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Abstract. It is shown that any continuous bounded functjbn R? such that

2

f(x)=(2% A & +r)etydr,

x € R?, is constant provided is a strictly positive real function oR? satisfying

limsup(r(x) — |x|) < 400 .
|x]—o00

The proof is based on a minimum principle exploiting that lim. ., In |x| = oo and on a study
of (o, r)-stable sets, i.e., sefssuch that the circle of radiugx) centered at is contained inA
whenevew € A. The latter reveals that there is no disjoint pair of non-empty clgsed)-stable
subsets iR? unless lim SUR|— o0 7(x)/|x] = 3 (taking spheres this holds for amy, d > 2).
A counterexample is given where lim SR oo 7 (X)/|x] = 4.

1 Introduction

The main result of this paper is the following:

Theorem 1.1. Letr be a strictly positive real function dR? such that

limsup((x) — |x]) < +o0

[x]—00

and let f be a continuous bounded function BA such that, for every € R?,

1 [ .
(1.1) flx) = —/ flx +r(x)e’)dr.
27 0

Thenf is constant.
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In [Fe] the same conclusion is obtained under the considerably stronger as-
sumption that the functiom is bounded. To discuss the background for the
problem which is solved by Theorem 1.1 let us first recall some general notation
which has been used in the survey paper [Hal] and in [Ha2].

Let A denote Lebesgue measure andidte the(d — 1)-dimensional Haus-
dorff measure ofR?, 4 > 1 . For everyx € R? andr > 0 let

B(x,r) = {y eRY: |y —x| < r}, Sx,r)={yeR:|y—x|=r},
and define
oy = (MBO, M) gk, v, = (@(SE, 1)) gm0,

i.e., for functionsf on B(x, r) (on S(x, r) resp.)A, ,(f) is the volume mean
of f on B(x, r) (the spherical mean of on S(x, r) resp.). It is well known
that harmonic functions on a domain, i.e., functionsh € C?(U) satisfying
Ah = 0, can be characterized by mean value properties, for example: A locally
bounded measurable functiginon U is harmonic if and only i, . (f) = f(x)
(0,,(f) = f(x) resp.) for every € U and every- > 0 such thaB(x,r) C U.

The problem to what extent harmonicity ¢fis already a consequence of
knowing that for everyx € U there existsoneradiusr(x) > 0 such that
Ao (f) = f(x) (0x,r0(f) = f(x) resp.) has along history (see e.g. [NV]
and [Hal]). We say that a real functighon U is (1, r)-median((o, r)-median
resp.) ifr is a strictly positive real function oy such thatB(x,r(x)) c U
(B(x,r(x)) C U resp.) and

)\x,r(x)(f) = f(.X) (Ux,r(x)(f) = f(X) reSp.)

for everyx € U (where we implicitly assume thgt has the necessary measur-
ability and integrability properties).

Since bounded harmonic functions BA are constant, Theorem 1.1 can be
restated as follows: Every continuous boundegd-)-median function orR? is
harmonic provided < |- | + M at infinity. The growth conditiom < |- |+ M
seems to be natural, since it is a consequencB(afr(x)) c U if U° £ @
(see also the counterexample given by Remark 5.1 and Proposition 6.1 where
r<4-1+D).

What is known for median functions on domaitis # @ in RY, d > 1?
For simplicity let us restrict our attention to continuous bounded functjons
onU (and assume that< |- | + M if U = RY). Then f is always harmonic
(no restriction onU or the dimensiond) if f is (A, r)-median (see [Hu] for
real intervals and [HN1], [HN3] for the other cases). Suppose now fhigt
only (o, r)-median (only, since everg, r)-median function igo, r')-median
for some function’ < r). Does this imply thalf is harmonic? Fod > 3 this is
an open problem (for any giveii). Ford = 1 the answer is negative (whatever
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U might be). Fod = 2 the answer is still negative if is the unit disk ([HN2]),
whereas Theorem 1.1 yields a positive answeifoe R?!

