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Abstract. We give a short, elementary, and characteristic independent proof of the criterion for
motivic isomorphism of two projective quadrics discovered by A. Vishik [24]. We also give a
criterion for motivic isomorphism of two Severi-Brauer varieties.

0. Introduction

We consider non-degenerate quadratic forms over fields of characteristic not 2.
Let φ1 andφ2 be two quadratic forms over a fieldF . We call themsplitting-
equivalentin the sense of A. Vishik (s-equivalentfor short) and writeφ1

s∼φ2, if
they are of the same dimension and for any field extensionE/F theWitt indexes
of theE-forms (φ1)E and (φ2)E coincide (the condition dimφ1 = dimφ2 is
really needed only in the case of two completely split forms and is superfluous in
other cases). Following [5], we callφ1 andφ2 motivic-equivalent(m-equivalent
for short) and writeφ1

m∼φ2, if the motives of the projective quadricsXφ1 and
Xφ2, given byφ1 andφ2, are isomorphic (note thatXφ1 andXφ2 are isomorphic
as algebraic varieties iff the quadratic formsφ1 andφ2 aresimilar, i.e.φ1 � a ·φ2

for some non-zeroa ∈ F ).
Our category of motives is simply the classical category of correspondences

(see Section 1), or, more precisely, the categoryCV0 of Chow-correspondences
of degree 0. The motive of an algebraic variety is then simply the variety itself
considered as an object of this category.

Here is the criterion of motivic equivalence for quadratic forms we aremean-
ing (compare [24, Statement 1.4.1]):

Criterion 0.1 (A. Vishik). Two quadratic forms are m-equivalent if and only if
they are s-equivalent.

The proof is given in the end of Sect.5.
It may be remarked that there is another standard classical motivic category

– the category of Grothendieck Chow-motives (see, for instance, [3, Example
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16.1.12]). This category containsCV0 as a full subcategory, is slightly bigger
thenCV0, and is obtained fromCV0 by applying a very formal procedure (the
procedure of pseudo-abelian completion). Of course one may replaceCV0 by
this category in the definition of m-equivalence.

In theoriginal proof of thecriterion, given in [24], thecharacteristic of thebase
field is assumed to be 0 and the category of correspondencesCV0 is replaced by
the triangulated category of motivic complexes ofVoevodsky [25,§3.1] (denoted
asDM

eff
− in the literature) using the theorem that in the characteristic 0 case

the categoryCV0 is a full subcategory of theDM
eff
− ([25, Theorem 3.2.6 and

Corollary 4.2.6]). This replacement is needed because the proof makes use of
the motives of the standard simplicial schemes (associated to the varieties of
totally isotropic subspaces of the quadratic forms) which do not live inCV0 (they
also do not live in the Grothendieck category of Chow-motives and even not in
Voevodsky’s triangulated category of geometrical motivesDM

eff
gm ⊂ DM

eff
− ).

In our proof we stay all the time in the category of Chow-correspondences
and, what is probably important to mention, we do not pay for this bymaking the
proof more complicated or less conceptual. In some sense our proof is almost a
word by word translation of Vishik’s proof to a more elementary language. Only
“almost”, because there are some further simplifications, e.g., wework only with
quadrics and do not work with other varieties of isotropic subspaces ofφ1 and
φ2. And only “in some sense” because we do not really do equivalent things.

Some more remarks about Criterion 0.1 should be made. The s-equivalence
is a very natural equivalence relation for quadratic forms. However it was not
satisfactory (if at all) considered previously (a systematic investigation is started
recently in [5]).

Since m-equivalent forms should have the same dimension and Witt index
and remain m-equivalent over any extension of scalars (because an extension of
scalars is a functor on motives), m-equivalence easily implies s-equivalence (see
Corollary 2.5). Thus, the essential part of the criterion is the inverse implication.

In the case where the dimension of the quadratic forms is odd, this part
was recently depreciated by O. Izhboldin. Using the framework of quadratic
forms exclusively, he showed that two s-equivalent odd-dimensional quadratic
forms are similar (and thus their quadrics are isomorphic already as algebraic
varieties !). By this reason, we removed the case of odd-dimensional forms
from our consideration, being in fact very sad about this, because the proof
for the odd dimensions is much more elegant than for even ones. In the case
where dimension (of the quadratic form and therefore of the quadric) is even,
one has to “struggle” with the algebraic cycles on the quadric having the middle
codimension. The difficulties do not seem to be really important, but they require
rather long additional computations (made in Sect.6). In fact all considerations
which are specific for the even-dimensional case are easily recognized in the
text; what would be left without them is the proof for the odd case.
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We refer to [5,§4] and [6] for examples of s-equivalent non-similar quadratic
forms of even dimension (in [6], such examples are constructed for every even
dimension starting from 8 and except 12; as shown in [5, Proposition 3.1], s-
equivalent forms of any dimension up to 7 are similar). Note that since any
two non-similar quadratic forms determine non-isomorphic (as algebraic vari-
eties) projective quadrics, every example of this kind gives two non-isomorphic
quadricswith isomorphicmotives. In the final section, we show that this situation
also occurs to the Severi-Brauer varieties. Namely, Criterion 7.1. states that the
motives of two Severi-Brauer varieties are isomorphic if and only if the varieties
are isomorphic or opposite (the latter condition means that one of the varieties
is given by the algebra opposite to the algebra giving the other variety; note that
the varieties are not isomorphic in this case, iff the algebras are of an exponent
bigger than 2). Let us discuss some starting points of Criterion 7.1.

It is a straight-forward idea to try to extendVishik’s criterion to a wider class
of projective homogeneous varieties. However it is already not always straight-
forward, how to define the s-type equivalence for a given type of such varieties
(and it is also not straight-forward how to prove, because the proof in the case
of quadrics uses many quadrics specific things). In the case of Severi-Brauer
varieties, it seems at least to be clear how to start: let us say that two finite-
dimensional central simpleF -algebrasA1 andA2 are s-equivalent (and write
A1

s∼A2), if the algebras have the same dimension overF (see Remark 7.2) and
for any field extensionE/F theE-algebras(A1)E and(A2)E have the sameSchur
index. Substituting forE the function fields of the Severi-Brauer varietiesXA1

andXA2 of A1 andA2, and using an old theorem of Amitsur, one translates the

conditionA1
s∼A2 for two algebras of the same dimension as follows (Lemma

7.13):A1 andA2 generate the same subgroup in the Brauer group ofF . It follows
that in the casewhereA1

s∼A2, the direct productXA1×XA2 is a projective space
bundle overXA1 as well as overXA2. This produces a motivic isomorphism of
XA1×Pi−1 andXA2×Pi−1, wherei is the Schur index ofA1 andA2, andPi−1 is
the (i − 1)-dimensional projective space. This is already a rather strong relation
between the motives ofXA1 andXA2 (for example, one concludes immediately
thatH ∗(XA1) � H ∗(XA2) for anygeometric cohomology theoryH

∗ (see [11,§2]
for the definition) such that the groupH ∗(XA1) is finitely generated). However

the conditionA1
s∼A2 turns out to be non-sufficient for m-equivalence ofA1 and

A2 (that is for motivic isomorphism ofXA1 andXA2): as Criterion 7.1. states,

A1
m∼A2 if and only if [A1] = ±[A2] in the Brauer group ofF .
Terminology and notation concerning algebraic varieties, cycles, and cor-

respondences are introduced in Sect.1. We only emphasize here the following
agreement. LetX be anF -variety andE/F a field extension. We say that a
cycleα ∈ CH∗(XE) is defined overF and writeα/F if α is in the image of the
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restriction homomorphism resE/F : CH∗(X) → CH∗(XE). A correspondence is
said to be defined overF if it is defined overF as a cycle.

Acknowledgements.The author thanks Oleg Izhboldin for numerous fruitful discussions. Hospi-
tality and support of the Universit´e de Franche-Comt´e à Besan¸con are gratefully acknowledged.
This work is accomplished in the Sonderforschungsbereich 478 of the Westf¨alische Wilhelms-
Universität Münster.

I have an impression, that everything in the “Integral Motives of
Quadrics”, except Sect.6, can be rewritten in pure Chow-motivic terms,
using Rost’s Nilpotence Theorem instead of Lemma 3.10. I just find
my language as more convenient to think in. I never bothered by the
char(k) = 0 assumption: it is completely clear, that in all other charac-
teristics (but 2) everything is the same.

