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1. Introduction

These notes grew out of a series of discussions on a recent paper bglihgkie

P. Goldstein and A. Sym [6]: these authors give a characterization of isothermic
surfaces as “soliton surfaces” by introducing a spectral parameter. In trying to
understand the geometric meaning of this spectral parameter, we observed some
analogies with the theory of conformally flat hypersurfaces in a four-dimensional
space form [10]. Inspired by this analogies we found a relation between the
concept of Darboux transformations of isothermic surfaces [8] and the recently
developed concept of curved flats in symmetric spaces [9] — at this point, we
would like to thank Prof. Alexander Bobenko for his interest in our work and
for helpful discussions on the Darboux transférnConsidering the “limiting
geometry” where the spectral parameler> 0, we obtain pairings of isothermic
surfaces by Christoffel transformations (duality) [5] (cf. also [2]). This was a key
tool in the recently discovered theory of “discrete isothermic surfaces” [3].

2. Curved Flats

A curved flat is the natural generalization of a developable surface in Euclidean
space: it is a submanifoll C G/K of a (pseudo-Riemannian) symmetric space
for which the curvature operator & /K vanishe$ on /\2 TM. Thus, a curved

flat may be thought of as the enveloping submanifold of a congruence of flats
— totally geodesic submanifolds — of the symmetric space. Taking a regular

* Partially supported by the Alexander von Humboldt Stiftung.
** Partially supported by NSF grant DMS 2905293.
1 Also, we would like to thank the referee for encouraging us to include the new material we
developed after finishing the first version of this paper.
2 ThusM is curvature isotropicin the sense of [9].
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parametrizationy : M — G/K of a curved flat and a framing : M — G of
this parametrization, the Maurer-Cartan fo#r= F ~1dF of the framing has a
natural decompositio® = ¢ + ¢, according to the symmetric decomposifion
g = t®p of the Lie algebrgs. Now the condition fory to parametrize a curved
flat may be formulated 4s

(1) [[@p ADp]p] =0.

In case thaG is semisimple, it is straightforwatdo see that this is equivalent
to

() [0, AN®,] =0.

To summarise, we have the
Definition of a curved flat: An immersior : M — G/K is said to parametrize
acurved flaf if the p-part in the symmetric decomposition of the Maurer-Cartan
form F~1dF = ¢ = &, +¢&, of a framingF : M — G of v defines a congruence
p — D,[p(ToM) of abelian subalgebras gf

At this point we should remark that curved flats naturally arise in one pa-
rameter families [9]: setting

(3) Dy =Dy + AP,

the Maurer-Cartan equatiah?, + ;[@ A®,] = 0 for the loopA — &, of forms
splits into the three equations

0 =d®P, + 3[De A D]
(4) 0=dd, +[D¢ A P,]
0=[®, AD,],

and hence the integrability of the loop— @) is equivalent to the forme
being the Maurer-Cartan forms for some framirgs: M — G of curved flats
vx : M — G/K. Thus integrable systems theory may be applied to produce
examples.

Now we will consider the case leading to the theory of isothermic surfaces:
let

(5) G :=04(5) and K :=0(3) x 01(2) .

3 Thust and p are the +1 and-1-eigenspaces, respectively, of the involution fixingnd so
satisfy the characteristic conditions

[e,€] C & [ep] Cp,[p,p]l CE

4 The product
[@ A P](v, w) = [D(v), ¥ (w)] — [B(w), ¥(v)]
defines a symmetric product on the space of Lie algebra valued 1-forms with values in the space of
Lie algebra valued 2-forms.
5 1n fact, [p, p] @ p is an ideal ofg so that we have a decompositigrn= ¥’ @ [p, p] © p where
¢’ is a complementary ideal commuting with,p] € p. Thus, if a C p satisfies [p, a], p] = 0 we
deduce thatd, a] lies in the center ofy and so vanishes.
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The coset spacé.(5,3) =G /K of space-like 3-planes in the Minkowski space