Our proof of Theorem 1.1 will be based on a minimum principle(tarr)-
supermedian functions oR? (Proposition 2.1). We recall that a l.s.c. lower
bounded functionf on R? is called (o, r)-supermedian (¢, r)-supermedian
resp.) if, for everyx € RY, 0., (f) < f(x) (rxr(f) < f(x) resp.). An
immediate consequence of the minimum principle is the following (see Corollary
3.1):

Corollary 1.2. Letr be a stricly positive real function dR? such that

limsup@r(x) — |x]) < +oo

|x]—00

and let f be a l.s.c. lower bounded., r)-supermedian function dR?. Thenf
is constant.

Let us note that such a result (assuming that even_gef (x) — |x|) <
o0) has been proved in [HN3] and [Ha2] using an entirely different and rather
involved technique.

To deduce Theorem 1.1 from our minimum principle we shall show that
assuming

lim sup@ <3

[x|—00 |x|

itisimpossible to have two disjoint non-empty closed sgisA; in R? which are
(o, r)-stablgi.e., satisfyS(x, r(x)) C A; whenever € A;, j € {0, 1} (Proposi-
tion 4.1). For sets which are invariant under rotations lim sup,  (x)/|x| = 4
is the borderline for the existence @f, r)-stable pairqAg, A;) (Proposition
6.1).

2 A minimum principle for (o, r)-supermedian functions

The essential step for the proof of our main result is the following minimum
principle in the plane (whers, := B(0, r)):

Proposition 2.1. LetM > Oand letf be al.s.c. lower bounded function &3
such that, for every € Bfw, there exist® < r(x) < |x| + M with oy ) (f) <
f(x). Then there exists a poimg € By, such thatf > f(xp).

We observe that this result is rather optimal: Definifig) := (M — |x|)™,
x € R? andr(x) := |x| + M for |x| < M, r(x) := |x| — M for |x| > M, the
function f is (o, r)-supermedian ang (xp) > inf f(R?) for all xo € By,!
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For the presentlet us fix> 0 and construct a continuous real functior- 0
onR?suchthab, . (¢) < ¢(x) foreveryx € Bj o and limy o ¢ (x) = oo.
To that end we define

o :=dnly —z|—=InM)"  (y,zeR?

and fix a continuous real functiofp on R? such that 0< ¢ < 1 onR?, ¢ = 0
on By .. andy = 1 onBj, .. Then obviously

W(x) - O_x,r(x)(w) = Ux,r(x)(l - W) = Gx,r(x)(BM+£) forall x € B[Cw+25-
So the following lemma shows that the function

Ao M
</’1=</’0+T¢

has the desired properties.

Lemma 2.2. For everyx € By, ,,,

Ao M
@o(x) — O'x,r(x)(QOO) = _Tax,r(x)(BM+s)-

Proof. Fixx € B}, ,,. Sinceypy is harmonic orﬁfw we havepg(x) — oy x) (¢0)
= 0if |x] — r(x) > M. So let us suppose that| — r(x) < M.. Knowing
that|x| — r(x) > —M by assumption we conclude thg&tx, r(x)) intersects the
closed diskB,, and therefore

2.1 re)y(Byge) = 2 - .
(2.1) Oxr(x) (Bme) 2r ()
In order to get an estimate fgp(x) — o, ) (¢o) let us consider the point
Z:= —ZML.
x|

Sincelx|—r(x) > —M, the circleS(x, r(x)) is contained in the closed halfplane
H:={y eR%: |y —z| = |y}
This implies that
Or (@) =@ (x) and ¢, —¢o >0 onS(x,r(x)).
Consequently,

@o(x) — 0y r(x)(@0) = @o(x) — @ (X) + 0% r(x)(@: — ®0)
(2.2) > @o(x) — @:(x)
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where

(2.3) @.(x) — go(x) =1In =zl _ In(1+ 2—M) < Z—M.
|x| x| |x|

Since|x| > M, we know that 2x| > |x| + M > r(x). Thus, by (2.2) and (2.3),

aM
(2.4) Po(xX) — 0 r(x) (90) = )

The proof is finished combining (2.1) and (2.4). O

Proof of Proposition 2.1Fix § > 0, and define
g:= f+3dp —inf f(Bu2).

