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1 Introduction

In this paper we investigate the stability of eigenspaces of the Laplace operator
acting on differential forms satisfying relative or absolute boundary conditions
on a compact, oriented, Riemannian manifold with boundary (this includes, in
particular, both Neumann and Dirichlet conditions for the Laplace-Beltrami op-
erator on functions). More precisely, our main result is that the gap between
corresponding eigenspaces (precise definition will be recalled below) measured
using theL∞ norm, converges to zero when smooth metricsg converge tog0 in
the C 1 topology. It is quite well known (cf. [3] or [14]) that the eigenvalues of
the Laplacian vary continuously underC 0-continuous perturbations of the met-
ric. It is perhaps less well known, but implicit in the work of Cheeger [3], that
eigenspaces vary continuously as subspaces ofL2 when the metric is perturbed
C 0-continuously. We reprove thisC 0 - L2 stability in Sect. 4 for completeness
and in order to be able to use certain notation, conventions and partial results in
the proof ofC 1 - L∞ stability in Sect. 5.

The second section of the paper contains a review of the Hodge theory for
the Laplace operator with absolute and relative boundary conditions. We also
state here the Sobolev embedding theorems and the basica priori estimates
for the square rootd + δ of the Laplacian∆. We need to work withd + δ
rather than∆ = (d + δ)2 since the coefficients of∆ depend on the second
derivatives of the metric tensor and we allow onlyC 1-continuous perturbations
of the metric and do not assume any bounds on the second derivatives. In the
third section we review following Kato [12] and Osborn [16] general results
from functional analysis concerning perturbation theory for compact operators on
Banach spaces, that reduce proving convergence of eigenvalues and eigenspaces
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to proving convergence of Green’s operators. Osborn’s paper, in certain special
cases, extends Kato’s general perturbation theory and relates estimates of rates
of convergence of Green’s operators toa priori estimates.

A natural way to obtain uniform bounds for solutions of elliptic equations
(e.g. eigenforms) is to apply elliptic estimates to powers of the operator and
then use Sobolev embedding theorems. We cannot do this since the coefficients
of high powers ofd + δ depend on many derivatives of the metric. We useLp

estimates,p >> 1, for d + δ and the bounded embeddingH1,p ⊂ C 0 instead.

It is important to realize that, in the case of the Laplacian on functions, one
can define the Laplacian if the metric is merely measurable, and compare the
Laplacians for the measurable metric and a smooth Lipschitz equivalent metric
(cf. [5]). To study the Laplacian on forms some additional regularity of the
metric is necessary (cf. [15]). In view of this, it is natural for us to considerC 1-
perturbations of the metric. We remark here that the constants involved in our
estimates depend only on theboundsof the first derivatives of the metric. It is thus
conceivable that some version of our results will hold for Lipschitz manifolds. We
recall here that Teleman [20, 19] proved that, on a compact Lipschitz manifold
equipped with a Lipschitz Riemannian metric, the signature operatord + δ has
compact resolvent. Thusd + δ on such manifolds has discrete spectrum. One
has in this context eigenvalues (squares of eigenvalues ofd + δ) and eigenforms
(homogeneous components of eigenforms ofd +δ) of the Laplacian although the
Laplacian itself is defined only in the distributional sense. In view of spectacular
applications of analysis on manifolds of low smoothness (i.e. with Lipschitz,
quasiconformal or PL structure) to topology [18, 7] spectral geometry in this
context appears to be a promising area of further study and we anticipate that
the techniques of this paper may be of use.

We remark further that there has been a great deal of work concerning vari-
ation of eigenvalues and eigenspaces or certain functions, e.g. determinants, of
various elliptic operators. We give a very incomplete list of examples. Varia-
tions of harmonic forms appear in the work of Donaldson [6], in his theory of
4-manifolds, and more recently Kronheimer and Mrowka [13] in their proof of
the Thom conjecture. Forman [8] studied the behavior of harmonic forms and
eigenforms with small eigenvalues under “adiabatic limit” to derive a Hodge the-
oretic version of Leray spectral sequence. We also mention the papers of Hejhal
[9], Wolpert [21] and Ji [11] studying spectral invariants as functions on moduli
spaces of Riemann surfaces. Deformations of metrics in all these cases were
of very special kinds and smoothness of the metric was not an issue. We de-
cided that it was worthwhile to provide reasonable, i.e. not too stringent, general
conditions under which one obtains continuous variation of eigenspaces under
deformations of the metric. We obtain in particular estimates for the gaps be-
tween eigenspaces for the Laplacian of the base metric and the perturbed metric
in terms of appropriate distances between metrics.

We are very grateful to an anonymous referee for a very thorough reading
of the first version of the paper, for pointing out a gap in the proof of our
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main result, and for many thoughtful comments that, in particular, were useful
in bridging that gap.

2 Hodge theory and a priori estimates ford + δ

We begin by reviewing the Hodge theory for manifolds with boundary [4], [15,
Chapter 7], [17]. LetM be aC ∞, oriented, compact manifold ofm dimensions,
with boundaryΓ = Γ1 ∪ Γ2, whereΓ1 andΓ2 are two closed disjoint smooth
submanifolds ofΓ . We allow the possibility that eitherΓ1 or Γ2 or both are
empty. Let D (M ) = ⊕m

q=0D
q(M ), where D q(M ) denotes the space ofC ∞

differential forms onM of degreeq with complex coefficients. A Riemannian
metric g on M induces the Hodge star operator∗ : D q(M ) → D m−q(M ) and
the inner product inD q(M ) for everyq given by

(φ, /υ) =
∫

M
φ ∧ ∗/υ. (2.1)

We extend this inner product toD (M ) by requiring forms of different degrees
to be orthogonal. The formal adjointδ of the exterior derivatived is defined on
forms of degreeq as

δ = (−1)mq+m+1 ∗ d ∗ . (2.2)

We considerd + δ as an operator onD (M ). Then∆ = (d + δ)2 = δd + dδ is the
usual Laplacian and, in particular, it preserves the degree of differential forms.
We now state for reference the local coordinate expressions for the metric, the
exterior derivative operator, and∗ [10, §27.2]. The summation convention is used
throughout. Thus

g = gij dxi dxj . (2.3)

A differential form of degreeq can be written locally as

f =
1
q!

fi1,...,iq dxi1 ∧ . . . ∧ dxiq ,

where the summation is extended over all sequencesi1, . . . , iq and fi1,...,iq is
skew-symmetric in its indices. Then,

(df )i1,...,iq+1 =
q+1∑
l =1

(−1)l−1∂fi1...il−1il +1...iq+1

∂xil
(2.4)

and

(∗f )i1,...,im−q = (2.5)

1
q!