(A. Vishik. A letter to the author.)

1. Category of correspondences

The definition of the category of degree 0 Chow-correspondencesCV0(F ) is
classical. We recall it briefly in order to fix necessary notation. However we
do not have a reference for the categoryCV(F ) (which we call thecategory
of Chow-correspondencesand which might be called thecategory of Chow-
correspondences with twists) also introduced in this section. The construction of
CV(F ) is a very natural and simple variation of known ones.

WewriteV(F ) for the category of smooth complete not necessarily connected
F -varieties (we also include∅ in V). For anyX ∈ V(F ) we write CH∗(X) for
the Chow ring of algebraic cycles onX modulo rational equivalence, graded by
codimension of cycles (sometimeswe alsowrite CH∗(X) for the gradation by the
dimension of cycles). Abusing terminology, we sometimes refer to the elements
of CH∗(X) as tocycles(and not as toclasses of cycles).

A correspondencefrom X1 to X2, whereX1, X2 ∈ V(F ), is by definition a
cycle in CH∗(X1×X2) (a correspondence “onX” is a correspondence fromX to
itself). For two correspondencesc12 ∈ Hom(X1, X2) andc23 ∈ Hom(X2, X3),
the compositionc23 ◦ c12 is defined by the classical formula (compare to [3,
Definition 16.1.1])c23◦c12 := (pr13)∗

(
(c12×X3) · (X1×c23)

)
,where· stays for

themultiplicationof cycles inCH∗(X1×X2×X3)and(pr13)∗ is thepush-forward
with respect to the projectionpr13: X1×X2×X3→ X1×X3.

In our work here, we only shall apply this formula to the case, where the
correspondencesc12 andc23 are decomposed (and homogeneous). In this case
the composition can be computed as follows:
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Lemma 1.1. LetX1, X2, X3 ∈ V(F ) and c1 ∈ CH∗(X1), c2, c′2 ∈ CH∗(X2),
c3 ∈ CH∗(X3). Suppose that the varietyX2 is connected (or, more generally,
equidimensional) and that the cyclesc2 andc′2 are homogeneous. Then

(c′2× c3) ◦ (c1× c2) = (pr13)∗(c1× (c2 · c′2)× c3)

=
{
deg(c2 · c′2) · (c1× c3) if codim(c2)+ codim(c′2) = dimX2,
0 otherwise,

wheredeg(−) stays for the degree of a 0-cycle (see [3, Definition 1.4]). ��
LetX, Y ∈ V(F ) and suppose thatY is connected (or,more generally, equidi-

mensional). A correspondence fromX toY is said to be of degreep if it is given
by a (homogeneous) cycle from CHdimY+p(X × Y ). This definition is extended
to the case of arbitraryY ∈ V(F ) by taking the direct sum of the groups of the
degreep correspondences fromX to the connected components ofY .

Since degrees of correspondences are added while the correspondences are
composed ([3, Example 16.11]), the composition of degree 0 correspondences
has degree 0 as well. This legitimates the following definition.

The additive categoryCV0(F ) (called the category of degree 0 correspon-
dences) has the same objects asV(F ), while Hom(X, Y ) is defined to be the
group of degree 0 correspondences fromX to Y . We refer to [3,§16.1] for
checking thatCV0(F ) is really a category and only note here thatidX is given
by the diagonal class onX ×X.

Although the categoryCV0(F ) is already satisfactory for the definition of the
motivic equivalence, we will sometimes need a bigger categoryCV(F ), e.g. to
formulate Decomposition 1.2.

The objects ofCV(F ) are formal finite direct sums of pairs(X, i), where
X ∈ V(F ) andi ∈ Z. One writesX(i) for (X, i). ForX(i), Y (j) ∈ CV(F ), the
group Hom(X(i), Y (j)) is defined as the group of degreej − i correspondences
fromX toY . Note that the evident functorCV0(F ) → CV(F ),X �→ X := X(0)

is a full imbedding.
Here is an example:

Decomposition 1.2([19, Proposition 2]). Letψ be a quadratic form overF ,
φ := H⊥ψ , andX, Y the projective quadrics given byφ, ψ . In CV(F ) there is
an isomorphism

X � pt ⊕ Y (1)⊕ pt(n) ,

wherept := Spec(F ) andn := dimX.

Remark 1.3.Decomposition 1.2 is a particular case of the motivic decomposi-
tions of the isotropic flag varieties (established in [11]) and is produced by a
certainrelative cellular structure(see [11, Definition 6.1]) onX.
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2. Trivial implications and reduction to anisotropic case

In this section, we prove that two m-equivalent forms are s-equivalent and that
the inverse implication should be proved only for anisotropic forms.

We fix the following notation:φ1 andφ2 are quadratic forms overF ; X1 and
X2 are the corresponding projective quadrics.

Lemma 2.1. If φ1
m∼φ2, thendimφ1 = dimφ2.

Proof. LetX �= ∅ be any variety fromV(F ). The formula

Hom(pt(i), X) =
{
CH0(X) �= 0 for i = dimX,

CHdimX−i(X) = 0 for i > dimX

shows that the dimension ofX is determined by the isomorphism class of its
motive. ��
Lemma 2.2. Suppose thatφ1 = H⊥ψ1 andφ2 = H⊥ψ2 for some quadratic

formsψ1 andψ2. Thenφ1
m∼φ2 if and onlyψ1

m∼ψ2.

Proof. We writeY1 andY2 for the projective quadrics determined byψ1 andψ2.
Any of two conditionsφ1

m∼φ2 andψ1
m∼ψ2 implies that dimX1 = dimX2 (by

Lemma 2.1), so we may assume that dimX1 = dimX2 = n. By Decomposition
1.2 we have motivic isomorphisms

X1 = pt ⊕ Y1(1)⊕ pt(n) and X2 = pt ⊕ Y2(1)⊕ pt(n) ,

where dimY1 = dimY2 = n− 2. Therefore

Hom(Xρ, Xδ) = End(pt)× Hom(Yρ, Yδ)× End(pt)

for anyρ, δ ∈ {1,2} (note that there are no homomorphisms betweenpt , Yρ , and
pt(n) by the simple dimension count reason). Consequently,X1 � X2 in CV(F )

if and only if Y1 � Y2. ��
Lemma 2.3. If φ1

m∼φ2, then eitherφ1 andφ2 are both anisotropic or they are
both isotropic.

Proof.Wewriten for the dimension ofX1 andX2. LetE/F be a field extension
such that the forms(φ1)E and(φ2)E are isotropic. Consider the restriction functor
CV(F ) → CV(E). Forρ = 1,2, we have Hom(ptE, (Xρ)E) = End(ptE) = Z

and the homomorphism

CH0(Xρ) = Hom(pt, Xρ)
resE/F−−−→ Hom(ptE, (Xρ)E) = Z

is given by taking the degrees of 0-cycles. By the Springer theorem [15, Theorem
2.3 of Chapter Seven] the cokernel of this homomorphism is 0 if and only if the
formφρ is isotropic (in the anisotropic case, the cokernel equalsZ/2). Therefore
the formsφ1 andφ2 can be isotropic only simultaneously. ��
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Remark 2.4.There is a complete description of the group CH0(Xρ) (see [23]
or [7], where the kernel of the degree homomorphism CH0(Xρ) → Z (whose
image is detected by Springer’s theorem) is shown to be zero). However this
information is superfluous in the proof of Lemma 2.3.

Corollary 2.5. If φ1
m∼φ2, thenφ1

s∼φ2.

Proof. First of all, we have dimφ1 = dimφ2 by Lemma 2.1. Lemmas 2.2 and
2.3 together imply that theWitt indexes of the formsφ1 andφ2 coincide. Finally,
since m-equivalent forms remain m-equivalent over any extensionE/F (as seen
by applying the restriction functorCV0(F ) → CV0(E)), we getφ1

s∼φ2. ��
For the proof of the inverse implication we need the following simple

Lemma 2.6. Let φ1 and φ2 be of even dimension. Ifφ1
s∼φ2, thendiscφ1 =

discφ2.

