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1 Introduction

If X is a smooth, complete, connected curve over an algebraically closed field,
then the JacobianJ0, parametrizing invertible sheaves onX of Euler characteristic
0, is projective and admits a canonical ample divisorΘ, the Theta divisor. Ifg
denotes the genus ofX, thenΘ is the scheme-theoretic image of the Abel-Jacobi
morphismXg−1 → J0, given by

(p1, . . . , pg−1) → OX (p1 + . . . + pg−1) .

It follows from [14, Sect. 17, p. 163] that 3Θ is very ample.
In the singular case, D’Souza has constructed a natural compactificationJ̄0 for

the JacobianJ0 of a complete, integral curve over an algebraically closed field [5].
The schemēJ0 parametrizes torsion-free, rank 1 sheaves of Euler characteristic
0 on X. A natural question in this context is whether there is a canonical Cartier
divisor on J̄0 extending the notion of the classical Theta divisor.

The above question was partially and independently answered in [6] and [19].
In these two works the same canonical line bundleL on J̄0 and the same global
sectionθ of L are defined. For smooth curves, the zero scheme ofθ is the
classical Theta divisorΘ. In [19] Soucaris shows that the zero scheme of the
restriction ofθ to the maximum reduced subscheme ofJ̄0 is a Cartier divisor.
Both [6] and [19] show thatL is ample. It remains to determine whether the
zero scheme ofθ on J̄0 is a Cartier divisor in general, and what is the minimum
n such thatL ⊗n is very ample.

In this article our main concern is with the latter question. We will show that
L ⊗n is very ample forn at least equal to a specified lower bound (Theorem 7).
If X has at most ordinary nodes or cusps as singularities, then our lower bound is
3. Our main tool is to use theta sectionsθE associated to vector bundlesE on X.
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The theta sections were used by Faltings [9] to construct the moduli of semistable
vector bundles on a smooth, complete curve without using Geometric Invariant
Theory (see also [18]). In a forthcoming work [7], [8] we will apply such method
to construct the compactified Jacobian for families of reduced curves.

The importance of Theorem 7 is that we obtain a canonical projective em-
bedding ofJ̄0 in P(H 0(J̄0,L ⊗n)), for n minimum such thatL ⊗n is very am-
ple. By studying the structure of the homogeneous coordinate ring ofJ̄0 in
P(H 0(J̄0,L ⊗n)), maybe in a way analogous to Mumford’s in [15] and [16],
we might be able to understand better the algebraic structure ofJ̄0.

Notation.We will often deal with parameter spaces, that is, spaces whose points
are classes representing certain objects. In such context, we will employ the
usual bracket notation [F ] for the point representing the objectF . If E is a
vector bundle on a schemeY , we denote byPY (E) the corresponding projective
bundle overY . By a point we mean a closed point.

2 The compactified Jacobian

Let X be a complete, integral curve over an algebraically closed fieldk. Denote
by g the arithmetic genus ofX, and byω the dualizing sheaf onX. A coherent
sheafI on X is torsion-freeif Ix is a torsion-freeOx-module for everyx ∈ X. A
coherent sheafI on X is rank 1 if I is generically invertible. By [4, p. 96], the
sheafω is torsion-free, rank 1. Fix an ample line bundleOX (1) on X. For every
coherent sheafF on X, let Quotp(t)

X (F ) denote Grothendieck’s Quot-scheme [10],
parametrizing quotients ofF with Hilbert polynomialp(t) with respect toOX (1).
We will drop the superscriptp(t) whenever it is not important.

For every integerd, let J̄d denote thecompactified Jacobian functor. For
eachk-schemeS, the set̄Jd(S) consists of equivalence classes ofS-flat coherent
sheavesI on X×S such thatI (s) is torsion-free, rank 1 of Euler characteristic
d for every s ∈ S. (Two sheavesI1 andI2 are called equivalent if there is an
invertible sheafN on S such thatI1

∼= I2 ⊗ N ). D’Souza [5] and Altman and
Kleiman [3], [4] have shown that̄Jd is represented by a (projective) scheme
J̄d, the compactilied Jacobian. Here we present yet another proof of the repre-
sentability ofJ̄d by a scheme, a proof more suitable for treating the question of
very ampleness in Sect. 4.