√
det(grs) ε(j1, . . . , jq, i1, . . . , im−q) gj1k1 . . . gjqkq fk1,...,kq ,

where (gij ) = (gij )−1 and ε(j1, . . . , jq, i1, . . . , im−q) denotes the sign of the per-
mutationj1, . . . , jq, i1, . . . , im−q of 1, 2, . . . ,m.
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By Stokes’ theorem

(dφ, /υ)− (φ, δ/υ) =
∫
Γ1

φ ∧ ∗/υ +
∫
Γ2

φ ∧ ∗/υ. (2.6)

We introduce boundary conditions that make the right-hand side of this formula
vanish. Every, possibly inhomogeneous, differential formf ∈ D (M ) has, at
every boundary point ofM , a natural decompositionf = ft + fn, into its tangential
part ft and the normal partfn. We note that the conditionft = 0 is defined
independently of the Riemannian metricg and is equivalent to the vanishing of
the pullback off to ∂M via the inclusion mapping. In addition,∗2 = (−1)q(m−q)

and

(∗f )n = ∗(ft ), (∗f )t = ∗(fn), ∗d = (−1)q+1δ∗, ∗δ = (−1)qd ∗ (2.7)

for all forms f , the first two equalities holding at all points ofΓ = ∂M , and
the last two at all points ofM . Thus, for example, ifφt = 0 onΓ1 and /υn = 0
on Γ2 then the right-hand side of (2.6) vanishes. We consider the following two
boundary value problems.

(d + δ)u = f

ut = 0 on Γ1 (2.8)

un = 0 on Γ2

∆u = f

ut = 0, (δu)t = 0 on Γ1 (2.9)

un = 0, (du)n = 0 on Γ2

We shall also have to consider another boundary value problem related to
(2.8). Namely, suppose thatu is a solution of (2.8). Thenv = ∗τu is a solution
of the system

(d − δ)v = ∗f

vn = 0 on Γ1 (2.10)

vt = 0 on Γ2

whereτ is a linear operator which acts on forms of degreeq by multiplication
by (−1)q. This follows by applying∗ to (2.8) and using (2.7). Note that the
boundary conditions onΓ1 andΓ2 are interchanged in the process.

All three boundary value problems above are elliptic in the sense of [1]. Since
our main result relies in an essential way on estimates from that paper as applied
to (2.8) and (2.10), we include here the verification that the boundary conditions
in these first order systems satisfy the Complementing Condition of [1]. To state
this condition for a general elliptic system one considers a neighborhoodU of
a boundary pointp with local coordinates chosen so that the boundary is given
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by t = xn = 0, p is the origin, and the half-spacet ≥ 0 containsU . Consider
the homogeneous problem, i.e.f = 0, in this half-space to which the given
problem reduces when all leading coefficients (of equations and the boundary
conditions) are fixed to their values atp and the lower order terms are set
equal to zero. Letx = (x1, . . . , xn−1) be the coordinates in the planet = 0
and letξ be an arbitrary nonzero vector in this plane. Consider solutions of the
problem introduced above of the formeix ·ξw(t). The complementing condition
is satisfied if for everyξ /= 0 every such solution with boundedw is identically
zero. We choose our coordinates so that the vector∂/∂t is the unit normal to
the boundary atp. Then, in our case (problems (2.8) and (2.10)), the auxiliary
problem introduced above amounts to the identical homogeneous problem for
the standard flat metric on the half-space. Until further notice we use only the
standard metric and coordinates. We consider first the problem (2.8) and a point
p ∈ Γ2. Let u = eix ·ξw(t) = eix ·ξ (f1(t) ∧ dt + f2(t)) be a solution of the auxiliary
problem with fj ’s bounded. The condition that the normal component vanishes
on the boundary, the second condition of (2.8), requires thatf1(0) = 0. Heref1
and f2 denote forms on the upper half-space with coefficients depending only on
t and not containingdt when expressed in terms of the coordinates.

Since (d + δ)u = 0, ∆u = 0. The Euclidean Laplacian is just the negative of
the sum of second derivatives applied to components ofu. It follows that

∆u = eix ·ξ
(
|ξ|2(f1 ∧ dt + f2)− ∂2f1

∂t2
∧ dt − ∂2f2

∂t2

)
,

i.e. thatfj satisfy

f ′′j − |ξ|2fj = 0.

Thus, sinceu is bounded,fj = αj e−|ξ|t . Howeverα1 = f1(0) = 0, so thatf1 ≡ 0
andu = eix ·ξf2(t). A computation using (2.2) and (2.4) for the Euclidean metric
shows that that the coefficient ofdt in (d+δ)u = 0 is equal up to sign toeix ·ξf ′2(t).
Thus f2 = α2e−|ξ|t is constant and hence equal to zero.

The verification that the boundary conditions in (2.8) are complementing at
points ofΓ1 is completely analogous with the roles off1 and f2 interchanged.
Similarly, the conditions in the problem (2.10) are complementing, since bounded
solutions of the auxiliary problem can be obtained from bounded solutions for
the auxiliary problem for (2.8) by applying∗τ for the Euclidean metric.

We now go back to the general metric onM and introduce some Sobolev
spaces of differential forms. DefineD1(M ) = ⊕m

q=0D
q

1 (M ) to be the space of
C ∞ forms satisfying the boundary conditions in (2.8) andD2(M ) = ⊕m

q=0D
q

2 (M )
as the space of forms satisfying the boundary conditions of (2.9). Denote the
pointwise norm of a differential formf by |f | and letLpD (M ) be the completion
of D (M ) with respect to the norm

‖ f ‖p =

(∫
M
|f |pdV

)1/p

, (2.11)
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1 ≤ p < ∞. Similarly, let Hk,pD (M ) be the Sobolev space of forms whose
derivatives up to orderk are inLp, i.e. the completion ofD (M ) in the norm

