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Abstract. We prove a Mihlin—type multiplier theorem for operator—valued multiplier functions
on UMD-spaces. The essential assumptioR-$oundedness of the multiplier function. As an
application we give a characterization of maxinigl-regularity for the generator of an analytic
semigroupT; in terms of theR—boundedness of the resolventobr the semigrou;.

1. Introduction

Let X andY be Banach spaceB(X, Y) be the space of bounded linear operators
from X to Y, andS(X) be the space of rapidly decreasing functions fiRno
X.Forf e Li(R, X) we write f(t) = fe—‘”f(s)ds for the Fourier transform
of £ and f for the inverse Fourier transform gf.

We say that a functio : R\ {0} — B(X, Y) is aFourier multiplier on
L,(R, X) if the expressions

(1) Kf=M@OLf()]) wheref € S(X)
are well defined and extends to a bounded operat&r : L,(R, X) —
L,(R,Y).

It is a well known result of L. Schwartz (see e. g. [BL], Sect. 6.1) that, in the
case thakX andY are both Hilbert spaces, the Mihlin multiplier theorem extends
to operator—valued multiplier functions:M : R\ {0} — B(X, Y) satisfies, for
some constant,

(2) IM®)| <C, [tM'(1)|| <C foreachr € R\ {0}

thenM is a Fourier multiplier oL, (R, X) with 1 < p < oo, in the sense of

(). Pisier observed that the converse is tru&l i= Y and allM satisfying (2)

are Fourier multipliers orL,(R, X), thenX is isomorphic to a Hilbert space.
Therefore, additional hypotheses are needed to obtain multiplier theorems in
more general Banach spaces.
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In [Bou 2] (see also [Zi]) Bourgain has shown that #di(z) = m(¢)I, with a
scalar—valued functiom, the Mihlin multiplier theorem holds providex is an
UMD-space. UMD spaces may be defined by the fact that the Hilbert transform

Hﬂﬂ:PV—/;%;ﬂ@w,feS@)

extends to a bounded operatorbf(R, X) forl < p < oo, i.e.m(t) = sign(t)
is a Fourier multiplier on_, (R, X). All closed subspaces and quotient spaces
of a L,(£2, u)—space with 1< ¢ < oo are examples of UMD—spaces (see
e. g. [Bu]).

In Sect. 3 of this paper we extend Bourgain’s result to operator—valued func-
tionsM(t) € B(X, Y) for UMD—spacesX andY: if M satisfies in place of (2)
the stronger assumption that the sets

3) {(M@):t e R\ {0} and{rM'(r) : t € R\ {0}

areR—bounded, the® is a Fourier multiplier or ,(R, X) forall 1 < p < oo.
Asett C B(X,7Y) is calledR—bounded if there is a constafitsuch that for
al 7h,...,T, €1, x1,...,x, € X, neN

1 1
4) O/ Ydu < CO/

where(r;) is a sequence of independent symmetrid, 1}—valued random vari-
ables on[0, 1], e. g. the Rademacher functiongs) = sign(sin(2/xt)). This
concept was already used in [Bou2] and [BG] in connection with multiplier the-
orems and more recently a detailed study was given in [CPSVX].# Y is a

L,($2, n) space, then (4) is equivalent to
n 1/2
(5
j=1

n 1/2
()
j=1

and so the connection with square function estimates and Paley—Littlewood de-
compositions in harmonic analysis becomes clear. Note that in a Hilbert space
every norm—bounded setis R—bounded; therefore, our result can be viewed as
an extention of the theorem of Schwartz from the Hilbert space to the Banach
space setting. We also show thtboundedness conditions for the multiplier
function are necessary for the multiplier theorem to hold.

n

> @ Tix))

j=0

n

Z ri(u)x;

j=0

du
X

(5) ‘

<
L‘I L‘I

The multiplier theorem provides a useful characterization of maximai
regularity. LetA be the generator of a bounded analytic semigréupn X.
Consider the Cauchy problem

(6) yt)=Ay®)+ f(r), t=0, y0) =0
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for a givenf € L,(R;, X). We say thatd has maximalL ,—regularity if the
unigue solutiory of (6) satisfies

(7) IV lz,®ex) + 1AL, ®. %) < ClfllL,®, %)

It is well known that every bounded analytic semigroup on a Hilbert space has
maximal L ,—regularity. Indeed, if we differentiate the solution formula

t

y(@®) :/Tt—s(f(s))ds
0

we see that maximdl ,—regularity is equivalent to the boundedness of the “con-
volution operator"
t

®) Kf(t) = / AT, (f(s))ds
0

onL,(R;, X)forl < p < oo. Since||AT;|| ~ ;1 ast — 0 this operator looks
like a singular integral operator. By the analyticityBf

9) M(t) = (AT)t) = AR(it, A) = itR(it, A) — I

satisfieg|M ()| < C, |['M ()| < C, and so we may apply the Schwartz mul-
tiplier theorem for Hilbert spaces.

