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In the present article we deal with problems of base change éooMNmodels
within the context of formal and rigid geometry. Formaéidh models were
first introduced in [BS] in order to study uniformization phenomena of abelian
varieties on the level of their &on models. In standard cases, one can pass
from ordinary Neron models to formal ones by formal completion along the
special fibre. By their definition, &on models are compatible wittale base
change;i. e., iiR’/R is anétale extension of discrete valuation rings with corre-
sponding extension of fields of fractio&S /K, and ifi/ ; (resplf},,) is a Néron
model of a smoottK -schemet (resp.Xx = Xx x g K’), the canonical base
change morphismfz xz R" —> U}, is an isomorphism. In the case of a (fi-
nite) ramified extensiok’/K, the relationship betweeh; andif;, is much
more complicated. Ifty is a group scheme one shows that the Weil restriction
Nr/r Uy ) is a Néron model of its generic fibif x//x (Xx-) and that the Mfon
modellr can be interpreted as a group smoothening of the schematic closure
of Xx — N/ x (Xg) in N r(Uz); cf. [BLR], 7.2/4. In particular, ifY is an
abelian variety whose semi-stable reduction is known over some finite ramified
extension ofk’, the Néron model ofY’x over R can be obtained by this process.
Furthermore, Edixhoven has shown in [Ed] that, for tamely ramified extensions
K'/K, the schematic closure éfx in %z, r(Uy, ) is already smooth so that the
smoothening process is unnecessary in this case.

In the following we will deal with the same problem, but now for formal
Néron models. To give a few details, IEt be any finite field extension k.
Starting out from a smooth rigi& -group X ¢ and a formal ron modelUy,
of its K-extensionXx: = Xg xx K’, we show as main result that a formal
Néron modelUr of X exists as a formaR-group scheme and, similarly as in
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the scheme case, is obtained as a group smoothening of the schematic closure of
a: Xx X o (xe) RryR (Uk) g = Reyr (Up) g

in the Weil restrictioniz/z (U,). S0, again, the notion of Weil restriction plays

an important role in handling the base change problem. It is needed both on the
level of formal schemes and rigid spaces, and this is why a substantial part of
the present paper is devoted to develop the theory of Weil restrictions of formal
schemes and of rigid spaces. The formal scheme case is not very complicated; it
is closely related to the scheme case by interpreting formal schemes as limits of
ordinary ones. However, the case of rigid spaces is more difficult to handle and
we have to face phenomena which do not show up in the classical scheme case.
For example, given any affinoiff'-spaceY-, the Weil restrictiori g x (Yx+)

exists, but is not necessarily affinoid. Indeed it may not even be quasi-compact
again. Nevertheless, we can show that, in principle, the same representability
result as in the scheme situation holds, if one looks at rigid spaces from the point
of view of Zariski-Riemann spaces.

Now, in order to derive the above result on formatrhih models and base
change, we have to settle several problems. One of these is that the formation
of Weil restriction of formal schemes it compatible with passing to generic
fibres; this is somehow related to the fact that, when passing from a rigid group
to its formal Neron model, in general, a part of the generic fibre is lost. As a
consequence, the morphignis more complicated than the analogous one in the
scheme situation. Furthermore, in spite of the above representability result for
the rigid Weil restriction, we know very little about its representability on rigid
groups. This fact implies that a prigfiis only a morphism of functors. Once
we have shown that the morphisgnis indeed representable, it follows from
the universal properties of group smoothening, Weil restriction and schematic
closure that the formal scheme obtained as a group smoothening of the schematic
closure ofX ¢ X9 x (Xgr) Nrr(Ug)k INNRg r(Ug) is aformal Néron model of
Xk . Finally, we show that the work of Edixhoven on tamely ramified extensions
can be adapted to our situation without problems.

1. Weil restriction

In this sectionk will be a complete valuation ring of height 1 andan element
of K = Fr(R) with positive norm smaller then 1. All format-schemes are
supposed to be locally of topologically finite presentation (see [FI]). For results
about rigidK -spaces we refer to the monograph [BGR].

We recall the definition of the Weil restriction. L€t be a category with
fibre products (we will only consider schemes or forrRaschemes or rigid -
spaces) and an object of£. Denote by the category whose objects are those
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of ¢ aboveS and the morphisms th&morphisms, and bg the category of
contravariant functors froréis to (Sets.

Definition 1.1. Leth : & — S be a morphism ir€ and X’ an object of¢y.
Consider the following functor

?)'tsf/s(x/)Z (65)0 —> (Sets

T — More, (T x5 5, X')

which is called the Weil restriction functor. If it is representable, the correspond-
ing object will be denoted byts,s(X’) as well. It is called the Weil restriction
of X’ with respect ta:.

More generally, given a functdr’ in §s one can consider the push forward
functorh, F’ : (&5)° —> (Setg defined viah . F'(T) = F'(T xg S'). Itis clear
that the functor&.. F" anddts, s (X’) coincide in the case whe# is represented
by an objectX’ in €. We list here some properties of the Weil restriction.

(W1) Thefunctomiy,s(X’) isrepresented by an objecof & if and only if there
exists anS’-morphism®y.: Y xg §’ — X’ such that for any objec in &g
the map Mog (7', Y)— More (T x5 5", X) givenby f — @y o (f xidy)
is a bijection. In particularpy: is associated to i

(W) Givenamorphisna: T — Sin€, letT" =T xgS',h': T" — T be the
projection morphism and’ an object ofy.. There exists an isomorphism

ERT//T (X/ X g T/) = ms//s(x/) Xg T

where the functor of points M@t (—, T') is stilldenoted by". More generally,
given morphismg”’ — G’ andT’ — G’ in §s we have an isomorphism of
functors ingr

B (F' xg T') Z ho(F) xp,cn T

By definition’,.(F’) x,, ¢ T (resp.F’ x ¢ T') is an object offs (resp.§s).

In the formula above we have used the same notation for the corresponding
functor in g7 (resp.§r); i.e., given a functorH in §s and a morphism

¢ : H — T, we denote byH also the functol; in 37 defined via

HT(Q—’%T):{;eH(Qﬂs):Morgs(Q,H) | ¢o;=n}.

This makes sense because the funétpiis represented by an objei¢t more
preciselyY — T, in &7 if and only if Y viewed viax as an object o€
representgd.
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(W3) If F¥ — H"andG’ — H' are morphisms i, then
he (F' xp G') = hoF Xpp hi(G).

Properties of the scheme-theoretical Weil restriction functors are discussed
in [BLR] §7.6. Before proceeding to study the formal and rigid ones, we fix some
notation. We will use letter& ¢, Yk, .. for rigid K-spacesXr, Yz, .. for formal
R-schemes and calligraphic lettek§ ), .. for schemes. As an exception, we
will write simply X,, for then-levels of a formalrR-schemeX and X" for the
rigid K-space associated to a schetocally of finite type over an affinoid -
algebra. Given any forma&-scheme (locally of topologically finite presentation)
X, we will denote byX ¢ the associated rigi& -space. IfK’ is a finite field
extension ofK with valuation ringR’, we will write X for the fibre product
Xr Xg R"andYg: for the rigid K’-spaceYx xx K'. In the same way, given an
R-algebraA we will shortly write A x for A®x K. We denoteR, = R/(m)"*1R.

It is not surprising that the representability of a Weil restriction functor in
the formal setting can be deduced from the representability of related scheme-
theoretical Weil restriction functors. One has to remember that we can associate
to any formalR-schemeX; a family X,, = (X, O,) of R,-schemes having as
topological space the same spaceXgsand having as canonical she@f =
Ox,/ ()" T10x,. We will call X, the then-level of X z. The scheme,, can be
identified with the fibre producX,, x g, R,, form < n.For any formalR-scheme
Xk, we will call p,,, the injection morphisn¥,, — X,. Given a morphism
of formal R-schemesf : Xr — Yk, it determines a family of morphisms
fn : X, = Y, such thato,,,, o f,, = f» o pmn. Furthermore, giveiX g, Yz and
Z formal R-schemes there exists a canonical bijection (see [EGA 1] 10.6.9)

Homy, (Yz, Xz) — lim Homy, (¥, X,,).

We then start with the representability of the formal Weil restriction functor
in the affine case.

