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Abstract

We study the Euler equations for slightly compressible fluids, that is, after
rescaling, the limits of the Euler equations of fluid dynamics as the Mach number
tends to zero. In this paper, we consider the general non-isentropic equations and
general data. We first prove the existence of classical solutions for a time inde-
pendent of the small parameter. Then, on the whole sB4ceve prove that the
solution converges to the solution of the incompressible Euler equations.

1. Introduction

The nature of the incompressible limit of the Euler equations of fluid dynamics
depends on several factors: the flow maydaatropic or non-isentropic. The initial
data may berepared to make the initial first time-derivatives uniformly bounded,
or general. The domain may bperiodic or thewhole space R?.

Moreover, an analysis of the singular limit contains at least two parts: an exis-
tence and uniform boundedness result for a time independent of the small parameter
appearing in the scaled equations, and a convergence result either to the fixed so-
lution of a limit equation or to a limiting profile.

Solutions of the slightly compressible Euler equations are known to exist for a
time independent of the small parameter in the equations, which is essentially the
Mach number, whenever the flows are isentropic (see [KM1, KM2]) and whenever
the data is prepared (see [Schl]). Solutions converge to solutions of the correspond-
ing incompressible Euler equations with the limit initial data whenever the initial
data is prepared (see [KM1, KM2, Sch1]), while for the isentropic equatioR€ in
solutions tend to the solution of the incompressible equations whose initial data
is the incompressible part of the original initial data, although this convergence is
not uniform for times close to zero (see [Asa, Uka, 1z01-1z03]). For the isentropic
equations in a periodic domain the difference between solutions and appropriate
profiles tends to zero (see [JMR, Sch3]).
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These existence and convergence results cover all cases of the above-mentioned
factors except for the non-isentropic equations with general initial data. The first
main result in this paper is a uniform existence result for this case. The second main
result is a convergence theorem for the non-isentropic equations in&fl with
general initial data analogous to that for the isentropic equations. As in some of the
previous work on the incompressible limit (see [KM1, Sch2, JMR, Sch3]), these
results will be deduced as special cases of theorems about a class of equations.
The limit of solutions to the non-isentropic equations with general initial data in a
periodic domain will be considered in a separate paper.

The reason why the incompressible limit is more difficult to analyze in the
non-isentropic case is that the matrix multiplying the time derivatives then depends
strongly on the dependent variables. That is, the scaled equations have the form

1
Bo(U, eU)0:U + EE(E)X)U + B(U, ¢, 9,)U =0, (1.1)

with Bp depending onlJ as well assU. Heree is a small parameteBg is a
positive-definite symmetric matrix, antland B are sums of first-order differential
operators times symmetric matrices, which foare constant so that the operator
L is antisymmetric. Since (1.1) has symmetric-hyperbolic form, that system is well
posed for fixeck, so the main question is the behavior of solutions as the scaling
parametee tends to zero. The scalar example

1
a()uy + —u, =0, (1.2
I3

which can be solved by the method of characteristics, shows that in general the time
of existence of the solution to the initial-value problem for (1.1) with fixed smooth
initial data tends to zero with. Additional hypotheses must therefore be made on
the structure of the equations or on the initial data in order to obtain a problem for
which solutions exist for some time independent of

Ifthe initial data for (1.1) are restricted by the requirement that sufficiently many
time derivatives ot/ are uniformly bounded at time zero, then solutions exist for a
time independent of and converge as— 0 to the solution of a limiting equation
(see [BK]), as can be shown by estimating all space-time derivatives of the solution
through some order. For (1.2) for example, the condition on the initial data implies
thatu(0, x) = c(e) + O (¢?) for some constant(s). Although this result applies to
all systems of the form (1.1), less restrictive assumptions on the initial data suffice
when the system has additional structure. In particular, wByedepends only on
¢U then no restriction is needed on the smooth initial data (see [KM1, KM2, Maj]);
this yields a uniform existence result for the isentropic, slightly compressible Euler
equations.

The key to both results just mentioned is that energy estimates for solutions
and their derivatives are properly balanced.iifhis means that if we weight each
3] 32U by the factore”)) needed to make it uniformly bounded at time zero, then

4 (sP(ﬁa,jaf;‘U, Bosl’(f)atjan) is a uniformly bounded function of the set of

81’(")8,"8}? U. In particular, the large terd£(d,) disappears from these estimates
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because it is antisymmetric and commutes with derivatives. This yields uniform
estimates for the”/)3/ 3% U, which implies in particular thatU || is uniformly
bounded for some fixed time singg0) = 0.

In contrast, wherBo depends o/ and only the initial first time-derivative of
U is uniformly bounded, then direct energy estimates are unbalanced, because the
equation for the time derivative of the supposedly bour(dﬁq, BOU,,X) includes
the unbounded terrfl;,, ((Bo)y Ux)U;;). Nevertheless, the solution exists and is
uniformly bounded for a time independentsoprovided that (see [Sch2])

The dimension of ke (&) is constant fog € R \ {0}. 1.3

For general initial data, the example in (1.2) shows that additional structural
assumptions are needed in order to obtain uniform existence. The immediate point
of that example is that since the tent®, (9, Bo)U) occurs in the equation for
% (U, BoU), 9, Bo must be uniformly bounded in order for even the bakfc
estimate for to be uniform. With Euler’'s equation in mind, we therefore restrict
attention to those systems (1.1) having the additional structure

(u _ (E(S,eu) 0 _(L@®)0
l/_<S), BMU)_< 5 1), zwg__( 0 0), (1.4)

so that the variables whose time derivatives G(é) occur in Bg multiplied by a

factor of . Although this ensures that Bo will be uniformly bounded whenever

|U || s is, and hence that the? energy estimate fdy is balanced, energy estimates

for first derivatives ol are not balanced, on account of the%) term((Bo)sSx) U,

in the equation folJ,. This imbalance is more severe than in the case of prepared
data, in which it first occurred in the estimates dy,.. In particular, since the
equation satisfied by first derivatives is the linearization of the original system,
that linearized system is not balanced, which means that small perturbations of the
initial data might cause large changes in solutions.

In the light of this non-uniform linearized stability, it is not surprising that there
exist solutions to systems (1.1) of form (1.4) obeying assumption (1.3) that are
not uniformly bounded for a time independentsofAn explicit example will be
presented below.

Guided by the form of the scaled non-isentropic Euler equations, we will there-
fore make the additional hypotheses that

B(S, u, dx) = Bo(U)(b(S, u) - Vy) (1.5
and that
E(S, eu) commutes with the orthogonal projector on (16
kerL(¢) forall £. )
Together with (1.4), (1.5) implies that system (1.1) has the form
1
E(S, eu) (Ou + b(S,u) - Veu) + —L(3x)u =0,
& .7

3S +b(S,u) - VyS = 0.

The initial assumptions on system (1.1) together with conditions (1.3) and (1.6) can
be expressed in terms of the functions appearing in (1.7) as
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Assumption 1.1 (i) \We can write L(3,) = Y_; L;d,;, where the L; are con-
stant real symmetric matrices, and the dimension of ker L (&) is constant for
£ R\ {0}

(i) Thematrix E(S, u) isareal symmetric positive definite matrix that isa C*
function of (S, u) € R x RY and commutes with the orthogonal projection
onto ker L (&) for all £.

(iii) Also, b(S,u) = (b1, ... ,bg) e RYisC®in(S,u) e R x RV,

The following theorem shows that these hypotheses suffice to ensure uniform
existence of solutions to (1.7) having general initial data in an appropriate Sobolev
spaceH* (D), with the domainD being either the whole spad® or the torus
T¢. Actually, in view of [Schi1] and [Rau], the existence proof does not depend
significantly on the shape of the domain, so we could also consider bounded domains
with appropriate boundary conditions.

Theorem 1.2. Suppose that system (1.7) satisfies Assumption 1.1, and let s >
1+ d/2 be an integer. For all real Mo, there is a positive T such that for all
¢ €]0, 1] and all initial data (ug, So) € H* (D) satisfying

Il (o, So) |l s @) = Mo, (1.8)
the Cauchy problemfor (1.7) has a unique solution (x, S) € C%([0, T']; H*(D)).

Note that, in general, the family of mappin@s, So) — (u, S) isnot uniformly
continuous with respect ta This means that Assumption 1.1 is sufficient to ensure
uniform existence of solution but does not imply uniform stability of the linearized
equations. This explains why the nonlinear energy estimates cannot be obtained
from the L2 esimates by an elementary argument using differentiation of the equa-
tions. We give below a simple example of system (1.7) satisfying Assumption 1.1
which illustrates thignstability.