‖ f ‖k,p =

(
k∑

l =0

∫
M
|∇l f |pdV

)1/p

, (2.12)

where∇l f is the l -th covariant derivative of the formf . Note thatLpD (M ) =
H0,pD (M ). We also defineHk,pDi (M ) as the closure ofDi (M ) in Hk,pD (M )
and H (M ) = ⊕m

q=0H
q(M ) as the space of harmonic forms, i.e. formsh ∈

D1(M ) satisfyingdh = 0 andδh = 0. Since (2.8) is an elliptic problemH (M )
is finite dimensional and by the de Rham theoremH q(M ) is isomorphic to
H q(M , Γ1) the q-th relative cohomology group of (M , Γ1) with complex coeffi-
cients. We denote byH the orthogonal projection ofL2D (M ) ontoH (M ). The
Green’s operator for the problem (2.8) will be denoted byG (1). Forφ ∈ D (M ),
u = G (1)φ ∈ D1(M ) is the unique form orthogonal toH (M ) and satisfying

(d + δ)u = φ− Hφ. (2.13)

The Green’s operator for the problem (2.9) is given byG (2) = G (1)
a G (1). It

mapsD (M ) into D2(M ) and G (2)φ can be characterized as the unique form
u ∈ D2(M ) orthogonal toH (M ) and satisfying

∆u = φ− Hφ. (2.14)

G (1) andG (2) extend to bounded operators fromL2D (M ) into H1,2D1(M ) and
H2,2D2(M ) respectively. Moreover, ifλ > 0 is the smallest positive eigenvalue
of ∆ for the boundary conditions in (2.9), then

‖ G (2)φ ‖2 ≤ λ−1 ‖ φ ‖2

(2.15)
‖ G (1)φ ‖2 ≤ λ−1/2 ‖ φ ‖2 .

The Hodge decomposition of anL2 form φ can be obtained as follows.

φ = Hφ + dG (1)φ + δG (1)φ

(2.16)
= Hφ + dδG (2)φ + δdG (2)φ

and, by uniqueness the Green’s operators satisfy

dG (1) = G (1)δ, δG (1) = G (1)d, (2.17)

and
dG (2) = G (2)d, δG (2) = G (2)δ, (2.18)

when applied to forms which are sufficiently smooth and satisfy appropriate
boundary conditions.
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We define

Td = dδG (2) = dG (1) and Tδ = δdG (2) = δG (1). (2.19)

These are orthogonal projections ofL2D (M ) ontodD1(M ) andδD1(M ) respec-
tively. This gives rise toL2 orthogonal Hodge decompositions

D (M ) = dD1(M )⊕H (M )⊕ δD1(M )

(2.20)
L2D (M ) = dD1(M )⊕H (M )⊕ δD1(M )

= TdL2D (M )⊕H (M )⊕ TδL2D (M ).

We make the following useful observation.

Lemma 2.21 The space of exact forms TdL2D (M ) and the space of closed forms
TdL2D (M )⊕H (M ) = (TδL2D (M ))⊥ are independent of the Riemannian metric
on M .

Proof. Supposeη = dβ and β ∈ D (M ) satisfiesβt = 0 on Γ1. Then η is
orthogonal toH (M ) and toδD1(M ) by (2.6). It follows that

TdL2D (M ) = dD1(M )

⊂ {η ∈ D (M ) | η = dβ, β ∈ D (M ), βt = 0 onΓ1}
⊂ dD1(M ).

Since the topology ofL2D (M ) is independent of the metric and so is the con-
dition βt = 0 onΓ1, it follows that TdL2D (M ) = dD1(M ) is independent of the
metric. Similarly,

dD1(M )⊕H (M ) ⊂ {η ∈ D (M ) | dη = 0, ηt = 0 onΓ1} ⊂
(
δD1(M )

)⊥
.

Taking theL2 closures we see that (TδL2D (M ))⊥ is independent of the metric
as well. �

Define theL∞ norm, for a formφ with measurable coefficients, in the usual
way as

‖ φ ‖∞= ess sup
x∈M

|φ(x)|

and let C 0D (M ) denotes the space of forms with continuous coefficients
equipped with this norm.

We have the following special cases of the Sobolev embedding theorem (cf.
[2]).

Theorem 2.22 (i) For positive integers k, k′ ≥ 1 and real p, p′ ∈ [1,∞)
Hk,pD (M ) ⊂ Hk′,p′D (M ) provided k−m/p ≥ k′ −m/p′. The inclusion is
compact if k−m/p > k′ −m/p′ and k> k′.

(ii) If p > m then H1,pD (M ) ⊂ C 0D (M ) and the inclusion is compact.
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The following is our basica priori estimate. It is a special case of Theo-
rem 10.5 of [1].

Theorem 2.23 Suppose u∈ H1,pD (M ), p ≥ 2, is a solution of (2.8) or (2.10).
Then

‖ u ‖1,p ≤ C(‖ f ‖p + ‖ u ‖2)

with the constant C depending only on p, m, and the bounds of the components
of the metric tensor and their first derivatives.

This follows from Theorem 10.5 of [1] since, by (2.2), (2.3), (2.4), and (2.5), the
coefficients ofd + δ depend only on the metric tensor and the first derivatives of
its components.

Remarks.1. Since the boundary conditions in (2.8) and (2.10) are homogeneous,
our bounds for‖ u ‖1,p do not contain the norms of functions appearing in
the right-hand side of the equations defining boundary conditions present in [1,
(10.7)], which covers general inhomogenuous boundary conditions.

2. The estimate of [1], which yields (2.23), contains theL1 norm of u. We chose
the formulation with‖ u ‖2, which is a consequence, since we use only theL2

norm on the right hand side.

3. In thea priori estimates above, the term‖ u ‖2 can be dropped altogether pro-
vided u is L2-orthogonal toH (M ). However the constantC has to be changed
and its dependence on the metric becomes much more delicate (cf. (2.15)). For
this reason we will use such improved inequalities only for afixed metric.

We now review the spectral decomposition of∆. For a numberλ ≥ 0, let
E (λ) ⊂ D2(M ) be the linear space of formsφ ∈ D2(M ) satisfying∆φ = λφ.
Clearly E (0) = H (M ). For everyλ ≥ 0, dimE (λ) < ∞ and there exists a
sequence 0 =µ0 ≤ µ1 . . . → ∞ such thatL2D (M ) is the Hilbert space direct
sum

L2D (M ) =
∞⊕
i =0

E (µi ).

Since the Laplacian preserves the degree of a form and commutes withd andδ
every eigenspace decomposes further as follows.

E (µi ) =
m⊕

q=0
E q(µi )

E q(µi ) = E q
d (µi )⊕ E q

δ (µi )

where E q(µi ) denotesE (µi ) ∩ D q(M ) and E q
d (µi ) = E q(µi ) ∩ dD2(M ),

E q
δ (µi ) = E q(µi ) ∩ δD2(M ).