For every torsion-free, rank 1 sheafI on X, let

e(I ) := max
x∈X

dimk I (x) .

SinceI is generically invertible, then 1≤ e(I ) <∞.

Proposition 1 Let I be a torsion-free, rank 1 sheaf on X of Euler characteristic
d. Then, for every integer r≥ max(e(HomX (I , ω)), 2), there is a vector bundle E
on X of rank r and degree−rd − 1 such that:
(i) h0(X, I ⊗ E) = 0 and h1(X, I ⊗ E) = 1;
(ii) the unique (modulo k∗) non-zero homomorphism I→ E∗⊗ω is an embedding
with torsion-free cokernel.
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Proof. Let m � 0 be an integer such thatH 0(X, I (−m)) = 0 andHomX (I , ω)(m)
is generated by global sections. Sincer ≥ max(e(HomX (I , ω)), 2) andk is infi-
nite, then there is a surjectionp : O ⊕r

X � HomX (I , ω)(m). Applying HomX (·, ω)
to p, we obtain an embeddingI (−m) ↪→ ω⊕r , whose cokernel is torsion-free
sinceExt1X (F , ω) = 0 for every torsion-free sheafF on X [4, p. 96]. Twisting by
OX (m) and lettingE := OX (−m)⊕r , we get thatH 0(X, I ⊗E) = 0 and there is a
short exact sequence onX of the form

0→ I
µ→E∗ ⊗ ω

q→C → 0 ,

whereC is torsion-free.
Let h := h1(X, I ⊗E). If h = 1, then the proposition is proved. We will show

by descending induction onh that we can chooseE as in the above paragraph
with h = 1. Supposeh > 1. Let λ : I → E∗ ⊗ ω be a homomorphism that is not
a multiple ofµ. SinceI is simple by [4, Lemma 5.4, p. 83], then the composition
p := q ◦λ is not zero. SinceC is torsion-free, then there is a regular pointx ∈ X
such thatp(x) /= 0. Let σ : C(x) → I (x) be a splitting forρ(x). Let

F := (ker(E∗ → E∗(x)
q(x)→ C(x)

σ→ I (x)))∗ .

(We implicitly chose a trivialization ofω at x. Any other choice of trivialization
yields the same subsheafF .) Then F is a vector bundle of degF = degE + 1
and rankr . By definition of F , we have thatµ factors through an embedding
µ′ : I → F∗ ⊗ ω, but λ does not. Thush1(X, I ⊗ F ) < h1(X, I ⊗ E). Since
degF = degE + 1, thenH 0(X, I ⊗ F ) = 0. It is clear that the cokernel ofµ′ is
torsion-free. The induction proof is complete.ut
Corollary 2 The functorJ̄d is representable by a scheme.

Proof. First note that properties (i) and (ii) in the statement of Proposition 1 are
open onI . More precisely, given a vector bundleE on X of rank r and degree
−rd − 1, the subfunctorUE ⊆ J̄d, parametrizing sheavesI satisfying properties
(i) and (ii) in the statement of Proposition 1, is open. By Proposition 1, the
subfunctorsUE cover J̄d. Thus to show that̄Jd is representable we need only
show that eachUE is representable.