There are two different assumptions about the initial data of the non-isentropic
Euler equations that allow them to be transformed so as to make Theorem 1.2
applicable. The original non-isentropic Euler equations are

hp+u-Vo+pV-u=0,
p@mu—+u-Vu)+Vp =0, 1.9
00S+u-vVS=0.

Hereu is the fluid velocity. The fluid density, entropysS, and pressurg are related

by an equation of state, which will be given here in the fgres R(p, S), with R
assumed to be defined fpr> 0 and allS, to be smooth and positive, and to satisfy
4R - 0. Forinstance, for ideal fluigs = p*/”¢=5/7. Because the incompressible
limit can be understood as the limit in which the ratio of the fluid speed to the sound
speed tends to zero, we begin by rescaling the fluid veleclly u = ev. Since

the velocity is the time derivative of the position of a fluid particle, those particles
will then travel a distanc® (<) in times of order one and a distance of order one
in time O(%) which suggests rescaling either the spatial variableg y = 7 or

else the time by = e¢. Introducing either one of these rescalings, replacing the
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new variable name or t by the original name or ¢, and usingp, v andS as the
dependent variables transforms the Euler equations into the form

A@;p+v-Vp)+V-v=0,
1

p(8tv+v~Vv)+;Vp=0,

%S+v-VS=0,

whereA = 4o DRéf?*p). In order to symmetrize these equations we need to
transform the pressure hy = P+ O(e) for some constang. In order to avoid
changing the domain of definition di (S, ex) in Assumption 1.1 to take into

account the positivity op, let us use the transformatign= pe®?, yielding

1
a(81q+v-Vq)+gV~v=0,

1
r(d;v+v-Vv)+ -Vg =0, (1.10
&

S+v-VS=0,
where

R(S, pe®d)
petd

a=a(S.eq) = AS, pe)pe™, r=r(S.eq) =

Equations (1.10) have the form (1.7) with

_ (4 _ _[a(S,eq) 0 _(0V.
u—<v), b=, E(S,eu)—< 0 r(S,sq)I)’ L(ax)—<v 0).

The orthogonal projector onto kér§) is

(8 PLCES))’

where P (¢) is the orthogonal projection ap. SinceP, (¢£) has fixed rank for
& # 0 and commutes withl, Assumption 1.1 is satisfied, so Theorem 1.2 implies
the following results for the Euler equations:

Theorem 1.3. Lets > 1+d/2beaninteger. For all positive p and Mo, there exists

apositive T such that for k equal to zero or one, all € in (0, 1], and all initial data
po = Eesqo(X/sk)’ ug = Svo(;—k), So = SO(;C_/()
satisfying
(o), vo(-), So() I a5y = Mo, (111
T

the Cauchy problem for (1.9) has a unique solution for 0 < ¢ < = such that
(g, v, S) are continuous with valuesin H* (D).
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The casek = 0 is usually considered to be the case of slightly compressible
fluids while the cas& = 1 concerns large-amplitude high-frequency solutions.
In the latter case the parametehas the meaning of a wavelength. As in [Ser,

E, Hei], the entropy then has high-frequency waves of amplidd®. However,

the remaining hypotheses here are mutually exclusive with the hypotheses in those
works. Hereu and p are of order but thoseO (¢) terms have arbitrary initial data

and so include fast acoustic waves, whereas tharelp areO (1) but have special

initial data that excludes fast acoustic waves even of@i@g. In addition, [Ser, E,

Hei] only treat problems in one space dimension but allow solutions to depend on
x as well as;. The reason solutions depending.oas well as; cannot be treated

here is that assumption (1.3) would not be satisfied. An example will be presented
below showing that when (1.3) does not hold then solutions of (1.7) need not be
uniformly bounded for a time independentsfeven when (1.6) holds.

We now turn to considering the limit of solutions of (1.10)R{ ase — 0.
When the initial data are prepared so that they obey the conditiorvthaf and
Vqg are O(e), theng® converges to zero an@®, S°) converge to the solution of
the stratified incompressible Euler equations

V.-v=0,
r(S,0)(0;v+v-Vv)+ Va =0, (112
%S+v-VS=0
with the limit initial data (see [Sch1]). For initial data not so constrained but still
satisfying (1.11) plus an additional condition to be described shortly, we prove that

(v®, §%) converges strongly far > 0 to the solution of (1.12) whose initial data is
the incompressible part of the data in (1.11). More specifically:

Theorem 1.4. Assumethat (vé, g%, %) satisfy (1.10)and areuniformly bounded in
Cco([0, T1; H*(R%)) withs > 1+d/2andfixed T > 0. Supposethat theinitial data
(v, Sg) convergein H*(R) to (vg, So) ase — 0, and that S decays sufficiently
rapidly at infinity in the sense that

S50 < Clx| ™0, |VS5()] < Clx| 757 (113
for all ¢ and some fixed C and § > 0. Then (v?, g%, S¥) converge weakly in
L>°([0, T1, H* (R?)) and strongly in L2([0, T1, HS (R%)) for all s < s to a limit
(v, 0, S). Moreover, (v, S) isthe unique solution in CO([0, T'1; H* (R%)) of (1.12)
with initial data (wo, So), with wo being the unique solution in H* (R?) of

V.-wo =0, curl(rowg) = curl(rovg), where ro=r(Sp, 0).
The incompressible pressure 7 can be chosenin C9([0, '] x R¥) and satisfies
Vv e c%0, T1; H " 1(RY)). (1.14)

As usual for incompressible problems, we can show thafS) belongs to
([0, T; H*) and satisfies

V.-v=0,
Curl(r(S, OICERE Vv)) =0, (1.15
%S+v-VS=0,
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whichis formally equivalentto (1.12). This implies that= (r (S, 0)(3;v+v-Vv))
belongstaC?([0, T1; H~1(R%)) c €9([0, T1xR?) and satisfies cugl= 0. Thus,
there ist € CO([0, T'] x RY) such thatVr = g.

Note that Theorem 1.3 ensures the existence of solutions of (1.10) satisfying
the first hypothesis of the theorem, provided the initial data satisfy (1.11) with fixed
Mo.

In the isentropic case, this result has been obtained by [Asa] and [Uka]. The
basic idea is that since the speed of propagation of the acoustic waves is oéhorder
those waves radiate to spatial infinity after a small initial layer. The relevant wave
equation is

€20, (agdip) — V - (%w) =0, (1.16)
0
whereag = a($°,0) andrg = r(5°, 0). In contrast to the isentropic case, this
equation has unknown variable coefficiea§sandrj. The new ingredient in the
proof of Theorem 1.4 is a proof of the decay to zero of the local energy for the
solutions of (1.16). Indeed, since estimates (1.13) are propagated in time, (1.16)
appears as a time-dependent short-range perturbation of a constant-coefficient wave
equation. Energy decay implies a form of local strong convergence foy, which
is the key to proving Theorem 1.4, since the absence of large terms in the equation
for S easily implies thas§ also converges strongly.

As for the existence proof, we extend our analysis to systems of the form (1.7).
In order to state our result for that case, we defigéS) = E(S, 0), whereE is the
coefficient appearing in the first equation in (1.7), andl¢D,) be the operator
defined by the Fourier multiplieri (&), which is the orthogonal projector on the
kernel of L(&).

Theorem 1.5. Assume that (1, S¢) satisfy (1.7) and are uniformly bounded in
([0, T1; H*(R%)) withs > 1+ d/2 and fixed T > 0. Suppose that the initial
data (Sg, ug) convergein H* (R?) to (So, uo). Assume further that

forallo € H*(RY)NB andall r € R\{0}, thekernel of

1.1
iTEo(o) + L(3y) in L?(R?) isreduced to {0}, (410

where B is a Banach space in which ¢ is uni)‘ormly bounded and whose unit ball
is closed under convergencein C9([0, T1, Hﬁ‘)C(Rd)) for somes’ < s.