IRE becomes a six dimensional pseudo-Riemannian symmetric space of signa-
ture (3 3) when endowed with the metric induced by the Killing form. We will
consider two-dimensional curved flats

(6) v M2 = Gi(5,3)

satisfying the regularity assumption that the metric\dA induced by is non-
degenerate.
Fixing a pseudo orthonormal basig (..., es) of the Minkowski spaceR
with
I3 0
7) (e1,6) = Es := (0 0 1 )

1 0

we get the matrix representations

8 01(5) = {A € GI(5, R)|A'EsA = Es}
(8) 01(5) = {X € gl(5, R)|(EsX) + (EsX)' = 0} .

The subalgebrg and its complementary linear subspacen the symmetric
decomposition ok;(5) are given by the +1- resp-1-eigenspaces of the invo-

lutive automorphism AdD) : 01(5) — 01(5) with Q = ( 2o ) Writing

down the Maurer-Cartan form of a framirkg: M2 — Oy(5) of our curved flat
v : M2 — G,(5, 3) with this notation we obtain

FldF=d=d,+d, with

©) 2= (5 p): M@ xo

b, = (—Eznt 73) ™ —p.

The image of®, at eachp ¢ M2 is a 2-dimensional abelian subspacepabn
which the Killing form is non-degenerate. One can show that there are precisely
two K-orbits of maximal abelian subspacesyofone consists of 3-dimensional
subspaces which are isotropic for the Killing form while the other consists of
2-dimensional subspaces on which the Killing form has signaturé)(We
therefore conclude that the images of eagh are maximal abelian an -
conjugate and so we can pitinto the standard form
w1 —wi

(10) n= (% %)
by applying a gauge transformatiéh FH,H : M — K.

Calculating the Maurer-Cartan equation using the ansatz

0 w —1
(11) 0= (_w 0 -ii) and U = (g 0 )
%1 Y2 O v

together withn) given by (10), we see that
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(12) dwi =dw,=0.

So we are given canonical coordinatesy) : M — IR? by integratin§ the
forms wi andw,. Moreover, since we also hawy = 0, we may setv = —du
for a suitable functioru € C>°(M) — this gives usv = uydx — uxdy, whereuy
and uy denote the partial derivatives of in x- resp.y-directions. Finally, the
equations); A wi = 0 andy, A w, = 0 show thaty; = e“k;dx and vy, = e"kody
for two functionsk; € C>°(M).

[
We now perform a finaD,(2)-gauge ; e o0 M — O(3) x
0 e

01(2) and insert the spectral parameterto obtain the Maurer-Cartan form
discussed in [6]:

0 uydx — uxdy  —e'kpdx deldx  —xe Ydx
—uydx + uxdy 0 —ekody Aeldy  AeUdy
(13) &, = ekydx é'kody 0 0 0
e~ Ydx —Xe~Ydy 0 0 0
—XeYdx —eYdy 0 0 0

We are now lead directly to the theory of

3. Isothermic Surfaces

In the context of Mdbius geometry the three sph&#is viewed as the projective
light-cone PL* in IR} while the Lorentzian spherg; should be interpreted as
the space of (oriented) spheres in the three sphatew, denoting by

n:=Fe:M — St={vecR}(v,0) =1}
(14) f:=Fes: M — L*={v € R}|(v,v) = 0}
f=Fe:M —L*

one of the sphere congruences resp. the two immersions given by our Frame
we see that

Theorem: The sphere congruence n given by our curved flat is a Ribaucour
sphere congruenéewhich is enveloped by two isothermic immersions f ind

6 Since our theory is local, all closed forms may be assumed to be exact.

7 Or, equivalently, it may be interpreted as the space of (oriented) spheres and planes in Euclidean
three spacdR3: the polar hyperplane to a vectorof the Lorentz sphere intersects the three sphere
— thought of as the absolute quadric in projective four space — in a two sphere. Stereographic
projection yields a sphere iR3 or, if the projection center lies on the sphere, a plane.