On the other hand, it was shown quite recently by Kalton and Lancien [KL],
that on every separable Banach lattice, which is not isomorphic to a Hilbert
space, there are analytic semigroups without maxitpategularity. While this
characterizes Banach spaces in which all analytic semigroups have maximal
L,—regularity, we can apply our multiplier theorem to (8) and (9) to obtain a
characterization of maximdl,-regularity for individual generatorsof analytic
semigroups on an UMD-space

We will show thatA has maximalL ,—regularity if and only if the sets
{tR(it, A) : t € R\ {0}} or {T, : |ary(z)| < ¢} for some smallp > O areR—
bounded. (see Sect. 4 for details; an independent proof using a different method
was given by N. Kalton.)

Alarge number of sufficient conditions for maxinig)-regularity are known:

e. g., if T; is a contraction semigroup ak, (§2) forall 1 < g < oo ([La]), T;

has Gaussian bounds ([HP], [CD]), darhas bounded imaginary powers with
I(—A)"| < Ce™.d < Z, andX is an UMD-space ([DV]). In Sect. 5 and in
some further papers ([We 1], [We 2]) we will show how these conditions can be
obtained and, in some cases, also improved by using our characterization.

In Sect. 2 we give some general propertieRebounded sets which will be
useful for our main results.

The author would like to thank Ph. @fient, J. Ri3 andZ. Strkalj for some
helpful discussions on an earlier version of this paper.
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2. R—boundedness

The notion of R—bounded collections of operators is basic for our results. In
this section we collect some examplesfbounded sets and some methods to
obtain newR—bounded sets from known ones.

2.1. Definition. T C B(X,Y) is called R—bounded if there is a constanf <
oo suchthatforallly,..., T, €t,x1,...,x, € Xandn € N

1 1
(1) / dusC/
0 0

where (r;) is a sequence of independent, symmettic—1}—valued random
variables on0, 1], e. g. the Rademacher functions. The smallest coné&tgiatr
which (1) holds is denoted b§(z).

n

> r)Ti(xp)

j=1

n

Z ri(u)x;

j=1

du ,

2.2. Remark.This notion appears implicitly in [Bou2] and was named Riesz—
property in [BG]. [CPSW] contains a detailed study of property (1) aRd "
was reinterpreted as 'Randomized bounded’. Note that for a Banach function
spaceX, which is concave for somg < oo, (see [LT], Theorem 1.d.6), (1) is

equivalent to
n 1/2 n 1/2
(Z|T,~<x,->|2) (Z |x,~|2)
Jj=1 j=1

In this form and forX = L,(£2, 1) the condition is well known in harmonic
analysis in connection with square function estimates.

If X is a Hilbert space, e. & = L,(82, ), then Fubini’s theorem applied
to (2) shows thaevery bounded set irB(X) is R—bounded.

@) |

-]

X X

2.3. Remark.Here are some technical, but very useful points:

a) In the definition we allow that some of tli¥s are identical. It is shown in
[CPSW], Lemma 3.3, that we can add the restrictibs 7; fori # j in
2.1. and obtain an equivalent definition.

b) By Kahane’s inequality condition (1) is equivalent to

1 » 1
P <
3) (Of du) _Cp<0/

4 1/p
du)
foralll < p < oc.

c) If tis R—bounded, then the closure oin the strong operator topology is
alsoR—bounded.

n

> ) Ti(x))

j=1

n

er(u)xj

j=1
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d) By Khintchine’s inequality, we have forall € X,i = 1...n, that

sup x| <sup(<2|y @AYyt e Y5 Iyl < 1)

1<i<n i=1

l n
= [ 13 nwsldu

0 i=1

(4)

2.4. Lemma. Let G be an index set and assume that

T(w=) T(w. neG

n=1

converges in the strong operator topologyRiiX, Y) for all x € G. Then

R(T(W) :p e G) < ) RAT.(W) : p € G)).

n=1

Proof. PutSy(u) = > T,(w). Forallxy,....x, € X andus, ..., pw € G

n=1
we have
1
/ I Zr,(u)SNw,)(x,)udu
o J=1
N 1
5) <> / ||Zr,(u)T(u,)<x,)||du
n=1o j=1

< RAT 0 1 € G JADECES
n=1 0 j=1

SinceT (n) = Nlim Sy () in the strong operator topology we appeal to 2.3.c).
m|

The following proposition holds more generally for functions of bounded
variation (see [SW]).

2.5. Proposition. Let J C R be an interval and € J — M(¢t) € B(X,Y)
have an integrable derivative. Thém (¢) : r € J} is R—bounded.
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Proof. Forasingleton = {T}wehaveR(z) = ||T|.If J = [a, b),a < b < o0,
ando = {tg, 11, .. ., t,} IS @ partition of/, put

M, (t) = M(a) + Z Xit;_1.b) (1) / M'(s)ds.
j=1 -1

By our first observation, Remark 2.3 a) and Lemma 2.4 we have

/ M'(s)ds

tj—1

R(My(t) 1t € J) < M@+

j=1
b
< IM@] + f 1M (s) | ds.