Then (uf,/Sg) converges weakly in L°([0, T'], H*(R?)) and strongly in
L2([0, TY; H,gc(Rd)) for all s < s. The limit is the unique solution in
CO([0. T]; H*(RY)) of

L(9x)u =0,
Eo(S)(8;u + b(S, u) - Vu) + L(d,)m =0, (118
;S +b(S,u)-VS =0,

satisfying the initial conditions

Sjr=0 = So, u}r=0 = vo, (1.19
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where vg € H* (RY) satisfies
vo = I1(Dyx)vo, TT(Dyx)(Eo(So)vo) = IT(Dx)(Eo(So)uo)- (1.20
The constraint variable 7 € C2([0, T] x R¢) and satisfies (1.14)
As described above, the key step in the proof of Theorem 1.5 is the following:

Proposition 1.6. U/nder the assumptions of Theorem 1.5, u® converges strongly to
uin L2([0, T1, HE (RY)) for s” < 5.

The hypothesis th&* (¢) lies inB is included to allow for the possibility that the
conclusion of assumption (1.17) may hold only foin some appropriate subspace
of H*. This hypothesis therefore plays no role in the proof of Theorem 1.5 itself,
but only in the proof that the theorem applies to the slightly compressible Euler
equations. Indeed, in order to apply Theorem 1.5 to those equations so as to obtain
Theorem 1.4, it suffices to show that assumption (1.17) is satisfied. The Banach
spaceaB will be taken to be the space of functions satisfying (1.13), and assumption
(1.13) will be utilized in order to show that coefficients= aj andb = by := 1/r;
from (1.16) satisfy the first hypothesis of the following theorem, which implies
(2.17).

Theorem 1.7. Suppose that the coefficientsa and b satisfy
la(x) —a] £ CA+ xD7P, [Va@)| £ CA+ x>,

1.21
lb(x) —b| £ CQA+x])"12, Vb)) £ CA+ |x)~278, (L2

and
vxeRY a(x)=c¢ and b(x)=c, (1.22

for some positive constants ¢, C, a, and b. Then, for all = € R, the kernel of
at?+ V- (bV)in L2(RY) isreduced to {0}.

Theorem 1.2is provedin Section 2. In Section 3 we prove Theorem 1.5 assuming
Proposition 1.6, and then use it to prove Theorem 1.4 assuming Theorem 1.7.
Finally, Proposition 1.6 and Theorem 1.7 are proved in Sections 4 and 5 respectively.
We end this introduction with the examples promised above showing the necessity
of various combinations of the assumptions included in the structure in (1.7) and
in Assumption 1.1. We also give an example showing that when Assumption 1.1 is
satisfied, the Cauchy problem for (1.7) is still non-uniformly stable.

Example 1. The system
1
S7Nup + uy) + “uy = 0, S+S8,=0,

has the structure of (1.7) and satisfies (1.5) and (1.6) but not (1.3). Assume for
simplicity that the initial data folS depends only on. Solving first the equation

for S to obtainS(¢, x,y) = $%x — 1), and then the equation for to obtain
u(t,x,y) = uo(x —ty— gSo(x — t)), we find that

t t t
uy(t,x,y) = uS(x—t, y— ;So(x —t)) — gSg(x —t)uS(x—t, y— gSo(x —t)),

which is not uniformly bounded.
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Example 2. The system
1 1
u,—ux—l—gux:O, v;—i—gSux:O, S =8, =0

can be putinto the form (1.1), (1.4) by multiplying the equationsfandv by the

matrix
a —cS
E= <—cS c(1— 8))

wherea andc are positive functions of satisfyinga — ¢S2 > k > 0. However,
the resulting equations do not satisfy condition (1.5) because there is ne-tgrm
in the equation fop. Those equations also fail to satisfy condition (1.6), although
(1.3) does hold.

Since the system is well posed at least non-uniformly, what we are trying
to show is that theZ* norm of the solution with some fixeH* initial data is not
uniformly bounded for some timg(s) = o(1).

In the periodic case, the solutions of the equations:fand S can be written
in the form

M(L X) — Zukeik(x+t_l/£)v S(t, X) — Z Skeik(x—‘rt).
keZ keZ

Upon plugging the formu(z, x) = Y, ., v (t)e’™ into the equation fon and
solving the resulting ordinary differential equation igrwe find that

k .
vn=v3+§:zt;;&ku%@”m%ML—ﬂ. (1.23)

In order to simplify the computations, make the following assumptiong:= 1
anduy = 0 fork # £1; 8 = ﬁ whenk is a multiple of four and vanishes

otherwise;® = 0. Thenw, is nonzero only for oda, in which case the sum in
(1.23) contains only a single nonzero term. In particularfer [%] +m equalling
one more than a multiple of four,

ei(m+0(l))t -1

W=8m+0amg+m+omy'

In order thatn should be small compared gq let us restrict consideration 0
such thatjm| < % In order thatje!™+2@) _ 1| should not be close to zero
even forr close to zero, let us restrict consideratiormicsatisfying|m| = \/ig
Furthermore, in order to avoid the necessity of determining where that expression
is not close to zero, let us consider the averagh;()n‘)nip over 0< 1 < ¢4 In
order to show that th&* norm is not uniformly bounded on this interval it suffices
to show that its average over the interval is not uniformly bounded.
14 .

Sincee Y4 [ e“it/ve = 0(%4), which is negligible compared to the av-

erage of 1 over the same interval, the contribution to average norm squared from

the set ofv, of the above form withn in the above range i@((%)z(s_p)%/z).
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Comparing this to the conditionl2— p) + 1 < 0 for the initial data ofS to lie in
H*, we see that if + % <p<s+ % then the initial data will belong té/* but
the time-averaged* norm of the solution will tend to infinity as — O.

Example 3. The system
1
a(S)u, + gux =0, S§=0,

satisfies Assumption 1.1. Whefy is constant, the solution is(¢, x) = uo(x —
t/ea(So)). Thus, a small perturbation 6§ induces in time0 (¢) a perturbation of
u which is not small. This is a typical example of instability.

2. Proof of the existence theorem

Consider a system of the form (1.7) and assume that Assumption 1.1 is satisfied.
The system is symmetric hyperbolic. Therefore, for all fixed O there isT =
T (¢, Mp) > 0 such that for all initial data which satisfy (1.8), the Cauchy problem
has a unique solution a®°([0, T']; H*(D)). Moreover, ifT*(¢), the maximal time
of existence of such a smooth solution, is finite, then

lim sup||(u(z), S@) [l wieom) = 00, (2.1)

t—T*(e)

(see, e.g., [Maj]). In particular, this implies that t#& norm of (u(z), S(¢)) is
unbounded astends toT*(¢) if T*(¢) is finite.

In view of this preliminary remark, Theorem 1.2 is a consequence of the fol-
lowing estimates.

Proposition 2.1. Givens > 1+ d/2 and My, thereisa constant Cg and a function
C(+) from [0, oo[ to [0, o[, such that for all T €]0, 1], ¢ €]0, 1] and (u, S) €
C9([0, T1; H* (D)) solution of (1.7) with initial conditions satisfying (1.8), the
norm

M := sup [[(u(), S@O)l asm) (2.2
t€[0,T]
satisfies the estimate
M < Co+ (T +)C(M). 2.3

To see this, choose firdif; > Cp and nexte1 > 0 andTy €]0, 1] such that
Co + (T1 + £1)C(M1) < M1. Consider initial data satisfying (1.8). L&t (¢) de-
note the upper bound of tHe > 0 such that the Cauchy problem has a solution in
([0, T1; H*(D)). The classical existence result for symmetric hyperbolic equa-
tions implies thaf" *(¢) > 0and thaf*(¢) is bounded from below by, > 0when
& 2 &1. Fort < T*(g), denote byM (¢) the norm (2.2) defined of0, t]. When
e < g1, (2.3) implies thatM (t) < M1 for r < min(Ty, T*(¢)). Therefore (2.1)
implies thatT*(g) > T for all ¢ < ¢1. This shows that Proposition 2.1 implies
Theorem 1.2.