The Green’s operatorG (2) hasE (0) = H (M ) as its kernel and its restric-
tion to every eigenspace of∆ belonging to a positive eigenvalueλ acts as the
multiplication byλ−1. Therefore to study the dependence of eigenfunctions and
eigenvalues on the Riemannian metric, it will suffice to do so forG (2) rather
than ∆. This is technically easier sinceG (2) is a bounded compact operator
on several of the spaces introduced above. Basic facts from perturbation theory
needed to carry this out are reviewed below.
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3 Perturbation theory for semisimple compact operators on Banach spaces

The general reference for the material in this section is [12, Chapter 4,§3]. We
discovered that these techniques were useful for the study of eigenspaces of the
Laplace operator by reading the paper [16] of Osborn who studied a somewhat
more general situation than needed for our purposes. In addition, Osborn dis-
cusses applications to approximation theory which are very close in spirit to
what we do in Sects. 4 and 5.

Let G : X → X be a compact linear operator on a complex Banach space
(X, ‖ · ‖). Let σ(G) be the spectrum ofG and ρ(G) the resolvent set ofG.
Assume thatG is semisimple i.e. that for everyλ ∈ σ(G), every k = 1, 2, . . .
and everyv ∈ X

(G − λI )kv = 0

implies that
(G − λI )v = 0.

All operators considered here will satisfy this condition. Forz ∈ ρ(G) denote
the resolvent operator evaluated atz by Rz(G) = (G − zI )−1. Now consider a
family {G} of operators as above converging to an operatorG0 in the operator
norm topology.G0 has a countable spectrum of which 0 is the only accumulation
point. Supposeν is a nonzero element ofσ(G0). Thenν is an eigenvalue ofG0

of finite multiplicity l . Denote byγν a circle centered atν which lies inρ(G0)
and which encloses no points ofσ(G0) \ {ν}. The spectral projection associated
with ν andG0 is defined by

E0,ν =
1

2πi

∫
γν

Rz(G0) dz.

It is well known that if the operator norm‖ G − G0 ‖ is sufficiently small then
γν ⊂ ρ(G) and the corresponding spectral projectionEν for G is well defined
by

Eν =
1

2πi

∫
γν

Rz(G) dz.

The collection of operatorsEν converges toE0,ν in norm if ‖ G − G0 ‖→ 0.
The projectionEν is in fact the spectral projection associated withG and those
eigenvalues ofG which belong to the open disk bounded byγν . FurthermoreEν

mapsX onto the direct sum of eigenspaces corresponding to these eigenvalues.
Supposeν1, ν2, . . . νj are the distinct eigenvalues ofG within γν . Let F (νi ),
i = 1, 2, . . . j , be the eigenspaces ofG corresponding toνi and letF0(ν) be the
eigenspace ofG0 belonging toν. If mi = dimF (νi ), the multiplicity of νi as an
eigenvalue ofG, then l =

∑
i mi and the range ofEν is equal to⊕j

i =1F (νi ).
Since the radius ofγν can be chosen arbitrarily small, we see that when

‖ G − G0 ‖→ 0, G will have preciselyl eigenvalues (counting according to
multiplicity) converging toν. To formulate convergence of eigenspaces we recall
the notion of the gap between two closed subspaces ofX. Given two closed linear
subspacesA,B ⊂ X we define
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ϑ(A,B) = sup{dist(x,B) | x ∈ A, ‖ x ‖= 1}

and
ϑ̂(A,B) = max{ϑ(A,B), ϑ(B,A)}. (3.1)

ϑ̂(A,B) is called the gap betweenA and B. The following theorem is a special
case of Theorem 3.16, Chapter 4 of [12].

Theorem 3.2 There exists a constant C1 depending only on G0 such that, if
‖ G −G0 ‖ is sufficiently small, then

ϑ̂

(
j⊕

i =1
F (νi ) , F0(ν)

)
≤ C1 ‖ G −G0 ‖ .

Remarks.1.) Osborne [16] proves a somewhat more general version of this
theorem.
2.) ‖ G − G0 ‖ in the estimate above can be replaced by sup{ ‖ (G − G0)v ‖ |
v ∈ F0(ν), ‖ v ‖= 1}.

4 L2 continuity of Green’s operators

In this section we consider a family of smooth metrics onM , with typical ele-
mentg, converging inC 0 topology to a fixed metricg0. We wish to show that
the Green’s operatorsG (2) associated to the metricg converge to the Green’s
operatorG (2)

0 for the metricg0 in the operator norm topology in the space of
bounded operators onL2D (M ). In view of the factorizationG (2) = G (1)

a G (1)

it will suffice to investigate the behavior ofG (1). In general, an object associated
with the metricg0 will have a subscript 0 to distinguish it from an analogous
object for a metricg in our family. As the measure of closeness ofg to g0 we
can takeε(g, g0) defined by

ε(g, g0)2 = sup{ |g(v, v)− g0(v, v)| | x ∈ M , v ∈ Tx(M ) , g0(v, v) = 1}.

The differences of the components (cf. (2.3)) of the two metrics in local coordi-
nates can be estimated in terms ofε(g, g0) in an obvious way.

In the remainder of this sectionC(ε) will denote a function satisfyingC(ε) =
O(ε) with the constant implicit inO(ε) independent of the metricg but not
necessarily equal in different inequalities.

We first establish some lemmata.

Lemma 4.1 Suppose0 < ε(g, g0) = ε < ε. Then for everyφ, /υ ∈ L2D (M )

|(φ, /υ)− (φ, /υ)0| < C(ε)2 ‖ φ ‖0 · ‖ /υ ‖0 .

Proof. This becomes obvious when the integrand of (φ, /υ) =
∫

M φ∧∗/υ is written
in local coordinates using (2.5). �
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Lemma 4.2 Let P, P0 denote the projections of L2D (M ) onto the space, by
(2.21) independent of the metric, of closed forms with respect to the inner product
induced by the metricsg andg0 respectively. Then, if0 < ε(g, g0) = ε is sufficiently
small,

‖ Pf − P0f ‖0≤ C(ε) ‖ f ‖0,

where‖ · ‖0 is the L2 norm induced by the metricg0.

Proof. By the Pythagorean theorem

‖ Pf − P0f ‖2
0 =‖ f − Pf ‖2

0 − ‖ f − P0f ‖2
0 (4.3)

because bothPf andP0f are closed. Now

‖ f − Pf ‖2
0 ≤ (1 + C(ε)2) ‖ f − Pf ‖2≤ (1 + C(ε)2) ‖ f − P0f ‖2

since the two inner products are very close by Lemma 4.1 and the norm‖ f −Pf ‖
minimizes‖ f −ω ‖ over all closed formsω. We now go back to the norm‖ · ‖0.