Fix a vector bundleE on X of rank r and degree−rd − 1. Let

V ⊆ QuotX (E∗ ⊗ ω)

be the open subscheme parametrizing those quotientsq : E∗⊗ω → G such that
both G and ker(q) are torsion-free, ker(q) has rank 1,

h0(X, ker(q)⊗ E) = 0 and h1(X, ker (q)⊗ E) = 1 .(2.1)

There is a morphism of functorsV → UE sending a quotient [q] ∈ V to its
kernel, [ker (q)] ∈ UE . It follows from (2.1) that the latter morphism is an
isomorphism. The proof is complete.ut

We will say that a vector bundleE on X of rank r and degree−rd − 1
satisfying properties (i) and (ii) in the statement of Proposition 1represents I.
We remark that the property of representingI is open.
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3 The Theta divisor

Assume from now on thatg > 0. Let I be a universal relatively torsion-free,
rank 1 sheaf onX × J̄0 over J̄0. Denote byp : X × J̄0 → J̄0 the projection map.
Define

L := (detRp∗(I ))−1 ,

where detRp∗ denotes the determinant of cohomology associated with the pro-
jection p. (For a brief description ofRp∗ see [6] or [19]; for a more in-depth
development of the theory of determinants, see [12].) Since the sheafI has
relative Euler characteristic 0 over̄J0, thenL is independent on the choice of
a universal sheafI , and there is a canonical global sectionθ of L whose zero
schemeΘ parametrizes torsion-free, rank 1 sheavesI of Euler characteristic 0
on X such that

h0(X, I ) = h1(X, I ) /= 0 .

Equivalently, by Serre’s duality,Θ consists of the torsion-free, rank 1 sheaves
of Euler characteristic 0 that can be embedded into the dualizing sheafω. In
other words,Θ is (set-theoretically) the image of the (g − 1)-th component of
the Abel-Jacobi map:

Ag−1 : Quotg−1
X (ω) → J̄0 ,

whereAg−1 sends a quotient [q] ∈ Quotg−1
X (ω) to its kernel, [ker (q)] ∈ J̄0 (cf.

[4, p. 87].) We say thatL is the Theta line bundle, andΘ is the Theta divisor
(even though it is not known whetherΘ is actually a Cartier divisor in general).

If X is smooth, then

Quotg−1
X (ω) ∼= Hilbg−1

X = Symmg−1(X) ,

where Hilbg−1
X := Quotg−1

X (OX ) is the Hilbert scheme, parametrizing (g−1)-uples
of points inX, and Symmg−1(X) is the symmetric product of (g − 1) copies of
X. HenceΘ corresponds to the classical Theta divisor (cf. Sect. 1).

Assume thatX is locally planar, that is, that the embedding dimension of
each point ofX is at most 2. Equivalently, assume thatX can be embedded
into a quasi-projective smooth surface [2]. Then Quotg−1

X (ω) and J̄0 are integral,
local complete intersections of dimensionsg − 1 and g, respectively. (Since
locally planar curves are Gorenstein, then Quotg−1

X (ω) ∼= Hilbg−1
X , and thus our

statement follows from [1, Cor. 7 and Thm. 9].) In this case,Θ is an irreducible,
local complete intersection, effective Cartier divisor onJ̄0. Moreover, it is clear
that Ag−1 is an isomorphism over the open subscheme ofΘ parametrizing
torsion-free, rank 1 sheavesI with h1(X, I ) = 1. From [4, Prop. 3.5.ii, p. 76],
this open subscheme is dense. SinceΘ is Cohen-Macaulay and irreducible, and
Quotg−1

X (ω) is integral, thenΘ is also integral. We observe that the assumption
that X is locally planar is essential in the above argument. IfX is not locally
planar, thenJ̄0 is not irreducible (cf. [11] or [17, Thm. A]), and may have
dimension greater thang (cf. [1, Ex. 13, p. 10]).

We observe that the above notions and arguments can be extended to fami-
lies of integral, complete curves without difficulty [6]. Moreover, the formation
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of θ and L commutes with base change, since so does the determinant of co-
homology. From this observation it follows that Poincaré’s formula holds for
locally planar curves. Namely, we claim that, ifX is locally planar, then the
self-intersectionΘg is equal tog!. In fact, the claim is known for smooth curves
[13, Sect. 2]. Since every locally planar curve is part of a family whose general
member is a smooth curve, then we may apply the principle of conservation of
intersection number to prove our claim.

