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1 Introduction

In this paper we investigate the stability of eigenspaces of the Laplace operator
acting on differential forms satisfying relative or absolute boundary conditions
on a compact, oriented, Riemannian manifold with boundary (this includes, in
particular, both Neumann and Dirichlet conditions for the Laplace-Beltrami op-
erator on functions). More precisely, our main result is that the gap between
corresponding eigenspaces (precise definition will be recalled below) measured
using thel ., norm, converges to zero when smooth mettiaonverge tay in

the Z* topology. It is quite well known (cf. [3] or [14]) that the eigenvalues of
the Laplacian vary continuously under®-continuous perturbations of the met-

ric. It is perhaps less well known, but implicit in the work of Cheeger [3], that
eigenspaces vary continuously as subspacds efhen the metric is perturbed

¢ %-continuously. We reprove thig™® - L, stability in Sect. 4 for completeness
and in order to be able to use certain notation, conventions and partial results in
the proof of 1 - L, stability in Sect. 5.

The second section of the paper contains a review of the Hodge theory for
the Laplace operator with absolute and relative boundary conditions. We also
state here the Sobolev embedding theorems and the bagiri estimates
for the square rood + ¢ of the LaplacianA. We need to work withd + ¢
rather thanA = (d + 6)? since the coefficients ofA depend on the second
derivatives of the metric tensor and we allow offy*-continuous perturbations
of the metric and do not assume any bounds on the second derivatives. In the
third section we review following Kato [12] and Osborn [16] general results
from functional analysis concerning perturbation theory for compact operators on
Banach spaces, that reduce proving convergence of eigenvalues and eigenspaces
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to proving convergence of Green’s operators. Osborn’s paper, in certain special
cases, extends Kato's general perturbation theory and relates estimates of rates
of convergence of Green’s operatorsa@riori estimates.

A natural way to obtain uniform bounds for solutions of elliptic equations
(e.g. eigenforms) is to apply elliptic estimates to powers of the operator and
then use Sobolev embedding theorems. We cannot do this since the coefficients
of high powers ofd + § depend on many derivatives of the metric. We uge
estimatesp >> 1, for d + 6 and the bounded embeddii , C #° instead.

It is important to realize that, in the case of the Laplacian on functions, one
can define the Laplacian if the metric is merely measurable, and compare the
Laplacians for the measurable metric and a smooth Lipschitz equivalent metric
(cf. [5]). To study the Laplacian on forms some additional regularity of the
metric is necessary (cf. [15]). In view of this, it is natural for us to considér
perturbations of the metric. We remark here that the constants involved in our
estimates depend only on theundsof the first derivatives of the metric. It is thus
conceivable that some version of our results will hold for Lipschitz manifolds. We
recall here that Teleman [20, 19] proved that, on a compact Lipschitz manifold
equipped with a Lipschitz Riemannian metric, the signature opethtoé has
compact resolvent. Thud + 6§ on such manifolds has discrete spectrum. One
has in this context eigenvalues (squares of eigenvaluds+df) and eigenforms
(homogeneous components of eigenformsl 6f)) of the Laplacian although the
Laplacian itself is defined only in the distributional sense. In view of spectacular
applications of analysis on manifolds of low smoothness (i.e. with Lipschitz,
guasiconformal or PL structure) to topology [18, 7] spectral geometry in this
context appears to be a promising area of further study and we anticipate that
the techniques of this paper may be of use.

We remark further that there has been a great deal of work concerning vari-
ation of eigenvalues and eigenspaces or certain functions, e.g. determinants, of
various elliptic operators. We give a very incomplete list of examples. Varia-
tions of harmonic forms appear in the work of Donaldson [6], in his theory of
4-manifolds, and more recently Kronheimer and Mrowka [13] in their proof of
the Thom conjecture. Forman [8] studied the behavior of harmonic forms and
eigenforms with small eigenvalues under “adiabatic limit” to derive a Hodge the-
oretic version of Leray spectral sequence. We also mention the papers of Hejhal
[9], Wolpert [21] and Ji [11] studying spectral invariants as functions on moduli
spaces of Riemann surfaces. Deformations of metrics in all these cases were
of very special kinds and smoothness of the metric was not an issue. We de-
cided that it was worthwhile to provide reasonable, i.e. not too stringent, general
conditions under which one obtains continuous variation of eigenspaces under
deformations of the metric. We obtain in particular estimates for the gaps be-
tween eigenspaces for the Laplacian of the base metric and the perturbed metric
in terms of appropriate distances between metrics.

We are very grateful to an anonymous referee for a very thorough reading
of the first version of the paper, for pointing out a gap in the proof of our
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main result, and for many thoughtful comments that, in particular, were useful
in bridging that gap.

