalLp–regularity.
2) There is a constantC < ∞ such that

R({a2nR(ia2n, A) : n ∈ Z}) ≤ C for all 1 ≤ |a| ≤ 2 ,

3) There is aθ > 0 such that the set

{λR(λ,A) : λ ∈ Σ(π
2 + θ)}

isR–bounded.
4) There is aθ > 0 such that the set

{Tz : z ∈ Σ(θ)}
isR–bounded.
5) There is aθ > 0 and a constantC such that for alla ∈ [1,2], |ϕ| ≤ θ

R({Ta2neiϕ : n ∈ Z}) ≤ C.

4.3. Remark.For complemented subspacesX of Lq(Ω,µ),1 < q < ∞, (or
more generally, for complemented subspacesX of aq concave,q < ∞, Banach
function space with UMD) this result was shown by the author in the Fall of 98,
using a variant of the operator sum method. The first proof for general Banach
spaces with UMD is due to N. Kalton, who used the Haar System inLp(X). The
following proof was found independently.

Proof. SinceA is analytic we may assume that‖λR(λ,A)‖ ≤ C for λ ∈ Σ(π
2 +

θ0) for some 0< θ0 < π
2 . The unique solution of (1) and its derivative are given

by

y(t) =
t∫

0

Tt−s(f (s))ds, y ′(t) =
t∫

0

ATt−s(f (s))ds + f (t).

Hence maximalLp–regularity is equivalent to the boundedness of

K0f (t) =
t∫

0

ATt−s(f (s))ds

onLp(R+, X). By a standard argument this is also equivalent to the boundedness
of

Kf (t) =
∞∫

−∞
AT (t − s)(f (s))ds(3)
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onLp(R, X), whereAT (t) = ATt for t > 0 andAT (t) = 0 for t ≤ 0. By taking
the Fourier transform of (3) we obtain forf ∈ S(D(A))

(AT (·) ∗ f (·))̂ (t) = AR(it, A)(f̂ (t)) = itR(it, A)(f̂ (t)) − f̂ (t).(4)

1) !⇒ 2) If A has maximalLp–regularity, then by (3) and (4) the function
M(t) = itR(it, A) satisfies the assumptions of Theorem 3.6.

2) !⇒ 1) By (3) and (4) it is enough to show thatt → tR(it, A) is a
multiplier on Lp(R, X). To this end, we will show that for someθ < θ0 the
functionλ ∈ S(θ) → λR(iλ,A) satisfies the assumption of Corollary 3.7. We
use the power series expansion:

λR(λ,A) =
∞∑

m=0

λ(it − λ)mR(it, A)m+1 .(5)

Forλ = iaeiϕ2n, t = a2n with a ∈ [1,2] we get

aei(ϕ+ π
2 )2nR(aei(ϕ+ π

2 )2n, A) = eiϕ
∞∑

m=0

(1 − eiϕ)m[ia2nR(ia2n, A)]m+1 .

If C = R({ia2nR(ia2n, A) : n ∈ Z}) we chooseθ < θ0 so small that|1−eiϕ| <
1

2C for |ϕ| < θ . For an arbitraryϕ ∈ [−θ, θ ] we have by (5) and Lemma 2.4.

R({aei(ϕ+ π
2 )2nR(aei(ϕ+ π

2 )2n, A) : n ∈ Z})

≤
∞∑

m=0

(
1

2C

)m

R({[ia2nR(ia2n, A)]m+1 : n ∈ Z})

≤
∞∑

m=0

(
1

2C

)m

R({ia2nR(ia2n, A) : n ∈ Z})m+1

≤
∞∑

m=0

Cm+1

(2C)m
= 2C.

In the same way one may argue fora ∈ [−2,−1].
Now apply Corollary 3.7 to see that the convolution operator (3) is bounded

onLp(R, X).
2) ⇐⇒ 3) 2) implies that for someθ > 0, there is aC < ∞ such that for all

a ∈ [1,2], |ϕ| ≤ 2θ

R({a2nei( π2 +ϕ)R(a2nei( π2 +ϕ), A) : n ∈ Z}) ≤ C .