As we have already remarked, it is not known whetherΘ is always a Cartier
divisor. Nevertheless, Soucaris showed that the zero scheme of the restriction of
the canonical sectionθ to the maximum reduced subscheme ofJ̄0 is a Cartier
divisor [19, Thm. 8, p. 236].

4 Very ampleness

Recall the notations of Sect. 3. IfE is a vector bundle onX with degE = 0, then
I ⊗E has relative Euler characteristic 0 overJ̄0. Therefore, the invertible sheaf

LE = (detRp∗(I ⊗ E))−1

on J̄0 has a canonical global sectionθE , whose zero schemeΘE parametrizes
torsion-free, rank 1 sheavesI of Euler characteristic 0 onX such that

h0(X, I ⊗ E) = h1(X, I ⊗ E) /= 0 .

As before,LE andθE are independent on the choice of a universal sheafI .

Lemma 3 Let E and F be vector bundles on X of same rank and degree 0. If
detE ∼= detF, thenLE

∼= LF .

Proof. By Seshadri in [18, Lemma 2.5, p. 165].ut
By Lemma 3, ifE is a vector bundle onX of rank n and detE ∼= OX , then

LE
∼= L ⊗n. Thus we may considerθE as a global section ofL ⊗n under the

latter isomorphism. In this case we say thatθE is a theta section of degree n. We
now have a convenient way to produce sections of powers ofL .

For every integerd, let J d be the Jacobian ofX, parametrizing invertible
sheaves of degreed on X. Recall thatJ d is connected, quasi-projective and
smooth.

Lemma 4 Let n ≥ 2. For each i = 1, . . . , n, let di be an integer and Ui ⊆ J di

be a non-empty, open subset. Let L be an invertible sheaf of degree d1 + . . . + dn.
Then there are points[Li ] ∈ Ui for every i = 1, . . . , n such that

L ∼=
n⊗

i =1

Li .
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Proof. Consider the morphismφ : U1 × . . .× Un−1 → J dn , given by

([M1], . . . , [Mn−1]) 7→ [L⊗M−1
1 ⊗ . . .⊗M−1

n−1] .

It is clear that the imageV of φ is open inJ dn . SinceJ dn is irreducible, then
V ∩ Un /= ∅. Thus there is a point [Li ] ∈ Ui for eachi = 1, . . . , n such that

Ln
∼= L⊗ L−1

1 ⊗ . . . L−1
n−1 .

The proof is complete. ut
Theorem 5 The sheafL ⊗n is generated by global sections if n≥ 2.

Proof. Fix n ≥ 2. Let I be a torsion-free, rank 1 sheaf onX of Euler characteristic
0. We will show that there is a vector bundleE on X of rank n and detE ∼= OX

such that
h0(X, I ⊗ E) = h1(X, I ⊗ E) = 0 .(5.1)

In this case, the sectionθE generatesL ⊗n at [I ], thereby proving the theorem.
By the proof of [19, Prop. 7, p. 235], there is an invertible sheafL on X of

degree 0 such that
h0(X, I ⊗ L) = h1(X, I ⊗ L) = 0 .

By semicontinuity, there is an open, dense subsetU ⊆ J 0, containing [L], such
that if [M ] ∈ U , then

h0(X, I ⊗M ) = h1(X, I ⊗M ) = 0 .

From Lemma 4, withUi := U for everyi = 1, . . . , n, there are invertible sheaves
M1, . . .Mn of degree 0 onX such that

h0(X, I ⊗Mi ) = h1(X, I ⊗Mi ) = 0

for every i = 1, . . . , n, and

M1 ⊗ . . .⊗Mn
∼= OX .

If we now let E := M1 ⊕ . . . ⊕Mn, thenE satisfies (5.1) and detE ∼= OX . The
proof is complete. ut

Soucaris had used [19, Prop. 7, p. 235] to show that the pullback ofL ⊗2 to
the normalization of̄J0 is generated by global sections [19, Prop. 9, p. 236].

If S is a k-scheme andF is a vector bundle onX × S of relative degreed
over S, then we denote byπF : S → J d the determinant morphism, mapping
s ∈ S to [detF (s)] ∈ J d.

