Digital Object Identifier (DOI) 10.1007/s002080000168

A Liouville property for spherical averages in the plane

W. Hansen

Received November 24, 1999 / Published online December 8, 2000 – © Springer-Verlag 2000

Abstract. It is shown that any continuous bounded function f on \mathbb{R}^2 such that

$$
f(x) = \frac{1}{(2\pi)} \int_0^{2\pi} f(x + r(x)e^{it}) dt,
$$

 $x \in \mathbb{R}^2$, is constant provided r is a strictly positive real function on \mathbb{R}^2 satisfying

$$
\limsup_{|x| \to \infty} (r(x) - |x|) < +\infty \, .
$$

The proof is based on a minimum principle exploiting that $\lim_{|x|\to\infty} \ln |x|=\infty$ and on a study of (σ , r)-stable sets, i.e., sets A such that the circle of radius $r(x)$ centered at x is contained in A whenever $x \in A$. The latter reveals that there is no disjoint pair of non-empty closed (σ , r)-stable subsets in \mathbb{R}^2 unless $\limsup_{|x| \to \infty} r(x)/|x| \geq 3$ (taking spheres this holds for any \mathbb{R}^d , $d \geq 2$). A counterexample is given where $\limsup_{|x| \to \infty} r(x)/|x| = 4$.

1 Introduction

The main result of this paper is the following:

Theorem 1.1. Let r be a strictly positive real function on \mathbb{R}^2 such that

$$
\limsup_{|x| \to \infty} (r(x) - |x|) < +\infty
$$

and let f *be a continuous bounded function on* \mathbb{R}^2 *such that, for every* $x \in \mathbb{R}^2$ *,*

(1.1)
$$
f(x) = \frac{1}{2\pi} \int_0^{2\pi} f(x + r(x)e^{it}) dt.
$$

Then f *is constant.*

W. Hansen

Fakultät für Mathematik, Universität Bielefeld, Postfach 100131, D-33501 Bielefeld, Germany (e-mail: hansen@mathematik.uni-bielefeld.de)

In [Fe] the same conclusion is obtained under the considerably stronger assumption that the function r is bounded. To discuss the background for the problem which is solved by Theorem 1.1 let us first recall some general notation which has been used in the survey paper [Ha1] and in [Ha2].

Let λ denote Lebesgue measure and let σ be the $(d - 1)$ -dimensional Hausdorff measure on \mathbb{R}^d , $d \geq 1$. For every $x \in \mathbb{R}^d$ and $r > 0$ let

$$
B(x,r) = \left\{ y \in \mathbb{R}^d : |y - x| < r \right\}, \quad S(x,r) = \left\{ y \in \mathbb{R}^d : |y - x| = r \right\},
$$

and define

$$
\lambda_{x,r} = (\lambda(B(x,r)))^{-1} 1_{B(x,r)} \lambda, \quad \sigma_{x,r} = (\sigma(S(x,r)))^{-1} 1_{S(x,r)} \sigma,
$$

i.e., for functions f on $B(x, r)$ (on $S(x, r)$ resp.) $\lambda_{x,r}(f)$ is the volume mean of f on $B(x, r)$ (the spherical mean of f on $S(x, r)$ resp.). It is well known that harmonic functions on a domain U, i.e., functions $h \in C^2(U)$ satisfying $\Delta h = 0$, can be characterized by mean value properties, for example: A locally bounded measurable function f on U is harmonic if and only if $\lambda_{rr}(f) = f(x)$ $(\sigma_{x,r}(f) = f(x)$ resp.) for every $x \in U$ and every $r > 0$ such that $B(x, r) \subset U$.

The problem to what extent harmonicity of f is already a consequence of knowing that for every $x \in U$ there exists *one* radius $r(x) > 0$ such that $\lambda_{x,r(x)}(f) = f(x) (\sigma_{x,r(x)}(f) = f(x)$ resp.) has a long history (see e.g. [NV] and [Ha1]). We say that a real function f on U is (λ, r) *-median* $((\sigma, r)$ *-median* resp.) if r is a strictly positive real function on U such that $B(x, r(x)) \subset U$ $(B(x, r(x)) \subset U$ resp.) and

$$
\lambda_{x,r(x)}(f) = f(x) \qquad (\sigma_{x,r(x)}(f) = f(x) \text{ resp.})
$$

for every $x \in U$ (where we implicitly assume that f has the necessary measurability and integrability properties).

Since bounded harmonic functions on \mathbb{R}^d are constant, Theorem 1.1 can be restated as follows: Every continuous bounded (σ , r)-median function on \mathbb{R}^2 is harmonic provided $r \leq |\cdot| + M$ at infinity. The growth condition $r \leq |\cdot| + M$ seems to be natural, since it is a consequence of $B(r, r(x)) \subset U$ if $U^c \neq \emptyset$ (see also the counterexample given by Remark 5.1 and Proposition 6.1 where $r < 4(| \cdot | + 1)$).