This was shown in 2)!⇒ 1). Now Lemma 3.8 implies that the set{tei( π2 +θ)

R(te±i( π2 +θ), A) : t ∈ R+} is R–bounded. An appeal to 2.9 a) gives 3). The
converse is clear.
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3) ⇐⇒ 4) SinceR(λ,A) =
∞∫
0

e−λtTtdt we may apply 2.10.

4) ⇐⇒ 5) By Lemma 3.8 we obtain from 5) thatR({Ttei±ϕ : t ∈ R+})) ≤ C

for someϕ < θ . Then by 2.9. a){Tz : z ∈ Σ(ϕ)} is R-bounded. The converse
is clear. ��

In the following statement we collect some further characterizations of max-
imal Lp–regularity, which will be useful in future work:

4.4. Corollary. Let X be a UMD–space andA the generator of a bounded
analytic semigroup onX. Then each of the following conditions is equivalent to
the maximalLp–regularity ofA:

i) For somen ∈ N the set

{λnR(λ,A)n : λ ∈ iR} isR − bounded.

ii) The sets{Tt , t > 0} and{tATt : t > 0} are R–bounded.
iii) For someθ > 0 the set

{1

t

t∫
0

Teiϕsds : t > 0, |ϕ| < θ} isR − bounded.

Proof. i) 4.4.i) follows from 4.2.3) since

R({[λR(λ,A)]n : λ ∈ iR}) ≤ R({λR(λ,A) : λ + iR})n .

Conversely, we have that

R(it, A)n−1 = (n − 1)i

∞∫
t

R(is, A)nds, or

(it)n−1R(it, A)n−1 =
∞∫

0

h(s)(is)nR(is, A)nds

whereh(s) = (n−1)tn−1s−n ·χ[t,∞)(s) with
∞∫
0
h(s)ds = 1 forn ≥ 2. Hence the

R–boundedness of{λn−1R(λ,A)n−1 : λ ∈ iR} follows from theR–boundedness
of {λnR(λ,A)n : λ ∈ iR} by 2.7., and we can iterate this step.

ii) SinceAnTt = dn

dtn
Tt , Condition 4.4i) follows from 4.2.4) by Example 2.9.b).

Conversely, putC = R({Tt , tATt : t > 0}) and choose anε > 0 such that

|e±iε − 1| < 1

2eC
. Now we use the power series expansion fort > 0

Tz =
∞∑
n=0

1

n!T
(n)
t (z − t)n =

∞∑
n=0

1

n!A
nTt(z − t)n, t > 0 .
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For z = eiϕt, |ϕ| < ε we obtain

Teiϕt =
∞∑
n=0

1

n! [t
nAnTt ](eiϕ − 1)n .

SincetnAnTt = nn

(
t

n
ATt/n

)n

we have

R

(
{tnAnTt}

)
≤ nnCn .

Hence by 2.4. andnn ≤ n!en

R{Teiϕt : t > 0, |ϕ| < ε} ≤ C +
∞∑
n=1

1

n!n
nCn(

1

2eC
)n

≤ C +
∞∑
n=0

2−n < ∞ .

So we may apply 4.2.5).
iii) 4.4.iii) follows from 4.2.4) by the convexity property 2.7. For the converse,

note that forM(t) = t−1
t∫

0
Teiϕsds we have

Teiϕt = M(t) + tM ′(t).

Since{tM ′(t) : t > 0} is R–bounded by 2.9.b) theR–boundedness of{Teiϕt :
t > 0} follows. ��

If 0 ∈ E(A) one can relax the conditions of Theorem 4.2.

4.5. Corollary. Let X be a UMD–space andA the generator of a bounded
analytic semigroup with0 ∈ E(A). ThenA has maximalLp–regularity if and
only if there is a constantC andθ > 0 such that one of the following conditions
is fulfilled:

R({a2nR(ia2n, A) : n ∈ N}) ≤ C for all 1 ≤ |a| ≤ 2

R({Ta2−neiϕ : n ∈ N}) ≤ C for all a ∈ [1,2], |ϕ| ≤ θ .
(6)

Proof. To get maximalLp–regularity from the first condition, combine 4.2. and
2.6.
For the second condition, observe that fors(A) < ε < 0

∞∫
1

‖ d

dt
Teiϕt‖dt =

∞∫
1

‖ATeiϕt‖dt ≤ C

∞∫
1

t−1e−εtdt < ∞

and we can combine 4.2 and 2.5. ��
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4.6. Remark.a) Condition (6) characterizes maximalLp–regularity on finite
intervals[0, T ] for all bounded analytic semigroups on an UMD–space.

b) Notice that we did not use the UMD–assumption when we showed that
(6) or condition 4.2.2) are necessary for maximalLp–regularity.