Lemma 6 Let F1, . . . ,Fn be vector bundles on X of same rank r and same degree
d. Then there are a connected, smooth k-scheme S and a vector bundleF on
X × S such thatπF is smooth, and Fi ∼= F (si ) for some si ∈ S , for each
i = 1, . . . , n.
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Proof. Let m � 0 be such thatFi (m) is generated by global sections for every
i = 1, . . . , n. Sincek is infinite, then there is an exact sequence of the form

0→ OX (−m)⊕r−1 → Fi → (detFi )((r − 1)m) → 0(6.1)

for eachi = 1, . . . , n. Let P be a universal sheaf onX×J d. Let p : X×J d → J d

denote the projection map, and letV := R1p∗(P −1(−rm))⊕r−1. Choosem � 0
such thatV is locally free, and letT := PJ d (V ∗). SinceV is locally free, then
T is smooth overJ d. SinceJ d is connected, smooth and quasi-projective, then
so is T. The schemeT parametrizesOX -module extensions ofL((r − 1)m) by
OX (−m)⊕r−1 for invertible sheavesL on X of degreed. Thus there issi ∈ T
corresponding to (6.1) for eachi = 1, . . . , n. SinceT is quasi-projective, then
there is an affine open subschemeS ⊆ T containings1, . . . , sn. SinceS is affine,
then

V (S) = Ext1X×S(P |X×S ((r − 1)m), OX×S(−m)⊕r−1) .

Let q : V ∗
T → Q be the universal quotient onT over J d. Then q induces an

extension of the form

0→ OX×S(−m)⊕r−1 ⊗ Q → F → P |X×S ((r − 1)m) → 0

on X×S that specializes to (6.1) oversi , for eachi = 1, . . . , n. By construction,
πF is equal to the restriction toS of the structure morphismT → J d. ThusπF
is smooth. The proof is complete.ut

Let eX := maxI e(I ), where the maximum runs over all torsion-free, rank 1
sheaves onX. If S is a k-scheme, we say that anS-flat coherent sheafC on
X × S is relatively torsion-freeif C (s) is torsion-free for everys ∈ S.

Theorem 7 The sheafL ⊗n is very ample for every n≥ max(eX , 2) + 1.

Proof. Fix n ≥ max(eX , 2) + 1. By Theorem 5, the sheafL ⊗n is generated
by global sections. We need only show thatL ⊗n separates points and tangent
vectors onJ̄0. The former is Step 1, while the latter is Step 2 below.

Step 1.Let I1 andI2 be non-isomorphic torsion-free, rank 1 sheaves onX of Euler
characteristic 0. Then there is a vector bundleE on X of rank n and detE ∼= OX

such thatθE([I1]) /= 0, butθE([I2]) = 0.

Proof of Step 1.By Proposition 1, sincen ≥ max(eX , 2) + 1, there is a vector
bundleFi on X of rank n − 1 and degree−1 representingIi for eachi = 1, 2.
From Lemma 6, since the property of representing a torsion-free, rank 1 sheaf is
open, we may assume that there are a non-empty, connected, smoothk-scheme
S, and a vector bundleF on X × S of rank n− 1 and relative degree−1 over
S such that the determinant morphismπF is smooth, andF (s) represents both
I1 and I2 for everys ∈ S.

By replacingS with an open, dense subscheme if necessary, we may assume
that for eachi = 1, 2 there is an exact sequence

0→ Ii ⊗ OS
λi→F ∗ ⊗ ω

qi→Ci → 0
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on X × S, whereCi is a relatively torsion-free sheaf overS. If the composition
ρ := q2 ◦ λ1 were zero over a certains ∈ S, thenλ1(s) would factor throughI2,
and sinceχ(I1) = χ(I2) we would have thatI1

∼= I2. Thusρ : I1⊗OS → C2 is an
embedding withS-flat cokernel. SinceC2 is relatively torsion-free, by replacing
S with an open, dense subscheme if necessary, we may assume that there is a
regular pointx ∈ X such thatρ(x) : I1(x) ⊗ OS → C2(x) is an embedding with
free cokernel. Letσ : C2(x) → I1(x)⊗ OS be a splitting forρ(x). Let

G := (ker (F ∗ → F ∗(x)
q2(x)→ C2(x)

σ→ I1(x)⊗ OS))∗ .