Proof. We prove this by induction onn := dimφ1 = dimφ2. If n = 2, then the
form (φ1)F (

√
discφ1) is isotropic; therefore(φ2)F (

√
discφ1) is isotropic as well what

implies that discφ1 = discφ2.
Let n > 2. If φ1 andφ2 are isotropic, we may cancel one hyperbolic plane

contained in each of them and apply the induction hypothesis. If the forms are
anisotropic, we may pass to the function field ofX1 (note thatF is algebraically
closed inF (X1)). ��
Remark 2.7.It deserves to be mentioned that the even Clifford algebras of s-
equivalent forms are isomorphic. The proof of this statement is easily reduced to
the case where the forms have an even dimension and trivial discriminant. Then
the statement is a particular case of the following observation (also generalizing
Lemma2.6), due toO. Izhboldin: if the classes in theWitt ring of two s-equivalent
quadratic forms belong to then-th Knebusch idealJn (see [13,§6]), then they
are congruent moduloJn+1.

3. Nilpotence theorem

The following theorem is due to M. Rost. It was announced in [18]; a proof was
given in [19, Proposition 9]. A new proof (only for the characteristic 0 case) is
given in [24, Lemma 3.10]; this proof produces a better nilpotence exponent.

Theorem 3.1 (Nilpotence theorem).Let X be a projective quadric overF ,
c ∈ End(X) a correspondence onX, andE/F a field extension. IfcE = 0
∈ End(XE), thenc is nilpotent.
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Corollary 3.2. LetX1 andX2 be projective quadrics overF ,

c12 ∈ Hom(X1, X2) , c21 ∈ Hom(X2, X1)

some correspondences, andE/F a field extension. If(c12)E and (c21)E are
mutually inverse isomorphisms (of(X1)E and (X2)E in CV0(E)), thenc12 and
c21 themselves are isomorphisms (but, may be, not mutually inverse ones).

Proof. Since the correspondenceε1 := c21 ◦ c12 − id1 vanishes overE, it is
nilpotent (by Theorem 3.1). Thereforec21 ◦ c12 = id1 + ε1 is an isomorphism
(the inverse is given by the finite sumid1 − ε1 + ε21 − . . .). By the symmetry,
c12 ◦ c21 is an isomorphism as well. ��
Remark 3.3.In fact, an enhanced version of Corollary 3.2 holds for two projec-
tive quadricsX1 andX2 (compare with [19, Corollary 11]): if a correspondence
fromX1 toX2 becomes to be an isomorphism after an extension of scalars, then
it is an isomorphism already over the base field (so, one does not really need
to assume that the inverse is defined over the base field). This enhancement is
superfluous for us here (it is replaced by Lemma 6.3).

4. Correspondences on split quadrics

LetX be a split projective quadric of an even dimensionn. By saying “split” we
mean that the(n+2)-dimensional quadratic form, determiningX, is isomorphic
to the direct sumof(n+2)/2 hyperbolic planes. First of all we need a description
of the Chow ring CH∗(X). The description given in Lemma 4.1 is classical and
is reproduced in many references. Essentially it is contained already in [4]. In
more appropriate terms it is obtained in [22]. We formulate it here in order
to be self-contained and to have an occasion to introduce our notation for the
generators.

We denote byh ∈ CH1(X) the class of a hyperplane section ofX (that is,
the pull-back of the hyperplane class with respect to the imbedding ofX into the
projective space). For anyi ≥ 0, thei-th powerhi of h taken in the ring CH∗(X)

gives us an element of CHi(X) (which is, of course, 0 ifi > n and 1= [X] if
i = 0).

For everyi = 0, . . . , n/2, a totally isotropic (i+1)-dimensional subspace of
the quadratic form determiningX gives rise to a closedi-dimensional subvariety
ofX (which is a linear subspace of the projective space containingX). Its class in
CHn−i(X) do not depend on the choice of the subspace iffi �= n/2. Fori = n/2,
there are precisely two different classes; we writel andl′ for them. Sometimes
we also writel(1) for l′ andl(0) for l.

Lemma 4.1 ([22, Theorem 13.3]).The additive groupCH∗(X) is torsion free.
For i < n/2 the groupCHi(X) is generated byhi ; for i > n/2 by hi/2; and
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for i = n/2 by two independent generatorsl andl′. The multiplicative structure
of the commutative ringCH∗(X) is described by the formulashn/2 = l + l′,
h · l = h · l′ = hn/2+1/2, and

l · l′ =
{
0 if n/2 is even,
hn/2 if n/2 is odd;

l · l = l′ · l′ =
{

hn/2 if n/2 is even,
0 if n/2 is odd

(we do not care about minimality of this list of relations). For everyi > n/2 the
elementhi/2coincides with the class of any (n− i)-dimensional linear subspace
lying onX (in particular,hn/2 is the class of a rational point).

The above calculation can be also obtained using Decomposition 1.2. Any-
way, it can be easily generalized to produce a description of the Chow group
CH∗(X × T ) in terms of CH∗(T ) for an arbitraryF -varietyT . TakingT = X
andT = X× X, one gets

Lemma 4.2. The homomorphisms

CH∗(X)⊗ CH∗(X) → CH∗(X× X), α ⊗ β �→ α × β and

CH∗(X)⊗ CH∗(X)⊗ CH∗(X) → CH∗(X× X× X), α ⊗ β ⊗ γ

�→ α × β × γ

are isomorphism of rings. In particular,CHn(X×X) is a free abelian group on
l(u) × l(v) and(hi × hn−i)/2with u, v ∈ {0,1} andi ∈ {0,1, . . . , n} \ {n/2}.

Thus we almost have described the ring End(X) of correspondences onX. It
remainsonly todescribe themultiplicativestructure.This isdoneby the following
formulas which are easily verified with use of Lemmas 1.1 and 4.1. In what
follows we writeN for the set of indexes{0,1, . . . , n} \ {n/2} appeared in
Lemma 4.2.

Lemma 4.3.(1) For any0 ≤ i, j ≤ n one has

((hj × hn−j )/2) ◦ ((hi × hn−i)/2) =
{

(hi × hn−i)/2 if i = j ,
0 otherwise.

(2) For anyu, v ∈ {0,1} and anyi ∈ N , the correspondencesl(u) × l(v) and
(hi × hn−i)/2 are orthogonal.

(3) Finally, for anyu, v, v′, w ∈ {0,1}, one has
(
l(v′) × l(w)

)
◦ (l(u) × l(v)

) =
{

l(u) × l(w) if v = v′ andn/2 is even or
if v �= v′ andn/2 is odd,

0 otherwise.

��
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Corollary 4.4. The diagonal class inCHn(X× X) equals

∑
i∈N

(hi × hn−i)/2+
{

l × l + l′ × l′ if n/2 is even,
l × l′ + l′ × l if n/2 is odd.

Proof. It follows from Lemma 4.3, that multiplication of any generator of the
additive group End(X) = CHn(X×X) by the sumwritten down does not change
the generator. Therefore the sum is the unit of the ring End(X) which is known
to be the class of the diagonal. ��

Now letX1 andX2 be two split projective quadrics of some even dimension
n (of course they are isomorphic, we just prefer to have different notation for
them). We are going to introduce notations for certain elements of the groups
Hom(Xρ, Xδ) = CHn(Xρ × Xδ) for ρ, δ ∈ {1,2}.

For the introduced above elementsh, l, andl′ of the group CH∗(Xρ) we use
from now on the notationhρ , lρ , andl′ρ . For any subsetI ⊂ N and any matrix

A =
(

a00 a01
a10 a11

)
∈ M2(Z) ,

we define a cyclecρδ(I, A) ∈ CHn(Xδ × Xρ) as follows

cρδ(I, A) :=
∑
i∈I

(
hi

ρ × hn−i
δ

)
/2+




∑
u,v∈{0,1}

auv ·
(
l(v)
ρ × l

(u)
δ

)
if n/2 is even,

∑
u,v∈{0,1}

auv ·
(
l(v)
ρ × l

(1−u)
δ

)
if n/2 is odd.

The change of definition (in the case of oddn/2 with respect to the case of
evenn/2) is justified by the following lemma, which is a simple consequence of
Lemma 4.3 and Corollary 4.4:

Lemma 4.5. For anyI, J ⊂ N , anyA, B ∈ M2(Z), and anyρ, δ, σ ∈ {1,2},
one has

cδσ (J, B) ◦ cρδ(I, A) = cρσ (J ∩ I, B · A) .

