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1. Introduction

These notes grew out of a series of discussions on a recent paper by J. Cieśliński,
P. Goldstein and A. Sym [6]: these authors give a characterization of isothermic
surfaces as “soliton surfaces” by introducing a spectral parameter. In trying to
understand the geometric meaning of this spectral parameter, we observed some
analogies with the theory of conformally flat hypersurfaces in a four-dimensional
space form [10]. Inspired by this analogies we found a relation between the
concept of Darboux transformations of isothermic surfaces [8] and the recently
developed concept of curved flats in symmetric spaces [9] — at this point, we
would like to thank Prof. Alexander Bobenko for his interest in our work and
for helpful discussions on the Darboux transform1. Considering the “limiting
geometry” where the spectral parameterλ→ 0, we obtain pairings of isothermic
surfaces by Christoffel transformations (duality) [5] (cf. also [2]). This was a key
tool in the recently discovered theory of “discrete isothermic surfaces” [3].

2. Curved Flats

A curved flat is the natural generalization of a developable surface in Euclidean
space: it is a submanifoldM ⊂ G/K of a (pseudo-Riemannian) symmetric space
for which the curvature operator ofG/K vanishes2 on

∧2 TM . Thus, a curved
flat may be thought of as the enveloping submanifold of a congruence of flats
— totally geodesic submanifolds — of the symmetric space. Taking a regular

? Partially supported by the Alexander von Humboldt Stiftung.
?? Partially supported by NSF grant DMS 2905293.

1 Also, we would like to thank the referee for encouraging us to include the new material we
developed after finishing the first version of this paper.

2 ThusM is curvature isotropicin the sense of [9].
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parametrizationγ : M → G/K of a curved flat and a framingF : M → G of
this parametrization, the Maurer-Cartan formΦ = F−1dF of the framing has a
natural decompositionΦ = Φk + Φp according to the symmetric decomposition3

g = k⊕ p of the Lie algebrag. Now the condition forγ to parametrize a curved
flat may be formulated as4

[[Φp ∧ Φp], p] ≡ 0 .(1)

In case thatG is semisimple, it is straightforward5 to see that this is equivalent
to

[Φp ∧ Φp] ≡ 0 .(2)

To summarise, we have the
Definition of a curved flat: An immersionγ : M → G/K is said to parametrize
a curved flat, if the p-part in the symmetric decomposition of the Maurer-Cartan
form F−1dF = Φ = Φk +Φp of a framingF : M → G of γ defines a congruence
p 7→ Φp|p(TpM ) of abelian subalgebras ofg.

At this point we should remark that curved flats naturally arise in one pa-
rameter families [9]: setting

Φλ := Φk + λΦp(3)

the Maurer-Cartan equationdΦλ + 1
2[Φλ∧Φλ] = 0 for the loopλ 7→ Φλ of forms

splits into the three equations

0 = dΦk + 1
2[Φk ∧ Φk]

0 = dΦp + [Φk ∧ Φp]
0 = [Φp ∧ Φp] ,

(4)

and hence the integrability of the loopλ 7→ Φλ is equivalent to the formsΦλ
being the Maurer-Cartan forms for some framingsFλ : M → G of curved flats
γλ : M → G/K . Thus integrable systems theory may be applied to produce
examples.

Now we will consider the case leading to the theory of isothermic surfaces:
let

G := O1(5) and K := O(3)×O1(2) .(5)

3 Thus k and p are the +1 and−1-eigenspaces, respectively, of the involution fixingk and so
satisfy the characteristic conditions

[k, k] ⊂ k, [k, p] ⊂ p, [p, p] ⊂ k.

4 The product
[Φ ∧ Ψ ](v, w) := [Φ(v), Ψ (w)] − [Φ(w), Ψ (v)]

defines a symmetric product on the space of Lie algebra valued 1-forms with values in the space of
Lie algebra valued 2-forms.