Choosing a sequeneg of partitions withM,, (1) — M(t) for ¢ € J, the claim
follows from 2.3. c). O

In a similar way we can show:

2.6. Proposition. LetA € G — M()) € B(X, Y) be analytic on the open set
G andK C G be compact. ThetfW (L) : A € K} is R—bounded.
Proof. For u € K consider the power series expansion

o0

o1 .
MOy =Y (- u)’ﬁM(”(M), L= pl < r(u)
j=0 ‘

with radius of convergencg ). Then by Lemma 2.4 anB({T}) = ||T||

r(w) = (rw\ 1.
R({M(x>:|x—u|<7})s;< 5 )ﬁnM‘”(mumo.

Since K is covered by finitely many ball§. : |» — u;| < “42}, the claim
follows. o
We quote an extremely useful result from [CPSW], Lemma 3.2.

2.7. Lemma. Letr C B(X) be aR—-bounded collection witR—boundM . Then
the closure of the absolute convex hullwoin the strong operator topology is
also R—bounded. For the real absolute convex hull fiebound is againV; for
the complex convex hull the-bound is at mos2 M.

As a first consequence of this convexity result we present
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2.8. Proposition. Let G C C be a simply connected Jordan region such that
C\ G has interior points. Let € G — N(¢) € B(X, Y) be abounded, strongly
measurable function, analytic . Assume thgtN (1) : A € 3G} is R—bounded.

a) Then{N(}) : A € G} is R—bounded.
b) Foralln e N, {d(0)"N™() : A € G} is R-bounded, wherd (L) =
inf{JA — u| : u € dG}.

Proof. a) By the Riemann mapping theorem there is a conformal mapping
from D = {)\ : |A| < 1} onto G which extends to a bijection of the boundary,
i.e.g(@D) = dG (see e. g. [Ru] 14.19, 14.20). So we may restrict ourselves to
the cas&s = D. If p,(6) denotes the Poisson kernel

1—r2

r0 =
pr® 1— 2rcosf + r2

for D, thenforall, = ré? € D

V4

1 .
NG) =5 / Py (0 — )N (€)dt

-7

and the claim follows from 2.7 since
1 g
— / p(0)do =1 forallr € (0,1).
2

b)IfA e GandI"(A) = {u : |x — A] = d(A)}, then by Cauchy’s formula

N® () = ni—e / 1 Nwadu
2mi (u — 2)rtl

ro)

with % [ n— A" Ydpu = n'd())™". Hence we may appeal to 2.7 agairm
()

The following special case is of particular interest to us.

2.9. ExamplePut ¥ () = {» € C : |arg(A)| < 6}. For a bounded analytic
functionx € ¥ (0) > M(}) € B(X,Y) we get from 2.7:

a) If{MQ) :|argr| = 61}, 61 < 6, is R—bounded, then so igM (1) : A €
(60}

b) If{M®): 1 e X()}is R-bounded, thenso {dM’'(1) : A € X (6,)} for
61 < 9.
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(Of course a) follows directly from 2.7 and Poisson’s formula for the halfplane
appliedtor € C, - M(A\%),a = % and b) follows from 2.7 and the formula

L1 A
AM()) = i / mM(M)dM
ro)
With TV = {1z : | — A = 4| - sin(@ — 61)}.) o

Next we consider the Laplace transform. ket R, — N(¢) € B(X,Y) be
bounded and put

(6) N = / e “N(t)dt, Rei>0.
0

Then, if A" = {N(t) : t € R.}is R—bounded, so i/, = {AN(L) : A € Z(¢)},

with ¢ < 7. Indeed, by 2.7

A~ F 1
R(N,) < 2CR(N) with C = frercoswfd; -
COSp
0

If N(t) extends analytically to a sectar(#) we can show:

2.10. Theorem.LetA € X (9) — N(X) € B(X,Y) be bounded and analytic
and limoN (1) exists for the weak operator topology. If we defiviev) by (6),

thenN (-) extends taZ (0 + %) and the following conditions are equivalent:

a) {NA) 12 € Z(00)} is R—bounded for alb; < 6
b) {ANM): 1€ X (5 +61)}is R-bounded for alb; < 6.

Proof. We fix 01, 6, andyr with 6, < ¢ < 6, < 6. By Cauchy’s formula we can
represent. N (1) for Reir > 0 as a contour integral

@) AN = /Ae‘“‘N(u)du, y={teV :r eR,}.
v

By analytic continuation this holds for all = s€Z*® with 0 < ¢ < 6; and
s > 0, since foru € y

Reuir = st Re(i cog¢ — ¥) + sin(yr — ¢))
= stsin(y — @) > stsin(y — ;)
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and/ [xe™*|du < (sin(y—61)) "L 1f —0; < ¢ < Owecanuse = {teV" : 1 €
0

R} to get a similar representation foiV (1). Hence(AN (1) : 1 € Z(% +6y))
is R—bounded if N (1) : A € X (62)} is R—bounded (by 2.7).
Conversely, we assume tHatV (1) : A € X (% +62)}is R-bounded for some
6, < 6. Then|»N (3| is uniformly bounded orE (% + 6,). Fix 61 < 6, and a
¥ > Zwithy — % < 6,—6,. By the inversion formula for the Laplace transform
(see e. g. [Wi] Sect. 11.7; the necessary deformation of the path of integration
is possible sinc&V(L)x — Nox for A — 0 implies that\N (A)x — Nox for
A — oo by [Wi] Sect. V.1) we have