Lemma 1.2. Let A and A’ be R-algebras of topologically finite presentation,
whereA’ is a freeA-module with base,, --- , e,. Then

A e X A(X1L 3 X1ns o s Xonm
Nar/a (Spf(—<x1’ X >)> ESpf( (11 )it" * >)
a a

wherea® is the ideal of coefficients afvia the homomorphism* : A'(x) —
A/(in> defined by]ﬁ*(x]) = Z?:lxj,-ei.

We recall that the ideal® is generated by the coefficienfs € A(x;;) of
¢*(f) = Y__, fie: asf varies ovem. The proof of the lemma above is simply
a translation of the analogous statement in [BLR].

One can also see that Weil restriction (or more generally the push forward)
functors are compatible with open and closed immersions for a large family of
morphismsh.
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Proposition 1.3. Leth : S, — Sk be a proper morphism of form&-schemes.
Given functorsF’, G’ : (For/S)° —> (Setg and a functorial morphism’ :

F' — G’ leth, () : h,(F") — h.(G’) be the canonical morphism associated
tou'.

i) Assume that’ is an open immersion, thén.(«") is an open immersion.

ii) Assume that’ is a closed immersion and is finite and locally free. Then
the morphisnk, (1) is a closed immersion.

This proposition can also be proved by translating the arguments in [BLR]
7.6/2. We recall that a morphisifi — G of functorsF, G : (For/Sg)? —>
(Setg is called an open (resp. closed) immersion if for every functorial morphism
Tr — G,whereTy is an arbitrary formabz-scheme, the morphisiix g T —

Ty obtained by base change witlh overG is an open (resp. closed) immersion
of formal R-schemes.

Using result 1.3 itis now possible to prove the representability of some formal
Weil restriction functors in a constructive way, simply by patching the formal
schemes which locally represent the Weil restriction functor. We have to suppose
that the morphisnt is finite and locally free and that the formRtschemeX’,
satisfies a certain propertgo). In particular, if the special fibre of’, satisfies
an analogous propertPgq), formal Weil restriction can be described in terms
of its n-levels.

Given a schemé&’” we will denote by Ps¢r) the following property:

(Pscr): Each finite set of points of is contained in an open affine subscheme

In the same way, given a form#@l-schemeX; we will denote by Prqr) the
following property:

(Pror): Each finite set of points ok is contained in an open affine formal
subscheme of ;.

It is clear that a formaR-schemeX ; satisfies Pro,) if and only if onen-level
(and hence eactrlevel) satisfiesPsch).

Theorem 1.4. Leth : S, — Sk be a finite, locally free morphism of formal
R-schemes and’; a formal R-scheme ovesy. If the functoriiy,s, (X)) is
representable for alk, thenSRSk/SR (X}) is represented bm dig/s, (X).

In particular, this is true if the formaR-schemeX’, satisfies propertyProy).

Proof.. All schemesS, andX; are locally of finite presentation. Then the mor-
phismsX, — S, are locally of finite presentation ([EGA 1] 6.2.6). If all functors
NRss, (X)) are representable, then the correspondigchemes are locally of
finite presentation ([BLR] 7.6/5). Let > m. The schemesiy, /s, (X,,) and
NRsrs,(X,) xs, S, are canonically isomorphic anilimsé/sn (X)) is a formal
Sg-scheme ([EGA 1] 10.6.3). The limit is locally of topologically finite (tf) pre-
sentation because adtlevels are locally of finite presentation ([Bo] 1.1.8).
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Given any formal Sgp-schemeYrz = IlimY, we have the following
bijections Homy (Yr x5, Si, X3) = IE Homg (Y, xs, S,.X,) =
lim Homg, (Y, gy /s, (X))~ Homg, (Yg, lim Ry s, (X)) fromwhich it follows
t(h_at the formalR-scheme ﬂ[ms;/sn (X,’,)_r)epresentﬁts;{/SR (X%).

For the last assertion: the formal schefgsatisfies Pr,,) if and only if all
n-levels satisfy propertyPscn). Then allfig,s, (X)) are representable because
of [BLR] 7.6/4. O

We want to list here some properties which are preserved by formal Weil
restriction.

Proposition 1.5. Let X, andX be as in the previous theorem. Suppose that the
morphismX, — S} is
a) topologically of finite presentation (= quasi-compact)
b) separated
¢) smooth
then the same is true for the morphistg s, (X%) — Sk.
Suppose thak’;, is a formal S;-group. Themiy, s, (X%) inherits anSg-group
structure.
Suppose thak'’, = Xy xs, Sk for some separated formak-schemeX k. Then
the canonical morphisi# : Xz — Ny /5, (X%) is a closed immersion.

Proof.. Any morphism of formalR-schemes (locally of tf presentation) is lo-
cally of tf presentation ([JEGA 156.3). Then the condition of tf presentation is
equivalent to quasi-compactness. The latter is a topological property and we can
argue om-levels. Assertionr) follows from [BLR] 7.6/5 €), as all morphisms
X, — S, are of finite presentation and, hence, quasi-compact. The separatedness
and smoothness can be checkeddavels applying [BLR] 7.6/5 b), h).

The group structure Ofgr /s, (X%) descends from the definition of Weil
restriction and property (4.

Suppose now that there exists a separated foffpalchemeX such that
X% = X x5, Sk. Allits n-levels are separated and the morphisims X, —
N5, (X;,) are closed immersions. This is sufficient to conclude that also a
closed immersion. 0

It is more difficult to analyse the representability of the Weil restriction
in the rigid context. We start with an easy example: k& K be a finite ex-
tension andey, --- , e, a fixed base ofK’ over K. Recall the scheme case
Nk /k (SPe€K’'[x])) = Spe€K|xy, --- ,x,]) (see [BLR]&7.6). Given ak-
algebraA and a homomorphism

feHomg (K'[x], A®x K'),  f(x)=) aie;, a; € A
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the universal property of Weil restriction associateg ta homomorphism
g € Homg (K[x1, -+, x,1, A),  g(x;) = a;.
Given now an affinoidk -algebraB and a homomorphism
f eHomg (K'(x), B@k K'), f(x)=) biei, bie B
it is not possible in general to assign a homomorphism
g € Homg (K (x1, - -+, x4)), B),  g(xi) = b;.

In fact, any homomorphism oK -affinoid algebras has to be a contraction
with respect to the supremum semi-norm ([BGR] 6.2.2/1) but we can have
'Y bieillsup < 1 with some||b;[|sup > 1. Moreover, if the extension is insepa-
rable we can havé ) bie;|lsup = 0 and||b; ||s,, NOt @ priori bounded. All this
says that the-dimensional rigid ball does not in general represent the functor
Nk (SP(K'(x)). In particular, Weil restriction does not commute with forma-
tion of generic fibres. In fact, we have already seen th&t i finite and free
over R, thendiz , r (SPf(R’(x)) is represented by SpR (x1, - - - , x,)).

To find a good candidate to represent the fungigr x (Sp(K'(x)) we have
to characterize the condition)_ b;e;[lsup < 1 in terms of theb;. This can be
done using the coefficients of the characteristic polynomidl'df;e;. These co-

efficients are obtained canonically from the coefficients) € B[x1, - - - , x,]
of the characteristic polynomial §f ; x;e; € B'[x1, - - - , x,,] via the substitution
Xi —> b,‘ .

We recall that the spectral value of a polynomiét) = " +c1z" 1+ - - +c,
with coefficients in a semi-normed rin@’, || ||) is defined as the real number
o(p(z)) = max |lc;|¥!. From now on, we will denote by | the supremum
semi-norm on any affinoid -algebra.

Lemma 1.6. Let B and B’ be affinoidK -algebras withB’ = @!_, Be; a free
B-module. Suppose given an elemént ) . b;e; of B’ with characteristic
polynomialp(b, z) = 2" +c1(b)z" "+ -+ ¢c,(b)). Then||b|lsup = o (p(b, 2)).

In particular, [|5]|syp < 1if and only if||q,(b_)||sup§ 1lforeveryj € {1,---,n}.