5 In fact, [p, p] ⊕ p is an ideal ofg so that we have a decompositiong = k′ ⊕ [p, p] ⊕ p where
k′ is a complementary ideal commuting with [p, p] ⊕ p. Thus, if a ⊂ p satisfies [[a, a], p] = 0 we
deduce that [a, a] lies in the center ofg and so vanishes.
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The coset spaceG+(5, 3) = G/K of space-like 3-planes in the Minkowski space
IR5

1 becomes a six dimensional pseudo-Riemannian symmetric space of signa-
ture (3, 3) when endowed with the metric induced by the Killing form. We will
consider two-dimensional curved flats

γ : M 2 → G+(5, 3)(6)

satisfying the regularity assumption that the metric onM 2 induced byγ is non-
degenerate.

Fixing a pseudo orthonormal basis (e1, . . . , e5) of the Minkowski spaceIR5
1

with

(〈ei , ej 〉)ij = E5 :=
(

I3 0

0 0 1
1 0

)
,(7)

we get the matrix representations

O1(5) = {A ∈ Gl (5, IR)|At E5A = E5}
o1(5) = {X ∈ gl(5, IR)|(E5X) + (E5X)t = 0} .(8)

The subalgebrak and its complementary linear subspacep in the symmetric
decomposition ofo1(5) are given by the +1- resp.−1-eigenspaces of the invo-
lutive automorphism Ad(Q) : o1(5) → o1(5) with Q =

(
−I3 0

0 I2

)
. Writing

down the Maurer-Cartan form of a framingF : M 2 → O1(5) of our curved flat
γ : M 2 → G+(5, 3) with this notation we obtain

F−1dF = Φ = Φk + Φp with

Φk =
(

Ω 0
0 ν

)
: TM → o(3)× o1(2)

Φp =
(

0 η
−E2ηt 0

)
: TM → p .

(9)

The image ofΦp at eachp ∈ M 2 is a 2-dimensional abelian subspace ofp on
which the Killing form is non-degenerate. One can show that there are precisely
two K -orbits of maximal abelian subspaces ofp: one consists of 3-dimensional
subspaces which are isotropic for the Killing form while the other consists of
2-dimensional subspaces on which the Killing form has signature (1, 1). We
therefore conclude that the images of eachΦp are maximal abelian andK -
conjugate and so we can putη into the standard form

η =
(

ω1 −ω1
ω2 ω2
0 0

)
(10)

by applying a gauge transformationF ÃFH ,H : M → K .
Calculating the Maurer-Cartan equation using the ansatz

Ω =
(

0 ω −ψ1
−ω 0 −ψ2
ψ1 ψ2 0

)
and ν =

(
ν 0
0 −ν

)
(11)

together withη given by (10), we see that
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dω1 = dω2 = 0 .(12)

So we are given canonical coordinates (x, y) : M → IR2 by integrating6 the
forms ω1 andω2. Moreover, since we also havedν = 0, we may setν = −du
for a suitable functionu ∈ C∞(M ) — this gives usω = uydx− uxdy, whereux

and uy denote the partial derivatives ofu in x- resp.y-directions. Finally, the
equationsψ1 ∧ ω1 = 0 andψ2 ∧ ω2 = 0 show thatψ1 = euk1dx andψ2 = euk2dy
for two functionski ∈ C∞(M ).

We now perform a finalO1(2)-gauge

(
I3 0

0
eu 0
0 e−u

)
: M → O(3)×

O1(2) and insert the spectral parameterλ to obtain the Maurer-Cartan form
discussed in [6]:

Φλ =


0 uydx − uxdy −euk1dx λeudx −λe−udx

−uydx + uxdy 0 −euk2dy λeudy λe−udy
euk1dx euk2dy 0 0 0

λe−udx −λe−udy 0 0 0
−λeudx −λeudy 0 0 0

 .(13)

We are now lead directly to the theory of

3. Isothermic Surfaces

In the context of M̈obius geometry the three sphereS3 is viewed as the projective
light-cone PL4 in IR5

