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1 Introduction

If X is a smooth, complete, connected curve over an algebraically closed field,
then the Jacobialy, parametrizing invertible sheaves ¥rof Euler characteristic

0, is projective and admits a canonical ample diviégrthe Theta divisor. Ify
denotes the genus of, then®© is the scheme-theoretic image of the Abel-Jacobi
morphismX9—t — Jy, given by

(P1,---,Pg—1) = Ox(Pr+ ... +Py_1) .

It follows from [14, Sect. 17, p.163] thatcBis very ample. _

In the singular case, D’Souza has constructed a natural compactifidgfiam
the Jacobiad, of a complete, integral curve over an algebraically closed field [5].
The schemely parametrizes torsion-free, rank 1 sheaves of Euler characteristic
0 onX. A natural question in this context is whether there is a canonical Cartier
divisor onJy extending the notion of the classical Theta divisor.

The above question was partially and independently answered in [6] and [19].
In these two works the same canonical line bundleon J, and the same global
sectionf of £ are defined. For smooth curves, the zero schemé isf the
classical Theta diviso®. In [19] Soucaris shows that the zero scheme of the
restriction off to the maximum reduced subschemelJgfis a Cartier divisor.
Both [6] and [19] show thatZ is ample. It remains to determine whether the
zero scheme of on Jp is a Cartier divisor in general, and what is the minimum
n such thatZ®" is very ample.

In this article our main concern is with the latter question. We will show that
N is very ample fom at least equal to a specified lower bound (Theorem 7).
If X has at most ordinary nodes or cusps as singularities, then our lower bound is
3. Our main tool is to use theta sectiofisassociated to vector bundl&son X.

* Supported by a Starr fellowship from the MIT Japan Program.
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The theta sections were used by Faltings [9] to construct the moduli of semistable
vector bundles on a smooth, complete curve without using Geometric Invariant
Theory (see also [18]). In a forthcoming work [7], [8] we will apply such method
to construct the compactified Jacobian for families of reduced curves.

The importance of Theorem 7 is that we obtain a canonical projective em-
bedding ofJy in P(H%(Jo, £®")), for n minimum such thatZ ®" is very am-
ple. By studying the structure of the homogeneous coordinate ringy oh
P(H%(Jo, £ ®")), maybe in a way analogous to Mumford's in [15] and [16],
we might be able to understand better the algebraic structudg of

Notation.We will often deal with parameter spaces, that is, spaces whose points
are classes representing certain objects. In such context, we will employ the
usual bracket notationF|] for the point representing the obje&t. If E is a
vector bundle on a schem& we denote byPy (E) the corresponding projective
bundle overY. By a point we mean a closed point.

2 The compactified Jacobian

Let X be a complete, integral curve over an algebraically closed kieldenote
by ¢ the arithmetic genus oX, and byw the dualizing sheaf oiX. A coherent
sheafl on X is torsion-freeif |1, is a torsion-free%-module for everyx € X. A
coherent shealf on X is rank 1if | is generically invertible. By [4, p. 96], the
sheafw is torsion-free, rank 1. Fix an ample line bundig (1) on X. For every
coherent shedf on X, let Quofft)(F) denote Grothendieck’s Quot-scheme [10],
parametrizing quotients ¢f with Hilbert polynomialp(t) with respect ta’x (1).
We will drop the superscripp(t) whenever it is not important.

For every integed, let J4 denote thecompactified Jacobian functofFor
eachk-schemesS, the setly(S) consists of equivalence classessflat coherent
sheaves” on X x S such that7/(s) is torsion-free, rank 1 of Euler characteristic
d for everys € S. (Two sheaves7; and.% are called equivalent if there is an
invertible sheaN on S such that7 ¥~ .% @ N). D'Souza [5] and Altman and
Kleiman [3], [4] have shown thaly is represented by a (projective) scheme
Ju, the compactilied JacobianHere we present yet another proof of the repre-
sentability ofJy by a scheme, a proof more suitable for treating the question of
very ampleness in Sect. 4.

For every torsion-free, rank 1 shelafon X, let

e(l) := maxdimy 1 (x) .
xeX
Sincel is generically invertible, then ¥ e(l) < cc.