By Lemma 2.2,
Ox.r(n)(8) < g(x) forall x € By, 5,

Since limy .« ¢(x) = oo andf is lower bounded, there exis&> 0 such that
g > 0 onBj. Consider now the sef of all I.s.c. lower bounded functionson
X := Bg,y such that

Ox.ry(U) <u forall M +2¢ < |x| <R

(observe thatS(x, r(x)) € X wheneverlx| < R). ThenF is a convex cone
containingg|y and all affinely linear functions oK. Let us recall that th€hoquet
boundaryChz X of X with respect tdF is the set of all points € X such thatthe
Dirac measure atis the only Radon measuge> 0 onX satisfyingu (u) < u(x)
for everyu € F (see e.g. [BH], p.21). By our definition ¢f it is obvious that
ChzX does not contain points € X such thatM + 2¢ < |x| < R. Having
g(x) > 0if |[x] < M + 2¢ or |x| > R and thereforgg > 0 on Ch=X, Bauer’s
minimum principle (cf. [Bal,Ba2] or [BH]) yields tha > 0 on X whence
g > 0 onR?. Sinces > 0 is arbitrary, we conclude that

f =inf{f(x):x € By,2:} ONRZ

This inequality holds for every > 0. Thus the lower semi-continuity of
implies that

f>inf{f(x):x € By} onR?

and that inf f(x) : x € By} = f(xo) for some pointcy € Byy,. O
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3 Application to (A, r)-supermedian functions

If fisal.s.c.lower bounde¢, r)-supermedian function, thefiis obviously
(o, r')-supermedian for some strictly positive functign< ». Therefore Propo-
sition 2.1 has the following consequence (cf. [HN3,Haz2]):

Corollary 3.1. Let r be a strictly positive real function ofiR? such that
limsup, . (r(x) — [x]) < +oc and let f be a |.s.c. lower boundeth, r)-
supermedian function dR?. Thenf is constant.

Indeed, by the assumption erthere existsf > 0 suchthat (x) < |x|+ M
for all x € BS,. Therefore, by Proposition 2.1, there exists a peine R? such
that f > f(xo) onIR?. Obviously, the set

={x eR%: f(x) = f(x0)}

is closed andip € A. Moreover, for everye € A, the inequalityr, . (f) <
f(x) and the lower semi-continuity of imply that B(x, r(x)) C A. ThusA is
open as well, and we conclude that= R?, i.e., thatf = f(xg) onR?.

4 (o, r)-stable sets

The proof of Corollary 3.1 breaks down if we only know that the functfors
(o, r)-supermedian, since then the closed&et {f = f(xg)} is only (o, r)-
stable i.e., we haveS(x, r(x)) C A for all x € A, and this of course does not
imply that A is open. Obviously, the conclusion of Corollary 3.1 itself does not
holdif fisonly (o, r)-supermedian, since every continuous functfor 0 with
compact support i&s, r)-supermedian for a suitable (even bounded) funation
If, however, f is a continuous bounde@, r)-medianfunction the situation is
different. Applying Proposition 2.1 tg and— f we obtain pointscg, x; € R?
such thatf (xg) < f < f(x1) and then we have two non-empty closedr)-
stable subsetsf = f(x0)}, {f = f(x1)}. We shall see that this is impossible
unlessf (xg) = f(x1) orr grows too fast at infinity.

Letus saythatAg, A,) isa(o, r)-stable pairif Ag, A; are non-empty closed
(o, r)-stable sets ifR? such thatdo N A1 = @.