(As in the proof of Proposition 1, we implicitly chose a trivialization ofω at x.)
ThenG is a vector bundle onX×S of rank n−1 and relative degree 0 overS.
Moreover, detG (s) ∼= detF (s)⊗OX (x) for everys ∈ S. Thus the determinant
morphismπG is also smooth. In addition,λ2 factors throughG ∗⊗ω, butλ1(s)
does not factor throughG ∗(s)⊗ ω(s) for any s ∈ S. Thus

h0(X, I1 ⊗G (s)) = 0 , but h0(X, I2 ⊗G (s)) /= 0

for everys ∈ S.
By the proof of [19, Prop. 7, p. 235] (see the proof of Theorem 5), there is

an open dense subsetU ⊆ J 0 such that

h0(X, I1 ⊗ L) = h0(X, I2 ⊗ L) = 0

for every [L] ∈ U . By Lemma 4 applied toU1 := πG (S) andU2 := U , there are
s ∈ S and [L] ∈ U such that

(detG (s))⊗ L ∼= OX .

It is clear thatE := G (s)⊕ L satisfies detE ∼= OX and

h0(X, I1 ⊗ E) = 0, but h0(X, I2 ⊗ E) /= 0 .

ThusθE([I1]) /= 0, butθE([I2]) = 0. The proof of Step 1 is complete.ut
Step 2.Let I be a torsion-free, rank 1 sheaf onX with χ(I ) = 0. Let v ∈ TJ̄0,[I ]

be a non-zero tangent vector on̄J0 at [I ]. Then there is a vector bundleE on X
of rank n and detE ∼= OX such thatΘE contains [I ] but not v.

Proof of Step 2.As in Step 1, we may assume that there are a non-empty,
connected, smoothk-schemeS, and a vector bundleF on X × S of rank
n − 1 and relative degree−1 over S, such that the determinant morphismπF
is smooth, andF (s) representsI for everys ∈ S.

By replacingS with an open, dense subscheme if necessary, we may assume
that there is an exact sequence

0→ I ⊗ OS
λ→F ∗ω

q→C → 0

on X × S, whereC is a relatively torsion-free sheaf overS. By the proof of
Corollary 2, we have natural identifications
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TJ̄0,[I ] = TQ(s),[q(s)] = HomX (I ,C (s))(7.1)

for everys ∈ S, whereQ(s) := QuotX (F ∗(s)⊗ω). So there is a homomorphism
ν : I ⊗OS → C such thatν(s) = v under the identification (7.1) for everys ∈ S.
Sincev /= 0, thenν is an embedding withS-flat cokernel. SinceC is relatively
torsion-free, by replacingS with an open, dense subscheme if necessary, there
is a regular pointx ∈ X such thatν(x) is an embedding with free cokernel. Let
σ : C (x) → I (x)⊗ OS be a splitting forν(x). Let

G := (ker (F ∗ → F ∗(x)
q(x)→ C (x)

σ→ I (x)⊗ OS))∗ .

(As in the proof of Step 1, we implicitly chose a trivialization ofω at x.) ThenG
is a vector bundle onX×S of rankn−1 and relative degree 0 overS. Moreover,
detG (s) ∼= detF (s)⊗OX (x) for everys ∈ S. Thus the determinant morphism
πG is smooth. In addition,λ factors throughG ∗ ⊗ ω. Thus [I ] ∈ ΘG (s) for
every s ∈ S. On the other hand, sinceν(x) is an embedding, thenv does not
belong toΘG (s) for any s ∈ S.