2 Hodge theory and a priori estimates ford + 6

We begin by reviewing the Hodge theory for manifolds with boundary [4], [15,
Chapter 7], [17]. LeM be aZ °, oriented, compact manifold @f dimensions,
with boundaryl” = I1 U I, wherel; and I are two closed disjoint smooth
submanifolds ofl". We allow the possibility that eithef; or I, or both are
empty. LetZ (M) = &gL,Z%M), where Z9(M) denotes the space ¢f >
differential forms onM of degreeq with complex coefficients. A Riemannian
metric ¢ on M induces the Hodge star operator Z9(M) — ™ 49(M) and
the inner product inz%9(M) for everyq given by

(0,%) =A¢A*w. (2.1)

We extend this inner product t&/ (M) by requiring forms of different degrees
to be orthogonal. The formal adjoiatof the exterior derivativel is defined on
forms of degreey as

6= (=1 ™l d « (2.2)

We considerd + ¢ as an operator o (M). ThenA = (d +6)? = éd +dé is the

usual Laplacian and, in particular, it preserves the degree of differential forms.
We now state for reference the local coordinate expressions for the metric, the
exterior derivative operator, and10, §27.2]. The summation convention is used
throughout. Thus

g=gjdxdx. (2.3)
A differential form of degreey can be written locally as
1 : )
f= fil,__idx'lA...Adx"*,
gt
where the summation is extended over all sequenges.,iq andf;, ;. is
skew-symmetric in its indices. Then,
at iy i givegi
_ I —alp+1.. D+
D Vo (2.4)
and
Giyyimeg = (2.5)
1 . o . i i
g Vdet@rs) ez, - - iqsis- - - im—q) ™ ... Pk,
where ¢V) = (gj)~* and (1, .. .,jq, i1, - -,im_q) denotes the sign of the per-

mutationjs, ... ,jq,11,...,im—q 0f 1,2,...,m.
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By Stokes’ theorem

(do,p) — (9, 00) = | dAxp+ [ N (2.6)
I I

We introduce boundary conditions that make the right-hand side of this formula
vanish. Every, possibly inhomogeneous, differential fdrme (M) has, at
every boundary point df1, a natural decompositioh= f; +f,, into its tangential
part f; and the normal parf,. We note that the conditiofy = 0 is defined
independently of the Riemannian metticand is equivalent to the vanishing of
the pullback off to M via the inclusion mapping. In addition? = (—1)4(m-®
and

() = #(f),  (+F) = x(fa), *d = (~1)%26x, *6=(-1)0d*  (2.7)

for all forms f, the first two equalities holding at all points éf = OM, and

the last two at all points oM. Thus, for example, if5)y = 0 on I3 andy, =0

on I, then the right-hand side of (2.6) vanishes. We consider the following two
boundary value problems.

d+&u = f
uw = 0 on I (2.8)
u = 0 on Iy
Au = f
w = 0 (bu) =0 on I (2.9)

Un = 0, (d u)n = 0 on FZ

We shall also have to consider another boundary value problem related to
(2.8). Namely, suppose thatis a solution of (2.8). Them = x7u is a solution
of the system

(d—=06w = «f
vy = 0 on I (2.10)
nw = 0 on 1>

wherer is a linear operator which acts on forms of deggeby multiplication
by (—1)9. This follows by applying« to (2.8) and using (2.7). Note that the
boundary conditions o} and I'; are interchanged in the process.

All three boundary value problems above are elliptic in the sense of [1]. Since
our main result relies in an essential way on estimates from that paper as applied
to (2.8) and (2.10), we include here the verification that the boundary conditions
in these first order systems satisfy the Complementing Condition of [1]. To state
this condition for a general elliptic system one considers a neighborbood
a boundary poinp with local coordinates chosen so that the boundary is given
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by t = x" = 0, p is the origin, and the half-spade> 0 containsU. Consider
the homogeneous problem, i.e.= 0, in this half-space to which the given
problem reduces when all leading coefficients (of equations and the boundary
conditions) are fixed to their values at and the lower order terms are set
equal to zero. Lex = (x,...,x"~1) be the coordinates in the plarne= 0
and let¢ be an arbitrary nonzero vector in this plane. Consider solutions of the
problem introduced above of the foref¢w(t). The complementing condition
is satisfied if for everyt # 0 every such solution with bounded is identically
zero. We choose our coordinates so that the vegf@t is the unit normal to
the boundary ap. Then, in our case (problems (2.8) and (2.10)), the auxiliary
problem introduced above amounts to the identical homogeneous problem for
the standard flat metric on the half-space. Until further notice we use only the
standard metric and coordinates. We consider first the problem (2.8) and a point
p € I, Letu = eX€w(t) = eX¢ (fy(t) A dt +f,(t)) be a solution of the auxiliary
problem withf;’s bounded. The condition that the normal component vanishes
on the boundary, the second condition of (2.8), requiresfif§@y = 0. Heref;
andf, denote forms on the upper half-space with coefficients depending only on
t and not containinglt when expressed in terms of the coordinates.

Since @ + 6)u =0, Au = 0. The Euclidean Laplacian is just the negative of
the sum of second derivatives applied to components. d¢f follows that

i o 0%
— aiX-§ 2 _ _
Au=¢ <g| (fLAdtef)— oo Adt 8t2>’

i.e. thatf; satisfy
£ — €] = 0.

Thus, sinceu is boundedf; = o;e~I¢t. Howevera, = f1(0) = 0, so thaff; = 0
andu = eX¢fy(t). A computation using (2.2) and (2.4) for the Euclidean metric
shows that that the coefficient df in (d+8)u = 0 is equal up to sign te*¢f,(t).
Thusf, = axe It is constant and hence equal to zero.