Proposition 1 Let | be a torsion-free, rank 1 sheaf on X of Euler characteristic
d. Then, for every integer » max@(Homy (I, w)), 2), there is a vector bundle E
on X of rank r and degree rd — 1 such that:

(i) h°(X,1 ® E)=0and h'(X,| ®E) =1;

(ii) the unique (modulo K) non-zero homomorphism+ E*®w is an embedding
with torsion-free cokernel.
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Proof. Letm >> 0 be an integer such thet®(X, I (—m)) = 0 andHom, (I , w)(m)

is generated by global sections. Sirce> max@(Homy (I, w)), 2) andk is infi-
nite, then there is a surjectign: @@r — Homy (I, w)(m). Applying Homy (-, w)
to p, we obtain an embedding(—m) — w®", whose cokernel is torsion-free
sinceExty (F,w) = 0 for every torsion-free she& on X [4, p. 96]. Twisting by
x(m) and lettingE := x(—m)®", we get thaH °(X,1 ® E) = 0 and there is a
short exact sequence ohof the form

01 LE* QwiC -0,

whereC is torsion-free.

Let h := h(X,1 ®E). If h = 1, then the proposition is proved. We will show
by descending induction on that we can choosgE as in the above paragraph
with h = 1. Supposér > 1. Let A : | — E* ® w be a homomorphism that is not
a multiple of . Sincel is simple by [4, Lemma 5.4, p. 83], then the composition
p :=qo\is not zero. Sinc€ is torsion-free, then there is a regular poine X
such thatp(x) # 0. Leto : C(x) — | (x) be a splitting forp(x). Let

F = (kerE* — E*() W cx)Z1x)" .

(We implicitly chose a trivialization ofo at x. Any other choice of trivialization
yields the same subsheBf) ThenF is a vector bundle of deg = degkE + 1
and rankr. By definition of F, we have thaf: factors through an embedding
w1 — F*®w, but A does not. Thuh'(X,l ® F) < h'(X,l ® E). Since
degF = degE +1, thenH?(X,I ® F) = 0. It is clear that the cokernel ¢f is
torsion-free. The induction proof is complete.

Corollary 2 The functordg is representable by a scheme.

Proof. First note that properties (i) and (i) in the statement of Proposition 1 are
open onl . More precisely, given a vector bundieon X of rankr and degree
—rd — 1, the subfunctotJg C Jg4, parametrizing sheavdssatisfying properties
(i) and (i) in the statement of Proposition 1, is open. By Proposition 1, the
subfunctorsUg coverJy. Thus to show thafly is representable we need only
show that eaclUg is representable.

Fix a vector bundlée on X of rankr and degree-rd — 1. Let

V C Quok (E* ® w)

be the open subscheme parametrizing those quotienE* ® w — G such that
both G and ker(]) are torsion-free, keqf) has rank 1,

(2.1) ho(X,ker@@) ® E)=0 and h(X,ker@ ®E)=1.

There is a morphism of functord — Ug sending a quotientq] € V to its
kernel, [ker€)] € Ug. It follows from (2.1) that the latter morphism is an
isomorphism. The proof is complete.O

We will say that a vector bundl& on X of rank r and degree-rd — 1
satisfying properties (i) and (ii) in the statement of Propositiorefdresents |
We remark that the property of representings open.
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3 The Theta divisor

Assume from now on thag > 0. Let.7 be a universal relatively torsion-free,
rank 1 sheaf orX x Jy overJy. Denote byp : X x Jg — Jo the projection map.
Define

% = (detRp, (7)) 1,

where deRp, denotes the determinant of cohomology associated with the pro-
jection p. (For a brief description oRp. see [6] or [19]; for a more in-depth
development of the theory of determinants, see [12].) Since the shehhs
relative Euler characteristic 0 ovds, then &~ is independent on the choice of
a universal shea®, and there is a canonical global sectibof .~ whose zero
scheme® parametrizes torsion-free, rank 1 sheaVvesf Euler characteristic 0
on X such that

ho(X,1) =h(X,1)#0.