8 Recall: a sphere congruence is called “Ribaucour sphere congruence” if the curvature lines on
its two envelopes do correspond.

It is easy to see (from the Ricci equations) that a sphere congruence is Ribaucour iff the bundle

defined by spa{n,f,f} overM s flat (cf.(13)). Hence the map — dpf (TpM) defines a “normal
congruence of circles” (cyclic system) [7]: for eapte M

t — fi(p) == \;2 sint - n(p) + ;(1 +cost) - f(p) — ;(1 — cost) - f(p)
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Moreoverf is a Darboux transforiof f . Conversely, the “extended Gauld map”
(15) 7:M? = Gy(5,3), p— span(p),dpn(ToM)}

of the Ribaucour congruence n enveloped by an isothermic surface and one of its
Darboux transforms is a curved flat.
Proof: Since
(f,n) =0 and (df,n) =0,
(16) (F.n)=0 ) =0

the immersionsf andf do envelop the sphere congruenceand, since the
bilinear forms

f.n
f,n

(17) (df,dn) = Xe?(kidx? + kody?) (df , dn) = A(—kydx? + kody?)
are diagonal with respect to the induced metrics
(18)  (df,df) = \2e?(dx? + dy?) (df ,df ) = \2e~21(dx? + dy?)

our coordinatesy; y) are curvature line coordinates for both immersibradf;
and hence the sphere congruencis Ribaucour. Moreover the induced metrics
(18) are both conformally equivalent tix? + dy? which shows thaf as well as
f are isothermic and that each of them is a Darboux transform of the other [8]
— here we should remark that from (13) we see that the Ribaucour congruence
n doesnot belong to a fixed linear sphere complex.

To see the converse we remark first thas Ribaucour and its two envelopes
admit common isothermal curvature line coordinatey/) : M2 — IR> — hence
the two isotropic normal fieldé andf of n (in Sf) describing its two envelopes
may be scaled such that

(19) fo = +e®f, f = Fef, .

Here we have to have opposite signs since the Ribaucour congroescgup-

posed to not belong to a fixed sphere complex [8] Consequently we may choose

a framingF = (sl,sg,n,f,f) : M2 — 04(5) of v such that its connection form

has the form (13) — this completes our proof. g.e.d.
To obtain the Euclidean representation of the Darboux transform (given for

example in [1] or [6]) we use the following

parametrizes the circlelff (TpM ))- meeting the sphene(p) in f (p) andf(p) orthogonal. Since, f
andf are parallel sections in this bundle, the maps- fi(p) (which generically are not degenerate)
parametrize the surfaces orthogonal to this congruence of circles.

In contrast to the theory of conformally flat hypersurfaces whaterthogonal hypersurfaces
of an appropriate cyclic system are conformally flat [10], in our case the immerkiangf = f;
will generally be the only isothermic surfaces among the surfces

9 Recall: if the correspondance between the two envelopes of a Ribaucour sphere congruence —

which does not belong to fixed linear complex — is conformal then one envelope is called a “Darboux
transform” of the otherlIn this situation both envelopes will be isothermic surfaces [8]. On the other
hand, given an isothermic surface, there exist always infinitely many Darboux transforms of this
surface (see Darboux’s theorem, p.205).
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Lemma: Lets: M2 — S denote a sphere congruence enveloped by two immer-
sions f,f : M2 — L% and lets,s, : M2 — S be two congruences of spheres,
for each pe M2 s;(p) and s(p) intersecting orthogonally in the circle orthogo-
nal to g(p) in f(p) andf(p). After choosing “the point at infinityn., € L* we

may identify IR > {v € L* | (v,vs) = 1} via an isometr§®. Then

(20) f = f+9(ti+ht+ht)

where {(p) are the unit normal vectors (in i to the spheres; §) (and p)) in
the point f(p), and

— 2
(21) h = (s,v0) and d = — . %

are the curvatures of the sphergsamdv/d is the distance of f andin Euclidean
spacé?.

