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Abstract. We give a short, elementary, and characteristic independent proof of the criterion for

motivic isomorphism of two projective quadrics discovered by A. Vishik [24]. We also give a
criterion for motivic isomorphism of two Severi-Brauer varieties.

0. Introduction

We consider non-degenerate quadratic forms over fields of characteristic not 2.
Let ¢; and ¢, be two quadratic forms over a fieldl. We call themsplitting-

equivalenin the sense of A. Vishikg-equivalentor short) and writep, N o, if

they are of the same dimension and for any field extenBiaF the Witt indexes

of the E-forms (¢1) and (¢2) coincide (the condition dim; = dime, is
really needed only in the case of two completely split forms and is superfluousin
other cases). Following [5], we ca#h and¢, motivic-equivalen{m-equivalent

for short) and writep; mqsz, if the motives of the projective quadrics,, and
X4y, given by¢, andg,, are isomorphic (note thaf,, andX,, are isomorphic
as algebraic varieties iff the quadratic forsandg, aresimilar, i.e.¢y >~ a-¢»
for some non-zera € F).

Our category of motives is simply the classical category of correspondences
(see Section 1), or, more precisely, the categh#) of Chow-correspondences
of degree 0. The motive of an algebraic variety is then simply the variety itself
considered as an object of this category.

Here is the criterion of motivic equivalence for quadratic forms we are mean-
ing (compare [24, Statement 1.4.1]):

Criterion 0.1 (A. Vishik). Two quadratic forms are m-equivalent if and only if
they are s-equivalent.

The proof is given in the end of Sect.5.
It may be remarked that there is another standard classical motivic category
— the category of Grothendieck Chow-motives (see, for instance, [3, Example
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16.1.12]). This category contaif®”® as a full subcategory, is slightly bigger
thenC)1?°, and is obtained frondV° by applying a very formal procedure (the
procedure of pseudo-abelian completion). Of course one may refidtey
this category in the definition of m-equivalence.

Inthe original proof of the criterion, givenin[24], the characteristic of the base
field is assumed to be 0 and the category of correspondénes replaced by
the triangulated category of motivic complexes of Voevodsky §251] (denoted
asDM in the literature) using the theorem that in the characteristic O case
the categon)? is a full subcategory of th@ M/ ([25, Theorem 3.2.6 and
Corollary 4.2.6]). This replacement is needed because the proof makes use of
the motives of the standard simplicial schemes (associated to the varieties of
totally isotropic subspaces of the quadratic forms) which do not li@th(they
also do not live in the Grothendieck category of Chow-motives and even not in
Voevodsky'’s triangulated category of geometrical motimﬂgf,;’ c DM’ ).

In our proof we stay all the time in the category of Chow-correspondences
and, what is probably important to mention, we do not pay for this by making the
proof more complicated or less conceptual. In some sense our proof is almost a
word by word translation of Vishik’s proof to a more elementary language. Only
“almost”, because there are some further simplifications, e.g., we work only with
quadrics and do not work with other varieties of isotropic subspaces afd
¢». And only “in some sense” because we do not really do equivalent things.

Some more remarks about Criterion 0.1 should be made. The s-equivalence
is a very natural equivalence relation for quadratic forms. However it was not
satisfactory (if at all) considered previously (a systematic investigation is started
recently in [5]).

Since m-equivalent forms should have the same dimension and Witt index
and remain m-equivalent over any extension of scalars (because an extension of
scalars is a functor on motives), m-equivalence easily implies s-equivalence (see
Corollary 2.5). Thus, the essential part of the criterion is the inverse implication.

In the case where the dimension of the quadratic forms is odd, this part
was recently depreciated by O. Izhboldin. Using the framework of quadratic
forms exclusively, he showed that two s-equivalent odd-dimensional quadratic
forms are similar (and thus their quadrics are isomorphic already as algebraic
varieties !). By this reason, we removed the case of odd-dimensional forms
from our consideration, being in fact very sad about this, because the proof
for the odd dimensions is much more elegant than for even ones. In the case
where dimension (of the quadratic form and therefore of the quadric) is even,
one has to “struggle” with the algebraic cycles on the quadric having the middle
codimension. The difficulties do not seem to be really important, but they require
rather long additional computations (made in Sect.6). In fact all considerations
which are specific for the even-dimensional case are easily recognized in the
text; what would be left without them is the proof for the odd case.
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We refer to [554] and [6] for examples of s-equivalent non-similar quadratic
forms of even dimension (in [6], such examples are constructed for every even
dimension starting from 8 and except 12; as shown in [5, Proposition 3.1], s-
equivalent forms of any dimension up to 7 are similar). Note that since any
two non-similar quadratic forms determine non-isomorphic (as algebraic vari-
eties) projective quadrics, every example of this kind gives two non-isomorphic
quadrics with isomorphic motives. In the final section, we show that this situation
also occurs to the Severi-Brauer varieties. Namely, Criterion 7.1. states that the
motives of two Severi-Brauer varieties are isomorphic if and only if the varieties
are isomorphic or opposite (the latter condition means that one of the varieties
is given by the algebra opposite to the algebra giving the other variety; note that
the varieties are not isomorphic in this case, iff the algebras are of an exponent
bigger than 2). Let us discuss some starting points of Criterion 7.1.

It is a straight-forward idea to try to extend Vishik’s criterion to a wider class
of projective homogeneous varieties. However it is already not always straight-
forward, how to define the s-type equivalence for a given type of such varieties
(and it is also not straight-forward how to prove, because the proof in the case
of quadrics uses many quadrics specific things). In the case of Severi-Brauer
varieties, it seems at least to be clear how to start: let us say that two finite-
dimensional central simpl&-algebrasA; and A, are s-equivalent (and write

AL~ Ay), if the algebras have the same dimension dvésee Remark 7.2) and
forany field extensiol / F the E-algebragA;)  and(A») g have the same Schur
index. Substituting foE the function fields of the Severi-Brauer varieti€g,
andX,, of A; andAjy, and using an old theorem of Amitsur, one translates the

condition A, N A, for two algebras of the same dimension as follows (Lemma
7.13):A1 andA, generate the same subgroup in the Brauer group tiffollows

thatin the case wheug; N Ay, the direct produck 4, x X 4, iS a projective space
bundle overX 4, as well as oveX 4,. This produces a motivic isomorphism of
X4, x Pi-andX 4, x PI~1, wherei is the Schur index ofi; andA,, andP'~is

the ¢ — 1)-dimensional projective space. This is already a rather strong relation
between the motives of 4, and X 4, (for example, one concludes immediately
thatH* (X 4,) ~ H*(X 4,) foranygeometric conomology theofy* (see [11§2]

for the definition) such that the group* (X 4,) is finitely generated). However

the conditionA; N A, turns out to be non-sufficient for m-equivalencedafand
Ay (that is for motivic isomorphism ok 4, and X 4,): as Criterion 7.1. states,
Alm A ifand only if [A;] = £[A5] in the Brauer group of'.

Terminology and notation concerning algebraic varieties, cycles, and cor-
respondences are introduced in Sect. 1. We only emphasize here the following
agreement. LeX be anF-variety andE/F a field extension. We say that a
cyclea € CH*(Xg) is defined ove and writex/ F if « is in the image of the
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restriction homomorphism reg- : CH*(X) — CH*(Xg). A correspondence is
said to be defined over if it is defined overF as a cycle.

AcknowledgementsThe author thanks Oleg Izhboldin for numerous fruitful discussions. Hospi-
tality and support of the Universitde Franche-Corata Besanon are gratefully acknowledged.
This work is accomplished in the Sonderforschungsbereich 478 of thealigsE Wilhelms-
Universitit Munster.