N(@t) = i,/e“ﬁ(x)dx
2i
14

(8) 1 . di
= %/e*[N(A/t)A/t]T,
Vi

wherey, = {se*"V : |s| = 3} U {1€" : |s| < y}. By analytic continuation, we
get foryu = te¢

1 N di
N =5~ f N Haru =
Tl A

V43

aslongasagu™) = ¢ — ¢ € (=% — 62, 5 + 62) and this is the case if
Y — % < 6, — 61 and|g| < 61. Since/ |1e*|dA < oo, we can use 2.7 to obtain

Yt
the R—boundedness ¢V (1) : A € X (61)}. |
We will need the following extension result:

2.11. Proposition. For 1 < p < oo andT € B(X, Y) denote byl € B(L,(R,
X), L,(R,Y)) the operator(T f)(t) = T(f (1)) for f € L,(R, X) andt € R.
Then, ift ¢ B(X,Y) is R—bounded the collectiofi = {T : T € 7} C
B(L,(R, X), L,(R,Y)) is alsoR—bounded.

Proof. For fi,..., f, € L,(R,X) andTy...T, € 7 we get by 2.3.b) and
Fubini’s theorem

1

1
[ I @Bl gndu= [ [ 1 r@ DG edud
R O

0

1 1
< [ [ 1 nwsoacd = [ 13 5@51 g o
R O 0
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Besides Hilbert spaces there is another interesting situation, where bounded
sets of operators are automaticallybounded.

2.12. Examplelf Y is a Banach space of type 2 aidis a Banach space of
cotype 2, then every bounded set B(X, Y) is R—bounded.

This follows directly from the definitions (cf. [LT)]Y hastype 2, if there is
a constant, such that for ally; ...y, € Y we have

1/2
/ 127 () y;lldu < C(2||y,-||2)

andX hascotype 2 ifforall x1,...x, € X

1 1/2
/ 127 (uw)x; | du > E(Z ||x,~||2> :
J

3. Multiplier Theorems

To obtain our multiplier theorems we will combieboundedness of the multi-
plier function with the following vector-valued Paley-Littlewood decompaosition
from [Bou2] and [Zi]. In this statement we will need the so called 'partial sum
operatorsis; that we define by

Sify=xf-

Herex; are the characteristic functionspfe R : 2/ < |¢| < 2/+Y}, j € Z.
By (r)jcz we denote a sequence of independent symmglrie- 1}—valued
random variables of0, 1].

3.1. Theorem. Let X be an UMD-space and < p < oo. Then there is a
constantC,, such that

1

1

o @ = / 1D ri@)S; flldu < Cpll fllz, @x)
p .

0 ]EZ

Proof. Proposition 4 of [Zi] gives forall I< g < o

1

(1) ( / 1Y rj@)S; £11%duy’s < Cyl £ -

0 jEZ

To obtain the converse inequality, we choosg a L, (R, X*), [lgll < 1, with
Ifll=<g, f>.
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Since< S;g, St f >=< (5;8) (St f)">=0for j # k we get
1
Ifl=<ef>= [ <Y rwse Y rnwss = du
0

1
< cpfo 1S 7S

where we applied (1) tg and X* with ¢ = oco. For the discrete case, see also
[Bou2], Theorem 3. O

As a first step towards a Mihlin—type multiplier theorem, we extend the
Marcinkiewicz type multiplier theorem from [Bou2].

3.2. Theorem. LetX andY be UMD-spaces. Consider a functith: R\ {0} —
B(X,Y) of the form
M) =" xj(mnM;

jez
where the scalar functiom satisfiessup Var (x;m) < oo and the setM;, j €
Z} C B(X,Y)is R—bounded. Then '

Kf=MOFOV, fesSX),
extends to a bounded operatir: L,(R, X) — L,(R,Y) forall 1 < p < oc.
3.3. Remark By 3.1, theS; define an unconditional Schauder decomposition of
L,(R, X). Therefore this result is related to Theorem 3.4 of [CPSW]. Higher

dimensional and discrete versions of Theorem 3.2. and 3.4. will be contained in
[SW].

Proof. We estimateC f using the Paley—Littlewood decomposition 3.1. and the
extension result 2.11.:

1
IS ey = Co [ 1 r@lmdy (Pl
0 J
1

= ¢, [ 1 i m 1 ldu
0 J
1
<6, [ 1 nwlm 1Y ldu
0 J
< CZ- DsupVakxm) || f L, x)-
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In the last step we used Proposition 5 of [Zi]. There it is assumed in addition
that x;m has a distributional derivative ih1, but this is inessential in the one—
dimensional case, since there is always a sequepa@ suppy; with this
additional property angy (s) — (x;m)(s), Var () < Var (x;m) forallk. O

By Do(X) we denote th€ > functionsf : R — X with compact support in
R\ {0}. Note thatDo(X) is dense inL,(R, X) for 1 < p < oo.