What is known for median functions on domains $U \neq \emptyset$ in \mathbb{R}^d , $d \geq 1$? For simplicity let us restrict our attention to continuous bounded functions f on U (and assume that $r \leq |\cdot| + M$ if $U = \mathbb{R}^d$). Then f is always harmonic (no restriction on U or the dimension d) if f is (λ, r) -median (see [Hu] for real intervals and [HN1], [HN3] for the other cases). Suppose now that f is only (σ, r) -median (only, since every (λ, r) -median function is (σ, r') -median for some function $r' \le r$). Does this imply that f is harmonic? For $d \ge 3$ this is an open problem (for any given U). For $d = 1$ the answer is negative (whatever U might be). For $d = 2$ the answer is still negative if U is the unit disk ([HN2]), whereas Theorem 1.1 yields a positive answer for $U = \mathbb{R}^2$!

Our proof of Theorem 1.1 will be based on a minimum principle for (σ, r) supermedian functions on \mathbb{R}^2 (Proposition 2.1). We recall that a l.s.c. lower bounded function f on \mathbb{R}^d is called (σ, r) -supermedian $((\lambda, r)$ -supermedian resp.) if, for every $x \in \mathbb{R}^d$, $\sigma_{x,r(x)}(f) \leq f(x) (\lambda_{x,r(x)}(f) \leq f(x))$ resp.). An immediate consequence of the minimum principle is the following (see Corollary 3.1):

Corollary 1.2. Let r be a stricly positive real function on \mathbb{R}^2 such that

$$
\limsup_{|x| \to \infty} (r(x) - |x|) < +\infty
$$

and let f *be a l.s.c. lower bounded* (λ, r) -supermedian function on \mathbb{R}^2 . Then f *is constant.*

Let us note that such a result (assuming that even sup_{x∈R2} $(r(x) - |x|)$ < ∞) has been proved in [HN3] and [Ha2] using an entirely different and rather involved technique.

To deduce Theorem 1.1 from our minimum principle we shall show that assuming

$$
\limsup_{|x| \to \infty} \frac{r(x)}{|x|} < 3
$$

it is impossible to have two disjoint non-empty closed sets A_0 , A_1 in \mathbb{R}^2 which are (σ, r) -stable, i.e., satisfy $S(x, r(x)) \subset A_i$ whenever $x \in A_i$, $j \in \{0, 1\}$ (Proposition 4.1). For sets which are invariant under rotations $\limsup_{|x| \to \infty} r(x)/|x| = 4$ is the borderline for the existence of (σ, r) -stable pairs (A_0, A_1) (Proposition 6.1).

2 A minimum principle for *(σ, r)***-supermedian functions**

The essential step for the proof of our main result is the following minimum principle in the plane (where $B_r := B(0, r)$):

Proposition 2.1. *Let* $M > 0$ *and let* f *be a l.s.c. lower bounded function on* \mathbb{R}^2 \sum_{x}^{n} *such that, for every* $x \in \overline{B}_M^c$, there exists $0 < r(x) \leq |x| + M$ with $\sigma_{x,r(x)}(f) \leq$ *f*(*x*)*. Then there exists a point* $x_0 \in \overline{B}_M$ *such that* $f \ge f(x_0)$ *.*

We observe that this result is rather optimal: Defining $f(x) := (M - |x|)^{+}$, $x \in \mathbb{R}^2$, and $r(x) := |x| + M$ for $|x| \le M$, $r(x) := |x| - M$ for $|x| > M$, the function f is (σ, r) -supermedian and $f(x_0) > \inf f(\mathbb{R}^2)$ for all $x_0 \in B_M!$

For the present let us fix $\varepsilon > 0$ and construct a continuous real function $\varphi \geq 0$ on \mathbb{R}^2 such that $\sigma_{x,r(x)}(\varphi) \le \varphi(x)$ for every $x \in B_{M+2\varepsilon}^c$ and $\lim_{|x| \to \infty} \varphi(x) = \infty$. To that end we define

$$
\varphi_z(y) := (\ln |y - z| - \ln M)^+ \quad (y, z \in \mathbb{R}^2)
$$

and fix a continuous real function ψ on \mathbb{R}^2 such that $0 \le \psi \le 1$ on \mathbb{R}^2 , $\psi = 0$ on $B_{M+\varepsilon}$ and $\psi = 1$ on $B_{M+2\varepsilon}^c$. Then obviously

$$
\psi(x) - \sigma_{x,r(x)}(\psi) = \sigma_{x,r(x)}(1 - \psi) \ge \sigma_{x,r(x)}(B_{M+\varepsilon}) \quad \text{for all } x \in B_{M+2\varepsilon}^c.
$$

So the following lemma shows that the function

$$
\varphi := \varphi_0 + \frac{4\pi M}{\varepsilon} \psi
$$

has the desired properties.