Besides, the diagonal class onXρ × Xρ equalscρρ(N,1). ��
Definition 4.6. For anyA ∈ M2(Z) we writeA� for the transposition ofA (i.e.
the turn over ofA with respect to its main diagonal) and we writeA� for its turn
over with respect to the second diagonal.

The following assertions are evident:
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Lemma 4.7. For anyI ⊂ N , anyA ∈ M2(Z), and anyρ, δ ∈ {1,2}, one has

cρδ(I, A)t =
{

cδρ

(
n− I, A�

)
if n/2 is even,

cδρ

(
n− I, A�

)
if n/2 is odd,

wherecρδ(I, A)t ∈ CHn(Xδ × Xρ) denotes the transposition of the correspon-
dencecρδ(I, A). ��
Lemma 4.8. Two correspondencesα ∈ Hom(X1, X2) andβ ∈ Hom(X2, X1)

are mutually inverse isomorphisms if and only ifα = c12(I, B)− c12(N \ I,0)

andβ = c21(I, B−1)− c21(N \ I,0) for some invertible matrixB ∈ M2(Z) and
someI ⊂ N . ��

5. Proof of the criterion for quadratic forms

In this section, we finish the proof of Criterion 0.1 (using the computation of
Sect.6).

Let X1 andX2 be two (not necessary split) projective quadrics of even di-
mensionn, given by quadratic formsφ1 andφ2 (of dimensionn+2).We assume
that the criterion is already proved for quadrics of dimension less thann (this
will be really needed only in the proof of Propositions 5.7 and 5.11).

We fix a field extensionF/F such that the quadrics(X1)F and(X2)F are
split (for instance,F can be an algebraic or a separable closure ofF ) and write
X1 for (X1)F andX2 for (X2)F . We use the notation for certain elements of
CHn(Xρ ×Xδ) (ρ, δ ∈ {1,2}) introduced in the previous section. We recall that
N := {0,1, . . . , n} \ {n/2}.

Let X be anF -variety andE/F an arbitrary field extension. As agreed in
Introduction, we say that a cycleα ∈ CH∗(XE) is defined overF and writeα/F ,
if α is in the image of the restriction homomorphism CH∗(X) → CH∗(XE). A
correspondence is said to be defined overF if it is defined overF as a cycle.

The central assertion of this section (and, in fact, of the whole quadratic form
part of the article) is

Theorem 5.1. If φ1
s∼φ2, thenc12(N, B)/F and c21(N, B−1)/F for some in-

vertible matrixB.

Definition 5.2. A subsetI ⊂ N is said to beadmissible, if c12(I, A1)/F for
someA1 ∈ M2(Z) and c21(I, A2)/F for someA2 ∈ M2(Z). A subsetI ⊂ N

is said to beweakly admissible, if c11(I, A1)/F and c22(I, A2)/F for some
A1, A2 ∈ M2(Z).

The following lemma is a consequence of the computation of the diagonal
class (Corollary 4.4, reformulated in Lemma 4.5):
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Lemma 5.3. The complementN \ I of a weakly admissible setI is weakly
admissible as well. ��
Definition 5.4. A subsetI ⊂ N is said to besymmetric, if I = n − I , where
n − I := {n − i | i ∈ I }. For anyI ⊂ N the setI ∪ (n − I ) is the smallest
symmetric set containingI ; it can be called thesymmetrizationof I .

Remark 5.5.The formulaof Lemma4.7shows that thedefinitionof admissibility
can be shortened in the case of symmetricI : it suffices only to require that
c12(I, A)/F for someA.

Proposition 5.6.(1) An admissible set is weakly admissible.
(2) The symmetrization of an admissible set is admissible.
(3) A union of admissible sets is admissible.

Proof. (1): This follows from the formulasc21(I, B) ◦ c12(I, A) = c11(I, B ·A)

andc12(I, A) ◦ c21(I, B) = c22(I, A · B) given in Lemma 4.5.
(3): Let I andJ be admissible sets. We have to show that the set of cycles

c12(I ∪ J, ∗) contains a cycle defined overF and the set of cyclesc21(I ∪ J, ∗)
contains a cycle defined overF . The statement onc12(I ∪ J, ∗) is served by the
evident formulac12(I∪J, ∗) ⊃ c12(I, ∗)+c12(J, ∗)−c12(I∩J, ∗) together with
the formulac12(I ∩ J, ∗) ⊃ c12(J, ∗) ◦ c11(I, ∗) easily deduced from Lemma
4.5. The statement onc21(I ∪ J, ∗) is proved analogously.

(2): If a setI ⊂ N is admissible, we havec12(I, A1)/F andc21(I, A2)/F

for someA1, A2 ∈ M2(Z). Applying Lemma 4.7, we getc21(n− I, A′
1)/F and

c12(n− I, A′
2)/F for ′ being either� or�. ��

Proposition 5.7. Suppose thatφ1
s∼φ2. Letr ∈ N be an index smaller thann/2.

If r is the smallest index of some weakly admissible set, thenr is contained in an
admissible set.

Corollary 5.8. If φ1
s∼φ2, then the setN is admissible.

Proof.Note that∅ is a symmetric admissible set. LetI0 beasymmetric admissible
set. It suffices to show that ifI0 �= N thenI0 is contained in a strictly bigger
symmetric admissible setI1.

By Item 1 of Proposition 5.6, the setI0 is weakly admissible. By Lemma 5.3,
it follows that the setI := N \ I0 is weakly admissible as well. Setr := min I .
SinceI is symmetric (becauseI0 was symmetric), the conditionr < n/2 is
satisfied and Proposition 5.7 provides us with an admissible setJ containing
r. By Item 3 of Proposition 5.6, the unionI0 ∪ J is an admissible set; we take
asI1 its symmetrization. The setI1 is admissible (Item 2 of Proposition 5.6),
symmetric, and containsI0 properly (I0 �= I1 becauser ∈ I1 \ I0). ��
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Proof of Proposition 5.7.Multiplying the generic point morphism

X1← SpecF (X1)

byX1×X2 (on the left), we get a flat morphism

X1×X2×X1← (X1×X2)F (X1) .

Taking the pull-back with respect to it, we obtain an epimorphism

CHn(X1×X2×X1) →→ CHn
(
(X1×X2)F (X1)

)
.

The corresponding epimorphism overF
f : CHn(X1× X2× X1) → CHn

(
(X1× X2)F(X1)

)
can be easily computed in terms of generators of the Chow group CHn(X1 ×
X2 × X1) given by Lemmas 4.1 and 4.2, because for any homogeneous cycles
α, γ ∈ CH∗(X1) andβ ∈ CH∗(X2)

f (α × β × γ ) =
{
0 if codimγ > 0,
(α × β)F(X1) if γ = [X1].

Since the quadratic forms(φ1)F (X1) and(φ2)F (X1) are isotropic, Lemma 2.2
together with the induction hypothesis, formulated in the beginning of this sec-
tion, imply that (φ1)F (X1)

m∼(φ2)F (X1). By Lemma 4.8, it follows that the cy-
cle

(
c12(I, A) − c12(N \ I,0)

)
F(X1)

∈ CHn
(
(X1 × X2)F(X1)

)
(for some matrix

A and someI ⊂ N ) is defined overF (X1). Since 2c12(N \ I,0)/F , the cy-
cle c12(N, A)F(X1) is defined overF (X1). Therefore, the set of preimages of
c12(N, A)F(X1) with respect tof contains a defined overF cycle as well. Any
cycle in this set of preimages has the form

c12(N, A)× 1+
∑

α × β × γ ,(†)
where the sum is taken over some homogeneousα, β, γ with positive codimX1γ .
In what follows we assume that (†) is a cycle defined overF .