3.4. Theorem. Let X and Y be UMD-spaces. Lat € R\ {0} — M(t) €
B(X, Y) be a differentiable function such that the sets

(M) :t e R\ {0}, {tM'(1);t € R\ {0}

are R—bounded. .
ThenKf = [M()f()]Y, f € Do(X), extends to a bounded operatkr :
L,R,X)— L,(R,Y)forl< p < oo.

3.5. Remark.a) The following formally weaker conditions are sufficient for the
conclusion of Theorem 3.4.:
i) IM(t)|| < Cforallt e R\ {0} andR({M(£2") :n € Z}) <C
i) 1tM' ()] < Cforallr € R\ {0} andR({a2"M’'(a2") : n € Z}) < C for
alll<|a| < 2.
The following proof also shows that i) and ii) already imply tReboundedness
of (M) :t € R\ {0}}.
b) As we noted in 2.2 and 2.12, tike-boundedness ¢iM (z)} and{t M’ (¢)}
follows from the norm boundedness of these set¥, ig a Hilbert space, or it
has type 2 an& has cotype 2.

Proof. If f € Do(X), £(0) = 0 thenkK f belongs taL, (R, X) for 1 < p < oo.

To simplify our notation we may assume thdiz) = 0 fort < 0.

In order to apply Theorem 3.2, we approximafeby a sequenca/; such that
eachM; is a convex combination of multipliers of the special form considered
in 3.2: Forj € Z, k € N we put

Xk ji(t) = X@ipi-k oy (), 1=1...2".
ThenM,; : (0, 00) - B(X,Y) is defined by
Mi(t) = {x;(OM@2)) +
JEZL
2k

D K O2TEM (2 4 (- D2
=1

Since||M'(t)|| < C/t we have for alk € (0, c0)
2) M (D) < 2C, lemoo M (1) = M(1) .
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Indeed, e. g. for € [2/, 2/1) we have fork — oo

t
Mi(t) > M) + f M'(s)ds = M(1).

2J

2/(
Now we decompose the functions asMy = Mo + = Z M, ;, where
=1

Mio(t) = x;(OM(2))
JEZ

Mei(0) = X ju2M' 2+ (1 — D27,
JEZ

EachM, ,; is a function of the form considered in 3.2. with= Z Xk and

reZ

M; =2'M'(2a), a = 1+ (I —1)27* € [1, 2]. Our assumptions allow to apply
3.2. and we obtain

IMeHVI < DISIlL k€N
This uniform estimate together with (2) gives the claim of the theorer for
Q.
To justify Remark 3.5., note that we only used i) and ii) of 3.5. to show that
the set§M; ;(¢) : t € R\ {0}} are uniformlyR—bounded. HencéV,(¢) : t €

R\ {0}} is uniformly R—bounded with respect toand theR—boundedness of
{M (1), t # 0} follows from (2) and 2.3.c). O

There is a partial converse to Theorem 3.4 showing th&tkeundedness
condition is necessary for the theorem to hold.

3.6. Proposition. Let X andY be Banach spaces and le€ R\ {0} — M(¢) €
B(X,Y) satisfy

(3 M <C, ItM'(t)| <C forallreR.

Assume thak f = [M(-)f(-)]v, f € Dy(X), defines a bounded operatti :
L,(R,X)— L,(R,Y), forsomel < p < oo. Then

{a2"M (a2") :n € Z,a # 0}

is R-bounded.
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Proof. For allx, € X and 1< p < oo we have the inequality (cf [Pi])
1 kg 0 1
1Y ru)x,|IPdu < / Iy €% x,|Pdt < D / 1 ra)xallPdu,
0 n Sy n=0 0 n

wherer, denote the Rademacher functions. Hence our claim is equivalent to the
inequality

(4) [ @@ irar < cr [ 1y e i rar
n=0

n=0

— -

for a # 0. First we puta = 1. For f(t) = Ze‘zn’e""xn and fy (1) =
Z g2 el p(2")x, we have

M

) /p
( / || Ze'z"‘M(2”>xn||"dr)
(5) ‘”
< Nfm = KO xi—zmille, + I, x)

< 27| fu — KfllLooo + 1INz, x0)-
Note that

m
o0
ok 2 —
D Sl MDA LY
k=0 “r n
(6)

c / 1Y €% x, |1Pdt .
To obtain (4) fora = 1 from (5) and (6) it remains to show that

1/p
™ 16y =K oo = ([ ||Ze'2 i)

To see (7) we use the Fourier transform. oy = el we haveg (1) =
Furthermore,

1412
(fu)Ts) =D 8(s —2M(2")x,,
n=0

ICFTs) = 8s — 2")M(s)x, .

n=0
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Then, WithE,, = [2" — n?, 2" +n?], F, =R\ E,, we get

l Z g(s —2)[M(s)x, — M(2")x,]llds
o n>5
< Z[/ &l ll M (s) — M(Z")Ilds+fIg(S—Z")ZIIMlloodS supl| x|l
n>5 E,