Proof.. SupposeB to be a finite field extension ok andb = ) . bie; €

B’ with p(b,z) = []pi(2)* and p;(z) irreducible polynomials inB[z]. Let
Pm(b,2) = [ pi(z)# with B; < o; be the minimal polynomial ob. Then
bl = o(pu(b,2)) = max o(pi(z)) = o(p(b,z)) ([BGR] 6.2.2./2 and
1.5.4/1).
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Let now B be a more general affinoiki -algebra. Then

Z bie; (Z biei) (X)

(Zb,-e,-) ) ]
= b; i 2
7 o (Zov))

— sup {maX||c,~ b.(y) } =max|c, b)|F =0 (p(b. 2)).

yeMaxBl !

= Sup
XxeMaxB’|

bl = ‘

= sup { max
yeMaxB Xf(ﬁ”;ig

= Sup
yeMaxB

Z bi(Y)e;

i

In the fourth equality we have applied lemma 3.8.1/5 in [BGR] and in the fifth
the result already obtained for field extensions. As ugdalb;e;)(x) denotes
the image of)_; b;e; in the field B’/x andb; (y) the image ob; in B/y. O

It is then possible to control the supremum semi-norm after tensor product
and hence to describe the rigid Weil restriction in the affinoid case.

Proposition 1.7. Let A and A’ be affinoidK -algebras withA’ a free A-module
of basee; - - -e,. Then

Maya(SPA’(x))) = lim Sp(C))

with  integers . > 0andC, =A(n’xy, - -+, wx,) (c1(x), - - -, cu(x)), Where
cj(x) € Alxy, ---x,] are the coefficients of the characteristic polynomial of
Yo xiei € Allxg, - x,].

The spacéi, 4 (Sp(A’(x))) can be viewed as an open subspace of the affine
n-space oveA, explicitly {y € (Spe€A[xy,- - -, x,]))2"suchthaf ¢;(x )(y) [< 1
for all integers 1< j < n }. Itis an increasing union of affinoid spaces with
Tt SP(C;) = SP(Cy) (n > 1) the canonical open immersions.

Proof.. Denote byj;, the homomorphism associated tg, and be}?) the
affinoid K-space SC,). For any intege > 0 consider the homomorphism

rAx) > G A, i) =) xei
i=1

It is well-defined ag| ), x;e;|| < 1if and only if |c;(x)|| < 1 for all indices
j-As (i, ® idy) o @ = & the family (@;);0 defines a morphisn® e
Homy (lim X x4 A, Sp(A(x))).
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To prove that limX }?) represents the Weil restriction functor we have to prove

that for anyK-spaceYy over SgA) the map
Hom, (YK, lim X;*)) — Homy (Yk x4 A, SHA'(x)))
v — ®o (Y xid)

is bijective. It is sufficient to show it fofy = Sp(B) affinoid.

For the injectivity: lety; andy, be morphisms in Hom(Y, lim X’) such
that® o (Y1 x id) = @ o (Yo x id). There exists a positive integgrsuch that
bothv; andy, factor throughx %), If v, v3: C, — B are the corresponding

homomorphisms® o (Y1 x id) = @ o (Y2 x id) implies (Y] ® id) o @} =
(Y3 ®idy) o 7. As theeq, - - - , e, are free generators, the equalities

D wiGe = (¥ ®ida) o 1) (x) = (¥ ®ida) 0 D7) (x)

= Z W;(Xi)ei

give ;' (x;) = ¥5(x;) forany indexi € {1, --- , n} and hencey, = .

For the surjectivity: lety’ be a morphism in Hom(Yx x4 A’, Sp(A’{(x))).
It corresponds to a homomorphissff : A’(x) — B ®4 A’ = ®}_; Be; given
by ¢ (x) = Y, bie; with b; € B and| Y, be;|| < 1. Let’ be the minimal
non-negative integer such thi*b;|| < 1 for all i. For anys > A define
@i+ C, — B with ¢ (x;) = b;. Itis well-defined by 1.6. The familyy;), . ;

gives a morphisny € Hom, (Yg, lim Xﬁ?)) such that® o (¢ x id) = ¢'. In
particular,® is the unique morphism associated t@ jd, spa’(x)))- O
We can now consider more general affinoid spaces.

Proposition 1.8. Let A and A’ be affinoidK -algebras withA’ a free A-module
of baseey, - - - , e,. DefineD, = C2" asthe complete tensor productetopies
of the affinoidK -algebraC; defined in 1.7. Explicitly

D}\ :A<7T)LX1]_,' ) jTAxlna' ) ﬂ)hxmn><C1(Xl.),‘ ) Cn(-xl.)’ Cl(XZ.)" ) Cn(xm.)>-

Then we can prove the following:

i) Rarsa(SPA (xe, - xu))) = [ ] Raa (SP(A'(x:))) = lim Sp(D,).
i=1

The homomorphism®; : A'(x1, -+, x,) = D), ®4 A defined via®d; (x;) =

> xnie; give the unique morphiskh associated td)dmA,/A(sp(A/<xL...,xmm.

ii) Givenanideabh = (f1,---, f)in A/{x1, -+, x)

Nar/a (@(M)) = lim Sp(%)
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where a®® = (fi1,- -, S, fo1.- -+ frn) IS generated by the coefficients of
Q:(f;)) =Y, fiie; in D;.

iii) If K’'/K is afinite separable field extension anl= A ®x K’, there exists
an integeru > 0 such that

A’ R N D
o (() (2

iv) If all generatorsf; of a are elements ol (x4, - - - , x,,), the unique morphism
W, associated tadsp 4/ (x,,..- x,)/a IS @ closed immersion.

Proof.. The assertion in) descends from the fact (see §YMthat Weil restriction
commutes with fibre products. Hence

m

mA//A(S[XA/OCL L X)) E ?RA//A <1_[ Sp(A/(X,>)> = 1_[ (an S[XC)L))
i=1 i=1

i

As any morphismly — IiLn Sp(C;), with Tx an affinoid K -space, factors
through an affinoid space 8p,) for an indexa large enough, we have also
] lim Sp(C;) = lim [[swc) = lim Sp(D;).

For the second assertion one repeats the arguments in the proof of proposition
1.7. This time we have to consider alsalimensional Tate algebras modulo an
ideal. The ideal of coefficients® we have introduced is defined in the same way
asin [BLR] 7.6/4 (orin lemma 1.2).

Foriii): the functordig, x (Sp(K'(x))) is represented by a quasi-compact
rigid K-space because after base extensiofk3p — Sp(K), it becomes iso-
morphic to the product ofi-copies of SPK”(x))), whereK” is the small-
est normal extension af containingK’ (in a fixed separable closure &f)
andn the degree ofK’/K. Hence the functofig  x (Sp(K'(x))) xx A =
MNaa(SP(A’(x)))) is represented by a quasi-compact rigid space oveABp
This means thaﬂinﬁ;p(D,\) must coincide with S@,,) for some integep and
thatdi 4,4 (S(A'(x.)/a)) is represented by $P,, /a®).

The fourth assertion can be proved as in the classical scheme situation. We
recall only the definition of the morphism,. If I; € A are the coefficients
of 1 = )", Iie; in A’ andx > 0O is the minimal non-negative integer such that
max ||7* ;|| < 1, we can consider the morphisin: Sp(A(x)) — IiLn Sp(D;)
given by the family of surjective homomorphisms

wr Dy, — Ax), v (xj;) = Iix; fora > .

As (¥ ®idy) o @ = idy/ (), the morphism# is the unique morphism such
that idsya/(x)) = @ o (¥ x id). The morphisnm¥ is a closed immersion. Calling
@, the morphism induced by and¥, : Sp(A(x)/a) — lim Sp(D; /a)
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the one induced by . Then also the morphisn, is a closed immersion and
idsparix)/a) = Pa o (P x id). -

At this point one would like to proceed by glueing the spaces which represent
locally the Weil restriction functor and then find a sufficient condition such
that this glued space represents our functor. What has to be proved is that Weil
restriction is compatible with open immersions, at leastfarfinite and locally
free morphism. As in the formal scheme setting, we can prove it in functorial
language.

Proposition 1.9. Let s : S, — Sk be a proper and flat morphism of rigid
K-spaces. Given functo®’, G’ : (Rig/Sy )’ — (Setg and a functorial mor-
phismu’ : F' — G, leth,(u): h(F") —> h.(G’) be the canonical morphism
associated ta’.

i) Assume that’ is an open immersion. Theén (x’) is an open immersion.

ii) Assume that’ is a closed immersion and h is finite and locally free. Then
h.() is a closed immersion.