4.7. Remark.Theorem 4.2 can be used to prove the following general perturba-
tion theorem for maximalLp–regularity: LetA be the generator of an analytic
semigroup on an UMD–spaceX with maximalLp–regularity. Assume thatB is
a closed operator onX which is relatively bounded with respect toA, i.e.

D(B) ⊃ D(A), ‖Bx‖ ≤ a‖Ax‖ + b‖x‖ ∀ x ∈ D(A).

Then there exists a constanta0 which only dependent onA such that for all
a < a0 A + B is the generator of an analytic semigroup with the maximal
Lp-regularity on finite intervals[0, T ], i.e. the usual perturbation theorem for
analytic semigroups also preserves maximalLp-regularity. For variants of this
statement and details see [We2].

4.8. Remark.Let X be a complemented subspace of a Banach function space
E on a measure space(Ω,µ). If E is q–concave for someq < ∞ (see [LT],
Theorem 1.d.6) we mentioned already thatR–boundedness can be expressed by
the following square–function estimate:∥∥∥∥

(∑
i

|Tixi |2
)1/2∥∥∥∥

E

≤ C

∥∥∥∥
(∑

i

|xi |2
)1/2∥∥∥∥

E

(Of course(
∑ |xi |2)1/2 is in general not inX anymore, but this expression makes

sense inE.) . In [We1] we give further square function estimates that charac-
terize maximalLp–regularity. For example, ifE has the UMD–property andA
generates a bounded analytic semigroupTt onX, then the following conditions
are equivalent to maximalLp–regularity.

∣∣∣∣
∣∣∣∣
( ∞∫
−∞

|tR(it, A)f (t)|2dt
)1/2∣∣∣∣

∣∣∣∣
E

≤ C

∣∣∣∣
∣∣∣∣
( ∞∫
−∞

|f (t)|2dt
)1/2∣∣∣∣

∣∣∣∣
E

,a)

b) There is aθ > 0, such that for all|ϕ| ≤ θ

‖(
∞∫

−∞
|Tteiϕ (f (t))|2dt)1/2‖E ≤ C‖(

∞∫
−∞

|f (t)|2dt)1/2‖E.

(One shows that these expressions make sense at least for finite step functions
f : (a, b) → D(A) and then uses density arguments.)



Operator–valued Fourier multiplier theorems 757

4.9. Remark.a) If X = L2(Ω,µ), then by Fubini’s theorem condition a) or b)
of 4.8 is satisfied if‖tR(it, A)‖ ≤ C for t ∈ R or ‖Tz‖ ≤ C for z ∈ Σ(θ).
Hence we obtain the well known result (see [Do] for references) that all bounded
analytic semigroups on a Hilbert space have maximalLp–regularity.

b) Conditions a) and b) of 4.8 show immediately that maximalLp–regularity
is inherited by domination. For example, ifTt satisfies Gaussian estimates,
i. e. |Tteiϕf | ≤ bGat |f | for some constantsa, b, whereGt is the Gaussian
semigroup, thenTz satisfies condition b) of 4.8, sinceGt satisfies condition b).
(see [We1] for details). More general Poisson estimates as in [HP], [CD] can be
considered, too.

c) Condition 4.4.iii) can be used to improve a result of Lamberton ([La]):
If Tt is a positive, analytic contraction semigroup onLq(Ω,µ) for oneq with
1 < q < ∞ (not for all 1< q < ∞), thenA has already maximalLp–regularity.
Indeed, it is enough thatTt satisfies the following maximal ergodic estimate (see
[We1] for details) ∥∥∥∥sup

t≥0

∣∣∣∣1

t

t∫
0

Tsf ds

∣∣∣∣
∥∥∥∥
Lq

≤ C‖f ‖Lq
.
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