<2 [sup[M'(s)(s — 2)[|L(Ex) + [ Ml / §(s)ds]supllx,

n>5 S€En Is|>n2
< 22[ ||sM ()l + co—2||M||oo] supll |
n>5

< ClliM|loc + [ls M (s) o] SUPI[ X |-

Hence
st = Kflliw < I fa = K ey < CalllM|loo + IISM () |oo] SUPIIX |-

Furthermore,

supllx | <sup{<2 ) Y2 It < 1, & eX*}

n=0

1
i2"t p v
||Ze xallPdt )

n=0

since the lacunary sequen@?") in L,[—x, 7] is equivalent to the unit vector
basis ofl,. The last two estimates prove (7) and therefore (4)fer 1.
For generak, in particulara = 2%, considerf, (1) = %f(%) and/C, defined
by
(’Cag)/ts) = Ma(s)g(s) ,

whereM, (s) = M(as). ThenK,(f,) = (K f), and
ICall = KN, IMalloo = Mooy Is My ()lloo = llsM'(5)lloo-
O

In the next corollary we use the notatiSto) = {r&* : r € R\ {0}, |¢| < 6}
for a double sector with & 6 < 5
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3.7. Corollary. LetX andY be UMD-spaces. Assumethat S(#) - M()\) €

B(X, Y) isabounded analytic function. Then the following statements are equiv-
alent:

a) The operatorX, = [M(ei‘/’-)f(-)]v, f € Dg extend to bounded operators
fromL,(R, X) to L,(R, Y) with

Sull Kyllp : lol < 61} < o0

forall 6, < 6 andl < p < oo.
b) For all 6; < 6, there is a constant’ such that

(8) R({M(ae“2")y:neZ}) <Cforalll<la|l<2and|p| < 6.

C){M(A) : A € §(61)} is R—bounded for alb; < 6.

Proof. a) = b) SinceM (1) is bounded or$(9), AM’()) is bounded or$(0;)
(cf the proof of Example 2.9). Henee — b) follows from Proposition 3.6.

b) = c¢) For 6; < 6 the following Lemma 3.8 shows that 8) implies
condition ii) of Remark 3.5.

¢) = d) Example 2.9.b) shows that the assumption of Theorem 3. 4. is
fulfilled.

3.8. Lemma. Assume that the analytic functiane S(6,) — M(\) € B(X,Y)
satisfies (8). Then fa#, < 61 the set{M (L) : L € S(B)}and{AM'(X) : A €
S(6,)} are R—bounded.

Proof. We show that (8) implies
9 R{a€Y2/M'(a€¥2)) : j e Z} < Dforall 1 < |a|] < 2 and|g| < 6.

Consider first the case = 0 anda € [1, 2]. By Cauchy’s formula we have for
s € R\ {0}

2

/ & Mz, (Y)Y,

0

s

/ _ 1 _
sM (S) = %/ (s _Z)zM(Z)dZ =
1—}

27 sind,
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wherel, = {z : |z — s| = (sinfy)s} andz,(¥) = s + s(sinf2)€¥. Forx; € X
we obtain then
1

/|| > ri(t)a2 M'(a2))x; |t

0 J

1

= —iy j . i ‘

=3 ”ZW)/ M(@2) 1+ sin,e*))x; dydr
0

1 27 1
S N, ; a6V i)y,

= znsine»z//”Z'”J(t)M(aé 2/)x; || dtdy

00

by (8), wherei € [0, 2a] andyr € (—6,, 6,) are determined by(1+ (sin6,)€?)
= a€". Sincead is of the forma = 2*°qa, for somekq € Z anda; € [1, 2], (9)
follows for ¢ = 0 anda € [1, 2]. This argument can be adopted-ta and all

lo| < 62.
The R—boundedness ¢V (1), AM’()L) : A € S(6,)} follows now from Re-
mark 3.5. O

4. Maximal L ,—regularity

Let A be a generator of a bounded analytic semigrgupn a Banach spacke.
It is well known that the Cauchy problem

1) Yy () =Ay(®)+ f@), t>=0, y0) =0
has an unique mild solutione L, ;,.(R, X ;) forevery f € L,(R,, X).

4.1. Definition. We say that (1) has maximal,—regularity,1 < p < oo, on
[0,7),0 < T < oo, if for every f € L,([0,T), X) the solution is almost
everywhere differentiable, has valuesiif{A) and there is a constar@ < oo
with

(2 11z, q0.7).x) + 1AVl 2, q0.77.x) < Cll fllL,q0.7).%)-

This definition is slightly weaker than the usual one, which also requires
y € L,([0,T), X).ButforT = oo this additional condition implies already that
s(A) = supgRexr : A € 0(A)} < 0. Since we want to include the case @ (A)
in our analysis, we use (2). Itis well known (cf [Do]) that the two definitions are
equivalent for semigroups witf(A) < 0. We state now our characterization of
maximal L ,—regularity:
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4.2. Theorem. Let X be an UMD-space an@, a bounded analytic semigroup
with generatorA. Then the following conditions are equivalent:

1) A has maximal ,—regularity.