The verification that the boundary conditions in (2.8) are complementing at
points of I'; is completely analogous with the roles faf and f, interchanged.
Similarly, the conditions in the problem (2.10) are complementing, since bounded
solutions of the auxiliary problem can be obtained from bounded solutions for
the auxiliary problem for (2.8) by applyingr for the Euclidean metric.

We now go back to the general metric & and introduce some Sobolev
spaces of differential forms. Definei (M) = @g’:o@l“(M) to be the space of
¢ > forms satisfying the boundary conditions in (2.8) &#g{M ) = ea;“zo,%q(M)
as the space of forms satisfying the boundary conditions of (2.9). Denote the
pointwise norm of a differential forrh by |f | and letL,Z (M) be the completion
of (M) with respect to the norm

1/p
I 1o= ([ 1pav) . (2.11)
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1 < p < oo. Similarly, let H , (M) be the Sobolev space of forms whose
derivatives up to ordek are inLp, i.e. the completion ofZ (M) in the norm

Kk 1/p
1 lkp= (Z / V' |pdV> : (2.12)
=0 “M

whereV'f is thel-th covariant derivative of the forrh. Note thatL,Z (M) =

HopZ (M). We also defindHy ,Z (M) as the closure ofZ (M) in He p Z (M)

and.7Z(M) = &L 7#2%(M) as the space of harmonic forms, i.e. forimse

2, (M) satisfyingdh = 0 andéh = 0. Since (2.8) is an elliptic probler@Z (M)

is finite dimensional and by the de Rham theoreii9(M) is isomorphic to
H9(M, I') the g-th relative cohomology group oM., I'1) with complex coeffi-
cients. We denote bl the orthogonal projection df,Z (M) onto.7Z(M). The
Green’s operator for the problem (2.8) will be denoted®{"). For ¢y € (M),

u=9°W¢ e (M) is the unique form orthogonal 167 (M) and satisfying

d+8)u=6¢—Ho. (2.13)

The Green’s operator for the problem (2.9) is given B2 = ¢ W. <@ |t
maps Z (M) into Z(M) and % @¢ can be characterized as the unique form
u € (M) orthogonal ta7' (M) and satisfying

Au=¢—Hg. (2.14)

%D and %@ extend to bounded operators frdmZ (M) into Hy ,# (M) and
H222(M) respectively. Moreover, ik > 0 is the smallest positive eigenvalue
of A for the boundary conditions in (2.9), then

1@l < Aol

(2.15)
1D < X2 ¢
The Hodge decomposition of dry form ¢ can be obtained as follows.
¢ = Ho+deWp+s5Wg
(2.16)
= Ho+d6s@p+sds@g
and, by uniqueness the Green’s operators satisfy
deo®W =g 6cW =g, (2.17)
and
de@=90d,  §5@=952 (2.18)

when applied to forms which are sufficiently smooth and satisfy appropriate
boundary conditions.
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We define
Tg=dés@=de® and Ts;=6de@ =55, (2.19)

These are orthogonal projectionslegfZ (M) ontod (M) and6Z; (M) respec-
tively. This gives rise td_, orthogonal Hodge decompositions

M) = dAM)®.FM) @ ZM)
(2.20)
LZM) = dAM)a&.F M)A M)

TaloZ (M) @ . FZ (M) & TsLoZ (M).
We make the following useful observation.

Lemma 2.21 The space of exact formg, (M) and the space of closed forms
TaloZ (M)®.72(M) = (TsLoZ (M))* are independent of the Riemannian metric
on M.

Proof. Supposen = dg and g € (M) satisfiesg = 0 on I1. Thenn is
orthogonal ta7#' (M) and toéZ,(M) by (2.6). It follows that

TaLoz (M)

d(M)
{(ne ZM)|n=dB,3 € ZM),3 =0 only}
daM).

N N

Since the topology of,Z (M) is independent of the metric and so is the con-
dition 3; = 0 on I3, it follows that TyL,Z' (M) = dZ1(M) is independent of the
metric. Similarly,

dZM) & . FEM) C {ne Z(M) |dn=0,n =00nTy} C (6ZM))".

Taking thel, closures we see thaT4L,Z (M))* is independent of the metric
aswell. O

Define thel ., norm, for a form¢ with measurable coefficients, in the usual
way as

| ¢ [loo= €S Supp(x)|
XeM

and let #°Z (M) denotes the space of forms with continuous coefficients
equipped with this norm.
We have the following special cases of the Sobolev embedding theorem (cf.

[2]).

Theorem 2.22 (i) For positive integers kk’ > 1 and real pp’ € [1,)
HkpZ (M) C He p 7 (M) provided k— m/p > k’ — m/p’. The inclusion is
compact if k— m/p > k" —m/p’ and k> k'.

(i) fp >mthen H,Z (M) C ¢ %% (M) and the inclusion is compact.
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The following is our basia priori estimate. It is a special case of Theo-
rem 10.5 of [1].