1 while the Lorentzian sphereS4
1 should be interpreted as

the space of (oriented) spheres in the three sphere7. Now, denoting by

n := Fe3 : M → S4
1 = {v ∈ IR5

1|〈v, v〉 = 1}
f := Fe4 : M → L4 = {v ∈ IR5

1|〈v, v〉 = 0}
f̂ := Fe5 : M → L4

(14)

one of the sphere congruences resp. the two immersions given by our frameF ,
we see that
Theorem: The sphere congruence n given by our curved flat is a Ribaucour
sphere congruence8, which is enveloped by two isothermic immersions f andf̂ .

6 Since our theory is local, all closed forms may be assumed to be exact.
7 Or, equivalently, it may be interpreted as the space of (oriented) spheres and planes in Euclidean

three spaceIR3: the polar hyperplane to a vectorv of the Lorentz sphere intersects the three sphere
— thought of as the absolute quadric in projective four space — in a two sphere. Stereographic
projection yields a sphere inIR3 or, if the projection center lies on the sphere, a plane.

8 Recall: a sphere congruence is called “Ribaucour sphere congruence” if the curvature lines on
its two envelopes do correspond.

It is easy to see (from the Ricci equations) that a sphere congruence is Ribaucour iff the bundle
defined by span{n, f , f̂ } over M is flat (cf.(13)). Hence the mapp 7→ dpf (TpM ) defines a “normal
congruence of circles” (cyclic system) [7]: for eachp ∈ M

t 7→ ft (p) :=
1√
2

sint · n(p) +
1

2
(1 + cost) · f (p)− 1

2
(1− cost) · f̂ (p)
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Moreoverf̂ is a Darboux transform9 of f . Conversely, the “extended Gauß map”

γ : M 2 → G+(5, 3) , p 7→ span{n(p), dpn(TpM )}(15)

of the Ribaucour congruence n enveloped by an isothermic surface and one of its
Darboux transforms is a curved flat.
Proof: Since

〈f , n〉 = 0 and 〈df , n〉 ≡ 0,
〈f̂ , n〉 = 0 and 〈df̂ , n〉 ≡ 0 ,

(16)

the immersionsf and f̂ do envelop the sphere congruencen and, since the
bilinear forms

〈df , dn〉 = λe2u(k1dx2 + k2dy2) , 〈df̂ , dn〉 = λ(−k1dx2 + k2dy2)(17)

are diagonal with respect to the induced metrics

〈df , df 〉 = λ2e2u(dx2 + dy2) , 〈df̂ , df̂ 〉 = λ2e−2u(dx2 + dy2) ,(18)

our coordinates (x, y) are curvature line coordinates for both immersionsf andf̂ ;
and hence the sphere congruencen is Ribaucour. Moreover the induced metrics
(18) are both conformally equivalent todx2 + dy2 which shows thatf as well as
f̂ are isothermic and that each of them is a Darboux transform of the other [8]
— here we should remark that from (13) we see that the Ribaucour congruence
n doesnot belong to a fixed linear sphere complex.

To see the converse we remark first thatn is Ribaucour and its two envelopes
admit common isothermal curvature line coordinates (x, y) : M 2 → IR2 — hence
the two isotropic normal fieldsf and f̂ of n (in S4

1 ) describing its two envelopes
may be scaled such that

fx = ±e2uf̂x , fy = ∓e2uf̂y .(19)

Here we have to have opposite signs since the Ribaucour congruencen is sup-
posed to not belong to a fixed sphere complex [8] Consequently we may choose
a framingF = (s1, s2, n, f , f̂ ) : M 2 → O1(5) of γ such that its connection form
has the form (13) — this completes our proof. q.e.d.

To obtain the Euclidean representation of the Darboux transform (given for
example in [1] or [6]) we use the following

parametrizes the circle (dpf (TpM ))⊥ meeting the spheren(p) in f (p) and f̂ (p) orthogonal. Sincen, f
and f̂ are parallel sections in this bundle, the mapsp 7→ ft (p) (which generically are not degenerate)
parametrize the surfaces orthogonal to this congruence of circles.