I have an impression, that everything in the “Integral Motives of
Quadrics”, except Sect. 6, can be rewritten in pure Chow-motivic terms,
using Rost’s Nilpotence Theorem instead of Lemma 3.10. | just find
my language as more convenient to think in. | never bothered by the
chark) = 0 assumption: it is completely clear, that in all other charac-
teristics (but 2) everything is the same.

(A. Vishik. A letter to the author.)

1. Category of correspondences

The definition of the category of degree 0 Chow-corresponde@v8¢F) is
classical. We recall it briefly in order to fix necessary notation. However we
do not have a reference for the categ6iy(F) (which we call thecategory
of Chow-correspondencemd which might be called theategory of Chow-
correspondences with twistalso introduced in this section. The construction of
CV(F) is a very natural and simple variation of known ones.

We writeV (F) for the category of smooth complete not necessarily connected
F-varieties (we also includé in V). For anyX € V(F) we write CH (X) for
the Chow ring of algebraic cycles dnhmodulo rational equivalence, graded by
codimension of cycles (sometimes we also write,C¥) for the gradation by the
dimension of cycles). Abusing terminology, we sometimes refer to the elements
of CH*(X) as tocycles(and not as t@lasses of cyclgs

A correspondencéom X to X,, whereX1, X, € V(F), is by definition a
cyclein CH (X x X5) (a correspondence “oXi” is a correspondence froixi to
itself). For two correspondences, € Hom(X3, X2) andcoz € Hom(X,, X3),
the compositiorneys o ¢12 is defined by the classical formula (compare to [3,
Definition 16.1.1]k230012 = (prlg)*((clz X X3) (X1 X 6‘23)), where- stays for
the multiplication of cycles in CH X1 x X, x X3) and(pr,3). is the push-forward
with respect to the projectigor,3: X1 x X2 x X3 — X1 x X3.

In our work here, we only shall apply this formula to the case, where the
correspondences, andc,3 are decomposed (and homogeneous). In this case
the composition can be computed as follows:
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Lemma 1.1. Let X1, X5, X3 € V(F) andc; € CH*(X1), c2, ¢, € CH*(X»),
c3 € CH*(X3). Suppose that the variety, is connected (or, more generally,
equidimensional) and that the cyclesandc’, are homogeneous. Then

(¢ x c3) 0 (€1 X ¢2) = (Prig)«(c1 X (€2 ¢5) X ¢3)
_Jdedcz-ch) - (c1 x c3) if codim(cz) + codim(cy) = dim X5,
10 otherwise,

wheredeq —) stays for the degree of a 0-cycle (see [3, Definition 1.4]). O

LetX, Y € V(F) and suppose thatis connected (or, more generally, equidi-
mensional). A correspondence frafmo Y is said to be of degregif it is given
by a (homogeneous) cycle from @RY+7(X x Y). This definition is extended
to the case of arbitrary € V(F) by taking the direct sum of the groups of the
degreep correspondences froii to the connected componentsiof

Since degrees of correspondences are added while the correspondences are
composed ([3, Example 16.11]), the composition of degree 0 correspondences
has degree 0 as well. This legitimates the following definition.

The additive categorg)°(F) (called the category of degree O correspon-
dences) has the same objects)d¢’), while Hom(X, Y) is defined to be the
group of degree 0 correspondences framo Y. We refer to [3,§16.1] for
checking thaCV°(F) is really a category and only note here titht is given
by the diagonal class oK x X.

Although the categorgV°(F) is already satisfactory for the definition of the
motivic equivalence, we will sometimes need a bigger cateGdtgF), e.g. to
formulate Decomposition 1.2.

The objects oCV(F) are formal finite direct sums of paik¥, i), where
X € V(F) andi € Z. One writesX (i) for (X, i). ForX (i), Y(j) € CV(F), the
group Hom(X (i), Y (j)) is defined as the group of degrge- i correspondences
from X to Y. Note that the evident funct6°(F) — CV(F), X +— X := X (0)
is a full imbedding.

Here is an example:

Decomposition 1.2([19, Proposition 2]) Let ¢ be a quadratic form over,
¢ = H.Lyr, and X, Y the projective quadrics given ky, v. In CV(F) there is
an isomorphism

X~ptad Y1 eptn),
wherept := Spe¢F) andn := dim X.
Remark 1.3.Decomposition 1.2 is a particular case of the motivic decomposi-

tions of the isotropic flag varieties (established in [11]) and is produced by a
certainrelative cellular structurgsee [11, Definition 6.1]) oiX.
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2. Trivial implications and reduction to anisotropic case

In this section, we prove that two m-equivalent forms are s-equivalent and that
the inverse implication should be proved only for anisotropic forms.

We fix the following notationy, and¢, are quadratic forms over; X; and
X, are the corresponding projective quadrics.

Lemma 2.1. If ¢ mq)z, thendim ¢; = dim ¢5.

Proof. Let X # ¢ be any variety fromV(F). The formula
CH(X) £ 0 fori =dimX,
CHIMX-i(xy =0 fori > dimX

shows that the dimension d&f is determined by the isomorphism class of its
motive. O

Hom(pt (i), X) =

Lemma 2.2. Suppose thap, = H Ly and ¢, = H Ly, for some quadratic
formsy, andyr,. Theng, 2 ¢, if and onlyyry 2 Y.

Proof. We write Y; andY> for the projective quadrics determined ty and.
Any of two conditionsg, X ¢, andyr Z Yo implies that dimX; = dim X, (by
Lemma 2.1), so we may assume that ditn= dim X, = n. By Decomposition
1.2 we have motivic isomorphisms

X1 =pt@® Y1 (D) ®pt(n) and X, =pt @ Y2(1) & pt(n),
where dimY; = dimY, = n — 2. Therefore
Hom(X,, Xs5) = End(pt) x Hom(Y,, Y5) x End(pt)

foranyp, § € {1, 2} (note that there are no homomorphisms betwsetir,, and
pt(n) by the simple dimension count reason). Consequekitly: X, in CV(F)
if and only if Y; >~ Y>. O

Lemma 2.3. If ¢ fn3¢2, then eitherp; and ¢, are both anisotropic or they are
both isotropic.

Proof. We writen for the dimension of; andX,. Let E/ F be a field extension
such that the form&p,) r and(¢-) ¢ are isotropic. Consider the restriction functor
CV(F) — CV(E). Forp = 1, 2, we have Hontpt ., (X,)r) = End(pty) = Z
and the homomorphism

CHo(X,) = Hom(pt, X,) —5 Hom(pt,, (X,)g) = Z

is given by taking the degrees of 0-cycles. By the Springer theorem [15, Theorem
2.3 of Chapter Seven] the cokernel of this homomorphism is 0O if and only if the
form ¢, is isotropic (in the anisotropic case, the cokernel eqéa®y. Therefore

the formsg, and¢, can be isotropic only simultaneously. O
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Remark 2.4.There is a complete description of the groupCK,) (see [23]

or [7], where the kernel of the degree homomorphismyCGf}) — Z (whose
image is detected by Springer’s theorem) is shown to be zero). However this
information is superfluous in the proof of Lemma 2.3.

Corollary 2.5. If ¢ 2 ¢, theng, N bo.