Theorem 2.23 Suppose = H1 pZ (M), p > 2, is a solution of (2.8) or (2.10).
Then
lu

1p < C([f flp + [l ull2)

with the constant C depending only on p, m, and the bounds of the components
of the metric tensor and their first derivatives.

This follows from Theorem 10.5 of [1] since, by (2.2), (2.3), (2.4), and (2.5), the
coefficients ofd + ¢ depend only on the metric tensor and the first derivatives of
its components.

Remarksl. Since the boundary conditions in (2.8) and (2.10) are homogeneous,
our bounds for|| u ||, do not contain the norms of functions appearing in
the right-hand side of the equations defining boundary conditions present in [1,
(10.7)], which covers general inhomogenuous boundary conditions.

2. The estimate of [1], which yields (2.23), contains thenorm ofu. We chose
the formulation with|| u |2, which is a consequence, since we use onlylthe
norm on the right hand side.

3. In thea priori estimates above, the terjru ||, can be dropped altogether pro-
vided u is L,-orthogonal to7Z (M ). However the constar@ has to be changed

and its dependence on the metric becomes much more delicate (cf. (2.15)). For
this reason we will use such improved inequalities only fdixad metric.

We now review the spectral decomposition Af For a number\ > 0, let
& (\) C Z(M) be the linear space of forms € (M) satisfying A¢ = A\¢.
Clearly #(0) =.7Z(M). For everyXA > 0, dimé& (\) < oo and there exists a
sequence 0 Fp < pgp... — oo such thatL,ZZ (M) is the Hilbert space direct
sum

L7 (M) = &7 (u).

Since the Laplacian preserves the degree of a form and commuted it §
every eigenspace decomposes further as follows.

& (i)
) = () @ i)

where £9(u;) denotesé (1) N Z9(M) and &' (i) = Z£9um) N dZ(M),
) = £w) N 6ZM).

The Green’s operator @ has ¢ (0) =.7#(M) as its kernel and its restric-
tion to every eigenspace af belonging to a positive eigenvaluleacts as the
multiplication by A~1. Therefore to study the dependence of eigenfunctions and
eigenvalues on the Riemannian metric, it will suffice to do so$0® rather
than A. This is technically easier sinc& @ is a bounded compact operator
on several of the spaces introduced above. Basic facts from perturbation theory
needed to carry this out are reviewed below.

m P
Eo? i)
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3 Perturbation theory for semisimple compact operators on Banach spaces

The general reference for the material in this section is [12, Chapi3]4We
discovered that these techniques were useful for the study of eigenspaces of the
Laplace operator by reading the paper [16] of Osborn who studied a somewhat
more general situation than needed for our purposes. In addition, Osborn dis-
cusses applications to approximation theory which are very close in spirit to
what we do in Sects. 4 and 5.

Let G : X — X be a compact linear operator on a complex Banach space
X, ]l - ). Let o(G) be the spectrum o6 and p(G) the resolvent set 06.
Assume thaiG is semisimple i.e. that for every € o(G), everyk = 1,2, ...
and everyv € X

(G- A)v=0

implies that
(G-Al)=0.

All operators considered here will satisfy this condition. Zoe p(G) denote
the resolvent operator evaluatedzaby R,(G) = (G — zI)~L. Now consider a
family {G} of operators as above converging to an oper&gin the operator
norm topology Gy has a countable spectrum of which 0 is the only accumulation
point. Suppose is a nonzero element of(Gp). Thenv is an eigenvalue 06

of finite multiplicity |. Denote byy, a circle centered at which lies in p(Gp)

and which encloses no points @{Go) \ {v'}. The spectral projection associated
with v and Gy is defined by

o = 5y | RGOz
q Yv

It is well known that if the operator normi G — Gy || is sufficiently small then
v, C p(G) and the corresponding spectral projectien for G is well defined

by
E, = 1./ R,(G)dz.
27l -

The collection of operatork, converges tdg, in norm if || G — Gg ||— 0.

The projectionE, is in fact the spectral projection associated wghand those
eigenvalues ofs which belong to the open disk bounded fy FurthermoreE,
mapsX onto the direct sum of eigenspaces corresponding to these eigenvalues.
Supposevy, vy, ... v are the distinct eigenvalues @ within v,. Let .7 (1),

i =12 ...j, be the eigenspaces & corresponding te; and let.7(v) be the
eigenspace 0B belonging tov. If m = dim.7 (), the multiplicity of; as an
eigenvalue ofG, thenl =", m and the range o, is equal tod!_,.7 ().

Since the radius ofy, can be chosen arbitrarily small, we see that when
| G — Gp ||— 0, G will have preciselyl eigenvalues (counting according to
multiplicity) converging tov. To formulate convergence of eigenspaces we recall
the notion of the gap between two closed subspac#s &fiven two closed linear
subspace#, B C X we define
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J(A, B) = sup{dist(x,B) | x € A || x ||= 1}

and
J(A, B) = max{(A, B), (B, A)}. (3.1)

7§(A, B) is called the gap betweeh andB. The following theorem is a special
case of Theorem 3.16, Chapter 4 of [12].