Equivalently, by Serre’s duality® consists of the torsion-free, rank 1 sheaves
of Euler characteristic 0 that can be embedded into the dualizing shelaf
other words,© is (set-theoretically) the image of the € 1)-th component of
the Abel-Jacobi map: _

4971 Quot M w) — Jo,

where. 49~ sends a quotient] € Quoﬁ_l(w) to its kernel, [kerq)] € Jo (cf.

[4, p.87].) We say thatZ is the Theta line bundleand© is the Theta divisor

(even though it is not known whethér is actually a Cartier divisor in general).
If X is smooth, then

Quot, Y(w) = Hilb§ ™! = Symnf~1(X) ,

where Hillg, ! := Quot, () is the Hilbert scheme, parametrizing{1)-uples
of points inX, and Symmi~%(X) is the symmetric product ofy(— 1) copies of
X. Hence® corresponds to the classical Theta divisor (cf. Sect. 1).

Assume thatX is locally planar, that is, that the embedding dimension of
each point ofX is at most 2. Equivalently, assume thétcan be embedded
into a quasi-projective smooth surface [2]. Then (QU&)@A) andJy are integral,
local complete intersections of dimensions— 1 and g, respectively. (Since
locally planar curves are Gorenstein, then (ﬁUE)(w) > Hilbi’l, and thus our
statement follows from [1, Cor. 7 and Thm. 9].) In this ca®eis an irreducible,
local complete intersection, effective Cartier divisor n Moreover, it is clear
that. 49-1 is an isomorphism over the open subschemeSoparametrizing
torsion-free, rank 1 sheavéswith h'(X,1) = 1. From [4, Prop. 3.5.ii, p. 76],
this open subscheme is dense. Sigtés Cohen-Macaulay and irreducible, and
Quoﬁ_l(w) is integral, then® is also integral. We observe that the assumption
that X is locally planar is essential in the above argumeniX Ifs not locally
planar, thenJy is not irreducible (cf. [11] or [17, Thm. A]), and may have
dimension greater tham (cf. [1, Ex. 13, p. 10]).

We observe that the above notions and arguments can be extended to fami-
lies of integral, complete curves without difficulty [6]. Moreover, the formation
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of # and £ commutes with base change, since so does the determinant of co-
homology. From this observation it follows that Poir&arformula holds for
locally planar curves. Namely, we claim that, Xf is locally planar, then the
self-intersectior®? is equal tog!. In fact, the claim is known for smooth curves
[13, Sect. 2]. Since every locally planar curve is part of a family whose general
member is a smooth curve, then we may apply the principle of conservation of
intersection number to prove our claim.

As we have already remarked, it is not known whetheis always a Cartier
divisor. Nevertheless, Soucaris showed that the zero scheme of the restriction of
the canonical sectiofl to the maximum reduced subschemeJgfis a Cartier
divisor [19, Thm. 8, p. 236].

4 \ery ampleness

Recall the notations of Sect. 3.0 is a vector bundle oiX with degE = 0, then
.7 ® E has relative Euler characteristic 0 oMgr Therefore, the invertible sheaf

Y = (detRp.(7 @ E)) !

on J_o has a canonical global sectiglz, whose zero schem@g parametrizes
torsion-free, rank 1 sheavésof Euler characteristic 0 oX such that

ho(X,1 @ E) =h}(X,1 ® E)#0.
As before, Zg andfg are independent on the choice of a universal shgaf

Lemma 3 Let E and F be vector bundles on X of same rank and degree 0. If
detE * detF, then Zg ~ Z¢.

Proof. By Seshadri in [18, Lemma 2.5, p. 165]O0

By Lemma 3, ifE is a vector bundle oX of rankn and deE ¥ ¢, then
Le = £ Thus we may considelz as a global section of4®" under the
latter isomorphism. In this case we say thatis atheta section of degree. We
now have a convenient way to produce sections of powerg of

For every integed, let J¢ be the Jacobian oK, parametrizing invertible
sheaves of degred on X. Recall thatJ? is connected, quasi-projective and
smooth.