Proposition 4.1. Letd > 2 and suppose that there exist$a® r)-stable pair of
subsets iR?. Then, for every lind. in RY,

4.1 lim sup (—) >3

xeL,|x|—»o00 |X
We observe that of course limsup o7 /lx| < 1ifr < |-[+
M. Before passing to the proof of Proposition 4.1 let us note the following
consequence:
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Corollary 4.2. Let f be a continuouss, r)-median function oR?, 4 > 2, and
suppose that there exist poinig x; € R¢ such that

(4.2) f(x0) < f < flx1) onR?

Then f is constant providedimsup,.; |- 7(x)/Ix| < 3 for some lineL
inRY.

Proof. If f is not constant, then the sets

={xeR?: f(x) = f(xp} ({01}
form a(o, r)-stable pair and therefore (4.1) holds for every lin R?. O

Proof of Proposition 4.1Let (Ao, A1) be a(o, r)-stable pair inR?. First let us
fix pointsag € Ag, a1 € A1, and denote by. the line containingiy anda; (our
proof of (4.1) for this line will imply that every line iiR¢ intersectsAq and
A1). Lete be the unit vectola; — ag)/|a1 — ag|. Using the bijective mapping
t — ag + te fromR on L we obtain an ordex on L. Clearly, the set#{; N L,

j € {0, 1}, are closed and non-empty. Sindg, A; are (o, r)-stable, we know
that

(4.3) xEtr(x)e, e AjNL wheneverx € A;NL, je{0,1}.

In particular, the subsets; L of L, j € {0, 1}, are neither bounded from below
nor bounded from above (with respecttd. Let us define

Aj+2k = Aj (k eN, ] S {0, 1})

We claim that there exist points™ € A, such that, for every € N,

+

- - +
Xy < X1 = Xp—1 <Xy

and the line segment
Lioii={xeL:x ;—r(x _pDe<x<x',+rx el

does notintersect the sphegs, r(x)) forx € A,N(L\ I,_1). Indeed, we may
takexgt = ag.Any sphereS(x, r(x)),x € L\ Iy, intersecting contains points of
S(ao, r(ag)) which by (4.3) isimpossible if € AN (L\ Iy), SinceAgNA; = @.

Suppose now that € N and thatry, ..., x ; are already constructed. Define

—mln{xeA NL:x>x’ 1+r(xn vel,
x, :=maxx € A,NL:x <x, ;—r(x,_ye}.

n

Then the open line segment from to x,;” does not intersect the sphergs,,
r(x;)), S(x,7, r(x;5)) and therefore

(4.4) r(g) = x5 — x| = 1xf —aol +lao — x; |-



546 W. Hansen

Any sphereS(x,r(x)), x € A,;1 N (L \ I,), intersecting/,, would contain
points of the subset(x, ", r(x;)) US(x,", r(x;)) of A, which is impossible. So
S, r(x) NI, =0foreveryx € A, 1N (L\I,).

If sup, |x| < oo, then lim_«x € Ao N A;. Impossible! Therefore
suplx;| = oo and, similarly, sugx, | = oo, i.e.,

(4.5) lim [xF| = oo
Of course (4.4) implies that
(4.6) r(xf) >2|x —agl or r(x;)>2|x; — ao

whence limsup,_, ., r(x)/lx| > 2 which would be sufficient for the proof of
Theorem 1.1. To prove (4.1) we finally define

y,jl-zmax{yeA 1NL:y<x, +r(x,)e} (neN).
Obviously,y" ; > x|, sincex’ ; < xF < x +r(x,) by (4.4) so that
n'Lmoo a4l =00
For amoment let us fix € N. Since 0< y,” ; —ao < r(x,)e — (ao — x,), we
know that
(4.7) 1y, —aol <r(x;) —lao— x|

Since the open line segmepte L : v ; <y < x, +r(x,;)} and the sphere
S(x, , r(x,)) are contained in the complement4f_,, we conclude that

(4.8) rOn-p) = vy — G = r@))I.
We claim that
(4.9) r(x;) > 3lx, —aol or r(yfy) =3yl —aol.
Indeed, suppose thatx, ) < 3|x,” — ao|. Then
lx, —aol +r(x;) = 2(r(x,) — |x, — aol).