Proof: Without lost of generality we may assunte= (f v.) = 1. For the
connection form

0 *Ow *il w1 o X1

" ~ w —2 w2 X2

(22) (s1,%,s,f.f) td(sp, 2,8, f.f)= | w0 w2 O o 0
-X1 —X2 0 v 0

—w1  —wp 0 0 —v

of (s1,%,s,f, f) : M2 — O4(5) this yieldsy = —hjw; — hyw,. Also writing down
the connection form

0 —w — hwy +wy —(¥1 +hwy)
(23) (t, to, )7 2d(ty, to, 1 [ w +hows — hyw, 0 ~(w2 +hwp)
1 +hwy 2 + hws 0

of the (Euclidean) framingt{,t,t) : M2 — O(3) of f it is a straightfor-
ward calculation to see that the (Euclidean) normal fieldf ois given by

f = t—dh(mty+ht +ht) . Hence we havef +}f = f+ !t show-
ing that the right hand side of (20) actually gives the second envelope of the
sphere congruence g.e.d.
In case of a Darboux transform of an isothermic surface the coefficients in
(20) .satisfy — after a (constant) gauge transformati@nf) (if JAf) —
the linear system
h h _ (b h z -
d(T. %0 —cca) = (&5 0—oe?, © = (fiux),
0 dydx — Oxdy —el:‘lzldx el:‘dx Aze*c‘gx
(24) . —{ydx + Oxdy 0 —elkydy dldy —xZe~ gy
¢ = e“lzldx éjlzzdy 0 0 0
—2%Ugx A2 Uay 0 0 0
—eldx —eldy 0 0 0

10 which actually is unique up to motions #%3.
11 Remark that in (20§ andf are considered as vectors in Euclidean three sj&cerhile in (21)
they are considered as vectors in Minkowski spRl%
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el = ie“ andk =c (ki +2) denoting the metric factor and the principal curvatures
of f considered as an immersion into Euclidean space. Actually, this linear system
is equivalent to Darboux’s original system [8] (cf. [6] or [1]) — remark that we
also have

(25) h?+hZ+h?2+22 = 0.

It is a straightforward calculation to see that
Theorem (Darboux). Any solution of the system (24) satisfying (25) gives rise to
a Darboux transformf = f + ‘z‘(hltl +hyt; +ht) of the isothermic surface
f.

Now, considering théoop of curved flatsy, : M? — G, (5, 3) with Maurer
Cartan forms (13) we obtain an interesting “limit geometry”as-+ 0: applying
a (constant) conformal change (const@if2)-gauge)

f 1f and f A or

(26) f A and f if

and sendingh — 0, f resp.f becomes a constant vector $x-oe5 resp.®=0&4
vanishes. Obviously this constant light-like vector should be interpreted as the
point at infinity and we therefore obtain an isothermic immerdiarlM — R®

with first and second fundamental forms

@7) | =e2(dx2+dy?), Il =eX(kdx?+ kody?)

resp. its Christoffel transforfd f : M — IR® with first and second fundamental
forms A A
(28) I =e2(dx? +dy?), Il = —kdx?+kody? .

We now recognise the remaining three equations from the Maurer-Cartan equa-
tion for &,

0=Au+ e2“k1k2
(29) 0= k]_y + (kj_ — kg)Uy

0 =kax — (k1 — k2)ux

as the GaulR and Codazzi equations of the Euclidean immefsimsp. its
Christoffel transfornf .

In this sense the Christoffel transform of an isothermic surface may be con-
sidered as a special kind of Darboux transformation.

Another way to obtain the Christoffel transform as a limiting case of the
Darboux transform in the curved flat context is presented in [6]: applying Sym’s
formula to the associated family of framEs=F()\), we obtain a map

(30) (AFF oM —p;

12 Recall: the Christoffel transform (dual) of an isothermic surface is obtained by integrating the
closed 1-form d := e~ 2(—fcdx +f,dy) — see [5] or [2].