2) There is a constan < oo such that

R({a2"R(ia2",A) :neZ}) <Cforalll<|a| <2,
3) There is @ > 0 such that the set
{AR(, A):h e 2(5 +0))

is R—bounded.
4) There is & > 0 such that the set

(T, :z € X(0)}

is R—bounded.
5) There is @ > 0 and a constan€ such that for allz € [1, 2], |¢p| < 6

R({Tazneitp .ne Z}) < C.

4.3. Remark.For complemented subspacksof L,(£2, 1),1 < g < oo, (or

more generally, for complemented subspaXes ag concaveg < oo, Banach
function space with UMD) this result was shown by the author in the Fall of 98,
using a variant of the operator sum method. The first proof for general Banach
spaces with UMD is due to N. Kalton, who used the Haar Systei (X). The
following proof was found independently.

Proof. SinceA is analytic we may assume tHgtR (1, A)|| < Cfori € (5 +
t) for some O< 6p < 7. The unique solution of (1) and its derivative are given

by

t t
y() = / T—s(f(s)ds, y'(t)= / AT, (f(s))ds + f(1).
0 0
Hence maximal ,—regularity is equivalent to the boundedness of
t
Kof) = [ AT (s

0

onL,(R4, X). By astandard argument this is also equivalent to the boundedness
of
oo

©) K1) = / ATt — $)(f())ds

—00
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onL,(R, X),whereAT (1) = AT, fort > 0andAT (r) = Oforr < 0. By taking
the Fourier transform of (3) we obtain fgre S(D(A))

@) (AT() % fO)0) = AR(it, A)(f (1) = itR(t, A)(f (1) — f ().

1) = 2) If A has maximalL,—regularity, then by (3) and (4) the function
M(t) = itR(it, A) satisfies the assumptions of Theorem 3.6.

2) =— 1) By (3) and (4) it is enough to show that— ¢R(it, A) is a
multiplier on L,(R, X). To this end, we will show that for sont#e < 6, the
functioni € S(®) — AR(i), A) satisfies the assumption of Corollary 3.7. We
use the power series expansion:

(5) AR(L, A) =) At — A" R(it, A"

m=0

Fori = ia€¥2", t = a2" with a € [1, 2] we get

ad TP R@@eVTD2, A) =¥ ) (1 - €*)"[ia2"R(ia2", A)I" .

m=0

If C = R({ia2"R(ia2", A) : n € Z}) we choos® < 6 so small thatl—€?| <
% for |¢| < 6. For an arbitraryy € [—6, 6] we have by (5) and Lemma 2.4.

R({a€¥tD2"R(a€¥T2)2" A):n € 7))

<> (%) R({[ia2"R(ia2", A)]" :n € 7))

o 1 m

< mg;) (%) R({ia2"R(ia2", A) : n € Z})"1
oo Cm+1

< =2C

- Z (ZC)m

In the same way one may argue foe [—2, —1].

Now apply Corollary 3.7 to see that the convolution operator (3) is bounded
onL,(R, X).

2) <= 3) 2) implies that for somé > 0, there is &C < oo such that for all
a€ll,2],|pl <20

R({a2"d Zt9R(a2'éZ*) A):neZ) <C.

This was shown in 2)= 1). Now Lemma 3.8 implies that the sg&(z*+*)
R(1e 29 A) : t € R} is R—bounded. An appeal to 2.9 a) gives 3). The
converse is clear.
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3) <= 4) SinceR(%, A) = [ e *T,dt we may apply 2.10.

0
4) <= 5) By Lemma 3.8 we obtain from 5) th&({T,g+, : t € R.})) < C
for somep < 6. Then by 2.9. a]T, : z € X (¢)} is R-bounded. The converse
is clear. o

In the following statement we collect some further characterizations of max-
imal L,—regularity, which will be useful in future work:

4.4. Corollary. Let X be a UMD-space andi the generator of a bounded
analytic semigroup oX. Then each of the following conditions is equivalent to
the maximalL ,—regularity ofA:

i) Forsomen € N the set
{\"R(A, A)" : A € iR} is R — bounded

i) ThesetdT,,t > 0} and{rAT, : t > 0} are R—bounded.
iii) For some# > Othe set

t

1 .

{; / Tspids it > 0, |¢| < 6}is R — bounded
0

Proof. i) 4.4.i) follows from 4.2.3) since
R({[AR(, A)]" : A €iR}) < R(AR(X, A) : A +iRD" .
Conversely, we have that

R(it, A" 1= - 1) f R(is, A)'ds, or

t

G(t)"R(it, A" = / h(s)(is)"R(is, A)"ds
0

whereh(s) = (n— 1" 157" - xj1.00)(s) With ?oh(s)ds = 1forn > 2. Hence the

R—boundedness ¢f"1R(x, A)"t: 1 e iRO} follows from theR—boundedness

of {A"R(\, A)" : A € iR} by 2.7., and we can iterate this step.