Lemma 2.2. *For every* $x \in B_{M+2\varepsilon}^c$,

$$
\varphi_0(x)-\sigma_{x,r(x)}(\varphi_0)\geq -\frac{4\pi M}{\varepsilon}\sigma_{x,r(x)}(B_{M+\varepsilon}).
$$

Proof. Fix $x \in B_{M+2\varepsilon}^c$. Since φ_0 is harmonic on \overline{B}_M^c , we have $\varphi_0(x) - \sigma_{x,r(x)}(\varphi_0)$ $= 0$ if $|x| - r(x) > M$. So let us suppose that $|x| - r(x) \leq M$.. Knowing that $|x| - r(x) \ge -M$ by assumption we conclude that $S(x, r(x))$ intersects the closed disk \overline{B}_M and therefore

$$
(2.1) \t\t \sigma_{x,r(x)}(B_{M+\varepsilon}) \geq 2 \cdot \frac{\varepsilon}{2\pi r(x)}.
$$

In order to get an estimate for $\varphi_0(x) - \sigma_{x,r(x)}(\varphi_0)$ let us consider the point

$$
z := -2M\frac{x}{|x|}.
$$

Since $|x|-r(x) \geq -M$, the circle $S(x, r(x))$ is contained in the closed halfplane

$$
H := \{ y \in \mathbb{R}^2 : |y - z| \ge |y| \}.
$$

This implies that

$$
\sigma_{x,r(x)}(\varphi_z) = \varphi_z(x)
$$
 and $\varphi_z - \varphi_0 \ge 0$ on $S(x, r(x))$.

Consequently,

(2.2)
$$
\varphi_0(x) - \sigma_{x,r(x)}(\varphi_0) = \varphi_0(x) - \varphi_z(x) + \sigma_{x,r(x)}(\varphi_z - \varphi_0)
$$

$$
\geq \varphi_0(x) - \varphi_z(x)
$$

where

(2.3)
$$
\varphi_z(x) - \varphi_0(x) = \ln \frac{|x - z|}{|x|} = \ln(1 + \frac{2M}{|x|}) \le \frac{2M}{|x|}.
$$

Since $|x| \ge M$, we know that $2|x| \ge |x| + M \ge r(x)$. Thus, by (2.2) and (2.3),

(2.4)
$$
\varphi_0(x) - \sigma_{x,r(x)}(\varphi_0) \geq -\frac{4M}{r(x)}.
$$

The proof is finished combining (2.1) and (2.4) .

Proof of Proposition 2.1. Fix $\delta > 0$, and define

$$
g := f + \delta \varphi - \inf f(B_{M+2\varepsilon}).
$$

By Lemma 2.2,

$$
\sigma_{x,r(x)}(g) \le g(x) \qquad \text{for all } x \in B_{M+2\varepsilon}^c.
$$

Since $\lim_{|x|\to\infty} \varphi(x) = \infty$ and f is lower bounded, there exists $R > 0$ such that $g > 0$ on B_R^c . Consider now the set $\mathcal F$ of all l.s.c. lower bounded functions u on $X := \overline{B}_{R+M}$ such that

$$
\sigma_{x,r(x)}(u) \le u \qquad \text{for all } M + 2\varepsilon \le |x| \le R
$$

(observe that $S(x, r(x)) \subset X$ whenever $|x| \leq R$). Then F is a convex cone containing $g|_X$ and all affinely linear functions on X. Let us recall that the *Choquet boundary* Ch_FX of X with respect to F is the set of all points $x \in X$ such that the Dirac measure at x is the only Radon measure $\mu \geq 0$ on X satisfying $\mu(u) \leq u(x)$ for every $u \in \mathcal{F}$ (see e.g. [BH], p. 21). By our definition of \mathcal{F} it is obvious that $Ch_{\mathcal{F}}X$ does not contain points $x \in X$ such that $M + 2\varepsilon \leq |x| \leq R$. Having $g(x) > 0$ if $|x| < M + 2\varepsilon$ or $|x| > R$ and therefore $g > 0$ on Ch $\mathcal{F}X$, Bauer's minimum principle (cf. [Ba1,Ba2] or [BH]) yields that $g > 0$ on X whence $g > 0$ on \mathbb{R}^2 . Since $\delta > 0$ is arbitrary, we conclude that

$$
f \ge \inf\{f(x) : x \in B_{M+2\varepsilon}\}\
$$
 on \mathbb{R}^2 .

This inequality holds for every $\varepsilon > 0$. Thus the lower semi-continuity of f implies that

$$
f \ge \inf\{f(x) : x \in \overline{B}_M\}
$$
 on \mathbb{R}^2

and that inf $\{f(x) : x \in \overline{B}_M\} = f(x_0)$ for some point $x_0 \in \overline{B}_M$.