In contrast to the theory of conformally flat hypersurfaces whereall orthogonal hypersurfaces
of an appropriate cyclic system are conformally flat [10], in our case the immersionsf and f̂ = fπ
will generally be the only isothermic surfaces among the surfacesft .

9 Recall: if the correspondance between the two envelopes of a Ribaucour sphere congruence —
which does not belong to fixed linear complex — is conformal then one envelope is called a “Darboux
transform” of the other.In this situation both envelopes will be isothermic surfaces [8]. On the other
hand, given an isothermic surface, there exist always infinitely many Darboux transforms of this
surface (see Darboux’s theorem, p.205).
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Lemma: Let s : M 2 → S4
1 denote a sphere congruence enveloped by two immer-

sions f, f̂ : M 2 → L4; and let s1, s2 : M 2 → S4
1 be two congruences of spheres,

for each p∈ M 2 s1(p) and s2(p) intersecting orthogonally in the circle orthogo-
nal to s(p) in f (p) and f̂ (p). After choosing “the point at infinity”v∞ ∈ L4 we
may identify IR3 ∼= {v ∈ L4 | 〈v, v∞〉 = 1} via an isometry10. Then

f̂ = f + d
2 (h1t1 + h2t2 + h t)(20)

where ti (p) are the unit normal vectors (in IR3) to the spheres si (p) (and s(p)) in
the point f(p), and

hi = 〈si , v∞〉 and d = − 2
〈f ,v∞〉〈f̂ ,v∞〉(21)

are the curvatures of the spheres si and
√

d is the distance of f and̂f in Euclidean
space11.
Proof: Without lost of generality we may assumec = 〈f , v∞〉 ≡ 1. For the
connection form

(s1, s2, s, f , f̂ )−1d(s1, s2, s, f , f̂ ) =


0 −ω −ψ1 ω1 χ1
ω 0 −ψ2 ω2 χ2
ψ1 ψ2 0 0 0

−χ1 −χ2 0 ν 0
−ω1 −ω2 0 0 −ν

(22)

of (s1, s2, s, f , f̂ ) : M 2 → O1(5) this yieldsν = −h1ω1−h2ω2. Also writing down
the connection form

(t1, t2, t)
−1d(t1, t2, t)=

(
0 −ω − h2ω1 + h1ω2 −(ψ1 + hω1)

ω + h2ω1 − h1ω2 0 −(ψ2 + hω2)

ψ1 + hω1 ψ2 + hω2 0

)
(23)

of the (Euclidean) framing (t1, t2, t) : M 2 → O(3) of f it is a straightfor-
ward calculation to see that the (Euclidean) normal field off̂ is given by

t̂ = t − d
2 h(h1t1 + h2t2 + h t) . Hence we have f̂ + 1

h t̂ = f + 1
h t show-

ing that the right hand side of (20) actually gives the second envelope of the
sphere congruences. q.e.d.

In case of a Darboux transform of an isothermic surface the coefficients in
(20) satisfy — after a (constant) gauge transformation(f , f̂ ) Ã ( 1

λ f , λf̂ ) —
the linear system

d( h1
c ,

h2
c ,

h
c ,− 1

c ,
2

c d ) = (h1
c ,

h2
c ,

h
c ,− 1

c ,
2

c d )Φ̃ , c = 〈f , v∞〉 ,

Φ̃ =


0 ũydx − ũxdy −eũk̃1dx eũdx λ2e−ũdx

−ũydx + ũxdy 0 −eũk̃2dy eũdy −λ2e−ũdy
eũk̃1dx eũk̃2dy 0 0 0

−λ2e−ũdx λ2e−ũdy 0 0 0
−eũdx −eũdy 0 0 0

(24)