A
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From now on, we consider a solutign, S) € C%([0, T1; H* (D)) of (1.7),
with initial data satisfying (1.8). We denote I3y the norm defined in (2.2). To
simplify notation, let - || denote the norm i#7* (D). To prove (2.3), we first give
an estimate for the entrogs;

Lemma 2.2. There are a constant Cp and a function C(-), depending only on My,
such that
vt e[0,T], [IS®)s = Co+1tC(M). (2.4

Proof. We use the following well-known nonlinear estimates. kot 0,/ > O,
k+1 < o ando > d/2, the product maps continuoust” % (D) x H° /(D) to
H°*=l(D) and

luvlo—k—1 = Cllullo—kllvllo—i- (2.5)

Similarly, if F is a smooth function such th&(0) = 0 andu € H° (D), then
F(u) € H° (D) and its norm is bounded by

IF@)lle = C(llullo) (2.6)

whereC(-) is independent af and map40, oo[ into [0, ool.
Fora € N%, || < s, introduceS,, = 8%S. Then
(0 +b(S,u) - 0x)Se = hg = —[8,‘?, (0 +b(S, u) - 8x)]S~ (2.7

The nonlinear estimate (2.6) implies tibétr) := b(S(1), u(1)) — (0, 0) € H* (D)
with norm less thad' (M). Since the commutatag, is a sum of terméfb’ay S with
1Bl + 1yl <s+1,8>0andy > 0, the rule (2.5) applied with =s —1 > d/2,
implies that

ha(®)llo = C(M). (2.8)

Sinces > 1+ d/2, the firstx-derivatives of the coefficierii(S, u) are C1 with
norm bounded by’ (M). The usualL? energy estimate for the transport equation
(2.7) implies that

t
I1Se (Do < €M 1S,(0)llo + / eICM R (o dr .
0

The lemma follows by adding up these estimate$dpr< s and using (2.8) together
with the elementary inequality

M <14 1C(M)
for nonnegative less than some arbitrary fix&d

In order to prove a bound analogous to (2.4)fothe first step is to obtaif?
estimates for the partially linearized equations

E@ui+b- Vi) + i:LL(ax)u = f, (2.9)

with E = E(S, eu) andb = R(S, u).
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Lemma 2.3. There are Co and C(-), depending only on Mo, such that for all i €
€90, T]; L3(D)) and f € CO([0, T]; LA(D)) satisfying (2.9),

t
li(®)llo £ Coe' ™ 14 (0) o + C (M) / UOCMDY £ lodt'.  (2.10)
0

Proof. First, sinces — 1 > d/2, using (1.7) and properties (2.5), (2.6), we remark
that

10:SNls—1 = CM),  lledru(®)]ls-1 < C(M). (211

In particular, this implies thak = E (S, su) satisfies
18 x E@) Loy < C(IE@)Ils + ||81E(t)||xfl) = C(M). (212

The inverse matrix ~1(r) satisfies similar estimates. Moreover, (2.6) implies that
b = b(S, u) satisfies

[3xb()llLe@) = Clb()]ls = C(M). (213
It is sufficient to prove (2.10) fof/! functions. Multiply the equations in (2.9)
by i and integrate ovej0, t] x . BecauselL(d,) is skew-adjoint, the terms in
1/¢ cancel out; as for the other terms, the derivatives of the coefficients involve
o, E, 0, E andd,b, which are estimated i by C(M). Using the symmetry of
the matricesE (¢), this implies that
(E(mu@), ll(t))o = (E(O)u(O), 11(0))0

t t
+/0 £ @) lolla@)lods” + C(M)f0 a3 de,

where(-, -)o denotes the scalar productirf (D). BecauseE is positive definite,
laOIF < 1E-HO) L~ (E@ud), (1)) .
These estimates, Gronwall’s lemma and the bounds
IEH @)z S NETHO) 2w + 113 ET1 (1) |1 < Co+1C (M),
imply (2.10), and the lemma is proved.
We first use Lemma 2.3 to give estimates for
wp = (E7XS, w)L(3)) u, ke{o,...s). (2.14)

Lemma 2.4. Thereare Co and C(-), depending only on M, such that for all k < s
andr € [0, T,

lug@llo = Co +tC(M). (215
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Proof. For k = 0, this is an immediate consequence of Lemma 2.3. Introduce
Le(dy) := E~1L(3,). This operator is bounded fro®®(H°) to CO(H° 1) for
ocef{0,...,s+1}. Fork = 1, we commuteL’jE with the equation, premultiplied

by E~1. Next, we multiply the result b. This yields the equation

1
E@; +bdue + ZL@OJux = Efe,  fic = [9; + bdy, L Ju.

Using Lemma 2.3, to prove (2.15) it is sufficient to show that

I fc@®llo = C(M). (2.16)
We have
k—1 ) _
[0 + b0y, L] = > L8+ boy. Lg|Ly Y, (2.17)
=0
and

d
[0+ bd,. LE] =Y Cjiy,.
j=1

where theC; are sums of bilinear functions éfandd, . E~* or 3,b andE~1. The
key point is thatC; does not involve the time derivatives bf Therefore, (2.12)
and (2.13) imply that
IC;®)ls—1 = C(M). (2.18)

The identity (2.17) implies that the componentsfpfare finite sums of terms of
the form

(8Prer) ... (0P er)d) cd%up
with |B1|+. . .+ Bl +ly|+la] £k <s,|al > Oandthusy| < k—1 < s—1.Inthis
formula, (e1, . .. , ex), c andu,, denote coefficients of ~1, C; andu respectively.
The multiplicative property (2.5) and the estimates (2.12) and (2.18) imply that the
L2 norm of each term is bounded 6 M), so (2.16) and the lemma follows.

Now we really use the special structure of the equations, i.e., (1.5) and part (ii)
of Assumption 1.1. Introduce the matrix-valued functions

Eo(S) = E(S,0),
F(S,u) = E(S,u)Eg () = Id + F'(S, u), (2.19
FY(S,u) = Eo(S)E™Y(S,u) = 1d — F"(S, u).

With little risk of confusion, to shorten notation, we also denot&byE, F, F' . ..,
the functionEq(S(z, x)), E(S(t, x), eu(t, x)) .... We can factor outu in F’ and
F”. In particular, we can write

F' =¢G with [G®)|s £ C(M). (2.20)

Because:g depends only o8, the equation fof implies that(o; +b-0,) Eg =
0, so the equation far is equivalent to

(0 +b-9;)(Eou) + %L(ax)u = GL(9;)u. (2.21)
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Introduce the orthogonal projectdin¢) onto the kernel of.(¢). Because the kernel
has constant dimensioH, is a real analytic function af for &€ # 0, homogeneous
of degree zero. In the periodic caBe= T¢, & € Z¢ and one needs the definition
of IT at the origin,IT(0) = Id. We denote by1(D,), or simply byII, the convo-
lution operator associated with the Fourier multiplie(¢). The operatoi1(D,)
is bounded fronf° (D) to itself for allo andIT(D,)L(3,) = 0. Therefore[1Equ
satisfies

(0 4 b - 9)(T1(Dy) Eou) = [bd,, TI(D,)](Eou)

+ [I1(Dy), G]L(3,)u.

To estimate the right-hand sidgg we use the following result.

(2.22)

Lemma 2.5. Supposethat G isamatrixwith coefficientsin H* (D) withs > 14+d/2,
suchthat G (x) and IT(¢) commutefor all x and&. Then, forallo € {0, ... ,s — 1}
andv € H° (D),

I[TI(Dyx), Glvllo+1 = ClGlislvllo- (2.23

Proof. This is a classical result about the commutation of a pseudodifferential
operatorT1(D,) and the multiplication by a functio& € H®. We briefly recall a
sketch of proof. Wheid = R?, we can use the paradifferential calculusBafny

[Bo]. Denoting by7 the operator of para-multiplication iy and more generally

by T4 the paradifferential operator of symhélx, &), we have

[Tcv — Gvllo41 = IGIslvllos
ITI(Dx)Tov — Tngvlle+1 = IGlslvlios
TeI(Dy)v = Tgnv.
Since the symbol& (x)IT(¢) andIT(£)G(x) are equal, (2.23) follows.

WhenD = T¢, expanding the functions into their Fourier series,tle Fourier
coefficient ofw := [I1(Dy), Glv is

wy =Y (MWGy—y — Gy TH(1)) vy
0

When|v — u| < |ul/2, we use the fact that the matricgg andIT(v) commute
and thatfi(v) — II(n) = O|(|ju — v|/|v|) to obtain

MWGy—y = Gy TT(W| < Clie = IIGyyil/IV].

The factor% has the effect of making one “derivative”, i.e., factor of, in the
expressior_, (1 + [v))22+2|w, |2 apply only toG, not tov, thereby yielding an
estimate in which at most derivatives are applied to, as desired.