3 Application to *(λ, r)***-supermedian functions**

If f is a l.s.c. lower bounded (λ, r) -supermedian function, then f is obviously (σ, r') -supermedian for some strictly positive function $r' \leq r$. Therefore Proposition 2.1 has the following consequence (cf. [HN3,Ha2]):

Corollary 3.1. Let r be a strictly positive real function on \mathbb{R}^2 such that $\limsup_{|x| \to \infty}$ $(r(x) - |x|) < +\infty$ *and let* f *be a l.s.c. lower bounded* (λ, r) *supermedian function on* R²*. Then* f *is constant.*

Indeed, by the assumption on r there exists $M > 0$ such that $r(x) \le |x| + M$ for all $x \in B_M^c$. Therefore, by Proposition 2.1, there exists a point $x_0 \in \mathbb{R}^2$ such that $f > f(x_0)$ on \mathbb{R}^2 . Obviously, the set

$$
A := \{x \in \mathbb{R}^2 : f(x) = f(x_0)\}\
$$

is closed and $x_0 \in A$. Moreover, for every $x \in A$, the inequality $\lambda_{x,r(x)}(f) \leq$ $f(x)$ and the lower semi-continuity of f imply that $B(x, r(x)) \subset A$. Thus A is open as well, and we conclude that $A = \mathbb{R}^2$, i.e., that $f = f(x_0)$ on \mathbb{R}^2 .

4 *(σ, r)***-stable sets**

The proof of Corollary 3.1 breaks down if we only know that the function f is (σ, r) -supermedian, since then the closed set $A = \{f = f(x_0)\}\$ is only (σ, r) *stable*, i.e., we have $S(x, r(x)) \subset A$ for all $x \in A$, and this of course does not imply that A is open. Obviously, the conclusion of Corollary 3.1 itself does not hold if f is only (σ, r) -supermedian, since every continuous function $f \geq 0$ with compact support is (σ, r) -supermedian for a suitable (even bounded) function r. If, however, f is a continuous bounded (σ, r) *-median* function the situation is different. Applying Proposition 2.1 to f and $-f$ we obtain points $x_0, x_1 \in \mathbb{R}^2$ such that $f(x_0) \le f \le f(x_1)$ and then we have two non-empty closed (σ, r) stable subsets $\{f = f(x_0)\}\$, $\{f = f(x_1)\}\$. We shall see that this is impossible unless $f(x_0) = f(x_1)$ or r grows too fast at infinity.

Let us say that (A_0, A_1) is a (σ, r) -stable pair, if A_0 , A_1 are non-empty closed (σ, r) -stable sets in \mathbb{R}^d such that $A_0 \cap A_1 = \emptyset$.

Proposition 4.1. *Let* $d \geq 2$ *and suppose that there exists a* (σ, r) *-stable pair of subsets in* \mathbb{R}^d . Then, for every line L in \mathbb{R}^d ,

(4.1)
$$
\limsup_{x \in L, |x| \to \infty} \frac{r(x)}{|x|} \ge 3.
$$

We observe that of course $\limsup_{x \in L, |x| \to \infty} r(x)/|x| \leq 1$ if $r \leq |\cdot| +$ M. Before passing to the proof of Proposition 4.1 let us note the following consequence:

Corollary 4.2. Let f be a continuous (σ, r) -median function on \mathbb{R}^d , $d \geq 2$, and *suppose that there exist points* $x_0, x_1 \in \mathbb{R}^d$ *such that*

$$
(4.2) \t\t f(x_0) \le f \le f(x_1) \quad on \, \mathbb{R}^d.
$$

Then f *is constant provided* lim $\sup_{x \in L, |x| \to \infty} r(x)/|x| < 3$ *for some line* L $in \mathbb{R}^d$.

Proof. If f is not constant, then the sets

$$
A_j := \{ x \in \mathbb{R}^2 : f(x) = f(x_j) \} \quad (j \in \{0, 1\})
$$

form a (σ, r) -stable pair and therefore (4.1) holds for every line L in \mathbb{R}^d . \Box

Proof of Proposition 4.1. Let (A_0, A_1) be a (σ, r) -stable pair in \mathbb{R}^d . First let us fix points $a_0 \in A_0$, $a_1 \in A_1$, and denote by L the line containing a_0 and a_1 (our proof of (4.1) for this line will imply that every line in \mathbb{R}^d intersects A_0 and A₁). Let *e* be the unit vector $(a_1 - a_0)/|a_1 - a_0|$. Using the bijective mapping $t \mapsto a_0 + te$ from $\mathbb R$ on L we obtain an order \leq on L. Clearly, the sets $A_i \cap L$, $j \in \{0, 1\}$, are closed and non-empty. Since A_0 , A_1 are (σ, r) -stable, we know that

$$
(4.3) \t x \pm r(x)e_L \in A_j \cap L \t whenever x \in A_j \cap L, j \in \{0, 1\}.
$$