‖ f − Pf ‖2
0≤ (1 + C(ε)2) ‖ f − P0f ‖2

0

and substitute this into (4.3) to obtain

‖ Pf − P0f ‖2
0≤ C(ε)2 ‖ f − P0f ‖2

0≤ C(ε)2 ‖ f ‖2
0 . �

A similar estimate holds for the harmonic projections.

Lemma 4.4 Suppose0 < ε(g, g0) = ε is sufficiently small. Then

‖ Hf − H0f ‖0≤ C(ε) ‖ f ‖0 .

Proof. Note first thatHf = HPf for every f ∈ L2D (M ). Therefore, in view of
Lemma 4.2, it suffices to prove the estimate assuming that the formf is closed.
In this casef = Pf = P0f . We use the characterization, which follows easily
from the Hodge decomposition (2.20), of harmonic forms as the minima of norm
in their cohomology classes and the fact that the harmonic projection preserves
the cohomology class of a closed form. ThusHf − H0f is exact and therefore
perpendicular toH0(M ). Therefore

‖ Hf − H0f ‖2
0 = ‖ Hf ‖2

0 − ‖ H0f ‖2
0

≤ (1 + C(ε)2) ‖ Hf ‖2 − ‖ H0f ‖2
0

≤ (1 + C(ε)2) ‖ H0f ‖2 − ‖ H0f ‖2
0

≤ C(ε)2 ‖ f ‖2
0,

where the first inequality follows from Lemma 4.1 and the second one from the
minimizing property ofHf . �

We remark that estimates analogous to those contained in Lemmas 4.2 and 4.4
hold as a consequence of these Lemmas for orthogonal projections onto spaces
of exact and coexact differential forms.

We are now ready to prove the main theorem of this section.
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Theorem 4.5 For every f ∈ L2D (M )

‖ G (2)f −G (2)
0 f ‖0≤ C(ε) ‖ f ‖0

provided0 < ε = ε(g, g0) is sufficiently small.

Proof. We will first establish the estimate forG (1). The inequality forG (2)

follows sinceG (2) = G (1)
a G (1). Thus consider the equation

(d + δ)u = f − Hf (4.6)

for an arbitraryf ∈ L2D (M ) and its unique solutionu = G (1)f ∈ H1,2D1(M )
perpendicular toH (M ) and the analogous equation for the metricg0 with the
solution u0 = G (1)

0 f . We have to estimate theL2 norm of u − u0. We will use
the same conventions as above, however all Sobolev norms that we shall use
are defined using the metricg0 and its Levi-Civita connection. In addition,C1

will denote a positive constant that does not depend on the metricg provided
ε(g, g0) ≤ ε; i.e. C1 may depend onε. We begin with a calculation of (u−u0, φ)0

for an arbitraryL2 form φ = h + (d + δ0)v, h ∈ H0(M ), v = G (1)
0 φ. The method

of estimating will be to use (· , ·) or (· , ·)0 as convenient compensating whenever
necessary with terms which are small wheng is close tog0. Thus

(u − u0, φ)0 = (u, h)0 + (u, dv)0 + (u, δ0v)0 − (u0, dv)0 − (u0, δ0v)0. (4.7)

The last two terms above yield after integration by parts−(f − H0f , v)0. The
third term is equal to (du, v)0. The second term in (4.7) can be written as

(u, dv)0 = (u, dv) + [(u, dv)0 − (u, dv)]

= (δu, v) + [(u, dv)0 − (u, dv)]

+ (δu, v)0 + [(δu, v)− (δu, v)0] + [(u, dv)0 − (u, dv)]

We will show that the terms in square brackets are small whenε(g, g0) is small.
Observe that the sum of the second and third terms in (4.7) amounts to

((d + δ)u, v)0 + [ · · · ] + [ · · · ] =

(f − Hf , v)0 + [ · · · ] + [ · · · ]
where we used the equations satisfied byu. It follows that the right hand side of
(4.7) can be written as

− (Hf − H0f , v)0 + (u, h)0 + [ · · · ] + [ · · · ]. (4.8)

We estimate each term of this sum separately.

|(Hf − H0f , v)0| ≤ C(ε) ‖ f ‖0 · ‖ v ‖0≤ C(ε) ‖ f ‖0 · ‖ φ ‖0 (4.9)

by Lemma 4.4 and the bound (2.15) for the metricg0. Note that

‖ u ‖0≤‖ u − u0 ‖0 + ‖ u0 ‖0≤‖ u − u0 ‖0 +C1 ‖ f ‖0 (4.10)
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using (2.15) forg0 again. We now estimate the second term in (4.8) using Lemma
4.1, equivalence of norms‖ ‖ and‖ ‖0, the inequality‖ h ‖0≤ ‖ φ ‖0, and the
fact thatu is perpendicular toH (M ) with respect to the inner product induced
by g. Using (4.10) we obtain the following inequality.

|(u, h)0| = |(u, (H0 − H )h)0 + (u,Hh)0|
= |(u, (H0 − H )h)0 + (u,Hh)0 − (u,Hh)|
≤ C(ε) ‖ u ‖0 · ‖ h ‖0 (4.11)

≤ C(ε)
(‖ u − u0 ‖0 +C1 ‖ f ‖0

) · ‖ φ ‖0 .

Similarly,

|(δu, v)− (δu, v)0| ≤ C(ε) ‖ u ‖1,2 · ‖ v ‖0

≤ C(ε)
(‖ f − Hf ‖0 + ‖ u ‖0

) · ‖ φ ‖0 (4.12)

≤ C(ε)
(‖ u − u0 ‖0 +C1 ‖ f ‖0

) · ‖ φ ‖0,

where we used Theorem 2.23, (4.10), and (2.15) for the metricg0. To estimate
the fourth term in (4.8) we note that the definition ofv and the fact that the
images ofd andδ0 are perpendicular with respect to (· , ·)0 imply that

‖ dv ‖2
0≤‖ (δ0 + d)v ‖2

0≤ C1 ‖ φ ‖2
0 .