Lemma 4 Letn> 2. Foreachi=1,...,n, let d be an integer and YC J¢
be a non-empty, open subset. Let L be an invertible sheaf of degtee dt d,.
Then there are pointl;] € U; for every i=1,...,n such that

n
L°_’®Li )
i=1
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Proof. Consider the morphism : Uy x ... x U,_1 — J%, given by
(Mi],...,[Mpa]) = [LOM P ® ... oM 4.

It is clear that the imag® of ¢ is open inJ%. SinceJ% is irreducible, then
V NU, # 0. Thus there is a pointL{] € U; for eachi =1,...,n such that

La¥leli'e... 1.
The proof is complete. O
Theorem 5 The sheafZ ®" is generated by global sections ifn 2.

Proof. Fixn > 2. Letl be atorsion-free, rank 1 sheaf ¥rof Euler characteristic
0. We will show that there is a vector bundteon X of rankn and deE = 7
such that

(5.1) h°(X,1 ® E)=h'(X,l ® E)=0.

In this case, the sectiofe generatesZ®" at [l ], thereby proving the theorem.
By the proof of [19, Prop. 7, p.235], there is an invertible sheain X of
degree 0 such that
ho(X,1 @ L) =h'(X,l ®L)=0.

By semicontinuity, there is an open, dense suhset J°, containing [], such
that if [M] € U, then

ho(X,1 @ M) =h*(X,l @M)=0.

From Lemma 4, witiJ; := U for everyi = 1,... n, there are invertible sheaves
My, ... M, of degree 0 orX such that

ho(X,1 @ M;) =h(X,1 @ M;)=0
foreveryi =1,...,n, and

If we now letE :(=M; @ ... ® M,, thenE satisfies (5.1) and d& = . The
proof is complete. O

Soucaris had used [19, Prop. 7, p. 235] to show that the pullback &t to
the normalization ofly is generated by global sections [19, Prop. 9, p. 236].

If Sis ak-scheme and7 is a vector bundle oiX x S of relative degreel
over S, then we denote byt~ : S — J9 the determinant morphism, mapping
s € Sto [det7 (s)] € J9.

Lemma 6 LetFy, ..., F, be vector bundles on X of same rank r and same degree
d. Then there are a connected, smooth k-scheme S and a vector bandie

X x S such thatr~ is smooth, and F~ .7 (5) for some s € S, for each
i=1...,n.
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Proof. Let m > 0 be such thaF; (m) is generated by global sections for every
i =1,...,n. Sincek is infinite, then there is an exact sequence of the form

(6.1) 0 — O (—m)® 1 & F — (detF))((r — 1)m) — O

for eachi = 1,...,n. Let” be a universal sheaf o6xJ9. Letp : X xJ9 — Jd
denote the projection map, and &t := R'p,(#*~1(—rm))® ~1. Choosem > 0
such thatZ” is locally free, and leT := P;«(Z*). SinceZ" is locally free, then
T is smooth oved?. SinceJ? is connected, smooth and quasi-projective, then
so isT. The schemd parametrizeg%-module extensions df((r — 1)m) by
Cx(—m)® 1 for invertible sheaves on X of degreed. Thus there iss € T
corresponding to (6.1) for eadh= 1,...,n. SinceT is quasi-projective, then
there is an affine open subscheB\& T containingss, ..., $,. SinceS is affine,
then

77(S) = Ext, s(7 [xxs ((r — 1)m), Cxus(—m)> ) .

Let q : Z* — ¢ be the universal quotient of overJ9. Thenq induces an
extension of the form

0— Cxxs(-M* 10 =7 — 7 [xxs ((r —1)m) — 0

on X x S that specializes to (6.1) over, for eachi = 1, ..., n. By construction,
77 is equal to the restriction t8 of the structure morphismi — J¢. Thust -
is smooth. The proof is completed

Let ex := max e(l), where the maximum runs over all torsion-free, rank 1
sheaves oiX. If S is ak-scheme, we say that &flat coherent shea¥% on
X x S is relatively torsion-fredf Z°(s) is torsion-free for everg € S.