Theorem 3.2 There exists a constant@epending only on gsuch that, if
|| G — Gg || is sufficiently small, then

A
0 (@1&7(%)7 -%(V)) <C[[G-Go].

Remarks.1.) Osborne [16] proves a somewhat more general version of this
theorem.

2) || G — Gp || in the estimate above can be replaced by{gufG — Go)v |||

v e RW),| vl|=1}.

4 L2 continuity of Green’s operators

In this section we consider a family of smooth metricsMn with typical ele-
mentg, converging in% ° topology to a fixed metrigo. We wish to show that
the Green’s operators ® associated to the metrig converge to the Green’s
operator%(z) for the metricgg in the operator norm topology in the space of
bounded operators dpZ (M). In view of the factorizations @ = M. W

it will suffice to investigate the behavior & (). In general, an object associated
with the metricgo will have a subscript 0 to distinguish it from an analogous
object for a metricg in our family. As the measure of closenessgofo go we
can takee(g, go) defined by

6(9)90)2 = Sup{ |g(’U,’U) - go(’l),’l))‘ | X e M7 S TX(M)7 go(’U,’U) = 1}

The differences of the components (cf. (2.3)) of the two metrics in local coordi-
nates can be estimated in termse(yj, go) in an obvious way.

In the remainder of this sectidd(e¢) will denote a function satisfyin€ (¢) =
O(e) with the constant implicit inO(¢) independent of the metrig but not
necessarily equal in different inequalities.

We first establish some lemmata.

Lemma 4.1 Supposd < €(g, go) = € < €. Then for every,p € L,Z (M)

(@) — (6. %)0] < CE? | ¢ llo- % llo-

Proof. This becomes obvious when the integranddfy) = fM @ N\ *y IS written
in local coordinates using (2.5). O
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Lemma 4.2 Let P, R denote the projections of,lZ(M) onto the space, by
(2.21) independent of the metric, of closed forms with respect to the inner product
induced by the metriggand go respectively. Then, @ < (g, go) = € is sufficiently
small,

| Pf —Pof o< C(e) [ f [lo,

where|| - ||o is the L, norm induced by the metrig.
Proof. By the Pythagorean theorem
I Pf—Pof [I5=[If —Pf 5[l —Pof (4.3)
because botfPf andPyf are closed. Now
If —PHE<@+C@) | f—Pf < @+C(e) [T — Pof ||?

since the two inner products are very close by Lemma 4.1 and the |hbrafef ||
minimizes|| f —w || over all closed forms). We now go back to the norh- ||o.

If —PFIF< (1 +C(?) [ —Pof |3
and substitute this into (4.3) to obtain
IPf —Pof [G<C(?[If —Pof [F<C(?[f 5. O
A similar estimate holds for the harmonic projections.

Lemma 4.4 Suppos® < (g, go) = € is sufficiently small. Then
| Hf —Hof o< C(e) |  lo -

Proof. Note first thatHf = HPf for everyf € L, (M). Therefore, in view of
Lemma 4.2, it suffices to prove the estimate assuming that the ffamtlosed.

In this casef = Pf = Pof. We use the characterization, which follows easily
from the Hodge decomposition (2.20), of harmonic forms as the minima of norm
in their conomology classes and the fact that the harmonic projection preserves
the cohomology class of a closed form. ThHds — Hyf is exact and therefore
perpendicular to7y(M). Therefore

| Hf — Hof |3

|| HE [I5 — || Hof [I5

(1+C(&)%) || Hf ||> — || Hof |3
(L +C(e)?) || Hof |1> — || Hof |13
C? | f II5,

VANVANVAN

where the first inequality follows from Lemma 4.1 and the second one from the
minimizing property ofHf. O

We remark that estimates analogous to those contained in Lemmas 4.2 and 4.4
hold as a consequence of these Lemmas for orthogonal projections onto spaces
of exact and coexact differential forms.

We are now ready to prove the main theorem of this section.
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Theorem 4.5 For every fe L,Z (M)
15 ®f — 552 o< C@ || fllg
providedO < ¢ = ¢(g, go) is sufficiently small.

Proof. We will first establish the estimate for'®. The inequality fors®@
follows since’s® = M. <) Thus consider the equation

(d+68)u="f — Hf (4.6)

for an arbitraryf € L,2(M) and its unique solutiom = &' Mf € Hy ,7(M)
perpendicular to7Z' (M) and the analogous equation for the meggcwith the
solutionug = 555(1)f. We have to estimate the, norm of u — ug. We will use

the same conventions as above, however all Sobolev norms that we shall use
are defined using the metrig and its Levi-Civita connection. In additioiG;

will denote a positive constant that does not depend on the metpiovided

€(g, go) < €; i.e. C; may depend or. We begin with a calculation ofu(— ug, ¢)o

for an arbitraryL, form ¢ = h +(d + &o)v, h € . M), v = %M. The method

of estimating will be to use-(-) or (-, -)o as convenient compensating whenever
necessary with terms which are small wheis close togg. Thus

(U — Uo, @)o = (U, h)o + (U, dv)o + (U, dov)o — (Uo, dv)o — (Uo, bov)o- (4.7)