Let I be a weakly admissible set such thatr = min I . We havec11(I, A′)/F

for someA′ ∈ M2(Z). Considering the cycle (†) as a correspondence fromX1

toX2×X1, we may take the composition(†) ◦ c11(I, A′). The result is a defined
overF cycle onX1× X2× X1 which is equal to

c12(I, B)× 1+
∑

α × β × γ ,(††)

whereB := A ·A′ and the sum is taken over some (other) homogeneousα, β, γ

such that codimγ > 0 and codimα ≥ r. Let us take the pull-back of the cycle
(††) with respect to the morphismX1 × X2 × X1 ← X1 × X2 induced by the
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diagonal ofX1. The result is a defined overF cycle onX1× X2 which is equal
to

c12(I, B)+
∑

(α · γ )× β ,(†††)
where codim(α · γ ) > r. Since(α · γ ) × β is a multiple of(hi × hn−i)/2 (if
i := codim(α · γ ) �= n/2) or a linear combination with integer coefficients of
l(u) × l(v) (if i = n/2), and since the cycleshi × hn−i are defined overF , one
sees that∑

(α · γ )× β ≡ c12(I
′, B ′) (mod cycles defined overF )

for someI ′ ⊂ N with min I ′ > r. Therefore(†††) ≡ c12(J
′, B + B ′) with

J ′ := (I ∪ I ′) \ (I ∩ I ′). It follows thatJ ′ ' r andc12(J
′, B + B ′)/F .

By the symmetry argument (or, other speaking, repeating the procedure with
X1 andX2 interchanged), we may find a setJ ′′ ' r and a matrixB ′′ such that
c21(J

′′, B ′′)/F . ThenJ := J ′ ∩ J ′′ is a required admissible set, because of the
inclusion

c12(J, ∗) ⊃ c12(J
′, ∗) ◦ c21(J

′′, ∗) ◦ c12(J
′, ∗)

and because of the similar inclusion forc21(J, ∗). ��
Definition 5.9. We say that the setN is 0-admissible, ifc12 (N,0)/F and
c21(N,0)/F . We say that the setN is 1-admissible, ifc12(N, B)/F and c21
(N, B−1)/F for some invertible matrixB.

Proposition 5.10. Suppose thatdiscφ1 = discφ2. If the setN is admissible, then
it is 0-admissible or 1-admissible.

Proof. We apply Propositions 6.1 and 6.4 (of the next section) to the following
data:

Cρδ := {1× A | A ∈ M2(Z) such thatcρδ(N, A)/F }
∪{0× A | A ∈ M2(Z) such thatcρδ(∅, A)/F } .

We claim that in the case where the discriminants discφ1 = discφ2 are trivial
the conditions of Proposition 6.1 are satisfied, while in the case of non-trivial
discriminants the conditions of Proposition 6.4 hold.

(i): Cρδ + Cρδ ⊂ Cρδ since

cρδ(∅, A)+ cρδ(∅, B) = cρδ(∅, A+ B) ,

cρδ(∅, A)+ cρδ(N, B) = cρδ(N, A+ B) ,and

cρδ(N, A)+ cρδ(N, B) = cρδ(∅, A+ B)+
∑
i∈N

hi × hn−i ,
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where the sum
∑

i∈N hi × hn−i is defined overF ; −Cρδ ⊂ Cρδ since

cρδ(I, A)+ cρδ(I,−A) =
∑
i∈I

hi × hn−i

for anyI ⊂ N (we use this only forI = ∅, N ).
(ii): Cδσ · Cρδ ⊂ Cρσ by the composition formula of Lemma 4.5.
(iii): 1 × 1 ∈ Cρρ by Lemma 4.4.
(iv): Lemma 4.7.
(v): Clearly, we may assume thatF/F is a Galois extension of degree 2r for

somer ≥ 0 (one may take asF/F a finite tower of quadratic extensions). For
anyτ ∈ Gal(F/F ), one has (see [22, Lemma 13.5])

τ(l(u)
ρ ) =

{
l(u)
ρ if τ(dρ) = dρ ,

l(1−u)
ρ if τ(dρ) = −dρ ,

wheredρ is a square root of discφρ in F .
If discφ1 = discφ2 = 1, it follows that the Galois group Gal(F/F ) acts

trivially on everyl(u)
ρ × l

(v)
δ . Thus, taking the transfer, we see that

2r ·
(
l(u)
ρ × l

(v)
δ

)
/F .

This gives the assumption (v) of Proposition 6.1.
If the discriminants are non-trivial, then the transfer argument shows that

2r−1 · (lρ × lδ + l′ρ × l′δ
)

/F and 2r−1 · (lρ × l′δ + lρ × l′δ
)

/F

(this is one part of the assumption (v) of Proposition 6.4). On the other hand, if

a cyclecρδ

(
I,

a00 a01
a10 a11

)
is defined overF , then it is stable under the action of

Gal(F/F ). In particular, it is stable under theactionof anelementτ ∈ Gal(F/F )

such thatτ(d1) = −d1, whered1 is a square root of discφ1 in F (suchτ exists
becaused1 �∈ F ). This implies the desired conditionsa00 = a11 anda01 = a10
and finishes checking of (iv) for Proposition 6.4.

(vi): cρδ

(
∅,

(
1 1
1 1

))
= hn/2× hn/2 and(hn/2× hn/2)/F .

We have checked that the conditions (i)–(vi) are satisfied. If the setN is
admissible, then the projectionC12 → Z/2 is non-zero by the very definition
of the admissibility (Definition 5.2). Thus Propositions 6.1 and 6.4 serve the
assertion under proof. ��

Proposition 5.11. Suppose thatφ1
s∼φ2. If the setN is 0-admissible, then it is

also 1-admissible.
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Proof. Let us repeat the proof of Proposition 5.7, making some changes or more
precise.

First of all, the matrixA in (†) can be chosen the way that it is invertible and
c21(N, A−1)F(X1)/F (X1). Further, let us note that sinceN is 0-admissible, the
cycle

c11(∅,1) = c11(N,1)− c21(N,0) ◦ c12(N,0)

is defined overF . Then the composition(†) ◦ c11(∅,1) is a defined overF cycle
onX1× X2× X1 which is equal to

c12(∅, A)× 1+
∑

α × β × γ ,(††)
where codimγ > 0 and codimα = n/2. The pull-back of (††) with respect to the
morphismX1×X2×X1← X1×X2 induced by the diagonal ofX1 is a defined
overF cycle onX1× X2 which is equal to

c12(∅, A)+
∑

(α · γ )× β ,(†††)
where codim(α · γ ) > n/2. Composing withc11(∅,1) once again, we get

(†††) ◦ c11(∅,1) = c12(∅, A) .

Consequently the cyclec12(N, A) = c12(N,0) + c12(∅, A) is defined overF .
Similarly, c21(N, A−1)/F . ThusN is 1-admissible. ��
Proof of Theorem5.1.Weassume thatφ1

s∼φ2. By Lemma2.6we have discφ1 =
discφ2 in this case. The setN is admissible by Corollary 5.8. Therefore, by
Proposition 5.10, it is 0-admissible or 1-admissible. Finally, Proposition 5.11
says thatN should be 1-admissible what is already the desired assertion.��
Proof of Criterion 0.1. If φ1

m∼φ2, thenφ1
s∼φ2 by Corolary 2.5.

Now assume thatφ1
s∼φ2. By Theorem 5.1 the correspondencesc12(N, B)

andc21(N, B−1) (for some invertible matrixB) are defined overF . By Lemma
4.8, they are mutually inverse isomorphisms ofX1 andX2. Therefore, by Corol-
lary 3.2, there is a motivic isomorphism betweenX1 andX2, i.e.φ1

m∼φ2. ��

6. Some matrix computations

In this section,weworkwith the ring(Z/2)×M2(Z).Ouraimhere isPropositions
6.1 and 6.4, which are used in the proof of Proposition 5.10.

Let A be a matrix inM2(Z). Recall that we agreed upon to writeA� for
the usual transposition ofA andA� for the transposition with respect to the
second diagonal. Besides, we shall writeA| for the interchanging of the columns
of A andA— for the interchanging of the rows. For an elementx of the ring
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(Z/2) ×M2(Z), we writex�, x�, x |, andx— for the element with the matrix
component changed in the given way and with the unchanged (Z/2)-component.

The unit and the zero ofM2(Z) are denoted simply by 1 and 0. We write
a×A for the element of(Z/2)×M2(Z) having the (Z/2)-componenta and the
matrix componentA.