In particular, the subsets $A_i \cap L$ of $L, j \in \{0, 1\}$, are neither bounded from below nor bounded from above (with respect to \leq). Let us define

$$
A_{j+2k} := A_j \qquad (k \in \mathbb{N}, \ j \in \{0, 1\}).
$$

We claim that there exist points $x_n^{\pm} \in A_n$ such that, for every $n \in \mathbb{N}$,

$$
x_n^- < x_{n-1}^- \le x_{n-1}^+ < x_n^+
$$

and the line segment

$$
I_{n-1} := \{ x \in L : x_{n-1}^- - r(x_{n-1}^-)e \le x \le x_{n-1}^+ + r(x_{n-1}^+)e \}
$$

does not intersect the spheres $S(x, r(x))$ for $x \in A_n \cap (L \setminus I_{n-1})$. Indeed, we may take $x_0^{\pm} = a_0$. Any sphere $S(x, r(x)), x \in L \setminus I_0$, intersecting I_0 contains points of $S(a_0, r(a_0))$ which by (4.3) is impossible if $x \in A_1 \cap (L \setminus I_0)$, since $A_0 \cap A_1 = \emptyset$. Suppose now that $n \in \mathbb{N}$ and that $x_0^{\pm}, \ldots, x_{n-1}^{\pm}$ are already constructed. Define

$$
x_n^+ := \min\{x \in A_n \cap L : x \ge x_{n-1}^+ + r(x_{n-1}^+)e\},\
$$

$$
x_n^- := \max\{x \in A_n \cap L : x \le x_{n-1}^- - r(x_{n-1}^-)e\}.
$$

Then the open line segment from x_n^- to x_n^+ does not intersect the spheres $S(x_n^-)$, $r(x_n^-)$, $S(x_n^+, r(x_n^+))$ and therefore

(4.4)
$$
r(x_n^{\pm}) \ge |x_n^+ - x_n^-| = |x_n^+ - a_0| + |a_0 - x_n^-|.
$$

Any sphere $S(x, r(x))$, $x \in A_{n+1} \cap (L \setminus I_n)$, intersecting I_n would contain points of the subset $S(x_n^-, r(x_n^-)) \cup S(x_n^+, r(x_n^+))$ of A_n which is impossible. So $S(x, r(x)) \cap I_n = \emptyset$ for every $x \in A_{n+1} \cap (L \setminus I_n)$.

If $\sup_n |x_n^+| < \infty$, then $\lim_{n \to \infty} x_n^+ \in A_0 \cap A_1$. Impossible! Therefore $\sup |x_n^+| = \infty$ and, similarly, $\sup |x_n^-| = \infty$, i.e.,

$$
\lim_{n \to \infty} |x_n^{\pm}| = \infty.
$$

Of course (4.4) implies that

(4.6)
$$
r(x_n^+) \ge 2|x_n^+ - a_0| \text{ or } r(x_n^-) \ge 2|x_n^- - a_0|
$$

whence $\limsup_{|x|\to\infty} r(x)/|x| \geq 2$ which would be sufficient for the proof of Theorem 1.1. To prove (4.1) we finally define

$$
y_{n-1}^+ := \max\{y \in A_{n-1} \cap L : y \le x_n^- + r(x_n^-)e\} \qquad (n \in \mathbb{N}).
$$

Obviously,
$$
y_{n-1}^+ \ge x_{n-1}^+
$$
, since $x_{n-1}^+ < x_n^+ \le x_n^- + r(x_n^-)$ by (4.4) so that

$$
\lim_{n \to \infty} |y_{n-1}^+| = \infty.
$$

For a moment let us fix $n \in \mathbb{N}$. Since $0 \le y_{n-1}^+ - a_0 \le r(x_n^-)e - (a_0 - x_n^-)$, we know that

(4.7)
$$
|y_{n-1}^+ - a_0| \le r(x_n^-) - |a_0 - x_n^-|.
$$

Since the open line segment $\{y \in L : y_{n-1}^+ < y < x_n^- + r(x_n^-)\}\)$ and the sphere $S(x_n^-, r(x_n^-))$ are contained in the complement of A_{n-1} , we conclude that

(4.8)
$$
r(y_{n-1}^+) \ge |y_{n-1}^+ - (x_n^- - r(x_n^-))|.
$$

We claim that

(4.9)
$$
r(x_n^-) > 3|x_n^- - a_0| \text{ or } r(y_{n-1}^+) \ge 3|y_{n-1}^+ - a_0|.
$$

Indeed, suppose that $r(x_n^-) \leq 3|x_n^- - a_0|$. Then

$$
|x_n^- - a_0| + r(x_n^-) \ge 2(r(x_n^-) - |x_n^- - a_0|).
$$

Using (4.8), (4.7), and the inequality $x_n^- \le a_0 \le y_{n-1}^+$ we obtain that

$$
r(y_{n-1}^+) \ge |y_{n-1}^+ - a_0| + |a_0 - x_n^-| + r(x_n^-) \ge 3|y_{n-1}^+ - a_0|.
$$