As immediate consequences we have:

Corollary 1.10. Let 1 be as above. Suppose that: Uy — Vg is an open
(resp. closed) immersion &f.-spaces andiy; s, (Vx) is representable. Then
Ns /s (Uk) is represented by an open (resp. closed) subspati;of, (Vk).

Proposition 1.9/4) implies also an assertion about separatedness. In fagt, (W
giveS an isomorphismb‘k/sk (X/K) XSk Eﬁs}(/sk (X/K) = ERS;(/SK (X/K Xsk X/K)

Corollary 1.11. Leth : S — Sk be afinite and locally free morphism of rigid
K-spaces and(; a separated rigidSi-space. Iffs, /5, (X%) is representable
then the correspondin§k-space is separated.

Let us now prove proposition 1.9.

Proof.. Consider a rigidSx -spacelx and a functorial morphisriy — h,(G’).

Define F;, = F' x¢ Ty and Fr, = hF x;,c Tk, whereTy is the space
K

Tx xs, Sk. Leth’ be the projection morphisriiy, — Tx and consider the

following diagram

F' xq T} = F, T,
K
h/
ho F Xp,6 Tk = Fry Tk
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The first arrow is an open (resp. closed) immersion by hypothesis. We have to
prove that the second arrow is an open (resp. closed) immersion as well. Write
Wy for the open (resp. closed ) subspacd pfsuch thatF, is represented by

K

Wk . We have the following isomorphisms of functors frgRig/ T )° to (Sets

Mg re W) =h.(Wy) = W, (Fy, )

1./ 4 14 (\g}) / _
=h, (F' x¢ Tg) = hu(F") xp,6 Tx = Fry.

If we can prove that the functok;, 7, (W) is represented by an open (resp.
closed) subspace dfx, the same rigid space represents atgp. The lemma
below gives the desired result. a

Lemma 1.12. Leth’ : T, — Ty be a proper and flat (resp. finite and locally
free) morphism of rigidk -spaces. For any open (resp. closed) subsgageof

Ty the functordi, 7, (Ug) is represented by an open (resp. closed) subspace
of Tk.

Proof.. For the statement about closed subspaces we reduce to 1{8xLét;
be an admissible covering &% by open affinoid subspaces and denoté/hy
the open subspace’) ~1(Vk ;) of Tr.. By property (W) we have isomorphisms
SRT;(/TK(U;() X7 Vki = fﬁv;{‘i/vK,,-(U}( X7, Vi ;). These allow us to restrict the
proof to the affinoid cas&x = Sp(A) andT;, = Sp(A’) with A’ a finite and
free A-module. Letey, - - - , e, be a family of free generators df overA. The
closed subspacgy is of the form SpA’/a) for some ideab = (f1,---, f).
From 1.8 (case m=0) we know that the fundm/TK (Ug) = N a(SP(A'/a))

is represented by the closed subspacei$p™) of Tx with a® = (f;;) and f;;
coefficients off; = >, fije; in A.

The assertion about open subspaces requires more work. We can suppose
again thatTk is an affinoidK -space. Consider the sR{U) of all points of
Tx whosen’-fibre is contained i/ . If we can prove thar (Uy,) is admissible
open, it is immediate to check th&{(U} ), with the canonical structure of rigid
space induced by, represent8ir; 7, (Ug).

If U is a Zariski-open subset df; and we denote by/¢ the (closed)
analytic subsefy — Uy, thenh/(Uy) is a closed analytic subset @ and its
complement iR (U ). For more general admissible open subsets, it is no more
possible to proceed in this way because the complement of an admissible open
subset is not in general an analytic subset. To overcome this problem, we will
switch from the rigid to the formal level. Itis immediate to see that we can restrict
to the case where all spadgs — Ty — Tx are separated and quasi-compact.
By [Ra], we can find morphisms of admissible fornkaschemes : U, — T
andy : T, — Ty such that the associated rigid morphisms are the ones above.
In particular, we can choose asn open immersion ([FI] 4.4) and flat ([FII]
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5.2). The morphismy is automatically proper a&' is proper. This is the easy
direction in the equivalence between properness in the rigid and formal setting.
We want to prove that the quasi-compact open subspace= (v (Ug))x
of Tk, i.e. the rigid space associated to the complement of the image of the closed
subsetly — Uy, represent8iz, 7, (Ug).
It is clear thatWx < R(Ug) as the fibre inT; of any rigid point of Wg
is contained inUj. For the converse: let € R(Uy) be a rigid point ofTx
whose fibre is contained ity;, and callx its specialization irfk. The point
x corresponds to a closed immersion(Bp — Tx whereL is a finite field
extension ofK or, in the same way, to a closed immersion @) — Tk where
B is an integral local ring with quotient fieltl. Then, the poink is the image
of the closed point of SgiB). The fibre product SgiB) x 7, Ty is an admissible
model of SgL) x 7, Ty, i.e. of the fibre ofx in T;. Usually one has to divide
out therr-torsion but in this case the flatnessyfimplies that SptB) xr, Ty
already has nar-torsion. Hence any closed pointBf above the closed poit
is the specialization of some pointBf abovex. As the fibre ofx is all contained
in Ug, the fibre ofx is all contained irl/,. This says that is a point ofys (U )¢
and thatx € Wx. O

We are now allowed to glue what we obtained locally. Even if we have proved
the representability in 1.8 only fafx and S} affinoid, we are interested in
morphismsg: which involve not only affinoidk -spaces. Therefore, we introduce
suitable covering® of Sx andil of X, which permit to use locally the results
in 1.8. If Sy and S} are affinoid and is free then the covering is simply the
covering ofX’, given by all its open affinoid subsets.

Theorem 1.13. Leth: S, — Sk be afinite and locally free morphism of rigid
K-spaces and(; a rigid S-space. Let furthermor& be the covering ofx
given by all open affinoid subspacgg such that: (V) is finite and free over
Vk andil the set of all open affinoid subspacesqf x s, Vx as Vi varies over
. Itis possible to glue the rigid Weil restrictiofi;, /s, (U ) asUy varies over
4 obtaining a rigidSk-spaceRy; /s, (X). If X} is separated theRy, /s, (X )

is separated.

Proof.. First of all observe that, iV’x is in & and we denote by, the open
subspacé: (V) of S, then&RS;{/SK(U;() = &RV[/(/VK(U;() for all open sub-
spaced/y of X x. V. This descends from property @)V Then the functor
Ny, /s (Ug) is representable for all affinoid spadép in 4.

For the glueing we apply proposition 9.3.2./1 in [BGR] with:

- X; = N5, (Ug) asUy varies ovetl.

- X = SRS;(/SK(U}( N U,J;), X;j — X, the canonical open immersion (1.9).
— ¢ij + Xi; — Xj; the obvious isomorphism.
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The unique point that has really to be checked is the cocycle condition:
Qiji - Xij N Xl'[ — le' N Xj[ (induced by(pij) SatiSfy(pij[ = @1ji © Qi1
This follows from

Xy 0 Xt = N s (U}( N U;;) Xty (i) Msise (Ui N U)
= (mS;(/SK (Uk) X9t (X)) mS}</SK (UIJ()) X5 (UL) (mS’K/SK (Uk)
X (x,) Mspe/si (Ué))
= Nepyse (Uk) X (x) R (U1'<> X (x;) Nspsse (Uk)
= gy, (Uk N UL N U)

where we have applied several times propertg)\Weading the intersections in
terms of fibre products.
There exists furthermore a morphism

A Ry se (X%) x5 Sy — X

obtained by glueing the, : N, /s Uk) Xs¢ Sg = Uk, whered,; is the
unique morphism associated tqiiq/s Wi ([BGR] 9.3.2/1).
K/°K

Suppose thak’, is a separatefl; -space. This means that the diagonal mor-
phismXjy — X} xg. XJ is a closed immersion. Its associated morphism
Msysi (X)) — Nsyyse (X x5, X%) = Nyyse (Xi) X Nose (X)
is a closed immersion (of functors) by 1.9. In particular,
Nt s Uk N Vi) —> Ryt s, (Uk) X5 Rrys (Vi)

is a closed immersion for anyx, Vx open affinoid subspaces &f, in . By
definition of Ry /5, (X),

R ysx Uk N Vi) = Ry, (Uk) X Ry /s (X Nsr s (Vi)

and then the diagonal morphisRy, /s, (X%) — R /s, (X%) Xs¢ Rst /54 (Xx)
is a closed immersion too. 0

We will now give a condition for the representability of rigid Weil restriction
functors. Itis easy to see thatifis a finite and free morphism of affinoid spaces
and X’ is an affinoid space or a rigid Stein space, tgnsatisfies it.
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Proposition 1.14. Let the hypothesis be as in 1.13. The rigid spR6g, (X )
representsiy /s, (X%) if and only if for any (affinoid)Sx-spaceTx and any
S-morphismg : Tx xs, Si =Ty — X/ the coveringp*ih={p"(Ux)}vyeu
admits a refinement’ = {Wx x s, Sk }w,ew With U an admissible covering of
Tk.