When|v—pu| = |u|/2itsuffices to use the estimdt@d (v)G,—,, — G,—, TT(w)|
< 2|Gy—yl, since thenv| < 3|v — |, which allows all the factors ofv| to be
converted to factors g — | that apply only toG. Hence, for fors > 1+ d/2,
this implies that

> @+ pD* w2 £ o 3o+ whI6,R) (o a+ ¥ uP),
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which is (2.23). This proof can also been carried dRé replacing the Fourier
series by Fourier integrals, but the splitting of the frequencies sketched above is
exactly what the paradifferential calculus does.

Condition (1.6) implies thak (z, x), Eo(t, x), F (¢, x), and hence als6 (¢, x),
commute withl1(¢). Lemma 2.5 and the estimate (2.20) therefore imply that the
right-hand sidef of equation (2.22) satisfies

IfOlls = C(M)
Repeating the proof of Lemma 2.2 for the transport equation (2.22), we obtain
Coroallary 2.6. Thereare Co and C(-), depending only on Mg, such that
Vi €[0,T], |TI(Dy)Eou(®)|s < Co+tC(M). (2.24)

Having estimated1(D,)Equ and L%u, we can now estimate. The idea is
that the systeniL?,, | D, | T1(D,) Ep) is elliptic in x. We start with the following
estimate.

Lemma 2.7. Thereexistsa K, and there exist Co and C(-) depending only on Mo,
suchthatforo € {1,...,s},t € [0, T]andv € H° (D),

lvlle = KIL@)vlo-1+ 5(||1'I(Dx)Eo(t)v||o + llvllo-1), (225
and
vlle = 6(||(LE(t)(3x))av”O + IT(Dx) Eo()vllo + [[V]lo-1), (2.26)
with C := Co + (t + £)C(M).
Proof. We start from the estimates
lvllo £ K(IIL@)]lo—1+ ITIDOV[6 + [vllo-1). 227

which are immediate using Fourier transforms of Fourier series expansions. By
(2.9),
IT(D)vlle < KNI Eg (O)llsll Eo()TT(Dy)v]lo-

Lemma 2.5 implies that
| Eo(t)IT1(Dx)v — II(Dx) Eo()vlle = |Eo@®)|sllvllo—1

Thus (2.25) follows from (2.27) and Lemma 2.2, which implies that thereCgre
andC (-) such that
IEq @)l + I Eo@)ls < Co + 1C(M). (228

Next, we prove (2.26) by induction an We have

IL@x)vllo = IE® > ILEw@ (3)vllo.
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Recall thatE = Eg + F’Eo, and thatF’ satisfies estimates similar to (2.20).
Therefore, there ar€y andC(-) such that

IE®)|s £ Co+tC(M) + eC(M). (2.29

Therefore, folw = 1, (2.26) immediately follows from (2.25) and (2.29).
If (2.26) is satisfied at the order < s, then

ILE@yvlle = C(llL%J{,)lvllo + IT(Dy)Eo) LE@yvlle + ILE@Vo—1).

By (2.29), 5

ILE@yvlo-1 = Cllvlls-
Moreover,Eq(t) L g (3x) = F~1L(3,) andI1(D,)L(3,) = 0. Thus, Lemma 2.5
and (2.20) imply that

ITI(Dx)Eo(t) LE@yvlle < eC(M) vl
This implies that there ar€p andC () such that
ILE@yvllo < C(ILGvlo + lIvllo).

Substituting in (2.25) at the order+ 1, implies (2.26) at the same order, and the
proof of Lemma 2.7 is now complete.

The next estimate finishes the proof of Proposition 2.1.

Lemma 2.8. There are Co and C(-) which depend only on Mg, such that for ¢ €
[0, T'] one has
lu@®)|ls < KCo+ (t +)C(M).

Proof. The L2 norm of u(zr) is estimated in (2.15), taking = 0. Next, Lemma
2.4, Corollary 2.6 and Lemma 2.7 imply by induction®re {0, ... , s} that there
areCpo andC(-) such that

lu®)lls = KCo+ (t +&)C(M). (2.30)

The last estimate, with = s gives Lemma 2.8.

3. Theincompressible limit

Consider a family of solutiongu®, S¢) of (1.7), uniformly bounded in
([0, 71; H*(R%)) with s > 1+ d/2 and fixedl > 0. In this section,we study
the limit of (4°, S¢) ase tends to zero. We first list the convergences which fol-
low directly from the bounds and next use Proposition 1.6 to finish the proof of
Theorem 1.5.

The equation fosS implies thatd; $¢ is bounded irC?([0, T'1; H*~1(RY)) (see
(2.11)). Therefore, after extracting a subsequence, we can assume that

§¢ — § strongly inCo([0, T]; Hi(RY)) (3.1
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for all s/ < s. The limit S belongs to the spao@,%([O, T1; H®) of functions in
L°([0, T]; H®) which are continuous for the weak topologyf . In particular,
S € CO([0, T1; HYo(RY)). In addition,S € L*([0, T1; H*(RY) N B).

Extracting further subsequences, we can also assume that

u® — u weaklyx in L2([0, T1, H*(RY)). (3.2

Moreover,w® := IT1(D,)(Eo(S¢)u®) is bounded irCo([0, T]; H*(R%)) and satis-
fies the transport equation (2.22)

(3 +b(S*, u®) - VIw® = f*,

where f¢ is bounded irc°([0, T1; H* (R%)) by Lemma 2.5. Therefore, the family
d;w® isboundedirC®([0, T], H*~1). By (3.1), (3.2) IT1(Dy) (Eo(S¢)u?) converges
weakly toIT(D,)(Eo(S)u). Therefore, the uniform estimateswof anda; w® imply
that fors’ < s,

(D) (Eo(S*)u®) — TI(Dx)(Eo(S)u)

, 3.3
strongly inCo([0, T1; H (RY)). G

Equation (2.21) implies that
£d(Eo(S*)u®) + L(dy)u® = eg* (3.4

whereg?® is bounded irC9([0, T]; H*~1). Moreover,Eq(S¢)u’ converges weakly,

and thus its time derivative converges in the sense of distributions. Therefore
€9, (Eo(S?)u®) converges to zero in that sense. Sihge, )u® converges weakly to
L(0y)u, we conclude that

L(d,)u =0, orequivalently IT(Dy)u = u. (3.5

Proof of Theorem 1.5 (given Proposition1.6)

Sep 1. We first show that some subsequence of (iife $¢) converges and that
the limit (u, S) satisfies the version of (1.18) where the constraiig eliminated.
We now make use of the assumption that Proposition 1.6 holds: Together with
(3.1) and (3.2), Proposition 1.6 implies that, for all bounded operssetsR?, we
have on0, T'] x ©

b(S®, uf) — b(S,u) inL2
Vu® — Vu in L2,
VSt — VS in L2,
E(S%, eu®) — Ep(S) in L™,
In addition, Proposition 1.6 together with the equationidor (1.7) plus (3.5) imply

that
edu® — 0 inL2
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SinceE — Eg = O(e), this shows that
{E(S®, eu®) — Eo(S9)} (9u® + b(S°, u®) - Vu®) — 0.
Therefore
E(S°, 8u£)(3;u£ + b(S%, u®) - Vug)
= {E(5°, eu®) — Eo(S®)} (9,u® + b(S°, u®) - Vu®)
+ 0 (Eo(S%)u®) + b(S°, u®) - V(Eo(S°)u®)
— 9 (Eo(S)u) + b(S, u) - V(Eo(S)u)
= Eo(S)(d;u + b(S, u) - Vu)

in the sense of distributions. Applyirfid(D,) to the first equation in (1.7) implies
that
(D) (Eo($) (3 + b(S, ) - Vi) ) =0, (36)

In addition, passing to the limit in the equation%fimplies that the limitS satisfies
S+ b(S,u)- VS =0.
Thus(u, S) satisfies
L(9y)u =0,
H(Dx)<Eo(S)(8,u +b(S,u)- Vi)) =0, 3.7)
0;S+b(S,u)-VS) =0.
Sep 2. Next, we prove that € CO ([0, T]; H*(RY)) and that(u, S) satisfy the
initial condition (1.19), (1.20). The convergence (3.1) implies fal is the limit

So of the initial datan,:o. Similarly, the uniform bounds and the convergences
(3.2), (3.3) and (3.5) imply that

u = T(Dy)u € L¥([0, T]; H* (RY)),

; , (3.8)
f=TI(Dy)(Eo(S)u) € C, ([0, T]; HY).