10 Which actually is unique up to motions ofIR3.
11 Remark that in (20)f and f̂ are considered as vectors in Euclidean three spaceIR3 while in (21)

they are considered as vectors in Minkowski spaceIR5
1.
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eũ = 1
c eu andk̃i = c (ki + h

c ) denoting the metric factor and the principal curvatures
of f considered as an immersion into Euclidean space. Actually, this linear system
is equivalent to Darboux’s original system [8] (cf. [6] or [1]) — remark that we
also have

h2
1 + h2

2 + h2 + 2 2
d = 0 .(25)

It is a straightforward calculation to see that
Theorem (Darboux). Any solution of the system (24) satisfying (25) gives rise to
a Darboux transform f̂ = f + d

2 (h1t1 + h2t2 + h t) of the isothermic surface
f .

Now, considering theloop of curved flatsγλ : M 2 → G+(5, 3) with Maurer
Cartan forms (13) we obtain an interesting “limit geometry” asλ→ 0: applying
a (constant) conformal change (constantO1(2)-gauge)

f Ã

1
λ f and f̂ Ãλf̂ or

f Ãλf and f̂ Ã

1
λ f̂

(26)

and sendingλ→ 0, f̂ resp.f becomes a constant vector —Φλ=0e5 resp.Φλ=0e4

vanishes. Obviously this constant light-like vector should be interpreted as the
point at infinity and we therefore obtain an isothermic immersionf : M → IR3

with first and second fundamental forms

I = e2u(dx2 + dy2) , II = e2u(k1dx2 + k2dy2)(27)

resp. its Christoffel transform12 f̂ : M → IR3 with first and second fundamental
forms

Î = e−2u(dx2 + dy2) , ÎI = −k1dx2 + k2dy2 .(28)

We now recognise the remaining three equations from the Maurer-Cartan equa-
tion for Φλ

0 = ∆u + e2uk1k2

0 = k1y + (k1 − k2)uy

0 = k2x − (k1 − k2)ux

(29)

as the Gauß and Codazzi equations of the Euclidean immersionf resp. its
Christoffel transformf̂ .

In this sense the Christoffel transform of an isothermic surface may be con-
sidered as a special kind of Darboux transformation.

Another way to obtain the Christoffel transform as a limiting case of the
Darboux transform in the curved flat context is presented in [6]: applying Sym’s
formula to the associated family of framesF = F (λ), we obtain a map

( ∂
∂λF )F−1|λ=0 : M → p ;(30)

12 Recall: the Christoffel transform (dual) of an isothermic surface is obtained by integrating the
closed 1-form d̂f := e−2u(−fxdx + fydy) — see [5] or [2].

When the normal congruence of circles mentioned in footnote 8 is projected to Euclidean three
spaceIR3, we see that, in the limitλ → 0, the circles become straight lines — circles meeting
the collapsed surfacêf resp. f in the point at infinity — while the Ribaucour sphere congruence
enveloped by the two surfacesf and f̂ becomes the congruence of tangent planes off resp.f̂ .
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interpretingp as two copies of Euclidean three space13 IR3 this map gives us the
immersionf , and in the other copy ofIR3, its dualf̂ : this can be seen by looking
at the differential

d( ∂
∂λF )F−1|λ=0 = F0ΦpF−1

0

∼= H3

(
eudx −e−udx
eudy e−udy

0 0

)
.

(31)

Here F0 =
(

H3 0
0 I2

)
solves the equationF−1

0 dF0 = Φk and thusH3 : M →
O(3) may be viewed as a Euclidean framing off resp.f̂ .

Summarizing these results we may formulate the following
Theorem. In the limit λ → 0 a loop of curved flatsγλ : M 2 → G+(5, 3) with
connection forms (13) gives us an isothermic surface f: M 2 → IR3 and its
Christoffel transform (dual)̂f : M 2 → IR3. Conversely, given an isothermic
surface f : M 2 → IR3 (and its Christoffel transform14) we get a loop of curved
flats γλ : M 2 → G+(5, 3) by integrating the loop of Maurer Cartan forms (13),
which we are able to write down knowing the first and second fundamental forms
of the immersions f and̂f .