When the normal congruence of circles mentioned in footnote 8 is projected to Euclidean three
spacelR®, we see that, in the limia — 0, the circles become straight lines — circles meeting
the collapsed surfack resp.f in the point at infinity — while the Ribaucour sphere congruence
enveloped by the two surfacésandf becomes the congruence of tangent planes ltefsp.f.
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interpretingp as two copies of Euclidean three §p]§dél3 this map gives us the
immersionf, and in the other copy dR®, its dualf: this can be seen by looking

at the differential L
d( 2 F)F x=0 = Fo®,Fy

(31) eYdx —eYdx
~ Hs < e'dy e Ydy > .
0 0

HereFg = ( %3 Iz ) solves the equatioﬁgldFo = ¢, and thusHz : M —
O(3) may be viewed as a Euclidean framingfofesp.f.

Summarizing these results we may formulate the following
Theorem. In the limit A\ — 0 a loop of curved flatsy, : M? — G.(5,3) with
connection forms (13) gives us an isothermic surface M2 — IR® and its
Christoffel transform (dualf : M2 — IR3. Conversely, given an isothermic
surface f: M2 — IR® (and its Christoffel transforf?) we get a loop of curved
flats vy : M? — G, (5, 3) by integrating the loop of Maurer Cartan forms (13),
which we are able to write down knowing the first and second fundamental forms
of the immersions f anfl.

There is another possibility for producing isothermal surfaces in Euclidean
spacelR® (or S): that is, by using a solution of

4. Calapso’s equation

To understand this, we write down the Maurer-Cartan form of a fr&me

M — 01(5), which is Mdbius-invariantly connected to a given immersion: taking

f = Fey an isometric lift of the isothermic immersion (which is unique up to a
constant scaling) and = Fe; the central sphere congruence (conformal Gaul3
map) of the immersion, the frame is determined by the assumption of being an
adapted frame (i.eFe; = fx andFe, = f, — (x,y) : M? — R? denoting the
isometricprincipal curvature line coordinates for our liftifg. The associated
Maurer-Cartan form will be

0 0 kdx ax  x1

0 0 —kdy dy xo

(32) & = —kdx  kdy 0 0o
-X1 —X2 T 0 0

—dx  —dy 0 0 0

k? being the conformal factor relating the metric induced by the central sphere
congruence to the isometric one, and the 1-fogmnsy, andr to be determined.
From the Maurer-Cartan equation for this form we learn that

13 Here the Euclidean metric is induced by the quadratic fdpm;dip instead of the Killing
form.

14 We may think of this Christoffel transform as determining the Euclidean ambient space. Actually,
this construction depends heavily on the Euclidean structure of the ambient space — consequently,
we generally get a whole three parameter family of loops of curved flats from one isothermic surface:
when viewing our given isothermic surface as a surface in the three sphevee may choose the
point at infinity arbitrarily.
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T = kedx — kydy
(33) X1 = (k2 — u)dx — S dy
X2 = —%vdx + (1k2 + u)dy

whereu € C*>°(M) is a function satisfying the differential equation
(34) du = —((§)y + (2)dx+ (5 ) + (K2)y)dy

— the integrability condition of this equation is a fourth order partial differential
equation closely related to Calapso’s original equation [4]:

(35) 0= ACK) + 2(k2)yy

This shows, that
Theorem. Any isothermic surface gives rise to a solution of Calapso’s equation.
Conversely, from a solution & C°°(M) of Calapso’s equation we can construct
a Mobius invariant frame of an isothermic surface by integrating the Maurer-
Cartan form (32), where the function u is a solution of (34).

Now, applying a conformal chande &f while fixing the central sphere
congruencen n, the Maurer-Cartan form of the associated frame becomes

0 w kdx %dx X1
—w 0 —kdy Kdy  x2
(36) o= —kdx  kdy 0 o o |,
—J?(l —]?(2 0 0 0
—gdx  —jdy 0 0 0

where
w= —'fjdx + K dy
2
(37) X = k(e — % + 1k2 — u)dx

xa = k(% = 8 + 12+ uydy

Here we see that the central sphere congruence of an isothermic surface is a
Ribaucour sphere congruence, which actually is a characterisation of isothermic
surfaces [8], and hence it has flat normal bundle as a codimension two surface
in the Lorentz spher&;.