Proof. First of all, we have ding; = dim¢, by Lemma 2.1. Lemmas 2.2 and
2.3 together imply that the Witt indexes of the forthsandg, coincide. Finally,
since m-equivalent forms remain m-equivalent over any exterfsjdn(as seen

by applying the restriction funct@°(F) — CV°(E)), we getgy ~ ¢,. O

For the proof of the inverse implication we need the following simple

Lemma 2.6. Let ¢, and ¢, be of even dimension. Mliqsz, thendisap; =
diS(Ipz.

Proof. We prove this by induction on := dim ¢, = dim¢,. If n = 2, then the
form (¢1) r( /asap) IS isotropic; thereforég,) r( /asa) IS isotropic as well what
implies that dis¢; = disap,.

Letn > 2. If ¢; and¢, are isotropic, we may cancel one hyperbolic plane
contained in each of them and apply the induction hypothesis. If the forms are
anisotropic, we may pass to the function fieldf (note thatF is algebraically
closed inF (X»1)). O

Remark 2.7.1t deserves to be mentioned that the even Clifford algebras of s-
equivalent forms are isomorphic. The proof of this statement is easily reduced to
the case where the forms have an even dimension and trivial discriminant. Then
the statement is a particular case of the following observation (also generalizing
Lemma 2.6), due to O. Izhboldin: if the classes in the Witt ring of two s-equivalent
guadratic forms belong to theth Knebusch ideal, (see [1336]), then they

are congruent moduld, . ;.

3. Nilpotence theorem

The following theorem is due to M. Rost. It was announced in [18]; a proof was
given in [19, Proposition 9]. A new proof (only for the characteristic O case) is
given in [24, Lemma 3.10]; this proof produces a better nilpotence exponent.

Theorem 3.1 (Nilpotence theorem).Let X be a projective quadric oveF,
¢ € End(X) a correspondence o, and E/F a field extension. Itz = 0
€ End(Xg), thenc is nilpotent.
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Corollary 3.2. Let X, and X, be projective quadrics over,
c12 € Hom(Xy, Xo) ,  c21 € HOM(X>, X1)

some correspondences, alty F a field extension. l{c12)g and (co) g are
mutually inverse isomorphisms (6%1)z and (X»)g in CV°(E)), thencs, and
co1 themselves are isomorphisms (but, may be, not mutually inverse ones).

Proof. Since the correspondenee := c¢»1 o ¢12 — id; vanishes oveE, it is
nilpotent (by Theorem 3.1). Thereforg; o ¢1, = id1 + &1 iS an isomorphism
(the inverse is given by the finite suith, — &1 + ¢2 — ...). By the symmetry,
c12 0 ¢21 IS an isomorphism as well. O

Remark 3.3.In fact, an enhanced version of Corollary 3.2 holds for two projec-
tive quadricsX; and X, (compare with [19, Corollary 11]): if a correspondence
from X1 to X, becomes to be an isomorphism after an extension of scalars, then
it is an isomorphism already over the base field (so, one does not really need
to assume that the inverse is defined over the base field). This enhancement is
superfluous for us here (it is replaced by Lemma 6.3).

4. Correspondences on split quadrics

Let X be a split projective quadric of an even dimensioBy saying “split” we
mean that théz + 2)-dimensional quadratic form, determiniftgis isomorphic
to the direct sum ofr +2) /2 hyperbolic planes. First of all we need a description
of the Chow ring CH(X). The description given in Lemma 4.1 is classical and
is reproduced in many references. Essentially it is contained already in [4]. In
more appropriate terms it is obtained in [22]. We formulate it here in order
to be self-contained and to have an occasion to introduce our notation for the
generators.

We denote by: € CHY(X) the class of a hyperplane section®f(that is,
the pull-back of the hyperplane class with respect to the imbeddifigmtb the
projective space). For any> 0, thei-th powerh’ of i taken in the ring CH(X)
gives us an element of CH¥) (which is, of course, 0 if > n and 1= [X] if
i =0).

Foreveryi =0, ...,n/2, atotally isotropici{+ 1)-dimensional subspace of
the quadratic form determinir gives rise to a closeddimensional subvariety
of X (whichis alinear subspace of the projective space contaijnigs class in
CH"~ (%) do not depend on the choice of the subspades#fn /2. Fori =n/2,
there are precisely two different classes; we wriged!’ for them. Sometimes
we also writed ™ for I and/© for |.

Lemma 4.1 ([22, Theorem 13.3]).The additive groufCH*(X) is torsion free.
Fori < n/2the groupCH (X) is generated by:’; for i > n/2 by h'/2; and
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fori = n/2 by two independent generatdrand!’. The multiplicative structure
of the commutative rin@H*(¥) is described by the formulag/? = [ + ',
h-l=h-1I=h"?1/2 and

h"/2 ifn/2is even,

- 0 if n/2is even,
T 0 if n/2is odd

w2 itn/2isodd; P=Ll= {
(we do not care about minimality of this list of relations). For every n/2 the
element’ /2 coincides with the class of any £ i)-dimensional linear subspace
lying onX (in particular, »" /2 is the class of a rational point).

The above calculation can be also obtained using Decomposition 1.2. Any-
way, it can be easily generalized to produce a description of the Chow group
CH*(X x T) in terms of CH(T) for an arbitraryF-variety T. Taking7T = X
andT = X x X, one gets

Lemma 4.2. The homomorphisms

CH*(X) ® CH*(X) > CH* (X x X), ¢ ® B> a x B and
CH*(X) @ CH (X) @ CH*(X) » CH' (X x X x X), a @B ®y

oaxfB Xy

are isomorphism of rings. In particulaGH" (X x X) is a free abelian group on
1@ x [ and (k' x h"~")/2withu, v € {0,1} andi € {0, 1,...,n}\ {n/2}.

Thus we almost have described the ring Badof correspondences ot It
remains only to describe the multiplicative structure. Thisis done by the following
formulas which are easily verified with use of Lemmas 1.1 and 4.1. In what
follows we write N for the set of indexeg$0, 1, ...,n} \ {rn/2} appeared in
Lemma 4.2.

Lemma4.3.(1) Forany0 < i, j < none has

(1 x B1)/2) o ((hF x ) /2) = { Gz
0 otherwise.

(2) For anyu,v € {0,1} and anyi € N, the correspondence$’ x [ and
(h' x h"~")/2 are orthogonal.
(3) Finally, for anyu, v, v, w € {0, 1}, one has

) 1@ x [ if y = v andn/2is even or
<l(”) X l(w)) o (1™ x1V) = if v £ v andn/2is odd,
0 otherwise.
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Corollary 4.4. The diagonal class i€H" (X x X) equals

i pn—i Ix1+1U'x1'" ifn/2iseven,
_EXN:(h xh )/2+{lxl/+l/xl if n/2 is odd.

Proof. It follows from Lemma 4.3, that multiplication of any generator of the
additive group En¢@X) = CH" (X x X) by the sum written down does not change
the generator. Therefore the sum is the unit of the ring(Enavhich is known
to be the class of the diagonal. O

Now let X; and X, be two split projective quadrics of some even dimension
n (of course they are isomorphic, we just prefer to have different notation for
them). We are going to introduce notations for certain elements of the groups
Hom(X,, X5) = CH" (X, x X;) for p, 8 € {1, 2}.

For the introduced above elementd, and!’ of the group CH(X,) we use
from now on the notation,,, /,, and/},. For any subset C N and any matrix

A= (aoo 001) e Mx(Z) .

aio dail

we define a cycle,s;(1, A) € CH'(X; x X,) as follows

> (l;'” X z§“>) if n/2 is even,

i n—i 1, 0,1}
cps(1, A) = hox iy j24- 4t
' ;( P H) > aw-(z;,wngl—m) if n/2 is odd.

u,vef{0,1}

The change of definition (in the case of od¢2 with respect to the case of
evenn/2) is justified by the following lemma, which is a simple consequence of
Lemma 4.3 and Corollary 4.4:

Lemma4.5. Foranyl,J C N,anyA, B € M,(Z), and anyp, 8,0 € {1, 2},
one has

Cso(J, B)ocps(I,A) =cpe(J NI, B-A).