The reader is invited to repeat the argument in the last paragraph of the proof
of Step 1 to finish the proof of Step 2. The proof of Theorem 7 is complete.ut
Remark 8Let x ∈ X. Let O x denote the normalization ofOx . Let δx denote the
length ofO x/Ox . If I is a torsion-free, rank 1 module overOx , then it is easy
to show thatI is isomorphic to a submodule ofO x containingOx . Thus

dimk I (x) ≤ δx + 1 .(8.1)

If the conductor,Cx := (Ox : O x), is the maximal idealmx of Ox , then equality
in (8.1) is achieved forI = O x only; otherwise the inequality (8.1) is always
strict. Let

δX := max
x∈X

δx .

Since X is generically non-singular, thenδX < ∞. It follows from (8.1) that
eX ≤ δX + 1.

Theorem 7 states thatL ⊗3 is very ample ifeX ≤ 2. This is the case forX
non-singular, or with at most ordinary nodes or cusps as singularities, asδX ≤ 1.
It is clear that ifeX ≤ 2 thenX is locally planar. IfδX = 2, theneX ≤ 2 if and
only if X is locally planar. IfδX = 3, theneX ≤ 2 if and only if X is locally
planar andm2

x /= Cx for everyx ∈ X. Note that the planar curveX ⊆ P2
k , given

as the zero scheme ofu3w − v4, haseX = 3.

Question 9It follows from the proof of the theorem in [14, Sect. 17, p. 163]
that, if X is smooth, then 3Θ is very ample, and the sectionsθE associated to
completely decomposable vector bundlesE (that is: vector bundlesE of the
form L1⊕L2⊕L3, whereLi is an invertible sheaf of degree 0 fori = 1, 2, 3, and
L1 ⊗ L2 ⊗ L3

∼= OX ), are enough to embedJ0 into a projective space. We might
ask: for which integral curvesX are such sections enough to embedJ̄0 into a
projective space? The proof of Theorem 7 shows that the sectionsθE associated to
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vector bundlesE of the formF⊕L, whereF is a vector bundle of rank max(eX , 2)
and degree 0, the sheafL is invertible of degree 0 and (detF ) ⊗ L ∼= OX , are
enough to embed̄J0 into a projective space.

Example 10Let X be a complete, integral curve of arithmetic genusg = 1. As a
subset,Θ is the locus of torsion-free, rank 1 sheavesI with Euler characteristic
0 such thath0(X, I ) > 0. Sinceχ(OX ) = 0, then any non-zero sectionOX → I
must be an isomorphism. SinceΘ is integral by Sect. 3, thenΘ = [OX ], as Cartier
divisors of J̄0.

By [3, Ex. 8.9.iii, p. 109], the first component of the Abel-Jacobi map,

A1 : X → J̄−1

x 7→ [mx ] ,

where mx denotes the maximal ideal sheaf ofx, is an isomomorphism. Fix a
regular pointx ∈ X. Then we have an isomorphismφx : J̄−1 → J̄0, by sending
[I ] ∈ J̄−1 to [I (x)] ∈ J̄0. Under the compositionψ := φx ◦A1, the Cartier divisor
Θ corresponds to the Cartier divisor [x] in X.

Let n ≥ 3 be an integer. The complete linear system associated toOX (nx)
gives rise to an embeddingX ↪→ Pn−1. If H ⊆ Pn−1 is a hyperplane intersecting
X at regular pointsy1, . . . , yn, then [y1] + . . . + [yn] is a Cartier divisor onX
whose associated invertible sheaf isOX (nx). Underψ, the divisor [y1] + . . .+ [yn]
corresponds toΘE , where

E = (OX (y1)⊕ . . .⊕ OX (yn))⊗ OX (−x) .

It follows now from Bertini’s theorem that the theta sections of degreen as-
sociated to completely decomposable vector bundles generateH 0(J̄0,L ⊗n) for
every n ≥ 0. (In casen ≤ 2 it is easy to check the latter statement directly.)
Thus, for the case of curves of arithmetic genus 1, Question 9 is answered in the
affirmative.
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