Theorem 7 The sheaf#®" is very ample for every &> max(ex,2) + 1

Proof. Fix n > max(x,2) + 1. By Theorem 5, the shed®®" is generated
by global sections. We need only show thH&t*" separates points and tangent
vectors onJy. The former is Step 1, while the latter is Step 2 below.

Step 1Let |, andl, be non-isomorphic torsion-free, rank 1 sheaveXasf Euler
characteristic 0. Then there is a vector burillen X of rankn and deE =
such thatde ([11]) # 0, butfe([12]) = O.

Proof of Step 1By Proposition 1, sincen > max(x, 2) + 1, there is a vector
bundleF; on X of rankn — 1 and degree-1 representind; for eachi =1, 2.
From Lemma 6, since the property of representing a torsion-free, rank 1 sheaf is
open, we may assume that there are a non-empty, connected, sknsciteme
S, and a vector bundle# on X x S of rankn — 1 and relative degree 1 over
S such that the determinant morphisrg- is smooth, and” (s) represents both
I; andl, for everys € S.

By replacingS with an open, dense subscheme if necessary, we may assume
that for each = 1, 2 there is an exact sequence

O-lod 7 owdh e -0
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on X x S, whereé is a relatively torsion-free sheaf ov&r If the composition

p = (20 A\ were zero over a certaim e S, then \y(s) would factor througho,

and sincey(l1) = x(l2) we would have thal; > |,. Thusp : I ® (%5 — &3 is an
embedding withS-flat cokernel. Sincez; is relatively torsion-free, by replacing

S with an open, dense subscheme if necessary, we may assume that there is a
regular pointx € X such thato(x) : 11(X) ® % — %3(x) is an embedding with

free cokernel. Let : Z3(x) — 11(X) ® s be a splitting forp(x). Let

% = (ker (7" =700 2 500 S 1100 © )

(As in the proof of Proposition 1, we implicitly chose a trivializationwfat x.)
Then < is a vector bundle oX x S of rankn — 1 and relative degree 0 ov&
Moreover, dets (s) = det7 (s) ® «(x) for everys € S. Thus the determinant
morphismrg is also smooth. In addition, factors throughs™ ® w, but A\1(s)
does not factor througy*(s) ® w(s) for anys € S. Thus

ho(X, 11 ® < (s)) =0, buth®X,l,® < (s)) #0

for everys € S.
By the proof of [19, Prop. 7, p.235] (see the proof of Theorem 5), there is
an open dense subgdt C J° such that

ho(X,l; ® L) = h°(X,l,®L) =0

for every L] € U. By Lemma 4 applied tdJ; := 74 (S) andU, := U, there are
se Sand L] € U such that

(detg(s)) @ L= .
It is clear thatE := & (s) & L satisfies deE = ¢’ and
ho(X,1; ® E) =0, buth’X,I,®@ E)#0.
Thus6g([11]) # 0, butfe([l2]) = 0. The proof of Step 1 is complete

Step 2.Let | be a torsion-free, rank 1 sheaf dhwith x(I) = 0. Letv € Ty
be a non-zero tangent vector dgat [I ]. Then there is a vector bund on X
of rankn and deE = % such thatOg contains [] but notv.

Proof of Step 2.As in Step 1, we may assume that there are a non-empty,
connected, smootk-schemeS, and a vector bundle” on X x S of rank
n — 1 and relative degree-1 overS, such that the determinant morphism-
is smooth, and” (s) represents for everys € S.

By replacingS with an open, dense subscheme if necessary, we may assume
that there is an exact sequence

00—l @G> 7T wdhe -0

on X x S, where ¢ is a relatively torsion-free sheaf ov&. By the proof of
Corollary 2, we have natural identifications
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(7.1) T5.01 = Toe).laen = Homx (I, £°(s))

for everys € S, whereQ(s) := Quot (.7 *(s) ®w). So there is a homomorphism
vl ®Cs — ¢ such that/(s) = v under the identification (7.1) for evegye S.
Sincewv # 0, thenv is an embedding witls-flat cokernel. SinceZ” is relatively
torsion-free, by replacing with an open, dense subscheme if necessary, there
is a regular poink € X such thatv(x) is an embedding with free cokernel. Let
o: ¢ (x) — 1(X)® s be a splitting forv(x). Let

G = (ker(7* — 70 W) 210 ® ).