Thus, using (4.10),

|(u, dv)0 − (u, dv)| ≤ C(ε) ‖ u ‖0 · ‖ dv ‖0

≤ C(ε)
(‖ u − u0 ‖0 + ‖ f ‖0

) · ‖ φ ‖0 . (4.13)

We now takeφ = (u − u0)/‖ u − u0 ‖0 in (4.7) and collect the estimates (4.9),
(4.11), (4.12), (4.13) to obtain

‖ u − u0 ‖0≤ C(ε) ‖ f ‖0 +C(ε) ‖ u − u0 ‖0 .

This proves the theorem sinceC(ε) ≤ C1ε and the last term on the right can be
absorbed in the left-hand side. �

As a corollary we deduce convergence of eigenvalues and eigenspaces of the
Laplacian asε(g, g0) → 0. In the theorem below the gap̂ϑ is as defined in (3.1)
using the norm‖ · ‖0 on L2D (M ).

Theorem 4.14 Supposeε(g, g0) → 0. Then the gapϑ̂(H (M ),H 0(M )) tends
to zero. Letλ > 0 be an eigenvalue of the Laplacian∆0 acting on forms of
degree q for the boundary condition in (2.9) andE q

0 (λ) = E q
0,d(λ)⊕E q

0,δ(λ). Let
k = dimE q

0,d(λ), l = dimE q
0,δ(λ) and let Iλ be an open interval inR aroundλ

such that Iλ ∩ σ(∆0) = {λ}. Then, forε(g, g0) sufficiently small, the Laplacian∆
acting on exact (respectively coexact) forms of degree q has, when counted with
multiplicities, exactly k (respectively l ) eigenvalues in Iλ. Letµ1, . . . , µk1 ∈ Iλ be
the distinct eigenvalues of∆ corresponding to the exact eigenforms of degree q
and letν1, . . . νl1 ∈ Iλ correspond to coexact ones. Then
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lim
ε→0

µi = λ, lim
ε→0

νi = λ

and

ϑ̂

(
k1⊕

i =0
E q

d (µi ) , E q
0,d(λ)

)
→ 0

ϑ̂

(
l1⊕

i =0
E q
δ (νi ) , E q

0,δ(λ)

)
→ 0

whenε(g, g0) tends to zero.

Proof. The statement concerning harmonic forms follows from Lemma 4.4. The
rest is a formal consequence of Theorem 4.5. NamelyG (2) = G (1)

a G (1) →
G (1)

0
a G (1)

0 = G (2)
0 in the operator norm topology by Theorem 4.5. Green’s

operator preserves the degree of a form and, sinced a G (2) = G (2)
a d, G (2)

mapsTdL2D q(M ) into itself. Denote byA (respectivelyA0) the restriction of
the Green’s operator for the metricg (respectivelyg0) to the space of exact forms
of degreeq. Clearly A→ A0 and the eigenspaces ofA for a positive eigenvalue
κ are precisely the eigenspaces of∆ on exact forms of degreeq corresponding
to the eigenvalueλ = 1/κ. Thus the statement about exact eigenspaces and
corresponding eigenvalues follows from the convergenceA → A0 via Theorem
3.2. To obtain an analogous statement for coexact eigenspaces we note that,
by (2.7), ∗E q

δ (λ) = F m−q
d (λ), where F m−q

d (λ) denotes the space of exact
eigenforms belonging toλ > 0 for the boundary value problem

∆u = f

ut = 0, (δu)t = 0 on Γ2

un = 0, (du)n = 0 on Γ1.

This is the same as the problem (2.9) withΓ1 and Γ2 interchanged. By the
argument above

ϑ̂

(
l1⊕

i =0
F m−q

d (νi ) , F m−q
0,d (λ)

)
→ 0

and therefore, since∗ is an isometry,

ϑ̂

(
l1⊕

i =0
E q
δ (νi ) , E q

0,δ(λ)

)
→ 0.

This finishes the proof. �

5 C 1 - L∞ stability of eigenspaces

We consider metricsg → g0 in the C 1 topology and prove that in this context
Theorem 4.14 holds witĥϑ replaced byϑ̂∞, the gap between subspaces of
C 0D (M ) equipped with theL∞ norm. Defineη(g, g0) by
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η(g, g0)2 = ε(g, g0)2 + sup
x∈M

|∇0g(x)|2

where∇0g denotes the covariant derivative, with respect to the Levi-Civita con-
nection for the metricg0, of g considered as a tensor onM . η(g, g0) controls the
differences of the components of the metrics and derivatives of these differences
in terms of local coordinates. In particular,η(g, g0) → 0 if and only if g ap-
proachesg0 in the C 1 topology. All norms considered in this section, i.e.‖ · ‖p

and‖ · ‖1,p, are computed using the base metricg0. They are clearly comparable
with constants depending only onη for η(g, g0) < η to corresponding norms for
the metricg.

We shall need the following lemma.

Lemma 5.1 Supposeη = η(g, g0) < η. There exists a constant C1 > 0 depending
only on p≥ 2 andη so that

‖ Hf ‖1,p ≤ C1 ‖ f ‖p

for all forms in LpD (M ). In particular, H is a bounded operator on LpD (M ).

Proof. By Theorem 2.23

‖ Hf ‖1,p ≤ C
(‖ (d + δ)Hf ‖p + ‖ Hf ‖2

) ≤ C ‖ f ‖2≤ C1 ‖ f ‖p . �

Since C 0D (M ) and LpD (M ) for p ≥ 2 are contained inL2D (M ) the
Green’s operatorG (1) is defined on these spaces. It follows easily from Theorem
2.23 and from Lemma 5.1 thatG (1) is a bounded operator fromLpD (M ) to
H1,pD1(M ) for p > 2 and that forη(g, g0) < η its norm is uniformly bounded.
Finally (cf. (2.22)), the compactness of the inclusionH1,pD (M ) ⊂ C 0D (M )
for p > m shows thatG (1) restricts to a compact operator onC 0D (M ). The
same is true as a consequence forG (2) = G (1)

a G (1). It follows from the elliptic
regularity thatG (2) considered as an operator onC 0D (M ) has exactly the
same spectrum and eigenspaces asG (2) on L2D (M ) and that it is semisimple
as an operator onC 0D (M ). We will establish the stability of eigenspaces as a
consequence of the convergence of Green’s operators in the operator norm on
the space of bounded operators onC 0D (M ). To this end we shall estimate the
norm of G (1) −G (1)

0 as the operator fromLpD (M ) into H1,pD (M ) for a fixed
p > m. As in the previous sectionC(η) will be equal toO(η) so that the constant
implied depends only onp and the upper boundη of η(g, g0) = η. We need two
more lemmata.