Thus (4.9) holds and we conclude that

$$
\limsup_{x \in L, |x| \to \infty} \frac{r(x)}{|x|} \ge 3.
$$

Finally let \tilde{L} be any line in \mathbb{R}^2 . Since $\lim_{n\to\infty} |x_n^{\pm}| = \infty$, there exists $k \in \mathbb{N}$ such that $B(a_0, |a_0 - x_n^{\pm}|) \cap \tilde{L} \neq \emptyset$ for every $n \geq 2k$. Fix $j \in \{0, 1\}$ and let $n = 2k + j$. By (4.6), $B(a_0, |a_0 - x_n^+|)$ ⊂ $B(x_n^+, r(x_n^+))$ or $B(a_0, |a_0 - x_n^-|)$ ⊂ $B(x_n^-, r(x_n^-))$ and therefore $S(x_n^+, r(x_n^+)) \cap \tilde{L} \neq \emptyset$ or $S(x_n^-, r(x_n^-)) \cap \tilde{L} \neq \emptyset$ whence $A_i \cap \tilde{L} \neq \emptyset$. This finishes the proof. $□$

5 Proof of Theorem 1.1

As already indicated our main result now follows immediately: Suppose that we have $\limsup_{|x| \to \infty} (r(x) - |x|) < +\infty$ and that f is a continuous bounded (σ, r) -median function on \mathbb{R}^2 . Then there exists $M > 0$ such that $r(x) \le |x| + M$ whenever $|x| > M$. Since the functions f and $-f$ are (σ, r) -supermedian, we conclude from Proposition 2.1 that there exist points $x_0, x_1 \in \mathbb{R}^2$ such that $f > f(x_0)$ and $-f > -f(x_1)$, i.e., that $f(x_0) < f < f(x_1)$. Thus f is constant by Corollary 4.2.

Remark 5.1. If we only require that $r : \mathbb{R}^d \to [0, \infty]$ satisfies

$$
\limsup_{|x| \to \infty} \frac{r(x)}{|x|} \le 4,
$$

then it is possible that there is a continuous bounded (σ, r) -median function which is not constant (but invariant under rotations).

Indeed, Proposition 6.1 will show that there exists $r : \mathbb{R}^d \to [0, \infty)$ and a (σ, r) -stable pair (A_0, A_1) which is invariant under rotations such that $\limsup_{|x|\to\infty} r(x)/|x| = 4$. Let f denote the continuous bounded function on \mathbb{R}^d which is harmonic on $\mathbb{R}^d \setminus (A_0 \cup A_1)$ and equal to j on A_i , $j \in \{0, 1\}$. Let $\tilde{r} : \mathbb{R}^d \to [0, \infty[$ such that $\tilde{r} = r$ on $A_0 \cup A_1$ and $\tilde{r} \le \min(r, \text{dist}(\cdot, A_0 \cup A_1))$ on $\mathbb{R}^d \setminus (A_0 \cup A_1)$. Then the (non-constant) function f is obviously (σ, \tilde{r}) -median and invariant under rotations.

6 Rotationally invariant *(σ, r)***-stable sets**

The following result will complete our considerations:

Proposition 6.1. *Suppose that* $d \geq 2$ *.*

1. There exists $r : \mathbb{R}^d \to [0, \infty)$ *and a* (σ, r) *-stable pair which is invariant under rotations such that*

$$
\limsup_{|x| \to \infty} \frac{r(x)}{|x|} = 4.
$$

2. Conversely, if $r : \mathbb{R}^d \to [0, \infty)$ *such that there exists a* (σ, r) *-stable pair which is invariant under rotations, then*

(6.1)
$$
\limsup_{|x| \to \infty} \frac{r(x)}{|x|} \ge 4.
$$

Proof. 1. Taking $\beta_0 = 0$ we define recursively

$$
\alpha_n := \beta_{n-1} + 1, \quad \beta_n := 3\alpha_n.
$$

Denote

$$
V_n := \{x \in \mathbb{R}^d : \alpha_n \le |x| \le \beta_n\} \qquad (n \in \mathbb{N})
$$

and let

$$
A_0 := \bigcup_{k=1}^{\infty} V_{2k}, \quad A_1 := \bigcup_{k=1}^{\infty} V_{2k-1}.
$$

Finally, we define $r : \mathbb{R}^d \to [0, \infty)$ by

$$
r(x) := \begin{cases} 2\alpha_n, & |x| = \alpha_n, n \in \mathbb{N}, \\ 4(\beta_n + 1), & |x| = \beta_n, n \in \mathbb{N}, \\ \text{dist}(x, \partial(A_0 \cup A_1)), & x \notin \partial(A_0 \cup A_1). \end{cases}
$$

It is immediately seen that

$$
\limsup_{|x| \to \infty} \frac{r(x)}{|x|} = 4
$$

and $S(x, r(x)) \subset A_j$ for all $x \in A_j \setminus \partial A_j$, $j \in \{0, 1\}$. For every $x \in \mathbb{R}^d$ and for every $r > 0$,

$$
\min\{|z| : z \in S(x, r(x))\} = |r - |x||,
$$
\n(6.2)
$$
\max\{|z| : z \in S(x, r(x))\} = r + |x|.
$$