(As in the proof of Step 1, we implicitly chose a trivializationwfatx.) Then&
is a vector bundle oX x S of rankn —1 and relative degree 0 ov&t Moreover,
det&'(s) = det7 (s) ® (% (x) for everys € S. Thus the determinant morphism
7y is smooth. In addition)\ factors through’¢™* ® w. Thus |] € O for
everys € S. On the other hand, sincgx) is an embedding, then does not
belong toO« () for anys € S.

The reader is invited to repeat the argument in the last paragraph of the proof
of Step 1 to finish the proof of Step 2. The proof of Theorem 7 is complete.

Remark 8Let x € X. Let @, denote the normalization @fy. Let §, denote the
length of @y /%. If | is a torsion-free, rank 1 module ovéy, then it is easy
to show thatl is isomorphic to a submodule @, containing¢%. Thus

(8.1) dime 1 (x) < 8 +1.

If the conductor,z; := (% : @), is the maximal ideain, of %, then equality
in (8.1) is achieved fot = @ only; otherwise the inequality (8.1) is always
strict. Let
bx = maxdy .
xeX

Since X is generically non-singular, thefx < oo. It follows from (8.1) that
ex < ox +1.

Theorem 7 states that ©3 is very ample ifex < 2. This is the case foX
non-singular, or with at most ordinary nodes or cusps as singularitiég, asl.
It is clear that ifex < 2 thenX is locally planar. Iféx = 2, thenex < 2 if and
only if X is locally planar. Iféx = 3, thenex < 2 if and only if X is locally
planar andm? # & for everyx € X. Note that the planar curvé C P2, given
as the zero scheme ofw — v*, hasex = 3.

Question 91t follows from the proof of the theorem in [14, Sect.17, p.163]
that, if X is smooth, then @ is very ample, and the sectioflg associated to
completely decomposable vector bundies(that is: vector bundleg€ of the
form Ly & L, @ L3, whereL; is an invertible sheaf of degree 0 foe 1,2, 3, and

L ® L, ® Lg ¥ ¢%), are enough to embed) into a projective space. We might
ask: for which integral curveX are such sections enough to emhigdnto a
projective space? The proof of Theorem 7 shows that the seéioassociated to
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vector bundle& of the formF &L, whereF is a vector bundle of rank masy(, 2)
and degree 0, the shehfis invertible of degree 0 and (de) ® L = ¢, are
enough to embed, into a projective space.

Example 10Let X be a complete, integral curve of arithmetic gegus 1. As a
subset© is the locus of torsion-free, rank 1 sheavewith Euler characteristic
0 such thath®(X, 1) > 0. Sincex(%) = 0, then any non-zero sectiafy, — |
must be an isomorphism. Sinégis integral by Sect. 3, the@ = [(’], as Cartier
divisors of Jo.

By [3, Ex. 8.9.iii, p. 109], the first component of the Abel-Jacobi map,

A X —>J_,1
X —[md],

where m, denotes the maximal ideal sheaf xf is an isomomorphism. Fix a
regular pointx € X. Then we have an isomorphisgy : J_1 — Jo, by sending
[11 € J_1to[l(X)] € Jo. Under the compositiogh := ¢y 0. 4, the Cartier divisor
© corresponds to the Cartier divisot][in X.

Let n > 3 be an integer. The complete linear system associatet (ox)
gives rise to an embedding — P"~. If H C P"~!is a hyperplane intersecting
X at regular pointsys,...,¥n, then 1] + ... +[yn] is a Cartier divisor onX
whose associated invertible sheaftig(nx). Undery, the divisor f;]+. .. +[yn]
corresponds t@g, where

E=(Cx(y) & ... 8 x(¥n)) ® Cx(—X) .

It follows now from Bertini's theorem that the theta sections of degreas-
sociated to completely decomposable vector bundles geneidtl, £ ®") for
everyn > 0. (In casen < 2 it is easy to check the latter statement directly.)
Thus, for the case of curves of arithmetic genus 1, Question 9 is answered in the
affirmative.
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