Moreover,(Eo(S¢)u®), _, converges t&o(So)ug in H* (RY). Together with (3.3),

N . [t=0
this implies

(IT(Dx) Eo(S)u) =0 = TT(Dx) Eo(So)uo. (3.9

Introduce the spacé/; of functionsv € H* such thatv = TI(D,)v. For
t € [0, T, let K (¢r) denote the operator

v = I1(Dy) Eo(S(1))I1(Dx)v

from H; to itself. BecauseEo(S(t)) € H' is positive definite, one proves by
induction onk < s, that there i< such that

1
Euvni < (K (v, v) ¢ < Clvli2.



The Incompressible Limit of the Non-Isentropic Euler Equations 79

Therefore K (1) is an isomorphism frontl;’ onto itself. In particular, this implies
that (1.20) uniquely determinag. Moreover, (3.8) implies that for almost all
t € [0, T],

ut) = K@) L. (3.10)

We show thatt € C9([0, T1; L2(R?)). Fix to € [0, T] and¢ e LZ(R%).
Considery := K (t0) "¢ € L2(R?). Then, becausEo(S) is uniformly bounded in
L and is continuous in times on compact séig(S(1)y € C2([0, T]; L2(R%))
ande(¢) := TI(Eo(t)¥) € CO([O, T1; Lz(Rd)). By (3.10), we have

(TTu (@), )y = (Tu(@), $ (1)) + (Mu(r), $ — $(®)),
= (f@).¥)o+ (Mu(), ¢ — $®),.

Becausex is uniformly bounded inL2 and ¢(¢) is continuous with values in
L?, the last term tends to zero when— 1o. With (3.8), this shows thai () is
weakly continuous afp. Because of the uniform bounds, this implies that
cg([o, T1; H* (R%)). With (3.10) and (3.9), one sees that the initial conditiQno
satisfies (1.19).
Sep3. Theusualiterative method shows that equations (3.7) with initial data (1.19)
have a unique solutio*, $*) in C9([0, T1; H*(R%)) n C1([0, T1; H*~L(RY)).
Because: € C2([0, T1; H*(R%)), (3.7) implies that

3 (I — TI(Dy))u =0, TI(Dy)(Eodu) € CO([0, T1; H~L(RY)).

With Lemma 2.7, this implies thaku € C2([0, T1; H~1(RY)).

Thus, we can estimate the differenge— u*, S — $*) in L2, implying that
u=u*andS = S*.

The uniqueness of the limit implies that the full sequeface $¢) converges to
(u, S).

Sep 4. It remains to show that (3.7) implies (1.18). Define
8 = —(Eo(S)(@u +b(S, u) - Vu)).

Because: € CO([0, T']; H*(R%)), using (3.7) and Lemma 2.7 implies that and
thusg belong toc([0, T1; H*~1(R%)). MoreoverI1(D,)g = 0. We want to solve
the equation

L) = g. (3.11)
IntroduceM (&) the partial inverse of. (¢) such that

M@E)LE) = LEME) =1-T1(), METE) =0;

M is C* onR%\ {0} and homogeneous of orderl. The operatoM (D,) defined
by the Fourier multiplierM (¢)is therefore well defined o whend = 3 and
m = —iM(D,)g satisfies (3.11) and (1.14).

In general,M(D,) is defined on the space of functiopsin the Schwartz’
classS such that the Fourier transforghvanishes at the origin. Introdudec S
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such tha® has compact support and is equal to 1[fr< 1. Forg € S define
9% =9 — p(0)0 € S. Forg € L2(R?), the formula

(m, 9) = —i { g, M(Dy)¢")

defines a distributiom = M*g € S'. Its Fourier transform is given by
(7T, ¥) = —if(ii(é), ME (Y E) - lﬂ(O)é\(S)»d%'.

In particular, 7 (&) = —iM(&)g() on RY\{0}. Thus,m € H! + C® andrn €
H® 4+ C* wheng € H*~1. Note that in dimensiod > 3, Mg = M(D,)g since
Mg e L?+ L? for 1/2+ 1/d < p < 1 and the functiong/ € S such that
¥ (0) = 0 are dense il.” for p’ > O.

The definition implies that

(L@, ¢) =i (g, M(Dy)(L(3:)9)*)
=i (g, M(Dy)(L(3:)9)) = (g, (I — TI(Dy)g ).

Thus L(3,)r = (I — TI(Dy))g. Similarly, one shows thad;jr = M;(D,)g
whereM; (D) is the convolution operator associated with the Fourier multiplier
iE;M(&) € L®. Thus,d;7 € H*~1 wheneverg € H*~1.

Knowing thatg € C°([0, T1; H*~1(R%)) andI1(D,)g = 0,7 (1) = M%g(t) €
([0, T x RY) satisfies (3.11) and (1.14).

Proof of Theorem 1.4 (given Theorem 1.7)Consider the Banach spad of

the functions which satisfy (1.13). In the transport equaticft + u® - V.S, the
speed:® is uniformly bounded. Thus, the decay assumptions (1.13ygor) are
propagated and the solutio$ are also uniformly bounded ih*° ([0, T']; B). It

only remains to show that assumption (1.17) is satisfied by the system (1.10). The
operatorit Eg(S) + L(dy) is

itAo(S) V-
( v irRo(S)> 312

whereAg = A(S,0) andRg = R(S,0). Fort # 0 andr € [0, T, (¢, u) is in the
kernel ofit Eqo(S(¢)) + L(9,) if and only if

2
V.-(bVg)=0
at®q + V- (bVq) . 3.13)
u=1ibVgq,
wherea(x) = A(S(t, x),0) andb(x) = 1/R(S(¢, x), 0). Becauses(¢t) € B, the
hypotheses of Theorem 1.7 hold. The equivalence of (3.12) and (3.13) means that
Theorem 1.7 then implies that assumption (1.17) holds.
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4. Decay of thelocal energy

In this section we prove Proposition 1.6. Consider a family of solutions of (1.7),
(u®, $%). Itis assumed to be boundeddf ([0, T']; H* (R%)) withs > 1+d/2 and
T > 0, independent of. MoreoversS¢ is bounded in.*° ([0, T']; B). As explained
at the beginning of Section 3, we can extract a sub-sequence sudh tratverge
strongly to S in C9([0, T'1; Hlf)/c) for all s" < s, u® converges ta: weakly in
L*([0, T], H®) andI1(D,)(Eo(S®)u®) converges strongly tbl (D, )(Eo(S)u) in
cO([0, T); HYy) forall s’ < .

The main step in the proof of Proposition 1.6 is to prove the strong convergence
of (I — Iu®.

Proposition 4/.1. (I — TI(Dy))u® converges to O for the strong topology in
L2([0, T, HS (RY)) for all s < s.

The strategy of the proof is very simple. In the spirifolGErarD ([GEér]), we
introduce the microlocal defect measures of subsequenegésTtiiey are measures
M, onR; x R, valued in the spacé of trace class operators @rf(R¢). They can
be written

M(dt,dt) = M(t, T)u(dt, dt), (4.1)

wherey is a scalar nonnegative Radon measure &@hi$ an integrable function

with respect tqu with values inL. The usual feature of defect measures is that they
are supported in the characteristic variety of the equation. In our case, this means
that for u-almost all(z, t), M(z, 7) is valued inH1(R?) and

(i Eo(t)T + L(3x))M (¢, 7) = 0. (4.2

Assumption (1.17) then implies thaf (¢, t) = 0O for w-almost allz andt # O.
Thus, M is supported i = 0 so (4.2) implies that

L@ )M, ) =0 or (I—-TI(Dy)M(t,t) =0, u-a.e. 4.3

As a corollary, the microlocal defect measure(éf— IT(D,))u® vanishes and,
together with the uniform bounds i, this implies Proposition 4.1.

We now proceed to the details.