For every $n \in \mathbb{N}$,

$$
[r(\alpha_n)-\alpha_n,r(\alpha_n)+\alpha_n]=[\alpha_n,3\alpha_n]=[\alpha_n,\beta_n]
$$

and $\alpha_{n+2} = \beta_{n+1} + 1 = 3\alpha_{n+1} + 1 = 3\beta_n + 4$, $\beta_{n+2} = 9\beta_n + 12$ whence

$$
[r(\beta_n) - \beta_n, r(\beta_n) + \beta_n] = [3\beta_n + 4, 5\beta_n + 4] \subset [\alpha_{n+2}, \beta_{n+2}].
$$

This shows that $S(x, r(x)) \subset A_i$ for every $x \in \partial A_i$, $j \in \{0, 1\}$. Thus (A_0, A_1) is a (σ, r) -stable pair.

2. We shall prove (6.1) by contradiction. Let us suppose that $r : \mathbb{R}^d \to [0, \infty[$ and (A_0, A_1) is a (σ, r) -stable pair such that, for some real $K > 0$,

(6.3)
$$
r(x) \le 4|x| \quad \text{whenever } |x| \ge K.
$$

Let us identify R with the line $\mathbb{R} \times \{0\}^{d-1}$ in \mathbb{R}^d and introduce

$$
A_{j+2k} := A_j \qquad (k \in \mathbb{N}, j \in \{0, 1\}).
$$

Choosing an arbitrary $\alpha_0 \in A_0 \cap [K, \infty[$ we define recursively

$$
\alpha_n = \inf (A_n \cap [\alpha_{n-1}, \infty]), \quad \beta_n = \sup (A_n \cap [\alpha_n, \alpha_{n+1}]) \quad (n \in \mathbb{N}).
$$

Then, for every $n \in \mathbb{N}$,

(6.4)
$$
\alpha_n, \beta_n \in A_n, \quad \alpha_n \leq \beta_n < \alpha_{n+1} \leq \beta_{n+1}
$$

and

$$
(6.5) \qquad A_0 \cap [\alpha_1, \infty[\subset \bigcup_{k=1}^{\infty} [\alpha_{2k}, \beta_{2k}], \quad A_1 \cap [\alpha_1, \infty[\subset \bigcup_{k=0}^{\infty} [\alpha_{2k+1}, \beta_{2k+1}].
$$

By (6.2) we conclude that, for every $n \in \mathbb{N}$, there exist (unique) numbers k_n and m_n such that $k_n \ge n$, $m_n > n$, the differences $k_n - n$ and $m_n - n$ are even, and

$$
[|r(\alpha_n) - \alpha_n|, r(\alpha_n) + \alpha_n] \subset [\alpha_{k_n}, \beta_{k_n}],
$$

$$
[|r(\beta_n) - \beta_n|, r(\beta_n) + \beta_n] \subset [\alpha_{m_n}, \beta_{m_n}].
$$

In particular, $|r(\alpha_n) - \alpha_n| \ge \alpha_{k_n} \ge \alpha_n$, hence $|r(\alpha_n) - \alpha_n| = r(\alpha_n) - \alpha_n$. Similarly, $|r(\beta_n) - \beta_n| = r(\beta_n) - \beta_n$. Using (6.3) we obtain that

αkn ≤ 3αn, αkn + 2αn ≤ βkn (6.6) ,

αmn ≤ 3βn, αmn + 2βn ≤ βmn (6.7) .

Having $\alpha_n \leq \alpha_{k_n}$ and $5\alpha_{k_n} \leq 3\alpha_{k_n} + 6\alpha_n$ this implies that

$$
(6.8) \t 3\alpha_n \leq \beta_{k_n}, \t 5\alpha_{k_n} \leq 3\beta_{k_n}.
$$

Similarly,

$$
(6.9) \t\t 3\beta_n \leq \beta_{m_n}, \t 5\alpha_{m_n} \leq 3\beta_{m_n}.
$$

Let *J* denote the set consisting of all k_n and m_n , $n \in \mathbb{N}$, and let us remove all points x with $\alpha_i \leq |x| \leq \beta_i$ for some $i \in \mathbb{N} \setminus J$ from A_0 and A_1 . Then the reduced pair (A_0, A_1) which we obtain is of course still (σ, r) -stable and invariant under rotations. It leads to sets \tilde{A}_n and intervals $[\tilde{\alpha}_n, \tilde{\beta}_n]$ in \tilde{A}_n such that $5\tilde{\alpha}_n \leq 3\tilde{\beta}_n$ for every $n \in \mathbb{N}$ (each interval $[\tilde{\alpha}_n, \tilde{\beta}_n]$) contains an interval $[\alpha_{k_i}, \beta_{k_i}]$ or $[\alpha_{m_i}, \beta_{m_i}]$, $i \in \mathbb{N}$). In other words, we may assume from the very beginning that