In general, the second enveloping surface of the central sphere congruence
of an isothermic surface will not be an isothermic surface and there seems to
be no natural relation between the curved flat framing and tbbit invariant
framing (32). We illustrate this with a simple

5. Example

Starting with an isothermic parametrization of a surface of revolution

(38) f(x,y) = (r(x) cosy, r(x)siny, z(x)) ,

the functionsr andz satisfying the differential equation
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(39) r2=r2+2z?,

i.e. the curver(, z) being parametrized by arc length (thought of as a curve in the
Poincaé half plane), we may first write down the loop of Maurer-Cartan forms

’ _ ’
/0 —fdy "7 r%r Z dx Ardx  — dx
T dy 0 —Z dy Ardy ?‘dy
- 1,11 11,7
(40)  @y= [ e 2y 0 0 0 ;
Dx —dy 0 0 0
—Ardx —Ardy 0 0 0

which gives us the immersioh= fy and its Christoffel transfornfy in the limit
A— 0.

To understand the geometry of the two enveloping immerdiprsk,e; and
f\ =Faes given by (40) we remark that the two sphere congruences

(41) s\ = Ra@+ie), & = F(s+ie)

enveloped by the immersiofy resp.f} depend only on one parameter. Hence
both surfaces are channel surfaces. Moreover all splsgras well ass; of the
two one parameter families of spheres are perpendicular to the (forXjxded
circle given by

(42) cn = spar{F,e, \/11-2)\2F)\(rr/e:|_7Zr/e3+;\e4+r)\e§)}

Consequently, this fixed circle may be interpreted as the axis of rotation — and
the surfaces$, andﬂ are surfaces of revolution (with the same axis of rotation)
in Euclidean space after an appropriate stereographic projection.

Now, sending\ — O after a gauge transformatiorff , ) (1, 0f)
we easily read off the mean curvature = 1(% + "2"-7"Z') of our original
surfacefy from the connection form (40). So, its central sphere congruence will
be given byny + H fo. The metric it induces has conformal factor (relative to
the metric induced b¥p) given by
(43) k= .0z —r'z"+r"7).
Sincek, = 0, this is obviously a solution of Calapso’s equation and a function
u solving (34) isu = \? — k2. So the Maurer-Cartan form (32) becomes

0 0 kdx dx (3K — A%x
0 0 —kdy dy (= 3k%+ A%y
(44) &, = —kdx kdy 0 0 ke dx
—(GK? - A%dx  (3K2 - AAdy  —kxdx 0 0
—dx —dy 0 0 0

An appropriate change n +kf of the sphere congruence envelopedf by-
which will be hard to find in the general case — followed by @i(2)-gauge
f A andf A\~f gives us the Maurer-Cartan forms
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0 0 kdx Adx  —Adx
0 0 0 Ady  Ady
(45) &y = —2kdx 0 0 0 0
Adx —Ady 0 0 0
—Adx  —Xdy 0 0 0

of a loop of curved flats, quite different from (40): as before the immersions
fn = Faeq and ﬂ = F,es5 are channel surfaces, both enveloping the one pa-
rameter family of spheres, = F,e;. Again we have fixed circles given by
spar{F,, ;ZFA(e4 +es)} which intersect all spheres, of the one parameter

families orthogonally. Hence our surfade\sandf} are surfaces of revolution —
but now they envelope just the same one parameter family of spheres. Moreover,
the circles given by spdir,(p)er, Fa(p)e2} which intersect the spheres, (p)
orthogonally infy (p) andﬂ(p) all meet the axis. Consequently, the immersions
ﬂ(p) are just axial reflections of the immersiofis parametrizing “opposite”
pieces of the same surface of revolution.

Taking the limitA — O, we obtain a cylinder resp. its Christoffel transform
— which is an axial reflection of the original cylinder.
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