Lemma 5.2 For v ∈ H1,pD (M ),

‖ (δ − δ0)v ‖p ≤ C(η) ‖ v ‖1,p

and
‖ (∗ − ∗0)v ‖1,p ≤ C(η) ‖ v ‖1,p .

Proof. This follows from (2.2), (2.5), and (2.4). �
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Lemma 5.3 For every p> m = dim M and every f∈ LpD (M )

‖ Hf − H0f ‖1,p ≤ C(η) ‖ f ‖p .

Proof. Choose nonnegative smooth functionsφ1 andφ2 such thatφ1 + φ2 = 1
andφi = 1 nearΓi for i = 1, 2. We would like to apply the basic elliptic estimate
(2.23) toω = Hf −H0f . This cannot be done directly sinceω does not satisfy the
conditionωn = 0 onΓ2 neither with respect to the metricg nor with respect to
g0. We note however thatωt = 0 onΓ1 is satisfied independently of any metric.
It follows that the estimate is applicable toφ1ω. We use this together with the
fact that∗0 is a covariant constant for the metricg0 and that∗ interchanges the
two boundary conditions to prove the lemma. Thus

‖ ω ‖1,p ≤ ‖ φ1ω ‖1,p + ‖ φ2ω ‖1,p

≤ ‖ φ1ω ‖1,p + ‖ φ2 ∗ (Hf − H0f ) ‖1,p (5.4)

≤ ‖ φ1ω ‖1,p + ‖ φ2(∗Hf − ∗0H0f ) ‖1,p + ‖ φ2(∗0 − ∗)H0f ‖1,p .

In the sequel, we useC , possibly with subscripts, to denote a constant depending
only on η, the functionsφi , p, m but independent of the metricg. The value of
C in different inequalities need not be the same.

The last term of the inequality above is estimated using Lemmas 5.1 and 5.2
as follows.

‖ φ2(∗0 − ∗)H0f ‖1,p≤ C(η) ‖ H0f ‖1,p≤ C(η) ‖ f ‖p . (5.5)

We now apply the estimate in Theorem 2.23 toφ1ω, which satisfies the boundary
conditions of (2.8), to obtain

‖ φ1ω ‖1,p ≤ C(‖ (d + δ0)φ1ω ‖p + ‖ φ1ω ‖2)

≤ C(‖ (d + δ0)φ1ω ‖p +C(ε) ‖ f ‖2) (5.6)

≤ C(‖ (d + δ0)ω ‖p + ‖ ω ‖p +C(η) ‖ f ‖p).

Lemma 4.4 was used above to bound‖ φ1ω ‖2≤‖ Hf −H0f ‖2. Now (d +δ0)ω =
δ0Hf = (δ − δ0)Hf . It follows from Lemmas 5.2 and 5.1 that

‖ (d + δ0)ω ‖p≤ C(η) ‖ f ‖p . (5.7)

Next we estimate theLp norm ofω. We use theL2 estimate provided by Lemma
4.4 and the Sobolev inequality of Theorem 2.22. Letα > 0 be a parameter whose
value will be fixed below and setr = p/(p − 2), t = p/2.

‖ ω ‖p =

(∫
M
|ω|p

)1/p

≤ C ‖ ω ‖
p−2

p∞ ‖ ω ‖
2
p

2 (5.8)

≤ C1α
r ‖ ω ‖∞ +C2α

−t ‖ ω ‖2

≤ C1α
r ‖ ω ‖1,p +C(ε)α−t ‖ f ‖p

≤ 1
4
‖ ω ‖1,p +C(η) ‖ f ‖p
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providedα is chosen so thatC1α
r ≤ 1/4.

Combining (5.6), (5.7) and (5.8) we see that

‖ φ1ω ‖1,p ≤ 1
4
‖ ω ‖1,p +C(η) ‖ f ‖p .

An analogous estimate holds for the norm ofφ2(∗Hf −∗0H0f ) = φ2(H ∗f −H0∗0

f ). It is proved in a similar way using the fact that this form satisfies the boundary
conditions of (2.8) withΓ1 andΓ2 interchanged, so that the main apriori estimate
applies, and that (d + δ0)(∗Hf − ∗0H0f ) = δ0 ∗ Hf = (δ0 − δ) ∗ Hf . We do not
repeat the details but state the resulting inequality.

‖ φ2(∗Hf − ∗0H0f ) ‖1,p ≤ 1
4
‖ ω ‖1,p +C(η) ‖ f ‖p

The last two inequalities and (5.5) yield the Lemma when substituted into (5.4).
�

Theorem 5.9 Supposeη(g, g0) < η and p > m are fixed. For every f∈
LpD (M ),

‖ G (1)f −G (1)
0 f ‖1,p ≤ C(η) ‖ f ‖p .

Proof. We use a scheme similar to the proof of Theorem 4.5. Letu = G (1)f ,
u0 = G (1)

0 f , f ∈ LpD (M ). Then u and u0 are perpendicular toH (M ) and
H0(M ) respectively for the inner products defined respectively byg andg0. u
satisfies the equation (4.6) andu0 is the solution of the analogous equation for
g0. As in the proof of Lemma 5.3 we use cutoff functionsφj , j = 1, 2 to write
ζ = u− u0 as the sumφ1ζ +φ2ζ of forms supported in neighborhoods ofΓ1 and
Γ2 respectively.

We remark that this sort of localization would be unnecessary if eitherΓ1 = ∅
or Γ2 = ∅. For example, ifΓ2 = ∅, thenu − u0 satisfies the boundary condition
(u − u0)t = 0 for all metrics and the main apriori estimate of Theorem 2.23 can
be applied. If, on the other hand,Γ1 = ∅, the Theorem 5.14 could be deduceda
posteriori from the case whenΓ2 = ∅ by applying∗ to all eigenfunctions. For
some applications ([17]) one has to consider the more general case of different
boundary conditions on different parts of the boundary and for this reason we do
this as well.

We furthermore write∗0τφ2ζ = φ2∗0τ (u−u0) = φ2(∗τu−∗0τu0)+φ2(∗0τu−
∗τu) whereτ is the algebraic operator introduced in connection with (2.10). We
observe thatφ1ζ satisfies the boundary conditions of (2.8) and thatφ2(∗τu −
∗0τu0) has vanishing tangential component onΓ2 and is identically zero nearΓ1,
i.e. satisfies the boundary conditions in (2.10). Clearly

‖ ζ ‖1,p ≤ (5.10)

‖ φ1ζ ‖1,p + ‖ φ2(∗τu − ∗0τu0) ‖1,p + ‖ φ2(∗0τu − ∗τu) ‖1,p .