Proposition 6.1. LetC11,C12,C21, andC22 be some subsets of the ring(Z/2)×
M2(Z). Assume that for anyρ, δ, σ ∈ {1,2}, one has
(i) the setCρδ is an additive subgroup of the ring(Z/2)×M2(Z);
(ii) Cδσ · Cρδ ⊂ Cρσ ;
(iii) Cρρ ' 1× 1 (thus,C11 andC22 are subrings with unit);

(iv) C
�
ρδ ⊂ Cδρ or C

�
ρδ ⊂ Cδρ ;

(v) 0× (2r ·M2(Z)) ⊂ Cρδ for some positive integerr;

(vi) 0×
(
1 1
1 1

)
∈ Cρδ.

If the projectionC12→ Z/2 is non-zero (that is, if1×A ∈ C12 for some matrix
A ∈ M2(Z)), then at least one of the following two conditions holds:

– there exists an invertiblematrixB such that1×B ∈ C12; and1×B−1 ∈ C21;
– C12 andC21 contain the element1× 0.

We prove Proposition 6.1 after two following preliminary lemmas:

Lemma 6.2.Weassume(i)–(iv) and(vi) (the assumption(v) is not needed here).
For anyρ, δ ∈ {1,2}, the following inclusions hold:

C
�
ρδ ⊂ Cδρ, C

�
ρδ ⊂ Cδρ,

C
|
ρδ ⊂ Cρδ, C—ρδ ⊂ Cρδ .

Proof. Let us fix some arbitraryρ andδ. Since 1× 1 and 0×
(
1 1
1 1

)
are in

Cρρ (by (iii) and (vi)), the difference

0×
(
1 1
1 1

)
− 1× 1= 1×

(
0 1
1 0

)
= 1× 1|

is also there. Since(a × A) · (1× 1|) = a × A| for anya × A ∈ Z/2×M2(Z)

andCρδ · Cρρ ⊂ Cρδ (this inclusion holds by (ii)), it follows thatC
|
ρδ ⊂ Cρδ.

The inclusionC—ρδ ⊂ Cρδ is proved in the similar way by using the formula

(1× 1—) · (a × A) = a × A—

and the inclusion 1× 1— ∈ Cδδ (to avoid misunderstanding let us note that
1— = 1|).
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One of the two remaining inclusions holds by the assumption (iv). Using
the equalityA� = ((A|)�)| or the equalityA� = ((A|)�)| (which is true for
any matrixA) as well as the already proved inclusion for|, we obtain the last
inclusion remained. ��
Lemma 6.3. Let us assume(i)–(iv) (the assumptions(v) and(vi) are not needed
here). If1× B ∈ C12 for an invertible matrixB, then1× B−1 ∈ C21.

Proof. (Comparewith [19, Proof of Corollary 10].) By (iv) we have 1×B ′ ∈ C21

for eitherB ′ := B� orB ′ := B�. Thusx := 1×B ′ ·B ∈ C11 and it suffices to
show thatx−1 ∈ C11 as well.

Letf (t) be the characteristic polynomial of thematrixB ′ ·B.We havef (t) ∈
Z[t] and the free coefficient off (t) is det(B ′ ·B) = 1. The elementx is a zero of
the polynomial(t − 1) · f (t) ∈ Z[t]. We have(t − 1) · f (t) = t3+ at2+ bt − 1
with a, b ∈ Z. Thereforex−1 = x2+ ax + b ∈ C11. ��
Proof of Proposition 6.1.(Compare with [24, case D in the proof of Lemma
3.24].) LetA be amatrix such that 1×A ∈ C12.WewriteA mod 2 for the image
of A in M2(Z/2). There are five possibilities:

0.A mod 2= 0;
1.A mod 2 has precisely one non-zero entry;
2.A mod 2 has precisely two non-zero entries;
3.A mod 2 has precisely three non-zero entries;
4.A mod 2 has no zero entries.

We consider them one by one.

4. Since 0×
(
1 1
1 1

)
∈ C12 by (vi), we may reduce the case 4 to the case 0.

3. The same argument reduces the case 3 to the case 1.
0. For any positive integerr, we have 1× (A · (A� · A)r) ∈ C12 by Lemma

6.2 and by the assumption (ii).All entries of thematrixA ·(A� ·A)r are divisible
by 2r (more precisely, they are divisible by 22r+1). Takingr as in (v), we prove
that 1× 0 ∈ C12. Then we also have 1× 0= 1× 0� ∈ C21.

1. By Lemma 6.2, we may assume thatA mod 2=
(
1 0
0 0

)
. Since(A�)|

mod 2=
(
0 1
0 0

)
, the product(A�)| ·A is zeromodulo 2.Therefore(A(A�)|A)

is zero modulo 2 as well. Since 1× (A · (A�)| · A) ∈ C12, we come to the case
0.

2. Suppose that the two non-zero entries ofA mod 2 are in the same column.
ThenA� · A mod 2= 0 and we come to the case 0.

In the case where the two non-zero entries ofA lie in the same row, we have
A · A�mod 2= 0.
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Thus, we may assume that the two non-zero entries ofA mod 2 are nei-
ther in the same column, nor in the same row. Then eitherA mod 2= 1 or
A mod 2= 1|. ReplacingA byA| in the second case, we come to the situation
with A mod 2= 1 anyway.

In the rest of the proof we assume thatA mod 2= 1. Denote the entries of

A as follows:A =
(

a b

c d

)
.

The sum of the integersa + d − b − c anda + b − c − d is 2(a − c) and
a− c is odd. Therefore eithera+ d − b− c or a+ b− c− d is not divisible by
4. We consider these two cases separately.

1) First assume that the integera + d − b − c is not divisible by 4. Since

0×
(
2r 0
0 0

)
∈ C12 (by (v)), we may assume thata + d − b − c = 2.

The determinant of the matrixB := A + x ·
(
1 1
1 1

)
, wherex := (1 −

detA)/2 ∈ Z, equals detA + (a + d − b − c) · x = detA + 2x = 1, and
1× B ∈ C12. Therefore we are done by Lemma 6.3.

2) Now assume thata + b − c − d is not divisible by 4. As in the previous
case, we may then assume thata + b − c − d = 2.

The determinant of the matrixB := A+x ·
(
1 −1
1 −1

)
, wherex := (detA−

1)/2 ∈ Z, equals detA − (a + b − c − d) · x = detA − 2x = 1. Therefore it

suffices to show that 0×
(
1 −1
1 −1

)
∈ C12.

We have

(a+c−b−d)·0×
(
1 0
1 0

)
= 1×A+1×A—−(b+d)

(
0×

(
1 1
1 1

))
∈ C12 .

Since the sum(a + b − c − d)+ (a + c − b − d) = 2(a − d) is divisible by 4
(becausea andd are odd), the integera+ c− b− d is not divisible by 4. Taking

(v) in account, we see that 0×
(
2 0
2 0

)
∈ C12. Therefore

0×
(
1 −1
1 −1

)
= 0×

(
2 0
2 0

)
− 0×

(
1 1
1 1

)
∈ C12 ,

and the proposition is proven. ��
Proposition 6.4. Let usmodify the assumption(v) of Proposition 6.1 as follows:

(v) 0 × 2r ∈ Cρδ for some positive integerr and the image of the projection
Cρδ → M2(Z) is contained in the additive subgroup ofM2(Z) generated by
1 and1|.
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Assume(i)–(vi). If the projectionC12→ Z/2 is non-zero (that is, if1×A ∈ C12

for some matrixA ∈ M2(Z)), then at least one of the following two conditions
holds:

– C12 andC21 contain the element1× 1;
– C12 andC21 contain the element1× 0.

Proof. (Compare with [24, case B in the proof of Lemma 3.24].) LetA be a
matrix such that 1× A ∈ C12. By (v),A = a + b| for somea, b ∈ Z. We have

1× (a − b) = 1× A− b

(
0×

(
1 1
1 1

))
∈ C12 ,

what means, we may assumeb to be zero.
Suppose thata is odd. Multiplying by 2, we have 0× (2a) ∈ C12. Since (by

(v)) 0× 2r ∈ C12 for somer, it follows that 0× 2 ∈ C12. Therefore

1× 1= 1× a − ((a − 1)/2)(0× 2) ∈ C12

and the proof is finished in the case of odda.
Now suppose thata is even. Since 1× a2 = (1 × a�) · (1 × a) ∈ C11

and 0× 2 = 2 · (1 × 1) ∈ C11, it follows that 1× 0 ∈ C11. Consequently
1× 0= (1× a) · (1× 0) ∈ C12 and 1× 0= 1× 0� ∈ C21. ��

7. Criterion for central simple algebras

In this section,F is an arbitrary field (any characteristic, even 2, is allowed).We
say that two central simpleF -algebras areopposite, if one of them is isomorphic
to the opposite algebra of the other (see e.g. [14,§1 of Chapter I] for the definition
of the opposite algebra).