Proof.. Suppose that the condition on the coveriitgs satisfied and let the
spaceTk, the morphismyp and the coveringl be as in the hypothesis. For
any Wx € U there exists an elemebt”’ e 4 with ¢ (W xs, Si) c UL
and a unique morphisnry : Wx — g /s, (UR") such thatgyy, s,
Ao (Yw x idg ), whereA was defined in 1.13/proof. The unique morphism
¥ : Tk = Ry s, (Xy) such thap = Ao (y x idg ) is simply given by the
glueing of theyryy . By property (W), this is sufficient to conclude th&t /s (X% )
representsiy 5, (Xj) andA = Py., .

For the converse: suppose that the spges, (X ) representsiy: /s, (X5)
with A = &y . Choose a rigidk -spaceTx and a morphisng: Ty — X%
as in the hypothesis. There exists a unigue: Tx — Rg, /s, (X%) Which
satisfiesp = A o (¢ x idg, ). The extension td of the admissible covering

{ "t Ny 5, (Uk)}uges Of Tx is trivially a refinement op*4. O

The condition above is not easy to check. We look for a weaker but suffi-
cient condition. We could try to translate propert{@%.n) and(Prgo) with the
following

“Any finite set of rigid points is contained in some open affinoid subspace".

This is already a step in the right direction. The following example shows that if
arigid K -space does not satisfy the property above, it is not to be expected that
the space introduced in 1.13 represents Weil restriction.

Example 1.15Let Sy = Sp(K) and Sy = Sp(K’) with K’ a finite Galois
extension ofK of degreen > 2. Consider the dis® = Sp(K’(x)) and choose

a K’-valued point as centa?. Let X, be the glueing of two copies d along

the open subspach — {O}. X% is a disc with a double centep, and O,.

It is obviously not quasi-separated and there is no open affinoid subspace of
X containing both0; and 0». It is evident thatRy, /s, (X)) can not represent

N, /sx (X%). If this was the case then any morphism(8p®x K') — Xk
whose image contains the poir?s andO, would factor through an open affinoid
subspace ok, and this is absurd.

Unfortunately the property above is not sufficient to say that the glueing space
in 1.13 represents the rigid Weil restriction. This comes from the fact that even if
Ng /s (X ) is representable and the morphismRy; /s, (X%) — Ny, /s, (Xx)

is locally an open immersion and a bijection between the rigid points, it may

happen thak is not an isomorphism. We can explain this fact saying that there
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are not sufficiently many rigid points to characterize their rigid space. For this
reason we introduce thgariski-Riemann spac#&Ve will consider only rigidk -
spaces which have an admissible model, i.e. a flat foRrstheme whose rigid

fibre is the space we are considering. This is the case if the rigid space is quasi-
separated and quasi-compact ([Ra]) or more generally paracompact ([Bo]). For
properties of Zariski-Riemann spaces we refer to [Fu] or [Bo]. We recall that
given a flat formalR-schemeX » then the ZR-space associated{g is

<X>=1lim X 4

where X 4 runs over all admissible blowing-ugss : X4 — Xg of X with
respect to an open coherentidgals Oy, . Itis clear that there exists a (unique)
Xg-morphism¢45: Xp — X4 if and only if AOx, is invertible in Xz and
the morphismyp 45 is necessarily the blowing-up with respect#@y ,. This
construction works foR any complete valuation ring, not necessarily of height
1. In our case, there is a specialization map

Sp: Xg —><X>

which associates to any rigid pointe X ¢ the family(x 4) aco,,, of projections
of x. Itis injective and has dense image for the constructible topologyXs
([Bo] 2.1.5). There exists also a map (see [Bo] for a precise definition)

6~1: {G — topology onX g} —> {topology on <X>}.

This associates to the generic fibre of an open formal subscbeyraf some

X 4 the open subset;tl(UA) =<U> with74: <X>— X4 the canonical
projection. Observe also that the ZR-space depends only on the rigid $pace
and not on the particular admissibRemodel chosen to construct it. One of
the advantages one has working with ZR-spaces is that they permit to describe
admissible rigid coverings in terms of their topology. X is an affinoidK -

space an@J a family of open admissible subsetsXf then® is an admissible
covering ofX ¢ if and only if {§71(Vx)}v, e is @ covering of<X>.

We will say that a rigidk -spaceX ¢ satisfies propertyPriq) if

(Prig): Xk has an admissibl&®-model and given a finite set of pointf the
Zariski-Riemann space X >, there exists an open affinoid subspage of X ¢
such thatl C<U>C<X>.

This property is trivially fulfilled by affinoidK-spaces and it is a local
property. This means thatany open quasi-compact subspagesatisfies Prig)
if Xk satisfiesPrig). Property(Prig) is of some use if given a finite locally free
morphismyx: Zx — Yk the corresponding mag ¢ >: <Z>—><Y >
between ZR-spaces is surjective and with finite fibres. To prove this fact, we can
work locally and suppose thdty : Sp(Cx) — Sp(Bk) is a finite free morphism
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of affinoid K -spaces. It is surjective because of [FIl] 5.11 and [BGR] 9.6/3. As
K -affinoid algebras are Jacobson rings, we have surjectivity between the usual
affine spectra. Points of the Zariski-Riemann spa&p(Bk)> correspond to
pairs(p, V) with p a prime ideal inBx andV a valuation in the field of fractions
of B /p satisfying certain conditions (cf. [Bo], Introduction, [PS]). Similarly
for points in<Sp(Ck)>. Moreover(q, W) in <Sp(C) > is above(p, V) in
<Sp(Bk)> ifand only if g N Bx = p andW extendsV. Now, there are finitely
many prime ideals; in Cx above any in Bx and the extension of fields of
fractions FKCk /q;)/Fr(Bg /p) is finite. Hence the conclusion.

We can now prove that proper{fPriq) is sufficient for the representability
of the rigid Weil restriction.

Theorem 1.16. Leth : S — Sk be afinite and locally free morphism of rigid
K-spaces and(, a formal rigid S -space. Suppose that,, satisfies(Prig).
Then the functobiy, /s, (X)) is represented by the spaék; /s, (X ) defined
in1.13.

Proof.. We will check that the condition on 1.14 is satisfied. Lgtbe an affinoid
Sk-spaceg¢ : Ty xs, Sy = Ty — X agivenSy-morphism and(the covering
of X’ defined in 1.13. It suffices to prove thg s, 7, (d)‘l(V,’{))}v;(eu is an
admissible covering of k. In fact, its extension td’ is a refinement of*4l.
This is equivalent to show that any point in the ZR-spade> is contained in
some open subset of the fodn* (01, 7, (¢~ (V¢))). Itis sufficient to prove it
for closed points as7> is a Jacobson space.