As noticed in (2.11), equation (1.7) implies thad,u® is bounded in
co([0, T1; H*~1). Asin (2.21), equation (1.7) implies that

sEo(8%)0u® + L(9)u® = ef°®, (4.4)

where f¢ is bounded inC9([0, T1; H*~1). To avoid boundary terms in the inte-
grations by parts, we extend the functions @ R: First, choose extensiors$ of
S¢, supported if—1 < ¢ < T + 1}, uniformly bounded irCQ(R; H*(R?) N B)
and converging t&§ in CJ(R; H;5,.(R%)). Next, introduce a family of functions
xe € C3°(10, T[) such that

xe(t) =1, for 1 e[eY? T — &2,

leds xellLoe < 26Y/2.
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Thenu® = x.u® satisfies
eEQ(5%)d,0° + L(0,)i° = f°, (4.5)

where ¢ tends to zero itCO(R; H*~1).
Introduce the wave-packets operator

Weu(t, T, x) = cs_3/4/ e(i(t_s)r_(t_s)z)/gv(s, x)ds, (4.6)
R

with ¢ = 1/(273)~Y/4. The operatoW* is anisometry fronl. 2(R1+9) to L2(R2+4)
||W8U||L2(R2+d) = ||U||L2(Rl+1l). (47)
Lemma 4.2. The wave packets U* := Wéu* satisfy

sup > T/ 0%U° |l pameray < +o00, (4.8)
e€10.01; 41411

F® = (itEo(S*(1)) + L(3,))U* — 0 in L2R*Y) ase— 0. (49

Proof. The operato¢ commutes withd, and thus preserves smoothness in
Thereforel/¢ is a bounded family id.2([0, 7] x R; H*(R<)), implying (4.8) when
j=0.

Moreover, ifed,v € L2, then

We(gdv) —itWev = 2cs_3/4f e(i(’_s)r_([_s)z)/a(s — (s, x)ds.
R
Hence,

IWE (ediu) — itWeull 2 < C/e|ul 2. (4.10)

This implies (4.8) forj = 1. Similarly, ifa(z, x) € Ct N WL RM9),

aWéu — Wé(au) = cs_3/4/ e(i(t_s)f_(t_s)z)/g(a(t, x) —a(s, x))u®(s, x)ds
R

and sincda(t, x) — a(s, x)| < |t — s|||0;a| L=, we have
[W®(au) —aWeul 2 < Ve |allLolull 2. (4.11)

Equation (4.5) implies thdi  Eo(5?) + L(3,))U*® is the sum ofw® f* and errors
terms which are dominated by (4.10), (4.11). Sis€eis uniformly bounded in
Wl this implies (4.9).

FollowingP. GErARD ([GEr]), we introduce next the microlocal defect measures
of u®. We denote by [or L] the space of compact operators [resp., trace class
operators] inL2(R%) and byK,. [or £.] the subclass of nonnegative self adjoint
operators infC [resp., £]. The spacel is equipped with the norm of bounded
operators inL?(R?). The space can be identified with the dual space/6f with
the duality bracket tK L). Note thatd € CO(R?, K) acts inL?(R?*?), by the
obvious formula

(U, T, x) = (¢>(t, )U(t, T, -))(x).
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Lemma 4.3. For all bounded family, U¢ in L2(R%t9), there is a subsequence
such that there is a finite nonnegative Borel measure . on R? and thereis M <
LY(R?, £, p) such that for all ® € CJ(R?; K),

/ (PU®(,t,x) . Us(t, T, x)dtdr dx
R+ 4.12)
—>/ tr(CD(t, r)M(t,t))u(dt,dr)
R2
as ¢ tendsto 0 in the subsequence.

Moreover, if U¢ satisfies (4.8) and (4.9), then, for almost all (¢, 7) € [0, T] xR,
M (t, 7) isa bounded operator from L2(R¢) to H1(R?) and

(itEo(S) + L(3))M(1,7) =0 p-ae 4.13)
Proof. (See [G].)
Sep 1. Extracting a subsequence, we can assume that

U@ O oy = 1 (4.14)

in the vague topology, where is a nonnegative bounded Borel measurékén
Introduce a countable orthonormal bagjof L?(RY). LetK; x be the operator

v Kjpv = (v, ¢>j)0¢k. Then, extracting subsequences, we can assume that for

all j andk,

(KjxU(t, 1), US(t, 1))y = (U1, 7). ¢5) o (6. US (2, 1)),

= MKjk =mj i,

(4.15)

wherep; « is a bounded Borel measure @nwhich is absolutely continuous with
respecttqe, hence of the formu; xp withm; , € LY(R%; w). Note thany ; = ;¢
and that the matriceisn; «}1<j k<, are nonnegative. In addition, because

(U 0 8)e) £ 10RO,

15j=n

we have
> mjjt.t) 1 p-ae. (4.16)

1sjsn
Introduce the operators ib?(R9):
M,(t, T)v = Z mji(t, ) (v, ¢x)gd;- 4.17)
1<j,k<n

They are bounded fqu-almost all(z, t). They are hermitian symmetric and non-
negative. Moreover, the sequenkg is nondecreasing. With (4.16), this implies
that for almost all¢, v) the sequences,, (¢, t) converges in the trace class norm,
the limit M (¢, t) € L4 and

trM(,7) <1 p-ae. (4.18)
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Because (K  M(t, 7)) = m; (¢, T), (4.15) means that the convergence (4.12)
holds for ®(t,7) = ¢(t, 1)K, for all indices j andk and allp € CO(R?).
Therefore, it extends by linearity and density to®lk, t) = ¢(t, 1) K with K €
and next to alk € CO(R?; K).

By construction, note that

/ ||M(t,r)||w(dt,dr)=/ tr(M(t, 7)) pu(dt, dv)
R2 R2

; 2
§ Ilm Sup” Ug ||L2(R2+d) .

e—0

(4.19

Step 2. Suppose now thdt ¢ is bounded inL2(R?; H1(R?)). Fors > 0, introduce
the operators
Ps = (Id — 8A,) " Y2(1d — A)Y2.

They are bounded ih? for § > 0 and uniformly bounded from¥ ! to L2 for § > 0.
They are self-adjoint and nonnegative ald> Py if § < &', as is easily seen us-
ing the Fourier transform oR?. Applying (4.12) to the test operat@ ®(z, t) Ps,
shows that the measure associated ity ¢ is PsM (¢, t) Psu(dt, dt). The uni-
form boundedness a?sU¢ in L2 and (4.19) imply that there i€ such that

V8 €]0, 1], /tr(PgM(t, T)Ps)p(dt,dt) < C.
Since the familyP; is non-increasing, the norms

| PsM(t, 7)Ps||c = tr(PsM(t, T) Ps)

are non-increasing functions&fTherefore, the estimate above and Fatou’s Lemma
imply that

sup |PsM(z,7)Pslic € LY(R?, 1) (4.20)
8€]0,1]
and therefore
sup ||PsM(t,7)Pslly < oo p-a.e. (4.21)
§€]0,1]

In particular, foru-almost all (¢, 7), the operatorsPs M (¢, t) Ps are uniformly
bounded fromL? to L?; henceM (z, T) extends as a bounded operator fréfm!
to H1. In addition, (4.18) implies thaPoM (¢, 7) Py € £, and (4.19) implies that
PoM Pg € LY(R?; £, ). In particular,

M € LYR?% L, p). (4.22
Using (4.12) with the test operatots(1 — 8 A,)~*/29,; and lettings tend to zero,

implies that, for allb € CY(R%; K), we have

/ (¢ 02,U) @ 0, U1, D)) didr
R ° (4.23)

— /ztr(cb(t, T)dy; M (1, r))u(dt, dr).
R
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Sep 3. Next, we show that it/ satisfies (4.8) and (4.9), then (4.13) holds. The
convergence (4.9) and the estimate (4.8) imply that fodbadl CJ(R?; ),

/ (@(r, OF, U, r))odt dr — 0.

Moreover, the local strong convergenceséimplies that for all compact operators
K e K, ~ ~

K(Eo(S) — Eo($))U* — 0 inL2.
Using (4.12) and (4.23), this implies that

/tr(cb(t, (it Eo(5(t)) + L)) M(t, t)),u(dt, dr) =0.
Becauseb is arbitrary, (4.13) follows.

Proof of Proposition 4.1. Assumption (1.17) plus (4.13) imply thaf(s,7) =0
for  # 0, u-almost everywhere. ThusM = 0, and by using (4.13) again, we
find thatL(9,)M = 0 u-almost everywhere. This is equivalent to

(I —TI(Dy)M(t,7) =0 p-a.e.
This implies that for al € CJ(R?) and allK € K, we have
/ o(t, r)(K(I — MU, 7), K — U, r))odtdr 0. (424
R2
Becauséi® is supported if0 < ¢ < T},
/ |UE(¢, ©)|13dt dt —> 0.
(1<—1Ulr=T+1)
By (4.8),7U? is bounded in.2. Thus, with (4.24), we see that for &l € K,

/2 |K (1 — MU, v)|ididt — 0
R

whene — 0, in the subsequence extracted in Lemma 4.3. Because
K(I —THU® = W8(K( — TDu®),

this means thak (I — IT)#® tends to zero inL2(R¥9) (see (4.7)). Since® is
bounded inCO([0, T'1; L?), #¢ — u® converges to zero ih?(R1*%), and therefore
we have proved that

VK € K, |KU = Tu’|| 120, 71xpa) — O- (4.25

Since the limit is zero, no extraction of subsequence is necessary for this result and
the convergence holds for the given fami.