Besides, the diagonal class @) x X, equalsc,, (N, 1). o

Definition 4.6. For anyA € M,(Z) we write A for the transposition oA (i.e.
the turn over ofd with respect to its main diagonal) and we writ€ for its turn
over with respect to the second diagonal.

The following assertions are evident:
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Lemma4.7. Foranyl C N, anyA € M»(Z), and anyp, § € {1, 2}, one has
csp (n— 1, AN) if n/2is even,

cps(I, A)' =
’ csp (n— 1, A7) ifn/2is odd,

wherec,s(I, A)' € CH'(X; x X,) denotes the transposition of the correspon-
dencec,s(1, A). O

Lemma 4.8. Two correspondences € Hom(X,, X,) and 8 € Hom(%X,, X;)
are mutually inverse isomorphisms if and onlgit= ¢12(1, B) — c12(N \ I, 0)
andp = co1(I, B™Y) — c21(N \ 1, 0) for some invertible matrisB € M»(Z) and
somel C N. O

5. Proof of the criterion for quadratic forms

In this section, we finish the proof of Criterion 0.1 (using the computation of
Sect. 6).

Let X; and X, be two (not necessary split) projective quadrics of even di-
mensiom, given by quadratic formg; and¢, (of dimensiom + 2). We assume
that the criterion is already proved for quadrics of dimension less jih@nis
will be really needed only in the proof of Propositions 5.7 and 5.11).

We fix a field extensiornF/F such that the quadrios\;) » and (X,) r are
split (for instance,F can be an algebraic or a separable closurE)adnd write
X, for (X1)F and X, for (X2) . We use the notation for certain elements of
CH"(X, x X5) (p, § € {1, 2}) introduced in the previous section. We recall that
N:={0,1,...,n}\ {n/2}.

Let X be anF-variety andE/F an arbitrary field extension. As agreed in
Introduction, we say that a cyalee CH*(Xg) is defined ovef and writex/ F,
if « is in the image of the restriction homomorphism GK) — CH*(Xg). A
correspondence is said to be defined avefit is defined overF as a cycle.

The central assertion of this section (and, in fact, of the whole quadratic form
part of the article) is

Theorem 5.1. If ¢13¢2, thenci»(N, B)/F and co1(N, B~Y)/F for some in-
vertible matrixB.

Definition 5.2. A subsetl C N is said to beadmissible if ¢12(1, A1)/ F for
someA; € My(Z) and c1(1, Ap)/F for someA, € My(Z). A subsetl ¢ N
is said to beweakly admissibleif c11(Z, A1)/ F and cy2(I, Ay)/F for some
Al, A2 € Mz(Z)

The following lemma is a consequence of the computation of the diagonal
class (Corollary 4.4, reformulated in Lemma 4.5):
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Lemma 5.3. The complement \ I of a weakly admissible sdtis weakly
admissible as well. O

Definition 5.4. A subsetl C N is said to besymmetri¢if I = n — I, where
n—1I:={n—i|iel} Foranyl C N the setl U (n — I) is the smallest
symmetric set containing; it can be called theymmetrizatiorof 1.

Remark 5.5.The formula of Lemma 4.7 shows that the definition of admissibility
can be shortened in the case of symmefridgt suffices only to require that
c12(I, A)/ F for someaA.

Proposition 5.6.(1) An admissible set is weakly admissible.
(2) The symmetrization of an admissible set is admissible.
(3) A union of admissible sets is admissible.

Proof. (1): This follows from the formulas,;(1, B) o c12(1, A) = c11(I, B - A)
andcio(I, A) o c21(I, B) = ¢22(I, A - B) given in Lemma 4.5.

(3): Let I andJ be admissible sets. We have to show that the set of cycles
c12(I U J, %) contains a cycle defined ovérand the set of cycles1(1 U J, %)
contains a cycle defined ovér. The statement om,(1 U J, %) is served by the
evidentformula12(1UJ, %) D c12(1, %) +c12(J, x) —c12(I N J, %) together with
the formulaci2(I N J, %) D c12(J, %) o c11(1, *) easily deduced from Lemma
4.5, The statement an;(I U J, %) is proved analogously.

(2): If asetl c N is admissible, we have>(1, A;)/F andcyi(1, Ap)/F
for someAq, A, € Mo(Z). Applying Lemma 4.7, we gebi(n — I, A})/F and
c12(n — I, A%)/ F for’ being either\ or /. 0

Proposition 5.7. Suppose tha; N ¢2. Letr € N be anindex smaller tham/2.
If  is the smallest index of some weakly admissible setthecontained in an
admissible set.

Corollary 5.8. If ¢ N ¢-, then the selV is admissible.

Proof. Note that} is a symmetric admissible set. Ligbe a symmetric admissible
set. It suffices to show that iy £ N then I is contained in a strictly bigger
symmetric admissible séf.

By Item 1 of Proposition 5.6, the sg&iis weakly admissible. By Lemma 5.3,
it follows that the sef := N \ I is weakly admissible as well. Set= min 1.
Sincel is symmetric (becaus& was symmetric), the condition < n/2 is
satisfied and Proposition 5.7 provides us with an admissiblg seintaining
r. By Item 3 of Proposition 5.6, the unialg U J is an admissible set; we take
as I, its symmetrization. The sdf is admissible (Item 2 of Proposition 5.6),
symmetric, and containg properly (o # I, because € I \ Ip). O
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Proof of Proposition 5.7 Multiplying the generic point morphism
X1 < Sped'(Xy)
by X1 x X5 (on the left), we get a flat morphism
X1 x Xo x X1 < (X1 X X2)F(xy) -
Taking the pull-back with respect to it, we obtain an epimorphism
CH"(X1 x X2 x X1) &> CH"((X1 X X2)pxp) -
The corresponding epimorphism over
[ CH' (X1 x X2 x X1) = CH'((X1 x X2)F(xy)

can be easily computed in terms of generators of the Chow groujg3GHk
X, x X1) given by Lemmas 4.1 and 4.2, because for any homogeneous cycles
a,y € CH*(X;) andg € CH*(X,)

0 if codimy > 0,

f(“xﬁ”)={(axﬁ)f<xl> it y = [%a].

Since the quadratic form®s1) r(x,) and(¢z) r(x,) are isotropic, Lemma 2.2
together with the induction hypothesis, formulated in the beginning of this sec-
tion, imply that (¢1) rx,) m(¢2)F(X1)- By Lemma 4.8, it follows that the cy-
cle (c12(1, A) — c12(N \ 1, O))f(ael) € CH'((X1 x X2)#(x,) (for some matrix
A and somel C N) is defined overF(X1). Since 212(N \ 1,0)/F, the cy-
cle c12(N, A) r(x,) is defined overF (X,). Therefore, the set of preimages of
c12(N, A) rx,) With respect tof contains a defined over cycle as well. Any
cycle in this set of preimages has the form

(1) c12(N,A) x 1+ Y ax B xy .

where the sum is taken over some homogeneosy with positive codin,y .
In what follows we assume that)(is a cycle defined oveF.