As we will work locally, we can assume th8j is affinoid andh is free.
This is possible because propet®rig) is preserved. Let be a closed point
of <T >. Its fibre in<T’> is finite and is contained in some open subset of
the formo—1(¢p~1(Vy)) as X} satisfies(Prig). It might be thatp~1(V;) is not
quasi-compact, so we choose a quasi-compact open subspactd—(Vy)
such that<U’> contains the fibre of. Recall now the construction used in the
proof of 1.12. There exist morphisnis: U, — Ty andy: T, — Tg with
i an open immersion ang proper and faithfully flat such that the associated
rigid morphisms are/;, — Ty — Tx. Then®y, 7, (Ug) is the rigid space
associated to the open formal subscheni& s )¢ of Tk. Call ¢ the projection of
1 on Tg. With arguments similar to those in [Bo] 3.2.2, we can see that all closed
points of T, abover are projections of points o& 7’ > abover. This implies
that the fibre of is totally contained ir/,. Hence the pointis in ¥ (Ux)¢ and

F e 0 Ny 1 (Up)) € 07 Oy 1 (@ (Vi))): u

Condition(Pgrig) is easier to handle than the one in 1.14. It has the advantage
that one can check it looking at admissititemodels. Suppose that a rigid-
spaceX has an admissibl&-model which satisfie$Prqr). It follows from
the definition of the ZR-space that the rigid spacg satisfies(Prig). More
generally, this is true even if the form&tmodel is not flat.
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In any case, even K satisfies(Prig), we are forced to consider almost
all open affinoid subsets df ¢ (at least those il as defined in 1.12) in order
to describe an admissible covering of the rigid Weil restriction. It is sometimes
useful to consider particular admissible covering&gfcoming from coverings
of an admissibl&®-model, and see if they induce not only a covering of the formal
Weil restriction but also an admissible covering of the rigid Weil restriction. So
we change conditioiPrig) and make it depend on coverings as follows:

Let Xk be arigidK -space which has an admissible fornkamodel. Sup-
pose given an admissible coverifigof X ¢ by open affinoid subspaces. We will
say that the coverin® satisfies propertyPriq) s if:

(Prig)iw: Given any finite set of points of the Zariski-Riemann spaceX >,
there exists &/x € Ywith I € 0 Y(Ug) =<U>C<X>.

In particularX ¢ satisfies(Prig). Hence(Prig) s is another sufficient con-
dition for the representability of rigid Weil restriction functors.

Proposition 1.17. Leth : S); — Sk be a finite and locally free morphism of
affinoid K -spaces and lex’, be arigid S -space which admits a coverifigby

open affinoid subspaces satisfyiffrig) 7. Thenhiy, s, (X ) is representable

and an admissible covering of the representing space is given by the rigid spaces
Nsr.ssx (Vk), asVk varies overy.

Proof.. Itis clear tha(Prig) |27 implies (Prig) and hence the functc)’ts;(/sk (X%)

is represented by the glueing spdte /s, (X ) definedin 1.13. Proceeding asin
1.13 one proves that the rigid spaceg s, (V) give an admissible covering of
N, 1s¢ (X ) if and only if for any (affinoid)Sk -spacelx and anysSy -morphism
¢: T x5, Sy = Ty — X} the coveringp*U = {¢p 1Vi}y,cw admits a
refinement which descends to an admissible coveringxofTo conclude, we
can repeat what we have done in 1.16 wWiltkig) s in place of(Prig) and the
glueing ofRg. /s, (Vk), Vk € 9, in place ofRy, s, (X ). O

If X% has a"good" admissible modgl, we can consider only open affinoid
subspaces coming from open formal subschemgs, @b describe the rigid Weil
restriction.

Corollary 1.18. Let # be as in Proposition 1.17. Suppose that tfje-space
X% has an admissibl&R-model X, which satisfies propertyPr,). Then the

functordty 5, (X) is representable and the spacks, s, (Vi ), asVy’ varies
over the open affine formal subschemesgf give an admissible covering of
Ny ssx (X))

Proof.. As X, satisfies(Pror), the covering{V,g)},-el described above satisfies
(PRig)HV[((i)}ieI' To check this, it is sufficient to recall the definition of Zariski-
Riemann spaces. Any poifite <X’> has a projection € X. Itis clear that

x e V) ifand only if ¥ e<V®>. O
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We conclude this section with comparing Weil restriction on schemes, for-
mal R-schemes and rigi& -spaces via analytification, formal completion and
Raynaud functors. At first we consider the analytification functor. For more de-
tails about this functor we suggestgKk We are interested in schem&swhich
satisfy (Pscn). This permits to describe a covering ®f(X”) in terms of affine
subschemes ot”.

Proposition 1.19. Let A and A’ be affinoid K -algebras, A’ a finite and free
A-module andt” an A’-scheme locally of finite type. Suppose thatsatisfies
(Psch). Thenthe functait 4,4 (X”) is represented by as-scheme locally of finite
type and the rigid spaci o/ 4 (X")2" = R 4 (X'2") representsi 41 4 (X",

Proof.. Let i/’ be an affined’-scheme of finite type] = SpecB) with B an
affinoid K -algebra overA and7’ = T x4 A’. By [K©] 1.1 & 1.2 we have
canonical bijections Hom(SP(B), N arya(U")2") = Hom, (T, RaryaUd)) =
Homu (77, U") = Homu (Sp(B ®4 A’), U'2"). This implies thatht 4/ (U2") =
Rarya U2

In the general case: sinc¥’ satisfies(Pscn) the functordiy 4 (X”) is rep-
resented by am-scheme locally of finite type (7.6/4 and 7.6/5 in [BLR]) and
Na/a(X')2"is defined. Moreover, there exists a coveriigf X’ by open affine
subschemes such thdt, 4 (X”) is covered byi a4 () asl; varies overy.
Let Tk be an affinoidd-space and) : Ty, = Tx x4 A’ — A"¥anA’-morphism.
Then w-l(uf“) are Zariski-open subsets Bf and alsdhiz; 7, (w—l(uj?")) are
Zariski-open subsets df. In fact, if we denote by the projection morphism
Ty — Tk thenS}tA//A(llf_l(u]‘."‘”)) is simply obtained as the complemengat’;)
whereC; is the closed analytic subsg&}, — 1//‘1(24/?"”). The open subspaces
Nry /Tk(wfl(u;‘“)) coverTy asX”’ satisfies(Psqh. In fact any point inTx has
finite fibre in 7, and its image is contained in somg‘”‘. They then give an
admissible covering ofx ([BGR] 9.1.4/7). Applying (W) it is immediate to
see that the glueing O)ﬁA//A(Z/{j‘?‘”) = s)tA,/A(ujf)a”, l.e. Ny a (X)), represents
the functori 4/ 4 (X3

The spaceR 4 (X2 is defined and there exists a locally open immersion
At Raja(X3) — NRyya (X3 such thatd = @ yen o (A x id). We recall that
the morphismA was defined in 1.13/proof. L§t/;};c; be the affine covering of
X’ previously considered. Eauf” is isomorphic to some_l)irtvj,h, h € N, with

U; , open affinoid subspaces af?" andl/; , — U, ,+1 open immersions. It is
easy to check that the functﬁw/A(Z/{f‘”) is represented by li 4/, 4 U, ). This

implies that the covering a4 (U 1)} j.nesxn Of the rigid spaceR 41/ 4 (X"4")
is admissible. The spac@by 4 (U, ;) are also open subspacesRf 4 (X"2")
and they give an admissible covering wiaThen the morphism is indeed an
isomorphism. O
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Let now X be anR-scheme locally of finite presentation. Its completion
X r along the closed subscheme given by the idg@ly is a formal R-scheme
locally of topologically finite presentation. Working on special fibres one can
see that if the schem#& satisfies propertyPsqn then the formal schem& ;
satisfiesPror). We can then give another comparison result.

Proposition 1.20. Leth : SpecA’) — SpecA) be a finite and free morphism
with A’ and A two R-algebras of finite presentation. L&’ be anA’-scheme
locally of finite presentation and suppose that it satisfies). If we denote by
X, its w-adic completion and bxi’ (resp.A) ther-adic completion oA’ (resp.
A), then the functofi 4/, 4 (X") is represented by an-scheme locally of finite
presentation whosg-adic completion represenﬂs/g//g(x;e).

Proof.. If X" satisfies(Pscn) then X, satisfies(Pror) because the special fibre
&, satisfies(Pscn) as well. It is then sufficient to work locally on open affine
subscheme ait” and then the result follows comparing 1.2 with the analogous
result for schemes. O

At this point it remains to compare the formal and rigid Weil restriction. We
have already seen that the formal one preserves quasi-compactness even when the
rigid one does not. Remember the case of the unit rigid ball and the affine formal
line. So we have no possibility to prove that the Weil restriction commutes with
the formation of generic fibres. The best we can prove is that we obtain canonical
open immersions.