The last term can be estimated in terms ofC(η) ‖ f ‖p using Lemma 5.2 and
the uniform boundedness of the Green’s operators. The norms ofφ1 zeta and
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φ2(∗τu−∗0τu0) can be estimated in a way similar to how (5.6) was treated in the
proof of Lemma 5.3. We will prove only the estimate forφ2(∗τu−∗0τu0) = φ2κ
since the argument forφ1ζ is very similar. ¿From Theorem 2.23

‖ φ2κ ‖1,p ≤ C
(‖ (d − δ0)φ2κ ‖p + ‖ φ2κ2 ‖2

)
(5.11)

≤ C
(‖ (d − δ0)κ ‖1,p + ‖ κ ‖p + ‖ κ ‖2

)
.

Using the definition ofτ and (2.7) we see that‖ (d−δ0)κ ‖p=‖ (d+δ0)(u−u0) ‖p.
In addition,κ = ∗0τ (u−u0)+(∗−∗0)τu so that‖ κ ‖q≤‖ u−u0 ‖q + ‖ (∗−∗0)u ‖q

for all q ≥ 1. Thus (5.11) implies that

‖ φ2κ ‖1,p ≤ (5.12)

C
(‖ (d + δ0)(u − u0) ‖1,p + ‖ u − u0 ‖p + ‖ u − u0 ‖2

)
.

Now (d+δ0)(u−u0) = H0f −Hf +(δ−δ0)u. so that the first term on the right-hand
side of (5.12) can be bounded byC(η) ‖ f ‖p in view of Lemmas 5.3 and 5.2.
The second term above is estimated exactly as in (5.8) using Theorem 4.5. The
boundC(η) ‖ f ‖p for the third term follows from Theorem 4.5 as well. We thus
obtain the following inequality.

‖ φ2κ ‖1,p≤ 1
4
‖ u − u0 ‖1,p +C(η) ‖ f ‖p

As remarked above an analogous estimate holds for‖ φ1ζ ‖p which proves the
theorem in view of (5.10). �

Corollary 5.13 If η(g, g0) ≤ η, then

‖ G (1)f −G (1)
0 f ‖∞≤ C(η) ‖ f ‖∞

and
‖ Hf − H0f ‖∞≤ C(η) ‖ f ‖∞

for every f ∈ C 0D (M ).

Proof. The first inequality follows from the Sobolev embedding theorem (2.22)
and Theorem 5.9 above since

‖ u − u0 ‖∞≤ C1 ‖ u − u0 ‖1,p ≤ C(η) ‖ f ‖p ≤ C(η) ‖ f ‖∞ .

The second assertion follows in a similar way from Lemma 5.3.�

Finally, we can state the main theorem. It follows from the corollary the
same way as Theorem 4.14 follows from Theorem 4.5. We will not repeat the
argument.

Theorem 5.14 Exact and coexact eigenspaces of the Laplace operator∆ for
the boundary conditions in (2.9) converge, whenη(g, g0) → 0, to corresponding
eigenspaces of∆0 as subspaces ofC 0D (M ). More precisely the conclusion of
Theorem 4.14 holds with the gap̂ϑ replaced by the gap̂ϑ∞ based on the L∞
norm.



Stability of spectra of Hodge-de Rham laplacians 345

References

1. Agmon, S., Douglis, A., Nirenberg, L.: Estimates near the boundary for solutions of elliptic
partial differential equations satisfying general boundary conditions, II. Comm Pure Appl. Math.
17, 35–92 (1964)

2. Aubin, T.: Nonlinear Analysis on Manifolds, Monge-Ampère Equations. Springer-Verlag, Berlin
Heidelberg New York, 1982

3. Cheeger, J.: Spectral geometry of singular Riemannian spaces. J. Differential Geometry18,
575–657 (1983)

4. Conner, P.E.: The Neumann’s Problem for Differential Forms on Riemannian Manifolds. Mem.
Amer. Math. Soc.20. Providence, R.I., 1956

5. Davies, E. B.: Spectral properties of compact manifolds and changes of metric. Amer. J. Math.
112, 15–39 (1990)

6. Donaldson, S.: Connections, cohomology and the intersection forms of 4-manifolds. J. Diff.
Geometry24, 275–341 (1986)

7. Donaldson, S., Sullivan, D.: Quasiconformal four manifolds. Acta Math.163, 181–252 (1989)
8. Forman, R.: Hodge theory and spectral sequences. Topology33, 591–611 (1994)
9. Hejhal, D.: Regularb-groups, Degenerating Riemann Surfaces and Spectral Theory. Memoirs

of Amer. Math. Soc.437 (1990)
10. Hodge, V.W.D.: The Theory and Applications of Harmonic Integrals. Cambridge University

Press, Cambridge 1941
11. Ji, L.: Spectral Degeneration of Hyperbolic Riemann Surfaces. J. Diff. Geom.38, 263–313

(1993)
12. Kato, T.: Perturbation Theory for Linear Operators, second edn. Springer-Verlag, Berlin Hei-

delberg New York 1976
13. Kronheimer, P.B., Mrowka, T.S.: The genus of embedded surfaces in the projective plane. Math.

Research Letters1, 797–808 (1994)
14. McGowan, J.: Thep-spectrum of compact hyperbolic three manifolds. Math. Annalen279,

725–745 (1993)
15. Morrey, C.B.: Multiple Iintegrals in the Calculus of Variations. Springer-Verlag, Berlin Hei-

delberg New York 1966
16. Osborn, J.E.: Spectral Approximation for Compact Operators. Math. Comp.29, 712–725 (1975)
17. Ray, D.B., Singer, I.M.: R-Torsion and the Laplacian on Riemannian Manifolds. Advances in

Math. 7, 145–210 (1971)
18. Sullivan, D., Teleman, N.: An analytic proof of Novikov’s theorem on rational Pontrjagin classes.

Publ. Math. IHES58, 291–293 (1983)
19. Teleman, N.: Combinatorial Hodge theory and signature operator. Inventiones Math.61, 227–249

(1980)
20. Teleman, N.: The index of signature operators on Lipschitz manifolds. Publ. Math. IHES58,

251–290 (1983)
21. Wolpert, S.: Asymptotics of the Spectrum and the Selberg Zeta Function on the Space of

Riemann Surfaces. Comm. Math. Phys.112, 283–315 (1987)

This article was processed by the author using the LaTEX style file pljour1m from Springer-Verlag.