Let I be a weakly admissible set such that min 7. We haver11(1, A")/F
for someA’ € M,(Z). Considering the cyclef] as a correspondence fray
to X, x X1, we may take the compositian) o c11(1, A"). The resultis a defined
over F cycle onX; x X, x X; which is equal to

(1) c1ol, By x 1+ ) axBxy.

whereB := A - A’ and the sum is taken over some (other) homogenepg8sy
such that codim > 0 and codinx > r. Let us take the pull-back of the cycle
(1) with respect to the morphisi¥; x X, x X; < X; x X, induced by the
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diagonal ofX;. The result is a defined ovét cycle onX; x X, which is equal
to

(1) ciol, BY+ ) (@ y)x B,

where codinfe - y) > r. Since(a - y) x B is a multiple of(h' x h"~%)/2 (if

i ;= codim(x - y) # n/2) or a linear combination with integer coefficients of
1™ x [ (if i =n/2), and since the cycleg x h"~' are defined oveF, one
sees that

> (@ y) x B=cpo(I'. B') (mod cycles defined over)

for somel’” ¢ N with minI’” > r. Therefore(t11) = c12(J’, B + B’) with
J = uI)\{InNTI).ltfollowsthatJ’' > r andci2(J’, B+ B")/F.

By the symmetry argument (or, other speaking, repeating the procedure with
X, and X, interchanged), we may find a sét > r and a matrixB” such that
c1(J”, B")/F.ThenJ := J' N J” is a required admissible set, because of the
inclusion

c12(J, %) D c12(J', %) o c21(J", ) o c12(J ', *)

and because of the similar inclusion 95 (J, ). O

Definition 5.9. We say that the seW is 0-admissible, ifc;, (N, 0)/F and
c21(N, 0)/F. We say that the seV is 1-admissible, ifc12(N, B)/F andco;
(N, B~Y)/F for some invertible matrixB.

Proposition 5.10. Suppose thatisap; = disap,. If the setV is admissible, then
it is 0-admissible or 1-admissible.

Proof. We apply Propositions 6.1 and 6.4 (of the next section) to the following
data:

Cos :={1x A| A e My(Z) such that,s(N, A)/F}
U{0 x A | A € Ma(Z) such that,s(%, A)/F} .

We claim that in the case where the discriminantsdlise disap, are trivial
the conditions of Proposition 6.1 are satisfied, while in the case of non-trivial
discriminants the conditions of Proposition 6.4 hold.

(i): Cps + Cps C Cps since

cps(D, A) + c,5(0, B) = cps(V, A+ B) ,
cps(B, A) +c,5(N, B) = cp5(N, A+ B) , and

Cps(N. A) + ¢p5(N, B) = c,s(8, A+ B) + b’ x h" ™",
ieN
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where the sun)_, _, i’ x h"~" is defined ovelF’; —C,; C C,; since

Cp(;(l, A) —|—Cp5(1, —A) = Zhl X hnfi

iel

foranyl c N (we use this only fod = @, N).

(i): Cso - Cps C Cpo by the composition formula of Lemma 4.5.

(ii): 1 x 1€ C,, by Lemma 4.4.

(iv): Lemma 4.7.

(v): Clearly, we may assume thal/ F is a Galois extension of degreéfdr
somer > 0 (one may take ag/F a finite tower of quadratic extensions). For
anyt € Gal(¥/F), one has (see [22, Lemma 13.5])

1w ift(d,) =d
wy_J"r P pr
‘L'(lp ) - {ll()lu) if ‘L'(dp) — _d,m
whered, is a square root of digg, in F.
If discp, = disap, = 1, it follows that the Galois group G@F/F) acts
trivially on every! x [;. Thus, taking the transfer, we see that

2 (19 < 1) /F

This gives the assumption (v) of Proposition 6.1.
If the discriminants are non-trivial, then the transfer argument shows that

27 (L, xIs+ 1, x I5) /F and 27% (I, x I+ 1, x [) /F

(this is one part of the assumption (v) of Proposition 6.4). On the other hand, if
acyclec,s (1, %0 901
yeIeess ( aip di
Gal(F/F).Inparticular, itis stable under the action of an elemeatGal(F/ F)
such thatr (d;) = —dj, whered; is a square root of digg in F (sucht exists
becausel; ¢ F). This implies the desired conditioagy = a1 andag; = a1
and finishes checking of (iv) for Proposition 6.4.
(Vi): cps (@, (i i = h"? x hi"/? and(h"/? x h"/?)/F.
We have checked that the conditions (i)—(vi) are satisfied. If theVset
admissible, then the projectiath, — 7Z/2 is non-zero by the very definition
of the admissibility (Definition 5.2). Thus Propositions 6.1 and 6.4 serve the
assertion under proof. O

is defined ovelr, then it is stable under the action of

Proposition 5.11. Suppose thap,; N ¢,. If the setN is 0-admissible, then it is
also 1-admissible.
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Proof. Let us repeat the proof of Proposition 5.7, making some changes or more
precise.

First of all, the matrixA in (f) can be chosen the way that it is invertible and
c21(N, A=Y z(x,)/ F (X1). Further, let us note that sineé is 0-admissible, the
cycle

11, 1) = c11(N, 1) — c21(N, 0) o c12(N, 0)

is defined ovelF. Then the compositio(r) o ¢11(4, 1) is a defined oveF cycle
onX; x X, x X; which is equal to

(1) co A) x 1+ axBxy,

where codiny > 0 and codine = n/2. The pull-back of{f) with respect to the
morphismX; x X, x X; < X1 x X, induced by the diagonal &; is a defined
over F cycle onX; x X, which is equal to

(1) 120, A) + ) (@-y) x B,
where codinfe - y) > n/2. Composing witle11(4, 1) once again, we get
(T17) 0 c11(9, 1) = c12(9, A) .

Consequently the cycle>(N, A) = c12(N, 0) + c12(4, A) is defined ovelF.
Similarly, co1(N, A™Y)/F. ThusN is 1-admissible. O

Proof of Theorem 5.1We assume thaf; N ¢». By Lemma 2.6 we have digg =

disap, in this case. The seV¥ is admissible by Corollary 5.8. Therefore, by
Proposition 5.10, it is 0-admissible or 1-admissible. Finally, Proposition 5.11
says thatV should be 1-admissible what is already the desired assertiorz

Proof of Criterion 0.1.1f ¢, z ¢, theng, N ¢, by Corolary 2.5.

Now assume thap, N ¢2. By Theorem 5.1 the correspondeneeg N, B)
andco1(N, B~1) (for some invertible matrix3) are defined oveF. By Lemma
4.8, they are mutually inverse isomorphismstgefandX,. Therefore, by Corol-

lary 3.2, there is a motivic isomorphism betwegpandX», i.e. ¢ 2 bo. O

6. Some matrix computations

Inthis section, we work with the rin@./2) x M»(Z). Our aim here is Propositions
6.1 and 6.4, which are used in the proof of Proposition 5.10.

Let A be a matrix inM»(Z). Recall that we agreed upon to write™ for
the usual transposition of and A~ for the transposition with respect to the
second diagonal. Besides, we shall wrteor the interchanging of the columns
of A andA™ for the interchanging of the rows. For an elemenif the ring
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(Z]2) x M»(Z), we writex \, x/, x|, andx— for the element with the matrix
component changed in the given way and with the unchariggt){component.

The unit and the zero a¥f,(Z) are denoted simply by 1 and 0. We write
a x A for the element ofZ/2) x M,(Z) having the Z/2)-component and the
matrix componeni.