The last two terms above yield after integration by par($ — Hof ,v)o. The
third term is equal todqu, v)o. The second term in (4.7) can be written as

(u,dv)g = (u,dv)+[(u,dv)g— (u,dv)]
(6u,v) +[(u,dv)o — (u, dv)]
(6u,v)o +[(6uU, v) — (6U,v)o] + [(u, dv)o — (u, dv)]

+

We will show that the terms in square brackets are small wlig¢nyo) is small.
Observe that the sum of the second and third terms in (4.7) amounts to

(d+&)u,v)o+[---1+[---]=
(f —Hf, )0+ [---]1+[--]

where we used the equations satisfiedubyt follows that the right hand side of
(4.7) can be written as

— (Hf —Hof ,v)o + (u,h)o +[---]+[---]. (4.8)
We estimate each term of this sum separately.
[(Hf —Hof ,0)o] < C() [ f llo- v llo<C(e) I T llo- [ ¢ 1lo (4.9)
by Lemma 4.4 and the bound (2.15) for the metyic Note that

[ullo<lu—uoflo+|[uoflo<|u—uollo+Cs|f llo (4.10)
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using (2.15) forgy again. We now estimate the second term in (4.8) using Lemma
4.1, equivalence of norms || and| ||,, the inequality|| h [|o< || ¢ |lo, and the
fact thatu is perpendicular to7Z (M) with respect to the inner product induced
by ¢. Using (4.10) we obtain the following inequality.

|(u, h)ol

|(u, (Ho — H)h)o + (u, Hh)o|

|(u, (Ho — H)h)o + (u, Hh)o — (u, Hh)|

C(@ [lullo- 1o (4.11)
CE(u—uollo+Collf o) I ¢ lo-

IN A

Similarly,

|(6u, v) = (8u, v)ol C@l[ullz-llvlo

<
< CE (If=Hf flo+llullo) -ollo (412
< C() (lu—uollo+Ca | f llo) - I & llos

where we used Theorem 2.23, (4.10), and (2.15) for the megrido estimate
the fourth term in (4.8) we note that the definition ©fand the fact that the
images ofd andéy are perpendicular with respect ta ()p imply that

Idv |[§<Il (Go+d)v[lF<Curll¢]f5-
Thus, using (4.10),

|(u, dv)o — (u, dv)| C@llullo-ldvlo

<
< Ce) (lu—uollo+fllo)-llello. (413)

We now takep = (U — Ug)/ || U — Up ||o in (4.7) and collect the estimates (4.9),
(4.11), (4.12), (4.13) to obtain

[u—=1o flo< C(e) [ f [lo+C(e) | U= Uo flo-

This proves the theorem sin€Xe) < C;e and the last term on the right can be
absorbed in the left-hand side. O

As a corollary we deduce convergence of eigenvalues and eigenspaces of the
Laplacian as(g, go) — 0. In the theorem below the gapis as defined in (3.1)
using the norm| - [jo on LoZ(M).

Theorem 4.14 Suppose:(g, go) — 0. Then the gap?(.%’(M),.?ﬁo(M )) tends

to zero. LetA > O be an eigenvalue of the Laplaciatyy acting on forms of
degree g for the boundary condition in (2.9) afigf(\) = £} (V) @& gk (V). Let

k = dim 80%()\), | = dim&,(\) and let I, be an open interval ik around A

such that |\ N o (o) = {\}. Then, fore(g, go) sufficiently small, the Laplaciaz

acting on exact (respectively coexact) forms of degree q has, when counted with
multiplicities, exactly k (respectively I) eigenvalues jinlletps, ..., u, € I be

the distinct eigenvalues at corresponding to the exact eigenforms of degree g
and letvy, ..., € I, correspond to coexact ones. Then
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lim g = A limuy = A
e—0 Hi ’ e—0 :

and

~ ki )
?(Ero. mm) — o

=

LEAO) %535(»> — 0

S
N
Il

whene(g, go) tends to zero.

Proof. The statement concerning harmonic forms follows from Lemma 4.4. The
rest is a formal consequence of Theorem 4.5. Naniglp) = M., @ _,
M. g = 4@ in the operator norm topology by Theorem 4.5. Green’s
operator preserves the degree of a form and, sthees @ = €@.d, €@
mapsTyL,Z9(M) into itself. Denote byA (respectivelyAq) the restriction of

the Green'’s operator for the metgqrespectivelyy) to the space of exact forms

of degreeg. Clearly A — Ay and the eigenspaces Affor a positive eigenvalue

k are precisely the eigenspacesafon exact forms of degreg corresponding

to the eigenvalue = 1/x. Thus the statement about exact eigenspaces and
corresponding eigenvalues follows from the convergefsce Ag via Theorem

3.2. To obtain an analogous statement for coexact eigenspaces we note that,
by (2.7), %5 (\) = .7;" %)), where.7Z;""%()\) denotes the space of exact
eigenforms belonging ta > 0 for the boundary value problem

Au = f
0, (bux = O on I,
0, (du, =0 on I.