Using (4.8), (4.7), and the inequality < ap < y,” ; we obtain that

r(y1) = 1y 1 —aol + lao — x, | +r(x,) = 3|y, — aol.
Thus (4.9) holds and we conclude that

r(x)

limsup —= >3
x€L,|x|—o0 |x
Finally let Z be any line inR?. Since lim,_. ., |x;*| = oo, there exist& € N
such thatB(ao, |ag — x|) N L # ¢ for everyn > 2k. Fix j € {0, 1} and let
n =2k + j. By (4.6),B(ao, lap — x;|) C B(x;, r(x;})) or B(ao, lap — x, |) C
B(x;,r(x;)) and thereforeS(x}H, r(x;) N L # B or S(x;,r(x;) NL # @
whenceA; N L # . This finishes the proof. O
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5 Proof of Theorem 1.1

As already indicated our main result now follows immediately: Suppose that
we have limsup_, ., (r(x) — |x|) < +oo and thatf is a continuous bounded
(o, r)-median function ofR2. Then there exist&/ > 0 suchthat(x) < |x|+M
wheneverx| > M. Since the functiong and— f are (o, r)-supermedian, we
conclude from Proposition 2.1 that there exist poirgsx; € R? such that

f = f(xg)and—f > — f(x1),i.e., thatf (xg) < f < f(x1). Thusf is constant

by Corollary 4.2.

Remark 5.1.If we only require that : R? — ]0, oo[ satisfies

lim supr<—x) < 4,

[x]—00 |x|

then it is possible that there is a continuous boun@ed)-median function
which is not constant (but invariant under rotations).

Indeed, Proposition 6.1 will show that there existsR? — 10, oo[ and a
(o, r)-stable pair (Ag, A1) which is invariant under rotations such that
limsup, . 7(x)/|x| = 4. Let f denote the continuous bounded function on
RY which is harmonic ofiR? \ (Ao U A;) and equal tgj on 4;, j € {0, 1}. Let
7 :R?Y =10, oo[ suchthaf = r on AgU A, and7 < min(r, dist(-, AgU A1)) on
R?\ (Ao U A1). Then the (non-constant) functighis obviously(c, 7)-median
and invariant under rotations.

6 Rotationally invariant (o, r)-stable sets

The following result will complete our considerations:

Proposition 6.1. Suppose thai > 2.

1. There exists : RY — ]0, oo[ and a (o, r)-stable pair which is invariant
under rotations such that

r(x)

limsup—— =4

|x|—00 |x|

2. Conversely, if : R? — ]0, oo[ such that there exists @, r)-stable pair
which is invariant under rotations, then

(6.1) lim supw > 4.

x|>o0 X
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Proof. 1. TakingBy = 0 we define recursively
Qp = ,Bn—l +1, ,Bn = 30511

Denote
V,i=fxeR :a, <|x| <B,) ((eN)

and let
o o
AO = U Vzk, Al = U V2k_1.
k=1 k=1

Finally, we define- : RY — ]0, oo by

20, x| = a,,n € N,
rix) =146, +1), x| = Bp.n €N,
dist(x, 3(Apg U A1)), x ¢ 9(AgU Ay).
It is immediately seen that
r(x)

limsup—— =4

[x]—00 |X|

andS(x,r(x)) C Ajforallx € A; \ d4;, j € {0, 1}. For everyx € R4 and for
everyr > 0,

min{|z| : z € S(x,r(x))} = |r — |x|l,
(6.2) max|z|:z € S(x,r(x)} =r + |x|.

For everyn € N,
[r(etn) — o, ran) + anl = [o, 3] = [, Byl
anda, 2 = By1+1=30,41+1=38, + 4, B.y2 = 98, + 12 whence
[r(Bn) — Bu, 7 (Bn) + Bul = [3Bn + 4, 5B, + 4] C [atn+2, Bu2l.