There is another possibility for producing isothermal surfaces in Euclidean
spaceIR3 (or S3): that is, by using a solution of

4. Calapso’s equation

To understand this, we write down the Maurer-Cartan form of a frameF :
M → O1(5), which is Möbius-invariantly connected to a given immersion: taking
f = Fe4 an isometric lift of the isothermic immersion (which is unique up to a
constant scaling) andn = Fe3 the central sphere congruence (conformal Gauß
map) of the immersion, the frame is determined by the assumption of being an
adapted frame (i.e.Fe1 = fx and Fe2 = fy — (x, y) : M 2 → IR2 denoting the
isometricprincipal curvature line coordinates for our liftingf ). The associated
Maurer-Cartan form will be

Φ =


0 0 kdx dx χ1
0 0 −kdy dy χ2

−kdx kdy 0 0 τ

−χ1 −χ2 −τ 0 0
−dx −dy 0 0 0

 ,(32)

k2 being the conformal factor relating the metric induced by the central sphere
congruence to the isometric one, and the 1-formsχ1, χ2 andτ to be determined.
From the Maurer-Cartan equation for this form we learn that

13 Here the Euclidean metric is induced by the quadratic form1
2trΦt

pΦp instead of the Killing
form.

14 We may think of this Christoffel transform as determining the Euclidean ambient space. Actually,
this construction depends heavily on the Euclidean structure of the ambient space — consequently,
we generally get a whole three parameter family of loops of curved flats from one isothermic surface:
when viewing our given isothermic surface as a surface in the three sphereS3, we may choose the
point at infinity arbitrarily.
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τ = kxdx− kydy
χ1 = (1

2k2 − u)dx− kxy

k dy
χ2 = − kxy

k dx + (1
2k2 + u)dy ,

(33)

whereu ∈ C∞(M ) is a function satisfying the differential equation

du = −(( kxy

k )y + (k2)x)dx + ((kxy

k )x + (k2)y)dy(34)

— the integrability condition of this equation is a fourth order partial differential
equation closely related to Calapso’s original equation [4]:

0 = ∆( kxy

k ) + 2(k2)xy(35)

This shows, that
Theorem. Any isothermic surface gives rise to a solution of Calapso’s equation.
Conversely, from a solution k∈ C∞(M ) of Calapso’s equation we can construct
a Möbius invariant frame of an isothermic surface by integrating the Maurer-
Cartan form (32), where the function u is a solution of (34).

Now, applying a conformal changef Ã

1
k f while fixing the central sphere

congruencen Ãn, the Maurer-Cartan form of the associated frame becomes

Φ =


0 ω kdx 1

k dx χ1
−ω 0 −kdy 1

k dy χ2
−kdx kdy 0 0 0

−χ1 −χ2 0 0 0
− 1

k dx − 1
k dy 0 0 0

,(36)

where
ω = − ky

k dx + kx
k dy

χ1 = k( kxx
k − k2

x +k2
y

2k2 + 1
2k2 − u)dx

χ2 = k( kyy

k − k2
x +k2

y

2k2 + 1
2k2 + u)dy

.(37)

Here we see that the central sphere congruence of an isothermic surface is a
Ribaucour sphere congruence, which actually is a characterisation of isothermic
surfaces [8], and hence it has flat normal bundle as a codimension two surface
in the Lorentz sphereS4

1 .
In general, the second enveloping surface of the central sphere congruence

of an isothermic surface will not be an isothermic surface and there seems to
be no natural relation between the curved flat framing and the Möbius invariant
framing (32). We illustrate this with a simple

5. Example

Starting with an isothermic parametrization of a surface of revolution

f (x, y) = (r (x) cosy, r (x) siny, z(x)) ,(38)

the functionsr andz satisfying the differential equation
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r 2 = r ′2 + z′2 ,(39)

i.e. the curve (r , z) being parametrized by arc length (thought of as a curve in the
Poincaŕe half plane), we may first write down the loop of Maurer-Cartan forms

Φλ =


0 − r ′

r dy − r ′z′′−r ′′z′
r 2 dx λrdx −λ

r dx
r ′
r dy 0 − z′

r dy λrdy λ
r dy

r ′z′′−r ′′z′
r 2 dx z′

r dy 0 0 0

λ
r dx −λ

r dy 0 0 0
−λrdx −λrdy 0 0 0

 ,(40)

which gives us the immersionf = f0 and its Christoffel transform̂f0 in the limit
λ→ 0.