i) Since AT, = %T, Condition 4.4i) follows from 4.2.4) by Example 2.9.b).
Conversely, puC = R({T;, tAT, : t > 0}) and choose an > 0 such that

lete — 1| < %. Now we use the power series expansionsfer O

o0

1 . =1
L=) “T"G@=0"=) “A"Tc-0" 1>0.
n=0 n=0
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Forz = €1, |p| < & we obtain

o
1 .
Toor =Y ;[t”A”T,](e“" —1".
n=0 """

. t 8
Sincet"A"T, = n" (—ATZ/,,> we have
n

R<{t”A”T,}> <n"C".
Hence by 2.4. and” < nle"

=1 1
R{Tgo, it >0, |p| <&} <C+ ) =n"C"(z—=)"
= n! 2eC

<C+ ZZ_” < 00.
n=0
So we may apply 4.2.5).

i) 4.4.iii) follows from 4.2.4) by the convexity property 2.7. For the converse,
t

note that forM (t) = t = [ Tgs,ds we have
0

Tow, = M(t) +tM'(1).

Since{rM'(t) : t+ > 0} is R—bounded by 2.9.b) the—boundedness dffe, :
t > 0} follows. O

If 0 € o(A) one can relax the conditions of Theorem 4.2.

4.5. Corollary. Let X be a UMD-space andi the generator of a bounded
analytic semigroup witld € o(A). ThenA has maximalL ,—regularity if and
only if there is a constant andf > 0 such that one of the following conditions
is fulfilled:

R({a2'R(ia2",A):neN}) <C foralll<la| <2
R({T,27"é* :neN}) <Cforalla e[L2], || <6.

Proof. To get maximal_ ,—regularity from the first condition, combine 4.2. and
2.6.
For the second condition, observe thatfoA) < ¢ < 0

(6)

o0

o0 o
d —1.—st
||ETei<pl||dl‘ = | |ATgy,lldt < C | t77€edt < o0
1 1 1
and we can combine 4.2 and 2.5. O
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4.6. Remark.a) Condition (6) characterizes maxima),—regularity on finite
intervals[O, T] for all bounded analytic semigroups on an UMD-space.

b) Notice that we did not use the UMD-assumption when we showed that
(6) or condition 4.2.2) are necessary for maximgt-regularity.

4.7. Remark.Theorem 4.2 can be used to prove the following general perturba-
tion theorem for maximal ,—regularity: LetA be the generator of an analytic
semigroup on an UMD-space with maximalL ,—regularity. Assume that is

a closed operator oK which is relatively bounded with respect4qgi.e.

D(B) D D(A), |Bx|| < allAx|| +bllx|| Yx € D(A).

Then there exists a constawg which only dependent o such that for all

a < ap A + B is the generator of an analytic semigroup with the maximal
L ,-regularity on finite intervalg0, T'], i.e. the usual perturbation theorem for
analytic semigroups also preserves maximglregularity. For variants of this
statement and details see [We2].

4.8. Remark.Let X be a complemented subspace of a Banach function space
E on a measure spa€e, u). If E is g—concave for somg < oo (see [LT],
Theorem 1.d.6) we mentioned already tRatboundedness can be expressed by
the following square—function estimate:

1/2 1/2
> ITixi] <l D Ixl
i E i

(Of course(}_ |x;1%)¥2is in general not ik anymore, but this expression makes
sense inE.) . In [Wel] we give further square function estimates that charac-
terize maximalL ,—regularity. For example, i has the UMD—property and
generates a bounded analytic semigr@upn X, then the following conditions
are equivalent to maximadl ,—regularity.

00 12 x 12
a) H(/ |tR(iz,A>f<z>|2dr> scl'(f |f<t>|2dz>
E

b) There is @ > 0, such that for allg| < 6

E

9

E

I f T (FE)I2AN )15 < CI( / () Pty .

(One shows that these expressions make sense at least for finite step functions
f :(a,b) — D(A) and then uses density arguments.)
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4.9. Remark.a) If X = L,(£2, w), then by Fubini’'s theorem condition a) or b)
of 4.8 is satisfied ifjzR(it, A)|| < C fort € Ror ||T,|| < C for z € X(0).
Hence we obtain the well known result (see [Do] for references) that all bounded
analytic semigroups on a Hilbert space have maximalregularity.

b) Conditions a) and b) of 4.8 show immediately that maximgatregularity
is inherited by domination. For example, T} satisfies Gaussian estimates,
i. . |T,és f| < bGy|f| for some constants, b, where G, is the Gaussian
semigroup, therT, satisfies condition b) of 4.8, sin&g, satisfies condition b).
(see [Wel] for details). More general Poisson estimates as in [HP], [CD] can be
considered, too.

c) Condition 4.4.iii) can be used to improve a result of Lamberton ([La]):
If 7, is a positive, analytic contraction semigroup by(s2, n) for oneg with
1<g <oo(notforalll< g < o0), thenA has already maximadl,,—regularity.
Indeed, it is enough th&t satisfies the following maximal ergodic estimate (see

[Wel] for details)
t
1
Suil(—/Tsfds < ClflL,.
t>0 t 5

Lq
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