This shows thaS(x, r(x)) C A; for everyx € 04;, j € {0, 1}. Thus(Ao, A1)
is a(o, r)-stable pair.

2. We shall prove (6.1) by contradiction. Let us supposerth@®? — ]0, oo[
and(Ao, Ay) is a(o, r)-stable pair such that, for some réal> 0,

(6.3) r(x) <4|x|] whenevelx| > K.

Let us identifyR with the lineR x {0}t in R¢ and introduce
Ajior:=A4; (keN,je{01).

Choosing an arbitraryg € Ag N [K, oo[ we define recursively

oy = inf (An N [an—la OO[), :311 = SUF(AH N [ana an—l—l]) (I’l € N)
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Then, for every: € N,

(64) Oy, ,Bn S Ana o, < ,Bn < Op+1 =< ﬁn+l

and

(6.5) Ao N[, o[ C | Jloraw. Bl Ax N [ew, 00f € | Jlotausa. Barsal:
k=1 k=0

By (6.2) we conclude that, for everye N, there exist (unique) numbets and
m,, such thak, > n, m, > n, the difference%, — n andm, — n are even, and

[Ir(an) — anl, (o) + an] C [, Br, 1,

[ (Br) — Bul, 7(Bu) + Bul C [amns IBm,,]-

In particular, |r(o,) — anl > ax, > o, hence|r(a,) — oy = r(e,) — o
Similarly, |r(8,) — B:| = r(B:) — B,. Using (6.3) we obtain that

(6.6) ak, < 3, g, + 20, < By,
(6.7) U, < 3B, o, + 2B = B,
Havingo, < o, and B, < 3ay, + 6w, this implies that
(6.8) 3y < Br,,  So, < 3Py,
Similarly,

(6.9) 36n < B> OUn, = 3P,

Let J denote the set consisting of &l andm,, n € N, and let us remove all
pointsx withe; < |x| < B; forsome’ € N\ J from Ag andA;. Thenthe reduced
palr(Ao, A1) which we obtain is of course stldb r)-stable and invariant under
rotations. It leads to set§, and intervalga,,, B.1in A, suchthath, < 3B, for
everyn € N (each interval@,, 8,]) contains an intervebe,, Bi,10r [, , B, 1,

i € N). In other words, we may assume from the very beginning that

(6.10) 5a, <38, foralln eN.
Then by (6.6), (6.4), and (6.10),

3
o, <3, <3- (E)SaHg < ®py3,
3.3
amn S 3:8n S 3 (g) ﬂn+3 < ,Bn+3 < am+4

whence for alk ¢ N

k, € {n,n + 2}, m, =n+ 2.
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If n > 2, thenm,_1 = n + 1 and therefore

ﬂn < Um,_q =< 3,anl < 30[,, =< ﬁk,,-
Thus in fact
ky=n+2 foralln > 2.
Using (6.6), (6.7), and (6.10) we conclude that, for every 2,

%>ﬂ"“z1+2-@:“”+231+2-§:3>2

Upy2 Opi2 oy oy

and therefore

()l6=0[k4§3(14§§(){6<0[6.

This contradiction finishes the proof. O

Remark 6.2.Note thatk,, = n in the example given for the first part of Proposi-
tion 6.1. Infact, a closer analysis would reveal that for every red(ged-stable
pair which is invariant under rotations we even have limsup, 7 (x)/|x| > 5
unlessk, = n for almost every: € N.

Final remark.Suppose thal/ is a proper subset d&“, d > 2, and that O<

r < dist(-, U¢). Then there is ndo, r)-stable pair inU. To see this it suffices

to proceed similarly as in the proof of Proposition 4.1 using an extension of
a polygonal arc intersecting, and A;. Consequently, ifg, 2 are harmonic
functions onU and f is a (o, r)-median continuous function ofi such that

g < f <handg(x) = f(x), f(y) = h(y) for some pointsc, y € U, then

f=g=nh
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