Criterion 7.1. Two central simple algebras are m-equivalent if and only if they
are isomorphic or opposite.

We start with terminology and notation of this section: for a central simple
F -algebraA, XA is its Severi-Brauer variety andXA := (XA)F , whereF is a
fixed separable closure ofF (F may be almost always replaced by an arbitrary
field extension ofF , splitting all the algebras under consideration).

We recall the definition of the Severi-Brauer varietyXA (compare to [11,
Definition 10.3]): for any commutativeF -algebraR, the set ofR-pointsXA(R)

is defined as the set of the right idealsI of theR-algebraAR := A ⊗F R such
that I , as anR-module, is a direct summand ofAR of the constant rank degA
(thedegreedegA of A is defined as degA := √dimF A).

We say that two central simpleF -algebrasA1 andA2 arem-equivalent(and
writeA1

m∼A2), if XA1 andXA2 are isomorphic asobjects ofCV0(F ) (the category
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CV0(F ) is defined in Sect.1). Note that the varietiesXA1 andXA2 are isomorphic
iff the algebrasA1 andA2 are so.

We say thatA1 andA2 ares-equivalent(and writeA1
s∼A2), if degA1 =

degA2 and ind(A1)E = ind(A2)E for any field extensionE/F (where indA :=
degD with D a division algebra Brauer-equivalent toA).

Remark 7.2.The notion of the Schur index indA of a central simple algebra
A is not really analogous to the notion of Witt index of a quadratic form. The
right notion would be ind′A := degA/indA, because presicely ind′A, not indA,
measures how muchA is split. Defining the s-equivalence with the help of ind′,
one may avoid the condition on the degrees:A1

s∼A2 iff ind ′(A1)E = ind′(A2)E

for anyE/F (compare with the definition of s-equivalent quadratic forms).

Let A be a central simple algebra andi an integer; we writeAi for the
(determined up to an isomorphism) central simpleF -algebra such that degAi =
degA and[Ai] = i · [A] ∈ Br(F ). In particular,A−1 is the opposite algebra of
A. Note thatA⊗i is isomorphic to a matrix algebra overAi , namely (comparing
the degrees)A⊗i � M(degA)i−1(Ai).

For an arbitrary Severi-Brauer varietyXA/F , we writeh ∈ CH1(XA) for
the class of a hyperplane (note thatXA is isomorphic to the projective space of
dimension degA− 1 iff A is split).

One of the implications of Criterion 7.1. is given by the following

Proposition 7.3. For any central simple algebrasA, one hasA
m∼A−1.

Proof. We are going to use the following simple assertion (for its last part see
e.g. [12, Lemma I.3]):

Claim 7.4. For any two central simpleF -algebrasA1andA2, the tensor product
of the ideals gives rise to a closed imbeddingXA1 ×XA2 ↪→ XA1⊗A2. If A1 and
A2 are split, this is the Segre imbedding of the product of the projective spaces
into the projective space. In particular, the pull-back ofh ∈ CH1(XA1⊗A2) equals
1× h+ h× 1 ∈ CH1(XA1 × XA2). ��
Claim 7.5. The cycle1× h+ h× 1 ∈ CH1(XA × XA−1) is defined overF .

Proof. (Also see Remark 7.17.) Since the tensor productA ⊗ A−1 is a split
algebra, the cycleh ∈ CH1(XA⊗A−1) is defined overF . To finish, we apply
Claim 7.4.. ��
Claim 7.6. Assume that we are given a positive integern and a subringS of
the integral polynomial ring in two variablesZ[x, y] such thatS containsx +
y as well as

(
n+ 1

i

)
· xi for all i = 0, . . . , n. ThenS contains the element∑n

i=0(−1)i · (xiyn−i).
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Proof. The assertion is served by the formula

n∑
i=0

(−1)ixiyn−i =
n∑

i=0
(−1)i

(
n+ 1

i

)
xi(x + y)n−i .

Since this formula is homogeneous, it suffices to prove it after the substitution
x = 1. One has

n∑
i=0

(−1)iyn−i = (−1)n + yn+1

1+ y

= (−1)n + (−1+ (1+ y))n+1

1+ y

=
n∑

i=0
(−1)i

(
n+ 1

i

)
(1+ y)n−i .

��
Claim 7.7. Setn := dimXA (= degA− 1). The cycle

(
n+ 1

i

)
· hi ∈ CHi(XA)

is defined overF for anyi = 0,1, . . . , n.

Proof.We explain two different proofs. The first one is based on the observation

that the binomial coefficient
(

n+ 1
i

)
is divisible by the integer

(n+ 1)/(i, n+ 1)

for anyi, where(i, n+1) stays for the greatest common divisor ofi andn+1.A
transfer argument shows (see [8, Lemma3]), that the cycle

(
(n+1)/(i, n+1)

)·hi

is defined overF .
The other way of proving uses Chern classes. The total Chern class (see [10,

Definition 2.11])

ct : K0(XA) →
( ∞∑

i=0
CHi(XA) · t i

)×
,

whereK0(XA) is theGrothendieckgroupandt is a formal variable, isdefinedover
F and is a group homomorphism. For the class[T ] ∈ K0(XA) of the tautological
vector bundleT on the projective spaceXA, one hasct (T ) = 1− h · t (by the
very definition ofct ). Since the element(degA) · [T ] = (n+ 1) · [T ] is defined
overF (it coincides with the image under the restrictionK0(XA) → K0(XA) of
the class inK0(XA) of the tautological vector bundle onXA, see [17, Sect. 8.4])

andct ((n+1)[T ]) = ct ([T ])n+1 =∑n+1
i=0 (−1)i

(
n+ 1

i

)
·hi · t i , we are done.��
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Claim 7.8. Setn := dimXA (= degA−1). The cycle
∑n

i=0(−1)i(hi×hn−i) ∈
CHn(XA × XA−1) is defined overF .

Proof. Consider the homomorphism of rings

f : Z[x, y] → CH∗(XA × XA−1) , x �→ h× 1 , y �→ 1× h .

LetS be the set of those elements ofZ[x, y]whose image underf is defined over

F . ThenS is a subring, containsx + y (Claim 7.5.), and contains
(

n+ 1
i

)
· xi

for all i (Claim 7.7.). Therefore, according to Claim 7.6.,S also contains the
sum

∑n
i=0(−1)i · (xiyn−i). The image underf of this sum is the desired cycle∑n

i=0(−1)i(hi × hn−i). ��
Since the composition of the correspondence

∑n
i=0(−1)i · (hi × hn−i) (from

Claim7.8.) with its transposition (in any order) gives
∑n

i=0 hi×hn−i , which is the
class of the diagonal, this correspondence determines an isomorphism between
XA andXA−1.

The nilpotence theorem (i.e., the theorem analogous to Theorem 3.1) for
the Severi-Brauer varieties is proved in [9, Proposition 2.2.3] (it can be also
proved using the method of proving of Theorem 3.1). Thus we have the analog
of Corollary 3.2 for the Severi-Brauer varieties, what finishes the proof of the
proposition. ��
Remark 7.9.It is remarkable to look at the isomorphisms between the Chow
groups CHi(XA) = Z (with the canonical generatorhi) and CHi(XA−1) = Z

(with the canonical generatorhi), induced by the constructed motivic isomor-
phismofXA andXA−1: they are “identical” for eveni and they are “mulitplication
by−1” for odd i (compare with Proposition 7.10).

The inverse implication of Criterion 7.1. is contained in the following

Proposition 7.10. If central simpleF -algebrasA1 andA2 are m-equivalent,
thenA1 � A2 or A1 � A−1

2 . If there exists a motivic isomorphismXA1 → XA2

inducing “identical” isomorphismCH∗(XA1) → CH∗(XA2), thenA1 � A2.

We give the proof after several simple lemmas, which are, to our mind, of
independent interest. The following one is parallel to Corollary 2.5.

Lemma 7.11. If A1
m∼A2, thenA1

s∼A2.