Lemma 1.21. Leth: Spf(A") — Spf(A) be a finite and free morphism of affine
formal R-schemes (of tf presentation) aid, an affine formaBpf(A’)-scheme.
The spacéii, 4 (X%)k is canonically isomorphic to an open affinoid subspace
of ERA/K/AK(X’K)

Proof.. Let X, = Spf(A’(x )/a) with x. a set of indeterminates, - - - , x,, and
a=(f1, -, f). We have seen in 1.2 that

A’ Alxgy, - - X,
91‘.A//A (Spf( <x>>) — Spf( <xll? ,.xC]_On, , X >) .
a a

Recall from 1.8 the definition aby. Then

A e X D
E},tA’/A(X/)K ; Sp( K('xllv ’xlna ’ X >) ; Sp<—0>

aCO aCO

is an open affinoid subspace?ﬁt,/[(/AK (X%). For the last isomorphism one uses
the fact that the elements, - - - , ¢, are free generators &f over A and hence
> xieill < Lis trivially true in A% (x11, - -+, Xpnn)- O

This lemma can be generalized.
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Proposition 1.22. Leth : S, — Sk be a finite and locally free morphism of
admissible formalkR-schemes an&’, a formal S,-scheme. Suppose th#t,
satisfies(Pror). Then bothﬁs;e/SR (X%) and S)%S}{/SK(X}() are representable and
the canonical morphism

& Myyse (Xr) g — Nspyse (X)
iS an open immersion.

Proof.. We can restrict to the case whérés a finite and free morphism of affine
formal schemes and then check that

£ ('%S}(/SK (Wk)) = Nsyse (Wi)g

for any open affine formal subscherg, of X',. Hence the assertion is a con-
sequence of lemma 1.21. O

Among the formalR-schemes those which are smooth groups behave par-
ticular well with respect to Weil restriction functors.

Proposition 1.23. Leth : R — R’ be a finite and free morphism of complete
valuation rings andX’,, a smooth formaR’-group scheme. Then

a) The functomiz,r (X% ) is representable. The corresponding formal scheme
Nryr(X%) is covered by the open affine formal subschemgs (Uy) asUy,
varies over the open affine formal subschemes of

b) The functorix,x (X%,) is representable. The rigid spacég,x (Uy.), as

Uy varies over the open affine formal subschemeX’pf give an admissible
covering of the representing space.

c¢) The canonical morphism

£ Neyr (Xi) o — Nxyx (Xyo)
iS an open immersion.

Proof.. The formalR’-schemeX’, satisfieSPror) because the identity compo-
nent of its special fibre is a quasi-projective variety. Then a) follows from 1.4, b)
from 1.18 and c) is 1.22. a

2. Formal Néron models

Let in the followingR be a complete discrete valuation ring. We recall that given
a smooth rigidK -spaceX aformal Néeron modelof Xx over R is a smooth
formal R-schemelUy, whose generic fibr& is an open rigid subspace &fx

and which satisfies the following universal property:
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(N) Given a smooth formak-schemeZ; and a morphism of rigidk -spaces
ug: Zx — Xg, u extends uniquely to a morphisi: Zz — Uy of formal
R-schemes.

Aformal Néron modeUy is unique up to unique isomorphismXf is separated,

Uy will be separated and X ¢ is a rigid K-group,Uy, inherits a group structure.
For more details about formalé¥on models we refer to [BS].

It is immediate to see that the formation of formatidh models is compatible
with étale base change. Let nd&//K be a finite field extension. Suppose there
exists a formal fon modeUy, of Xx» = Xk xx K’ over Spi{R’). One can ask

if a formal Néron model/; of Xk exists and, in the affirmative case, look for a
relation betweer/x andU},,. To do this we have to deal with formal and rigid
Weil restrictions and with smoothening processes. The smoothening process in
the formal context involves (admissible) formal blowing-ups with centers in the
special fibre. More precisely, X}, — X is an admissible formal blowing-up

of a formal R-scheme with center, C X, andZ c Oy, is the corresponding
(open) ideal, the open formal subscheme&(@fwhereZOy, is generated by the
uniformizing parametet € R is called thedilatation of Y, on X and denoted

by X% .- Itis flat and it satisfies the following universal property:

(D) If Zg is a flat formal R-scheme and : Zz — Xy is an R-morphism
such thatv, factors throughyy, thenuv lifts uniquely to a morphism of formal
R-schemeZz — X5 .

Dilatations commute with products. This implies that the dilatation of a formal
R-group scheme with center in a subgrdmf X is a formal group scheme and
the canonical magy, , — X is a group homomorphism. The smoothening
process in the formal context is described in [BS$]Itis a process introduced to
deal with situations where a formal group may have smooth generic fibre without
being smooth.

If G isaformalR-group such that its generic fibre is smootjraup smoothen-

ing of G will be a morphismG, — G of formal R-groups such that', is
smooth and eacR-morphismZz — G with Z; smooth admits a unique fac-
torization throughG’,. Given anRsM-valued pointz of G one defines(a) as

the length of the torsion part af' 2, ,z. It measures the defect of smoothness
ata. The key result in order to prove that group smoothenings indeed exist, is
the following:

Lemma 2.1. Let G be a formalR-group such that its generic fibre is smooth.
Denote byF; the Zariski closure irG;, of the set of thé,-valued points which lift
to RS"-valued points o6 ;. ThenF; provided with its canonical reduced structure
is a closed subgroup scheme®f. Letu : G, . — Gy be the dilatation off;

in G. We have

8(a") < max{0, §(a) — 1}
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for eachR*"-valued pointz of G ;z and its unique lifting:’ to G’ - Furthermore:
For any smooth formak-schemeZ z and eachR-morphismv : Zr — G with
Zk smoothp admits a unique factorization througf, .

The proof of this fact is a translation of the analogous result 7.1/4 in [BLR] using
lemma 3.4 in [BS].

Proposition 2.2. Let G be a formalR-group with smooth generic fibre. Then
G r admits a group smoothening.

Proof.. As the identity componer®$, of G is quasi-compact the functignis
bounded orGY by an integer, say:. Applying finitely many times (at most)

the previous lemma, we obtain a fornfagroupG’; which is flat and smooth at

all RS"-valued points of the identity component. In particular, it is smooth at the
origin and therG’, is smooth ([SGA 3]V} 1.3.1 and [FII] 1.2). By construction

it satisfies the desired lifting property. O

We now go back to the initial problem on formakMn models. It is easy to
prove the existence @fy if the Néron modelU;, is quasi-compact. One simply
applies 1.2 in [BS]. We have, however, no descriptiorUgfin terms ofUy,.
Furthermore, in the non quasi-compact case, it was not known that the existence
of U, implies the existence dfk. In the following theorem we describe the
relation between the formaléMon modeld/,, andUk by means of formal and

rigid Weil restriction functors and we prove the existencé&/gfeven in the non
quasi-compact case.

Theorem 2.3. Let Xk be a smooth rigidk -group. Suppose that the rigikl’-
groupXx = Xk xx K" admits a formal fon modely,. Then a formal lfon
modelUy of Xk can be obtained as the group smoothening of the schematic
closure of Hy = Xg X9k (Xgr) Nryr(Up)k in the formal Weil restriction

Ry (Ul).

Proof.. Observe that we have not proved the representabilityofx (X k) for

X arigid K’-group and we are apparently forced to work with functors instead
of spaces. First of all we have to see th&t is represented by an open subgroup
of Xk, still denoted byHy. Consider the following diagram of contravariant
functors on(Rig/K):

/
Hy Ry oyxx Uk ‘ Xk
o B l . 1/
NReyr(Up)k Ngyx (Ugr) Riyx (Xgr)
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The morphisng is an open immersion and both functors are representable (1.23).
The morphism¢ is also an open immersion by 1.9. Furthermore, the repre-
sentability offix, /x, (Uy,) and property (W) say that the diagram on the right

is cartesian. Henc8y can also be defined as the fibre product

%XK,/XK (U;(/) X”*K’/K(Ul/(/) SRR//R (UI/Q’)K .