(6.10)
$$
5\alpha_n \leq 3\beta_n \quad \text{for all } n \in \mathbb{N}.
$$

Then by (6.6), (6.4), and (6.10),

$$
\alpha_{k_n} \le 3\alpha_n \le 3 \cdot \left(\frac{3}{5}\right)^3 \alpha_{n+3} < \alpha_{n+3},
$$
\n
$$
\alpha_{m_n} \le 3\beta_n \le 3 \cdot \left(\frac{3}{5}\right)^3 \beta_{n+3} < \beta_{n+3} < \alpha_{m+4}
$$

whence for all $n \in \mathbb{N}$

$$
k_n \in \{n, n+2\}, \quad m_n = n+2.
$$

If $n \geq 2$, then $m_{n-1} = n + 1$ and therefore

$$
\beta_n < \alpha_{m_{n-1}} \leq 3\beta_{n-1} < 3\alpha_n \leq \beta_{k_n}.
$$

Thus in fact

$$
k_n = n + 2 \qquad \text{for all } n \ge 2.
$$

Using (6.6), (6.7), and (6.10) we conclude that, for every $n \ge 2$,

$$
\frac{\alpha_{n+3}}{\alpha_{n+2}} > \frac{\beta_{n+2}}{\alpha_{n+2}} \ge 1 + 2 \cdot \frac{\beta_n}{\alpha_n} : \frac{\alpha_{n+2}}{\alpha_n} \ge 1 + 2 \cdot \frac{5}{3} : 3 > 2
$$

and therefore

$$
\alpha_6=\alpha_{k_4}\leq 3\alpha_4\leq \frac{3}{2^2}\alpha_6<\alpha_6.
$$

This contradiction finishes the proof.

Remark 6.2. Note that $k_n = n$ in the example given for the first part of Proposition 6.1. In fact, a closer analysis would reveal that for every reduced (σ, r) -stable pair which is invariant under rotations we even have $\limsup_{|x| \to \infty} r(x)/|x| \ge 5$ unless $k_n = n$ for almost every $n \in \mathbb{N}$.

Final remark. Suppose that U is a proper subset of \mathbb{R}^d , $d > 2$, and that $0 <$ $r <$ dist(\cdot , U^c). Then there is no (σ, r) -stable pair in U. To see this it suffices to proceed similarly as in the proof of Proposition 4.1 using an extension of a polygonal arc intersecting A_0 and A_1 . Consequently, if g, h are harmonic functions on U and f is a (σ, r) -median continuous function on U such that $g \le f \le h$ and $g(x) = f(x)$, $f(y) = h(y)$ for some points $x, y \in U$, then $f = g = h$.

References

- [Ba1] H. Bauer, Minimalstellen von Funktionen und Extremalpunkte II. Arch. Math. **11** (1960), 200–205
- [Ba2] H. Bauer, Šilovscher Rand und Dirichletsches Problem. Ann. Inst. Fourier (Grenoble) 11 (1961), 89–136
- [BH] J. Bliedtner, W. Hansen, Potential theory An analytic and probabilistic approach to balayage. Universitext, Springer, Berlin 1986
- [Fe] P.C. Fenton, On sufficient conditions for harmonicity. Trans. Amer. Math. Soc. **253** (1979), 139–147.
- [Ha1] W. Hansen, Restricted mean value property and harmonic functions. In: Potential Theory ICPT 94, Proceedings of the International Conference on Potential Theory, Kouty, Czech Republic, August 13-20, 1994, eds. J. Král et al., de Gruyter, Berlin, New York 1996, pp. 67–90
- [Ha2] W. Hansen, Liouvilles theorem and the restricted mean volume property in the plane. J. Math. Pures Appl. **9** (1998), 943–947.
- [HN1] W. Hansen, N. Nadirashvili, A converse to the mean value theorem for harmonic functions. Acta Math. **171** (1993), 139–163

- [HN2] W. Hansen, N. Nadirashvili, Littlewood's one circle problem. J. London Math. Soc. **50** (1994), 349–360
- [HN3] W. Hansen, N. Nadirashvili, Liouville's theorem and the restricted mean value property. J. Math. Pures Appl. **74** (1995), 185–198
- [HN4] W. Hansen, N. Nadirashvili, Restricted mean value property on \mathbb{R}^d , $d \le 2$. Expo. Math. **13** (1995), 93–95
- [Hu] F. Huckemann, On the 'one circle' problem for harmonic functions. J. London Math. Soc. **29** (1954), 491-497
- [NV] Netuka, I., Veselý, J., Mean value property of harmonic functions. In: K. GowriSankaran et al. (eds.) Classical and Modern Potential Theory and Applications (NATO ASI Series), Kluwer 1994, pp. 359–398