Given that(I — IMu® is uniformly bounded inC%([0, T1; H* (R%)), (4.25)
implies and is equivalent to the convergencg bf- IMu® to zero inL2([0, T1;
Hi (R%)) for all ' < 5. This completes the proof of Proposition 4.1.

To prove Proposition 1.6, we show that the defect measuié efu vanishes,
whereu denotes the weak limit af°. Repeating the proof of Lemma 4.3, we can
show that
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Lemma 4.4. There are a subsequence ¢,, — 0, a finite nonnegative Borel measure
wson[0, T],and M, € L1([0, T, L4, i), such that for all ® € C2([0, T1; K),

| (20~ w0 —0w)

.71 (4.26)

—>/ tr(® (1) Mo (1)) pese (di)
[0,T]

as ¢ tends to O in the subsequence.
Proof of Proposition 1.6. Because® converges locally uniformly t§, and because
of the uniform estimates i, we have
|¢(Eo(S*) = Eo()u® | 120 11 pay — O
forall ¢ € CI(R?). Thus
K (Eo(S%) — Eo(S))u’ ”LZ([O,T]de) — 0.
for all K € K. Together with the strong convergence (3.3), this implies that

— 0.

|KTI(Dy) Eo(S) (u® — u) “LZ([O,T]XRd)

This implies that

II(Dx)Eo(S(1) M (1) =0 ps-a.e. (4.27)
Since(I —IMu = 0, (4.25) which is equivalent to the conclusion of Proposition 4.1,
implies that

(I = TI(Dy)My (1) =0, p-a.e. (4.28)
Thus, foru,-almost allz, M,.(¢) is valued in the spack? = ker(/ — IT) N L2 and

(4.27) implies thallEq(S(¢)) 1M, (t) = 0. Taking the scalar product witlf,, (as
in Step 2 in the proof of Theorem 1.5), implies that

(Eo(S) M. (1), TIM, (1) -) = 0

for w.-almost allz. Therefore IIM, (1) = M.(t) = 0 and the definition oM,
implies that for allK € I,

K (u® — 0 (4.29

—u) ||L2([0,T]><Rd)
ase — 0 in the subsequence. Since the limit is zero, the entire family converges.
Given the uniform bounds fox®, (4.29) implies thau® — u tends to zero in
L2([0, T; H,‘BC(R")) for all s’ < s and Proposition 1.6 is proved.



The Incompressible Limit of the Non-Isentropic Euler Equations 87

5. Absence of eigenvalues

In this section, we prove Theorem 1.7. We assume that the coeffieiamids
satisfy (1.21). For € R, we introduce the operator

Pu :=at’u+V - (bVu). (5.1)
It it clear that ifu € L2(RY) andPu = 0, thenu € HX(R?) and
(qu, Vu)o = rz(au, u)o.

In particular, whenr = 0 this implies that: = 0. Thus in the remaining part of
the section, we assume that > 0. Moreover, ifPu = 0, thenAu = —(at2u +
Vb.Vu)/b € L? and thus: € H?(RY).

The proof of Theorem 1.7 is very classical (see [RS] and][tdi example).
We first show that the solutions &u = 0 are rapidly decreasing, and next we use
the strong uniqueness theorem for second order elliptic equation to conclude that
u vanishes on a neighborhood of infinity and hence #hadnishes identically.

Lemmab5.l. Ifu € H2(RY) satisfies Pu = 0, thenfor all n € N, |x|"u and |x|" Vu
are square integrable on R?.

This is well known and follows from much more precise results when the
coefficients are smooth (see e.g. Corollary 14.5.6 and Theorem 30.2.10]pf [H~
For the sake of completeness, we sketch a direct proof of the result that applies to
C1 coefficients. A similar proof for operators of the fom+ V (x) can be found
in [RS].

Proof. To simplify notation, we can assume without restriction that/b = 1.
Then

1
EPM =Au+u+V(x, Dyu =0, (5.2
where
1 at?
V(x, Dyu = EVb -Vu + - 1)u. (5.3)

Consider even functiong andg in C*°(R), to be chosen later on. Introduce the
multiplier

Mu=2A-Vu+Bu with A=V xDx. (5.4)
B(x) =V - A(x) — ¢(|x]).

We assume thafy and its derivatives up to order four arg(1/|x|) at infinity
and thaty and its derivatives up to order two are bounded. Thys3, and their
derivatives up to order 2 are bounded. Since H?, integration by parts yields

—/(A+1)u.(2A~V+B)udx = fC|u|2dx

+/ Z E; 0judiu dx

15j.k=d

(5.5



88 G. METIVIER & S. SCHOCHET

with
C=(V-A—B—ABJ/2) =g¢—AB/2,
Ejr=(B—V-A)Sji+20jAr = 2y — )5 1 + 2¢ xjxi/|x|.

With r = |x|, the quadratic fornE = (E; ;) is bounded from below bg(r) where
0 :=min{2y — ¢, 2(¥ + ry’) — ¢}.
Substituting (5.2) plus this bound fa@ into (5.5) yields

/(p|u|2dx+/9|Vu|2dx

(5.6)
< / |V (x, DoullMu| dx + 3 f ABlul?dx.
Fora = 0 ande > 0 we choose
B 42 . 5 7
Y =VYquer) = m r=|x|, (5.7
which converges t¢l + r2)* whene — 0. Note that
, 20 +1 20
Ty, (r) + Yae(r) = [ Va,e — ml%,»
Next we we choose
20+ 1
O =0ae(r)=—1——= Y (5.8)

T 20+ 1+4er2 TOT

Theng < min{y, rd’ + ¥ + 204 /(L +r?)} and thu® > ¢ — 4y, /(1 +r?)).
Note that for any fixed > 0, ¥, . andg, . are O(1/r) and their derivatives of
orderk are O(1/r1**) so that the energy estimate (5.6) holds for this choice of
weights. Thus, for alk = 0 ands > 0, we have

/wa,s(|u|2+|vm2)dx < /|V<x,Dx>u||Ma,gu|dx

1
+/4(1:’iz)|w|2dx+EfABa,ngdx,
(5.9)

whereM,, . and B, . are associated witlh, . as indicated in (5.4).
Now, we show by induction on, that(1+ |x|)"%2(|u| + |Vu|) isin L2. This is
true by assumption for = 0 sincex € H. Assume that this property holds up to
n — 1. Introducex = né and use (5.9). We use the induction hypothesis to bound
the right-hand side. We havk, . = Vo, ex andBy = dVa,e + 1y o — Pu.e, thus

Wae ()] S CA+ XD, |Age ()| £ CA+ |x))? T,
|Bue ()] £ CAA+ xD%, |ABye(x)] £ CA+|x)?*2,
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whereC is independent of. Thus the last two terms in (5.9) are uniformly domi-
nated by the norm ofl + |x|)*~1(|u| 4+ |Vu|) in L2. Moreover,

IMu(x)| £ Cae (1311 VUl + [u(x)]) £ C A+ XD (| Vu| + [ux)]),
and the assumptions (1.21) imply that
IV (x, Du)| < @+ xD 2 (1) + lu@)]).

Therefore, the first term in the right-hand side of (5.9) is dominated by the norm of
(L4 |xD*=%2(|u| 4+ |Vu|) in L2. Thus, by the induction hypothesis, the right-hand
side of (5.9) is bounded by a constant independent ahd lettings tend to zero,
Fatou’s Lemma implies thal+ |x|)*(Ju| + | Vu|) is in L2. Therefore the induction
hypothesis is satisfied for alland the Lemma is proved.

Proof of Theorem 1.7. The conditions (1.21) imply that the assumptions of Theo-
rem 17.2.8 in [Hb] are satisfied. Therefore, any solutiore H2(R?) of Pu = 0
which satisfieg1 + |x|)"(Ju| + |Vu|) € L% for alln > 0, is identically zero. With
Lemma 5.1, this proves that the equati®m = 0 has no nontrivial solution i/ 2.
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