Proof. We assume thatA1
m∼A2. Since dimXAρ

= degAρ − 1 (for ρ = 1,2), it
follows that degA1 = degA2 (the proof is the same as for Lemma 2.1).

Since the homomorphism resF/F : CH0(XAρ
) → CH0(XAρ

) = Z is given by
taking the degrees of 0-cycles, the cokernel of resF/F has the order indAρ (to see
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it at once, note that indAρ is equal to theminimal degree of a field extensionE/F

such that[Aρ]E = 0 ∈ Br(E) and that the variety(XAρ
)E has a rational point

over an extensionE/F iff [Aρ]E = 0). Therefore, indA1 = indA2 (compare to
the proof of Lemma 2.3).

Finally, since m-equivalent algebras remain m-equivalent over any extension
of scalars, we conclude thatA1

s∼A2. ��
Remark 7.12(Compare to Remark 2.4). There is a complete description of
the group CH0(XA) (see [16], where the kernel of the degree homomorphism
CH0(XA) → Z is shown to be zero). However this information is superfluous in
the proof of Lemma 7.11.

Lemma 7.13. Assume thatdegA1 = degA2. The relationA1
s∼A2 holds if and

only if the classes ofA1 andA2 generate the same subgroup in the Brauer group
of F .

Proof. If A1
s∼A2, then, in particular,A2 splits over the function field ofXA1.

The index reduction formula for Severi-Brauer varieties [21, Theorem 1.3] (or
actually a simpler and earlier result of Amitsur [2, Theorem 9.3] describing the
kernel of Br(F ) → Br(F (XA1))) shows that[A2] is in the subgroup of Br(F )

generated by[A1]. The rest of the proof is evident. ��
Lemma 7.14. Assume thatA1

m∼A2. Among the2n+1 cycles

n∑
i=0
±(hi × hn−i) ∈ CHn(XA1 × XA2) ,

there is a cycle defined overF . Moreover, if there exists a motivic isomorphism
of XA1 andXA2 inducing “identical” isomorphismCH

∗(XA1) → CH∗(XA2),
then the cycle

∑n
i=0 hi × hn−i is defined overF .

Proof. Any motivic isomorphism betweenXA1 andXA2 is given by a correspon-
dence of the kind

∑n
i=0±(hi × hn−i) (compare with Lemma 4.8). Since there

is a motivic isomorphism betweenXA1 andXA2 (overF ), we are done with the
first assertion.

For the second assertion, it suffices to note, that if a motivic isomorphism
of XA1 ontoXA2 induces “identical” isomorphism on the Chow group, then it is
equal to the correspondence

∑n
i=0 hi × hn−i . ��

Lemma 7.15. For an arbitrary central simpleF -algebraD of degreen+1, and
for any integers > 0, the cycle

∑n
i=0 hi ×hn−i ∈ CHn(XMs(D)×XD) is defined

overF .
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Proof. For any commutativeF -algebraR, the standard imbedding ofMs−1(DR)

intoMs(DR) (by adding 0 entries in thes-th rows and in thes-th column) gives
a map of the sets of idealsXMs−1(D)(R) → XMs(D)(R) (by taking the gen-
erated right ideal). This determines a closed imbeddingXMs−1(D) ↪→ XMs(D).
Since the codimension ofXMs−1(D) in XMs(D) is n + 1 > n, the pull-back
CHn(XMs(D) × XD) → CHn

(
(XMs(D) \ XMs−1(D)) × XD

)
to the open subva-

riety is an isomorphism. In its turn, the differenceXMs(D) \XMs−1(D) is a vector
bundleoverXD (see [11,Theorem10.9]).Therefore, thepull-backwith respect to
themorphism(XMs(D) \XMs−1(D))×XD ← XD×XD, given by the zero-section
of the vector bundle, is an isomorphism CHn

(
(XMs(D) \ XMs−1(D)) × XD

) →
CHn(XD ×XD).

Let us now extend the scalars up toF . Since the image in CHn(XD × XD)

of the sum
∑n

i=0 hi × hn−i ∈ CHn(XMs(D)×XD) is given by the same sum (and
therefore coincides with the diagonal class), it is defined overF . ��
Remark 7.16.In [9, Corollary 1.3.2] a motivic decomposition

XMs(D) �
s−1⊕
i=0

XD(i · (n+ 1))

(in the categoryCV(F ) constructed inSect.1) is established (which is a particular
case of the motivic decompositions of the isotropic flag varieties obtained in
[11]). Lemma 7.15 gives a way to refine this result by the additional information
that the induced overF isomorphisms of the Chow groups are “identical” (i.e.,
“multiplication by−1” does not occur).

Proof of Proposition 7.10.(See also Remark 7.17.) We assume thatA1
m∼A2.

Lemmas 7.11 and 7.13 imply thatA2 � A−r
1 for some integerr. Since[A1]

(as well as all other elements of Br(F )) is of finite order, we may assume that
r is positive. To prove the first assertion of the proposition, it suffices to show
that expA1 (this is the order of[A1] in Br(F )) dividesr + 1 or r − 1; for the
second assertion we have to show that expA1 dividesr + 1 under the additional
assumption of the second assertion.

We setA := A1 andB := A−1. We haveBr m∼A. Taking the composition
of a defined overF correspondenceXBr → XA from Lemma 7.14 and the
correspondenceXA → XB from Claim 7.5., we see that at least one of two
cycles 1× h ± h × 1 ∈ CH1(XBr × XB) is defined overF . Let ε ∈ {0,1} be
such that

(
1× h+ (−1)ε(h× 1)

)
/F .

We haveB⊗r � M(degB)r−1(Br). Considering the composition of the defined
overF correspondenceXB⊗r → XBr of Lemma 7.15 with the correspondence
1× h+ (−1)ε(h× 1) ∈ CH1(XBr × XB), we conclude that the cycle 1× h+
(−1)ε(h× 1) ∈ CH1(XB⊗r × XB) is defined overF .
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Taking the pull-back of the cycle 1× h+ (−1)ε(h× 1) ∈ CH1(XB⊗r ×XB)

with respect to the composition of morphisms

XB −−−→ X
×(r+1)
B = X×r

B × XB

segre×id−−−−−→ XB⊗r × XB ,

where the first one is the (r+1)-diagonal while segre: X×r
B → XB⊗r is ther-fold

Segre imbedding (see Claim 7.4.), we get a defined overF cycle(r + (−1)ε) ·
h ∈ CH1(XB). Therefore the order of Coker

(
CH1(XB) → CH1(XB)

)
divides

r + (−1)ε. On the other hand, by the classical computation of the Piccard group
for the Severi-Brauer varieties ([1, Sect. 2]), the order of this cokernel is equal
to expB. This proves the first assertion of the proposition.

For the second assertion it suffices to note that if a motivic isomorphism
betweenXBr andXB gives the “identity” on the Chow groups overF , then over
F this isomorphism is given by the correspondence

∑n
i=0 hi × hn−i . Thus this

correspondence is defined overF , and one may chooseε = 1. ��
Remark 7.17.The following shorter proof of Proposition 7.10 is suggested byA.
S. Merkurjev. For any central simpleF -algebrasA1 andA2, the exact sequence

CH1(XA1 ×XA2)
resF/F−−−→ CH1(XA1 × XA2)

h×1�→[A1]−−−−−→
1×h�→[A2]

Br(F )

(compare to [20, Lemme 6.3 (i)] and [1, Sect. 2.1]) proves that the cycle

1× h+ (−1)ε(h× 1) ∈ CH1(XA1 × XA2)

is defined overF if and only if [A1] = (−1)1−ε[A2] (this also gives another
proof for Claim 7.5.). In particular, the cycle 1×h−h×1 ∈ CH1(XA1×XA1) is
defined overF . Having amotivic isomorphismofXA1 andXA2 we thereforemay
conclude (using Lemma 7.14) that at least one of the two cycles 1×h±h×1 ∈
CH1(XA1 ×XA2) is defined overF as well (if the motivic isomorphism induces
“identity” on the Chow groups, then the cycle with theminus sign is defined over
F ); thus[A1] = ±[A2] (in the latter case[A1] = [A2]).

Proof of Criterion 7.1. One of the implications of the criterion is Proposition
7.3; the inverse implication is contained in Proposition 7.10. ��
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