Proposition 6.1. LetC11, C12, C21, andCy;, be some subsets of the ri(ig/2) x
M, (Z). Assume that for any, 8, o € {1, 2}, one has

(i) the setC,; is an additive subgroup of the rin@./2) x M»(Z);
(”) CSU : C,oS C C,oa;

(i) C,p 1 x 1(thus,C11 andCy; are subrings with unit);

(iv) Cj5 C Csp0r C5 C Cspi

(v) 0x (2" - My(Z)) C C,s for some positive intege,

(i) 0x <i 1) €Cs.

If the projectionCy, — Z/2is non-zero (that is, i x A € C1, for some matrix
A € My(Z)), then at least one of the following two conditions holds:

— there exists an invertible matri& such thatl x B € Cip;and1x B~ € Cy;
— C12 and C»; contain the elemertt x 0.

We prove Proposition 6.1 after two following preliminary lemmas:

Lemma 6.2. We assum@)—(iv) and(vi) (the assumptiofv) is not needed here).
Foranyp, § € {1, 2}, the following inclusions hold:

Cg C C(;p, C; C CSpv
Cls C Cps, Coy CCps.

Proof. Let us fix some arbitrary andé. Since 1x 1 and Ox (1 i) are in
C,, (by (iii) and (vi)), the difference

11 _ 0 1)\ |
0><(:L 1)—1x1_1x(1 O>_lx1

is also there. Sincé x A) - (L x 1) =a x Al foranya x A € Z/2 x M»(Z)
andC,;s - C,, C C,s (this inclusion holds by (ii)), it follows thaf:/')s C Cps.
The inclusionC,;~ C Cy; is proved in the similar way by using the formula

AIx1 ) -(axA)=axA

and the inclusion & 17 € Cs; (to avoid misunderstanding let us note that
1— =1)).
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One of the two remaining inclusions holds by the assumption (iv). Using
the equalityA” = ((AH™)! or the equalityA™ = ((A))7)! (which is true for
any matrixA) as well as the already proved inclusion fowe obtain the last
inclusion remained. O

Lemma 6.3. Let us assum@)—(iv) (the assumption@&) and(vi) are not needed
here). If1 x B € Cq, for an invertible matrixB, thenl x B~ € Cy;.

Proof. (Compare with [19, Proof of Corollary 10].) By (iv) we havex1B’ € Cy1
for eitherB’ := BN or B’ := B/ . Thusx := 1 x B’ - B € C1; and it suffices to
show thatv—1 € Cy1; as well.

Let f(¢) be the characteristic polynomial of the matBk B. We havef (¢)
Z[t] and the free coefficient of (r) is det(B’- B) = 1. The element is a zero of
the polynomiaks — 1) - f(¢) € Z[t]. We have(t —1)- f(t) = t3+at?>+bt — 1
with a, b € Z. Thereforex ! = x2 + ax + b € C11. O

Proof of Proposition 6.1.(Compare with [24, case D in the proof of Lemma
3.24].) LetA be a matrix such thatst A € C1,. We writeA mod 2 for the image
of A in M»(Z/2). There are five possibilities:

0. A mod 2= 0;

1. A mod 2 has precisely one non-zero entry;

2. A mod 2 has precisely two non-zero entries;

3. A mod 2 has precisely three non-zero entries;

4. A mod 2 has no zero entries.
We consider them one by one.

11

3. The same argument reduces the case 3 to the case 1.

0. For any positive integer, we have 1x (4 - (AN - A)") € C1» by Lemma
6.2 and by the assumption (ii). All entries of the mattix(A - A)" are divisible
by 2 (more precisely, they are divisible by2%). Takingr as in (v), we prove
that 1x 0 € Cy,. Thenwe also have £ 0 =1 x 0N € Cy;.

1. By Lemma 6.2, we may assume thaimod 2= (é 8

0 1) ,the productA™)!- A is zero modulo 2. Thereforgl (A ™)/ A)

4. Since 0x L 1) € C12 by (vi), we may reduce the case 4 to the case 0.

). Since(AM)!

00

is zero modulo 2 as well. Sincex (A - (AN)! - A) € C1, we come to the case
0.

mod 2= (

2. Suppose that the two non-zero entriedafiod 2 are in the same column.
ThenA™ - A mod 2= 0 and we come to the case 0.

In the case where the two non-zero entried die in the same row, we have
A-ANmod 2= 0.
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Thus, we may assume that the two non-zero entriea ohod 2 are nei-
ther in the same column, nor in the same row. Then eitheanod 2= 1 or
A mod 2= 1!. ReplacingA by Al in the second case, we come to the situation
with A mod 2= 1 anyway.

In the rest of the proof we assume thaimod 2= 1. Denote the entries of
a b
c d

The sum of the integes+d —b —canda +b —c —d is 2(a — ¢) and
a — cis odd. Therefore either4+d — b — c ora + b — ¢ — d is not divisible by
4. We consider these two cases separately.

1) First assume that the integer d — b — c is not divisible by 4. Since

0 x (% g) € C12 (by (v)), we may assume that+d — b — ¢ = 2.
11

1 1)
detA)/2 € Z,equalsdefA + (a +d — b —c¢) - x = detA + 2x = 1, and
1 x B € Cyy. Therefore we are done by Lemma 6.3.

2) Now assume that + b — ¢ — d is not divisible by 4. As in the previous
case, we may then assumethat b —c —d = 2.
1 :i , Wherex := (detA —
1)/2 e Z,equalsdefr — (a +b —c —d) - x = detA — 2x = 1. Therefore it

suffices to show that & (1 :1) € Cio.

A as follows:A =

The determinant of the matriB := A + x - wherex = (1 —

The determinant of the matri& := A+ x -

We have

10 — 11
(a+c—b—d)-0x(1 0>=1><A+1><A —(b+d)<0x(1 1)>€C12.

Sincethesunta + b —c—d)+ (a+c—b—d) =2(a —d) is divisible by 4
(because andd are odd), the integer+ ¢ — b — d is not divisible by 4. Taking

(v) in account, we see that) (g 8) € C1p. Therefore
1 -1 2 0 11
0X(l _1)—0X<2 0)—OX(1 1)€C12,
and the proposition is proven. O

Proposition 6.4. Let us modify the assumpti@v) of Proposition 6.1 as follows:

(v) 0 x 2" e C,s for some positive integer and the image of the projection
C,s — M(Z) is contained in the additive subgroup &h(Z) generated by
land1l.
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Assuméi)—(vi). If the projectionC1, — 7Z/2is non-zero (thatis,iLt x A € Cy,
for some matrixA € M»(7)), then at least one of the following two conditions
holds:

— C12 and C»; contain the elemertt x 1;
— C12 and C»; contain the elemertt x 0.

Proof. (Compare with [24, case B in the proof of Lemma 3.24].) Kebe a
matrix such that x A € Ci,. By (V), A = a + b! for somea, b € Z. We have

lX(a—b):lXA—b(OX(i 1))66‘12,

what means, we may assuino be zero.
Suppose that is odd. Multiplying by 2, we have & (2a) € C;2. Since (by
(V)) 0 x 2" € C1, for somer, it follows that Ox 2 € C1o. Therefore

Ix1l=1xa—-((a—1)/2)(0x2) e€Cy

and the proof is finished in the case of add

Now suppose that is even. Since x a®> = (L1 x a>) - (1 x a) € Cy1
and Ox 2 = 2- (1 x 1) € Cy,, it follows that 1x 0 € Ci1;. Consequently
1x0=(1xa) - 1x0) eCpandlx0=1x0" e Cy. O

7. Criterion for central simple algebras

In this section F is an arbitrary field (any characteristic, even 2, is allowed). We
say that two central simplE-algebras areppositeif one of them is isomorphic

to the opposite algebra of the other (see e.g.{14f Chapter I] for the definition

of the opposite algebra).