Ut

Un

This is the same as the problem (2.9) wifth and I, interchanged. By the
argument above

~ /I _ P
9 (-ﬂ%%m W), Fou q(A)) -0

and therefore, since is an isometry,

d (_eé “3m), ggjé(A)> )

i=0

This finishes the proof. O

5 ¢! - Loo stability of eigenspaces

We consider metricg — gq in the 1 topology and prove that in this context
Theorem 4.14 holds with} replaced byd.,, the gap between subspaces of
9% (M) equipped with the_,, norm. Definen(g, go) by
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(g, 90)? = €(g, go)* + sup|Vog(x)[?
XeM

whereVg denotes the covariant derivative, with respect to the Levi-Civita con-
nection for the metrigy, of g considered as a tensor dh. 7(g, go) controls the
differences of the components of the metrics and derivatives of these differences
in terms of local coordinates. In particulaj(g, go) — 0 if and only if g ap-
proachegyo in the Z'* topology. All norms considered in this section, ile. ||,
and| - ||l1,p, are computed using the base metic They are clearly comparable
with constants depending only enfor 7(g, go) < n to corresponding norms for
the metricg.

We shall need the following lemma.

Lemma 5.1 Suppose) = (g, go) < n. There exists a constant G- 0 depending
only on p> 2 andn so that

| Hf [[1p < Ca [l f [|p
for all forms in L,Z (M). In particular, H is a bounded operator on,tzZ (M).
Proof. By Theorem 2.23
IHE up < C (| (@+OHF [+ | Hf ) <C [T [2<Collf [p. O

Since #°Z (M) and Loz (M) for p > 2 are contained irL,Z (M) the
Green'’s operatofs 1 is defined on these spaces. It follows easily from Theorem
2.23 and from Lemma 5.1 tha¢'® is a bounded operator fro,Z (M) to
HipZ1(M) for p > 2 and that fory(g, go) < n its norm is uniformly bounded.
Finally (cf. (2.22)), the compactness of the inclusidn,Z (M) C Z°Z (M)
for p > m shows thats'® restricts to a compact operator Gh°Z (M). The
same is true as a consequence$of?) = & M. <D |t follows from the elliptic
regularity that <@ considered as an operator ¢7°%Z (M) has exactly the
same spectrum and eigenspacesé® on L,Z (M) and that it is semisimple
as an operator ot °Z(M). We will establish the stability of eigenspaces as a
consequence of the convergence of Green’'s operators in the operator norm on
the space of bounded operators 69 (M). To this end we shall estimate the
norm of &' — M as the operator frorh, (M) into Hy ,Z (M) for a fixed
p > m. As in the previous sectio@ () will be equal toO(#n) so that the constant
implied depends only op and the upper boung of (g, go) = n. We need two
more lemmata.

Lemma 5.2 For v € H1 , Z (M),
16 —éo)vllp=Cm) [ vllsp

and
|| x=#0)v [[1p<C@) || v |l1p -

Proof. This follows from (2.2), (2.5), and (2.4). O
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Lemma 5.3 For every p> m=dim M and every fe L,Z (M)
[ HE —Hof [1p < C() I [l

Proof. Choose nonnegative smooth functiopis and ¢, such thatg; + ¢, = 1
and¢; =1 nearl; fori =1,2. We would like to apply the basic elliptic estimate
(2.23) tow = Hf —Hof. This cannot be done directly sincedoes not satisfy the
conditionw, = 0 on I'; neither with respect to the metrichor with respect to
go- We note however that, = 0 on I is satisfied independently of any metric.
It follows that the estimate is applicable taw. We use this together with the
fact thatxq is a covariant constant for the metig and thatx interchanges the
two boundary conditions to prove the lemma. Thus

| p1rw ll1p + [| P2w [l1p
| ¢1w ll1p + || d2 % (HF — Hof) [|1p (5.4)
| ¢1w [|1,p + || p2(xHF — xoHof ) [|1,p + || Pp2(x0 — *)Hof

In the sequel, we usg, possibly with subscripts, to denote a constant depending
only onn, the functionsp;, p, m but independent of the metric The value of
C in different inequalities need not be the same.

The last term of the inequality above is estimated using Lemmas 5.1 and 5.2
as follows.

@ llLp

ININ A

l1p -

| $2(x0 — *)Hof [l1p< C(n) || Hof [lLp< C) (I f [lp - (5.5)
We now apply the estimate in Theorem 2.23ta, which satisfies the boundary
conditions of (2.8), to obtain
| prw flip < C(] (d+0)paw [lp + || Paw |2)
< C(]l (d+d0)¢rw [lp +C(e) [ T [[2) (5.6)
< C(l@d+éo)w [lp+ [ w llp +C) [ f lp)-

Lemma 4.4 was used above to boyndiw ||2<|| Hf —Hof ||2. Now (d +o)w =
boHf = (6 — 6p)Hf . It follows from Lemmas 5.2 and 5.1 that

[ (d+bo)w [p<C) [ Flp - (5.7)

Next we estimate the, norm ofw. We use thd, estimate provided by Lemma
4.4 and the Sobolev inequality of Theorem 2.22. &et 0 be a parameter whose
value will be fixed below and set=p/(p — 2),t =p/2.