This implies thatHy is representable because all the functors above are repre-
sentable. Moreover, the canonical morphislp — X is an open immersion
which factors through the open subspate,,/x (Uk,) of Xk. In particular,

Hy is represented by a (smooth) subgrouXef becauseX x, g,k (X)) and
Nryr(Ug )k are group functors.

To prove that the morphismis a closed immersion, itis sufficient to see thas
aclosed immersion. This factwould be clear i, x (X x/) were representable. In
fact, asXx is separated, the morphiskn: Xx — g,k (Xg ) would be a closed
immersion. In our case, we have no information about the representability of such
a functor. We only know that there exists a rigittspaceRx,x (X k') which
almost represents it and that the canonical morphisnX x — Rx/x(Xg')isa
closed immersion (this can be proved in the same way as one would prove that
is a closed immersion if representable). Now, there is a locally open immersion
offunctorsi: Rxyx (Xx') — Ngyx (Xk) andg factors throught.. In fact, given

any open affinoid subspad€y: of X, the spaceix,x (Wx NUy,) is open both
iNnNgyx(Uy) and inRgyx (X k). Hence the morphisif is a closed immersion
because the diagram above remains cartesian if we write place of@. In
particular, ifUy, is quasi-compact then so ahgz(Uy,) and Hg.

Itis immediate to see, using the definitiont as a fibre product, that a formal
Néron model ofHg will be a formal Neron model ofX k. To construct it, let

Hy be the schematic closure &fx in Rz (U ). Locally on an affine open
formal subschem& = Spf(A) of Nr r(Uy ) it is defined as SpfA /Ker(p))

with p: A — Ax — Ax/I andI C Ak the ideal which defines=%(Zx) as

a closed analytic subspace Hf. As Dz, r(Uy) is flat, Hr exists, is flat and
satisfies the following universal property:

(S) For any flat formalR-schemez and any morphismpg: Yz — Rgyr(Ug)
such thaip factors throughHy, ¢ factors throughHy.

The formal schemédi inherits also anR-group structure. It satisfies the
Néron mapping property (N) but it might not be smooth. Consider then a group
smoothening oHg, sayHR™. It exists by 2.2. Itis a smooth, form&kgroup and
it satisfies property (N) with respect i . Hence it is a formal Wfon model of
Hy and then ofX . O

Although the theorem above is a complete answer to our problem, we are dis-
turbed by the smoothening process which is not easy to control. We will see
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that if the extensiork’/K is tamely ramified, we can use what was done by
Edixhoven in [Ed] to prove that the form&-group schemé; obtained as the
schematic closure offx in Mg, r(Uy,) is already smooth and hence a formal
Néron model ofX ¢ over R. To do this, we will divide the proof in several steps.

This is necessary because after base change we may lose the existence of formal
Néron models.

It is known that formal Mfon models are compatible witttale base change.

We want to see that in this case the schematic closuréxoin %z r(Uy ) is
isomorphic toUk.

Lemma 2.4. Let the rigid spaces{x and Xx and the formal Mfon models
Ur and Uy, be as in 2.3. Suppose furthermore that the finite field extension
K’/K is unramified. TherUy is isomorphic toHg, the schematic closure of

XK X9t ¢ (Xgr) Rryr(Ug)k inthe formal Weil restrictioniz g (Uy,).

Proof.. Itis clear thatU,, = Ug asR — R’isétale andz: Ur — Rpyr(Ug)
is a closed immersion because any foriRairoup is separated. In particulaf
is the schematic closure 0fx in %,z (Uy ). Butin this casd/x is nothing else
thanfy: /x, (Ug.). If we look at the diagram in 2.3/proof, we see tfiat & o5k
andHg = Ug Xt (Ule) Nryr(Up)k is indeed isomorphic to/x . As bothUg
and Hy are flat closed formal subschemesg,z(U’), this is sufficient to
conclude. O

Suppose now that the extensi&r/ K is finite, Galois with group. The group

G acts onXg but it acts also or/y,. In fact, G acts onR" and we can apply
the universal property of formal@ton models. This action induces an action on
Nryr(Ug) described as follows:

Let Tk be a formalR-scheme and e R z/r (Ug ) (Tr) =HOMg (Tr, Ug,). Then

T-g=py,(g)oTopr, ("

Wherep% (g) is the automorphism df, induced byg. The same foff ..
Chosen a formak-scheme&’, on whichG acts, we will consider the functor of
fixed points (see [Ed] in the scheme-theoretic setting)

YY: (For/R)’ — (Sets

T —> Yr(Tg)°

In our caseY = Ngyr(Ug). We can consider the infinitesimatlevelsY, on
which G acts as well and apply [Ed] 3.1. Théf}{ is represented by a closed
formal subscheme dfy as the formal schemg;, is separated. In particular

Meye ()" = lim eye, (U;)°
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If we suppose that the order ¢f is prime to the characteristic of the residue
field, then we can apply [Ed] 3.4 to each n-level and recognizeithat (U}, ¢
is smooth.

Lemma 2.5. Let the notation be as in 2.3 arkl’/K a finite Galois extension
with groupG, with the order ofG prime to the characteristic of the residue field
k. Thenﬁ)’tR//R(U/,)G is a formal Nron model ofX ¢ over R. In particular, it is
the schematic closure @ in g, r(Ug).

Proof.. We have already seen thg,  (UF,) is represented by a smooth formal
R-scheme. It remains to prove that it is isomorphicHg. We have closed
immersions of flat formaR-schemes

N (Up)© > Rpyr (Up) <— He

It is then sufficient to prove that the corresponding rigid fibres are isomorphic
as closed subspaces if,z (U )k - First we observe that the Galois action
on Xk induces a Galois action oti. This rigid space descends to the open
subspac€x = Nx,,/x, (Uy) of Xx. Thereisalsoaclosedimmersipn Zx —

Ngyx (Ug,) (see 2.3/proof) and ¢ representQiK//K(U;{,)G. The action ofG on
Ngyx (Ug,) and the fix-point functors are defined in the analogous way as for
the formal Weil restriction. It is easy to see, simply working on points, that

<$RR//R (U,’e/)G)K = NReyr (Up) g X&)tK//K(U}(/) ZK-

We are somehow proving that the fix-point functor commutes with the formation
of generic fibres. The formulation is complicated by the fact that Weil restriction
does not commute with the formation of generic fibre and in the best case we can
only expect an open immersiotg g (Uy )k — Nk x (Ug,). The fibre product

on the right isHg . Hence the conclusion. O

Till now we have considered only particular field extensions. We want to see that
it is possible to add or forget unramified extensions without loosing property
C(K’; K). This is a short notation to say that a formaémdh model of the
smooth rigidK -group X ¢ is given by the schematic closure of

Xk Xt xen Rryr (Uge) g in Reyr (Ug) -

Applying 2.4 and the universal properties of formatmdh models and Weil
restriction, we can prove the following fact:

Lemma 2.6. Let K’/ K be a finite extensiork* an unramified extension &
in K’ and X ¢ a smooth rigidk -group. Suppose th& - admits a formal lfon
modelUy,. ThenC(K'; K) holds if C(K’; K*) holds.

It is also possible to add unramified extensions above.
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Lemma 2.7. Let notations be as in the previous lemma. Supposékthetan in-
termediate extension witki’/ K’ unramified. Thel (K’; K) holds ifC(K’; K)
holds.

We can now collect all these partial results and prove ¢h&’; K) holds by
tamely ramified extension.

Proposition 2.8. LetX ¢ be asmoothrigik -group andk’/K atamely ramified
extension. Suppose that tik€-group X ¢ admits a formal lfon modelUy,.
Then the schematic closure & X9 (X ) Nryr(Up)k in the formal Weil
restrictionf g, (Uy,) is a formal Néron model ofX .

Proof.. We have to prove that proper€y(K’; K) holds. By 2.6 we can suppose
thatK'/K is totally ramified and tame. L&t the smallest normal extension of
K, containingK’, in a fixed separable closure &'. The extensiork /K’ is
unramified and hence a formaklon model ofX ¢ exists. By 2.7 we can reduce

to the case&K’ = K. Consider then the maximal unramified extensiorkoin

K’, sayK". Again by 2.6 we can suppose thi&t' = K and henc&’/K will be
totally ramified, tame and Galois. In particular the order of(®4f K) is prime

to the characteristic of the residue field and the conclusion follows from lemma

2.5. a
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