Criterion 7.1. Two central simple algebras are m-equivalent if and only if they
are isomorphic or opposite.

We start with terminology and notation of this section: for a central simple
F-algebraA, X, is its Severi-Brauer variety arl, := (X4)r, whereF is a
fixed separable closure @f (F may be almost always replaced by an arbitrary
field extension off, splitting all the algebras under consideration).

We recall the definition of the Severi-Brauer varigfy (compare to [11,
Definition 10.3]): for any commutativE&-algebrar, the set ofR-points X 4 (R)
is defined as the set of the right idedlsf the R-algebradz := A ®r R such
that7, as anR-module, is a direct summand dfz of the constant rank deg
(thedegreedegA of A is defined as ded := /dimg A).

We say that two central simplgé-algebrasd; andA, arem-equivalentand

write A 2 Ay),if X 4, andX 4, are isomorphic as objects@9°( F) (the category
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CVP(F) is defined in Sect. 1). Note that the varietleg, andX 4, are isomorphic
iff the algebrasd; and A, are so.

We say thatd; and A, are s-equivalenfand writeAliAg), if degA; =
degA, and ind A1) = ind(A,) g for any field extensiorE / F (where indA :
degD with D a division algebra Brauer-equivalentA9.

Remark 7.2.The notion of the Schur index iidof a central simple algebra
A is not really analogous to the notion of Witt index of a quadratic form. The
right notion would be intA := degA/indA, because presicely ihdl, not indA,
measures how much is split. Defining the s-equivalence with the help of’ind
one may avoid the condition on the degreﬁa&i Asiffind’ (A g = ind' (A2) g
forany E/F (compare with the definition of s-equivalent quadratic forms).

Let A be a central simple algebra andan integer; we writeA’ for the
(determined up to an isomorphism) central simptalgebra such that detj =
degA and[A’] =i - [A] € Br(F). In particular,A~* is the opposite algebra of
A. Note thatA® is isomorphic to a matrix algebra ovaf, namely (comparing
the degreest® >~ M gegayi-1(A).

For an arbitrary Severi-Brauer varieX,/F, we writeh € CH(X,) for
the class of a hyperplane (note ti#t is isomorphic to the projective space of
dimension degt — 1 iff A is split).

One of the implications of Criterion 7.1. is given by the following

Proposition 7.3. For any central simple algebras, one hasA Z AL

Proof. We are going to use the following simple assertion (for its last part see
e.g. [12, Lemma |.3]):

Claim 7.4. Forany two central simplé&-algebrasA; andA,, the tensor product

of the ideals gives rise to a closed imbeddiig, x X4, — Xa,e4,- If A7 and

A, are split, this is the Segre imbedding of the product of the projective spaces
into the projective space. In particular, the pull-backiof CH(X 4,¢4,) equals
1xh+hx1eCHY XA, x X4,). O

Claim 7.5. Thecyclel x h + h x 1 € CHY (X, x X ,-1) is defined over .

Proof. (Also see Remark 7.17.) Since the tensor produch A~! is a split
algebra, the cyclé € CHY(X,441) is defined overF. To finish, we apply
Claim 7.4.. O

Claim 7.6. Assume that we are given a positive integeand a subringS of

the integral polynomial ring in two variable€g[x, y] such thatS containsx +

y as well as("jl) .x' foralli = 0,...,n. ThenS contains the element

Z?:O(_l)i . (xiyn—i).
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Proof. The assertion is served by the formula

n

Z( l)z i n z_Z( 1)t<n"!_l)xi(x+y)n—i ]

i=0 i=0

Since this formula is homogeneous, it suffices to prove it after the substitution
x =1.0ne has

n o (_l)n +yn+1
_ll n—i —
Z( )y T
D) 1+ Ay
N 1+y

=Yy (” N 1) L4y
i=0

O

Claim 7.7. Setn := dim X4 (= degA — 1). The cycIe(" ‘ZL 1) -h' e CH (%,)
is defined ovefF foranyi =0,1,...,n

Proof. We explain two different proofs. The first one is based on the observation
that the binomial coefficieré” ;L 1) is divisible by the integer

m+1/G,n+1)

for anyi, where(i, n + 1) stays for the greatest common divisot @indrn + 1. A
transfer argument shows (see [8, Lemma 3]), that the ¢yele 1)/ (i, n+1)) - A’
is defined overF.

The other way of proving uses Chern classes. The total Chern class (see [10,
Definition 2.11])

¢ Ko(Xa) — (Z CH (X,) - z’) :

i=0

whereKy(%X4) isthe Grothendieck group and a formal variable, is defined over
F andis a group homomorphism. For the clgig$ € Ko(X4) of the tautological
vector bundl€] on the projective spac¥,, one has;,(7) = 1— h -t (by the
very definition ofc;). Since the elemeritlegA) - [T] = (n + 1) - [T] is defined
over F (it coincides with the image under the restrictifa(X 4) — Ko(X,4) of
the class inko(X 4) of the tautological vector bundle ony, see [17, Sect. 8.4])

andc,(n + D[T]) = ¢, ([T = 15 (=1) (" + 1) -h'-t', we are donex
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Claim 7.8. Setn := dim X4 (= degA —1). The cycled_!_o(—1)'(h' x h"~') €
CH' (X4 x X4-1) is defined over.

Proof. Consider the homomorphism of rings
fiZ[x,y] > CH* (X4 x X4-1), x+—>hx1l, y—>1xh.

Let S be the set of those element<4jfc, y] whose image undef is defined over
F. ThenS is a subring, containg + y (Claim 7.5.), and containg” +1y.

1

for all i (Claim 7.7.). Therefore, according to Claim 7.6.also contains the
sumd_" ,(—=1)" - (x'y"~"). The image undey of this sum is the desired cycle
Y o(=DI (R x BT, O

Since the composition of the correspondepce ,(—1)" - (1’ x h"~") (from
Claim 7.8.) with its transposition (in any order) give§_, 4’ x "', whichis the
class of the diagonal, this correspondence determines an isomorphism between
X andX 1.

The nilpotence theorem (i.e., the theorem analogous to Theorem 3.1) for
the Severi-Brauer varieties is proved in [9, Proposition 2.2.3] (it can be also
proved using the method of proving of Theorem 3.1). Thus we have the analog
of Corollary 3.2 for the Severi-Brauer varieties, what finishes the proof of the
proposition. 0

xl

Remark 7.9.1t is remarkable to look at the isomorphisms between the Chow
groups CH(X,) = Z (with the canonical generatdf) and CH(X,-1) = Z
(with the canonical generatdr), induced by the constructed motivic isomor-
phism ofX 4, andX 4-1: they are “identical” for evehand they are “mulitplication

by —1" for oddi (compare with Proposition 7.10).

The inverse implication of Criterion 7.1. is contained in the following

Proposition 7.10. If central simpleF-algebrasA; and A, are m-equivalent,
thenA; ~ A, or A; ~ A, If there exists a motivic isomorphisky, — X4,
inducing “identical” isomorphismCH*(X 4,) — CH*(X4,), thenA; >~ Aj.

We give the proof after several simple lemmas, which are, to our mind, of
independent interest. The following one is parallel to Corollary 2.5.

Lemma7.11.If A; 2 Ao, thenA; 2 As.