(L)

p—2 2

Cllwlled Twllz (5.8)
Cro' || w oo +Coa™" || w |12
Cra’ || w [lnp +C()a™" [ T [p

1
4 1w lip+C@) 11 1,

@l

VANVANVAN

IN
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provideda is chosen so thatia" < 1/4.
Combining (5.6), (5.7) and (5.8) we see that

1
| prw [lip < 4 | wllLp +Cm) I [lp -

An analogous estimate holds for the normge{xHf — xgHof ) = ¢o(H *f —Hg g

f). Itis proved in a similar way using the fact that this form satisfies the boundary
conditions of (2.8) with/; and I interchanged, so that the main apriori estimate
applies, and thatd(+ 6o)(x*Hf — *oHof) = 60 * Hf = (6o — 6) * Hf . We do not
repeat the details but state the resulting inequality.

1
| p2(xHf — soHof) ||[1p < 4 | wllip +C) || T l|p

The last two inequalities and (5.5) yield the Lemma when substituted into (5.4).
(I

Theorem 5.9 Supposen(g,g0) < n and p > m are fixed. For every fe
L,z (M),
| Wi — g O

1p<C) [ p-

Proof. We use a scheme similar to the proof of Theorem 4.5. et & Wi,
w = 5, f € L,Z(M). Thenu and u, are perpendicular to7 (M) and
Fto(M) respectively for the inner products defined respectivelyand go. u
satisfies the equation (4.6) ang is the solution of the analogous equation for
go. As in the proof of Lemma 5.3 we use cutoff functiops j = 1,2 to write
¢ = U —ug as the sump,( + ¢o¢ of forms supported in neighborhoods Bf and
I, respectively.

We remark that this sort of localization would be unnecessary if either ()
or I = (. For example, ifl% = (), thenu — uy satisfies the boundary condition
(u — up); = O for all metrics and the main apriori estimate of Theorem 2.23 can
be applied. If, on the other handl; = (), the Theorem 5.14 could be deduced
posteriori from the case wherd, = () by applying* to all eigenfunctions. For
some applications ([17]) one has to consider the more general case of different
boundary conditions on different parts of the boundary and for this reason we do
this as well.

We furthermore write«gm¢2¢ = ¢ %07 (U —Ug) = ¢pa(*7U — xoTUg) +d2(*o7U —
*7U) wherer is the algebraic operator introduced in connection with (2.10). We
observe that);( satisfies the boundary conditions of (2.8) and thatru —
x0T Ug) has vanishing tangential component Bnand is identically zero nedr,
i.e. satisfies the boundary conditions in (2.10). Clearly

¢l < (5.10)
| 1€ [[1p + || 2(+7U — *0TU0) [l1,p + [| P2(x0TU — *7U) [[1p -

The last term can be estimated in termsQfy) || f ||, using Lemma 5.2 and
the uniform boundedness of the Green’s operators. The normg aéta and
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@2(*7U — %oTUg) can be estimated in a way similar to how (5.6) was treated in the
proof of Lemma 5.3. We will prove only the estimate (77U — %g7Ug) = ¢ok
since the argument fap1( is very similar. ¢ From Theorem 2.23

| ¢2r flup < C (|| (d —o)gar [[p + || d2r2 ||2) (5.11)
< C(lld=60)sflup* 1l wllp+1l5ll2)-

Using the definition of- and (2.7) we see th#jt(d — o) ||p=|| (d+60)(U—Uo) ||p-
In addition,x = #o7(U—Up)+(*—*)Tu so that| x ||q<|| U—Ug ||q + || (*—*0)U ||q
for all g > 1. Thus (5.11) implies that

[ d2r [l1p < (5.12)
C (|l (d +80)(u — o) [l + | u—o [lp+ [l u—1uo2)-

Now (d+6g)(u—Ug) = Hof —Hf +(6—6p)u. so that the first term on the right-hand
side of (5.12) can be bounded B(n) || f ||, in view of Lemmas 5.3 and 5.2.

The second term above is estimated exactly as in (5.8) using Theorem 4.5. The
boundC(n) || f || for the third term follows from Theorem 4.5 as well. We thus
obtain the following inequality.

1
I o2 [lap= | u—Uo [lnp +C ) [[ T lp

As remarked above an analogous estimate holdg #4¢ ||, which proves the
theorem in view of (5.10). 0O

Corollary 5.13 If n(g, go) < n, then

| c®f — % o< CO) T [l

and
| Hf —Hof < C®) | f [l

for every fe €07 (M).

Proof. The first inequality follows from the Sobolev embedding theorem (2.22)
and Theorem 5.9 above since

[U=Uoflo< Colfu—Uollap< CO)[[f llp< CO) I F (oo -
The second assertion follows in a similar way from Lemma 5.3

Finally, we can state the main theorem. It follows from the corollary the
same way as Theorem 4.14 follows from Theorem 4.5. We will not repeat the
argument.

Theorem 5.14 Exact and coexact eigenspaces of the Laplace operatdor
the boundary conditions in (2.9) converge, whgn, go) — O, to corresponding
eigenspaces af\, as subspaces &f°Z(M). More precisely the conclusion of
Theorem 4.14 holds with the gapreplaced by the gap.. based on the L
norm.
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