To understand the geometry of the two enveloping immersionsfλ = Fλe4 and
f̂λ = Fλe5 given by (40) we remark that the two sphere congruences

sλ = Fλ(e3 + z′
r 2λe4) , ŝλ = Fλ(e3 + z′

λ e5)(41)

enveloped by the immersionfλ resp. f̂λ depend only on one parameter. Hence
both surfaces are channel surfaces. Moreover all spheressλ as well as ˆsλ of the
two one parameter families of spheres are perpendicular to the (for fixedλ) fixed
circle given by

cλ = span{Fλe2,
1√

1+2λ2
Fλ( r ′

r e1 − z′
r e3 + λ

r e4 + rλ e5)}(42)

Consequently, this fixed circle may be interpreted as the axis of rotation — and
the surfacesfλ and f̂λ are surfaces of revolution (with the same axis of rotation)
in Euclidean space after an appropriate stereographic projection.

Now, sendingλ → 0 after a gauge transformation(f , f̂ ) Ã ( 1
λ f , λf̂ ) ,

we easily read off the mean curvatureH = 1
2( z′

r 2 + r ′z′′−r ′′z′
r 3 ) of our original

surfacef0 from the connection form (40). So, its central sphere congruence will
be given byn0 + H f0. The metric it induces has conformal factork2 (relative to
the metric induced byf0) given by

k = 1
2r 2 (rz′ − r ′z′′ + r ′′z′) .(43)

Sinceky ≡ 0, this is obviously a solution of Calapso’s equation and a function
u solving (34) isu = λ2 − k2. So the Maurer-Cartan form (32) becomes

Φλ =


0 0 kdx dx ( 3

2 k2 − λ2)dx

0 0 −kdy dy (− 1
2 k2 + λ2)dy

−kdx kdy 0 0 kxdx

−( 3
2 k2 − λ2)dx ( 1

2 k2 − λ2)dy −kxdx 0 0
−dx −dy 0 0 0

 .(44)

An appropriate changen Ãn + kf of the sphere congruence enveloped byf —
which will be hard to find in the general case — followed by anO1(2)-gauge
f Ãλf and f̂ Ãλ−1f̂ gives us the Maurer-Cartan forms
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Φλ =


0 0 2kdx λdx −λdx
0 0 0 λdy λdy

−2kdx 0 0 0 0

λdx −λdy 0 0 0
−λdx −λdy 0 0 0

 .(45)

of a loop of curved flats, quite different from (40): as before the immersions
fλ = Fλe4 and f̂λ = Fλe5 are channel surfaces, both enveloping the one pa-
rameter family of spheresnλ = Fλe3. Again we have fixed circles given by
span{Fλ,

1√
2
Fλ(e4 + e5)} which intersect all spheresnλ of the one parameter

families orthogonally. Hence our surfacesfλ and f̂λ are surfaces of revolution —
but now they envelope just the same one parameter family of spheres. Moreover,
the circles given by span{Fλ(p)e1,Fλ(p)e2} which intersect the spheresnλ(p)
orthogonally infλ(p) and f̂λ(p) all meet the axis. Consequently, the immersions
f̂λ(p) are just axial reflections of the immersionsfλ parametrizing “opposite”
pieces of the same surface of revolution.

Taking the limitλ → 0, we obtain a cylinder resp. its Christoffel transform
— which is an axial reflection of the original cylinder.
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