Proof. We assume that; 2 Az. Since dimX 4, = degA, — 1 (forp =1, 2), it

follows that degd; = degA, (the proof is the same as for Lemma 2.1).
Since the homomorphism rgg-: CHo(X4,) — CHo(X4,) = Zis given by

taking the degrees of 0-cycles, the cokernel ofjgdas the order ind, (to see
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itatonce, note thatindl, is equal to the minimal degree of a field extensioh
such thafA,]r = 0 € Br(E) and that the varietyX , ) has a rational point
over an extensiol / F' iff [A,]r = 0). Therefore, ind; = indA, (compare to
the proof of Lemma 2.3).
Finally, since m-equivalent algebras remain m-equivalent over any extension

of scalars, we conclude thay N As. O

Remark 7.12(Compare to Remark 2.4). There is a complete description of
the group CH(X,4) (see [16], where the kernel of the degree homomorphism
CHo(X4) — Zis shown to be zero). However this information is superfluous in
the proof of Lemma 7.11.

Lemma 7.13. Assume thadlegA; = degA,. The relationA, N A, holds if and
only if the classes of; and A, generate the same subgroup in the Brauer group
of F.

Proof. If A; 2 Ay, then, in particularA, splits over the function field oX 4,.
The index reduction formula for Severi-Brauer varieties [21, Theorem 1.3] (or
actually a simpler and earlier result of Amitsur [2, Theorem 9.3] describing the
kernel of B(F) — Br(F(X,,))) shows thafA,] is in the subgroup of BiF')
generated byA;]. The rest of the proof is evident. 0

Lemma 7.14. Assume thati; 2 As. Among the"** cycles

Zj:(hi X h"71) € CH (X4, x X4,)
=0

there is a cycle defined ovét. Moreover, if there exists a motivic isomorphism
of X4, and X4, inducing “identical” isomorphismCH*(X,4,) — CH"(X4,),
then the cycle ! A’ x h"~' is defined over.

Proof. Any motivic isomorphism betwee¥i4, andX 4, is given by a correspon-
dence of the kind_"_, £(h' x h"~") (compare with Lemma 4.8). Since there
is a motivic isomorphism betweexiy, andX 4, (over F), we are done with the
first assertion.

For the second assertion, it suffices to note, that if a motivic isomorphism
of X4, ontoX 4, induces “identical” isomorphism on the Chow group, then itis
equal to the correspondeng&’_,h' x h" . i

Lemma 7.15. For an arbitrary central simplg--algebraD of degree: + 1, and
for any integers > 0, the cycled_!_,h' x h"~' € CH" (X, (p) x Xp) is defined
overF.



Criteria of motivic equivalence 609

Proof. For any commutativé'-algebrar, the standard imbedding &1;_,(Dg)
into M;(Dp) (by adding O entries in theth rows and in the-th column) gives
a map of the sets of ideal¥,, ,p)(R) — Xum, () (R) (by taking the gen-
erated right ideal). This determines a closed imbeddng , py — Xum,)-
Since the codimension aXy;, ,p) iN Xy, ) iSn + 1 > n, the pull-back
CH”(XMS(D) x Xp) — CH”((XMs(D) \ XMsfl(D)) X XD) to the open subva-
riety is an isomorphism. In its turn, the differen&ey, p) \ X, ,(p) IS a vector
bundle oveX ; (see[11, Theorem 10.9]). Therefore, the pull-back with respectto
the morphism(X y,py \ Xm, 1p)) X Xp < Xp x Xp, given by the zero-section
of the vector bundle, is an isomorphism QI({XMX(D) \ Xum, 1(p)) X XD) —
CH”(XD X XD)

Let us now extend the scalars upfo Since the image in CHXp x Xp)
of the sum)y_"_ A x h"~" € CH"(X,(py X Xp) is given by the same sum (and
therefore coincides with the diagonal class), it is defined dver 0

Remark 7.16.In [9, Corollary 1.3.2] a motivic decomposition

s—1

XMS(D) ~ @XD(Z . (l’l + 1))
i=0

(inthe categorgV(F) constructed in Sect. 1) is established (which is a particular
case of the motivic decompositions of the isotropic flag varieties obtained in
[11]). Lemma 7.15 gives a way to refine this result by the additional information
that the induced oveF isomorphisms of the Chow groups are “identical” (i.e.,
“multiplication by —1" does not occur).

Proof of Proposition 7.10.(See also Remark 7.17.) We assume ma{ﬂ As.
Lemmas 7.11 and 7.13 imply that, ~ A" for some integer. Since[A4]

(as well as all other elements of @)) is of finite order, we may assume that

r is positive. To prove the first assertion of the proposition, it suffices to show
that expA; (this is the order ofA;] in Br(F)) dividesr + 1 orr — 1, for the
second assertion we have to show that gxplividesr + 1 under the additional
assumption of the second assertion.

We setd := A andB := A~L. We haveB’ 2 A. Taking the composition
of a defined overF correspondenc&z — X, from Lemma 7.14 and the
correspondencé&, — Xjp from Claim 7.5., we see that at least one of two
cycles 1x h + h x 1 € CHY (X5 x Xp) is defined overF. Lete € {0, 1} be
such thafl x i + (—1¢(h x 1))/F.

We haveB®" ~ M q4eqs)-1(B"). Considering the composition of the defined
over F correspondenc&zsr — Xp- of Lemma 7.15 with the correspondence
1x h+ (=1 x 1) € CH (X5 x X3), we conclude that the cyclexd i +
(—=1)¥(h x 1) € CHY(Xper x X3) is defined overF.
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Taking the pull-back of the cycle s & + (—1)¢(h x 1) € CHY (X ger x X5)
with respect to the composition of morphisms

segreid
%B E— %z(rJrl) = x;r X %B g—> %B‘@’ X :{B s

where the first one is the ¢ 1)-diagonal while segreX ;" — X ger is ther-fold
Segre imbedding (see Claim 7.4.), we get a defined éveycle (r + (—1)¢) -
h € CHY(X3). Therefore the order of Cok@BH'(X) — CH(X3)) divides
r + (—1)%. On the other hand, by the classical computation of the Piccard group
for the Severi-Brauer varieties ([1, Sect. 2]), the order of this cokernel is equal
to expB. This proves the first assertion of the proposition.

For the second assertion it suffices to note that if a motivic isomorphism
betweenX z- and X gives the “identity” on the Chow groups ovét, then over
F this isomorphism is given by the correspondecé A x h"~'. Thus this
correspondence is defined overand one may choose= 1. 0

Remark 7.17.The following shorter proof of Proposition 7.10 is suggested by A.
S. Merkurjev. For any central simple-algebrasd; andA,, the exact sequence

resr/r

CHY(X 4, X Xa,) —25 CHY(X4, x Xa,) 2221

Br(F)
1xh—[A2]

(compare to [20, Lemme 6.3 (i)] and [1, Sect. 2.1]) proves that the cycle
1xh+ (=1 x 1) € CH' (X4, x X4,)

is defined overF if and only if [A1] = (—=1)1°[A,] (this also gives another
proof for Claim 7.5.). In particular, the cycledi —h x 1 € CH (X4, x X4,) is
defined ove#'. Having a motivic isomorphism of 4, andX 4, we therefore may
conclude (using Lemma 7.14) that at least one of thetwo cycleB X h x 1 €
CH1(3€A1 x X,4,) is defined ove# as well (if the motivic isomorphism induces
“identity” on the Chow groups, then the cycle with the minus sign is defined over
F); thus[A1] = %[A,] (in the latter casgA1] = [A3]).

Proof of Criterion 7.1. One of the implications of the criterion is Proposition
7.3; the inverse implication is contained in Proposition 7.10. O
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