
Arch. Rational Mech. Anal. 158 (2001) 61–90
Digital Object Identifier (DOI) 10.1007/s002050100140

The Incompressible Limit of the Non-Isentropic
Euler Equations

G. Métivier & S. Schochet

Communicated by Y. Brenier

Abstract

We study the Euler equations for slightly compressible fluids, that is, after
rescaling, the limits of the Euler equations of fluid dynamics as the Mach number
tends to zero. In this paper, we consider the general non-isentropic equations and
general data. We first prove the existence of classical solutions for a time inde-
pendent of the small parameter. Then, on the whole spaceR

d , we prove that the
solution converges to the solution of the incompressible Euler equations.

1. Introduction

The nature of the incompressible limit of the Euler equations of fluid dynamics
depends on several factors: the flow may beisentropic or non-isentropic. The initial
data may beprepared to make the initial first time-derivatives uniformly bounded,
or general. The domain may beperiodic or thewhole space R

d .
Moreover, an analysis of the singular limit contains at least two parts: an exis-

tence and uniform boundedness result for a time independent of the small parameter
appearing in the scaled equations, and a convergence result either to the fixed so-
lution of a limit equation or to a limiting profile.

Solutions of the slightly compressible Euler equations are known to exist for a
time independent of the small parameter in the equations, which is essentially the
Mach number, whenever the flows are isentropic (see [KM1, KM2]) and whenever
the data is prepared (see [Sch1]). Solutions converge to solutions of the correspond-
ing incompressible Euler equations with the limit initial data whenever the initial
data is prepared (see [KM1, KM2, Sch1]), while for the isentropic equations inR

d

solutions tend to the solution of the incompressible equations whose initial data
is the incompressible part of the original initial data, although this convergence is
not uniform for times close to zero (see [Asa, Uka, Izo1–Izo3]). For the isentropic
equations in a periodic domain the difference between solutions and appropriate
profiles tends to zero (see [JMR, Sch3]).
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These existence and convergence results cover all cases of the above-mentioned
factors except for the non-isentropic equations with general initial data. The first
main result in this paper is a uniform existence result for this case. The second main
result is a convergence theorem for the non-isentropic equations in all ofR

d with
general initial data analogous to that for the isentropic equations. As in some of the
previous work on the incompressible limit (see [KM1, Sch2, JMR, Sch3]), these
results will be deduced as special cases of theorems about a class of equations.
The limit of solutions to the non-isentropic equations with general initial data in a
periodic domain will be considered in a separate paper.

The reason why the incompressible limit is more difficult to analyze in the
non-isentropic case is that the matrix multiplying the time derivatives then depends
strongly on the dependent variables. That is, the scaled equations have the form

B0(U, εU)∂tU + 1

ε
L(∂x)U + B(U, ε, ∂x)U = 0, (1.1)

with B0 depending onU as well asεU . Here ε is a small parameter,B0 is a
positive-definite symmetric matrix, andL andB are sums of first-order differential
operators times symmetric matrices, which forL are constant so that the operator
L is antisymmetric. Since (1.1) has symmetric-hyperbolic form, that system is well
posed for fixedε, so the main question is the behavior of solutions as the scaling
parameterε tends to zero. The scalar example

a(u)ut + 1

ε
ux = 0, (1.2)

which can be solved by the method of characteristics, shows that in general the time
of existence of the solution to the initial-value problem for (1.1) with fixed smooth
initial data tends to zero withε. Additional hypotheses must therefore be made on
the structure of the equations or on the initial data in order to obtain a problem for
which solutions exist for some time independent ofε.

If the initial data for (1.1) are restricted by the requirement that sufficiently many
time derivatives ofU are uniformly bounded at time zero, then solutions exist for a
time independent ofε and converge asε → 0 to the solution of a limiting equation
(see [BK]), as can be shown by estimating all space-time derivatives of the solution
through some order. For (1.2) for example, the condition on the initial data implies
thatu(0, x) = c(ε)+O(ε2) for some constantc(ε). Although this result applies to
all systems of the form (1.1), less restrictive assumptions on the initial data suffice
when the system has additional structure. In particular, whenB0 depends only on
εU then no restriction is needed on the smooth initial data (see [KM1, KM2, Maj]);
this yields a uniform existence result for the isentropic, slightly compressible Euler
equations.

The key to both results just mentioned is that energy estimates for solutions
and their derivatives are properly balanced inε. This means that if we weight each
∂
j
t ∂

α
x U by the factorεp(j) needed to make it uniformly bounded at time zero, then

d
dt

(
εp(j)∂

j
t ∂

α
x U,B0ε

p(j)∂
j
t ∂

α
x U

)
is a uniformly bounded function of the set of

εp(k)∂kt ∂
β
x U . In particular, the large term1

ε
L(∂x) disappears from these estimates
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because it is antisymmetric and commutes with derivatives. This yields uniform
estimates for theεp(j)∂jt ∂

α
x U , which implies in particular that‖U‖Hs is uniformly

bounded for some fixed time sincep(0) = 0.
In contrast, whenB0 depends onU and only the initial first time-derivative of

U is uniformly bounded, then direct energy estimates are unbalanced, because the
equation for the time derivative of the supposedly bounded

(
Utx, B0Ut,x

)
includes

the unbounded term(Utx, ((B0)UUx)Utt ). Nevertheless, the solution exists and is
uniformly bounded for a time independent ofε provided that (see [Sch2])

The dimension of kerL(ξ) is constant forξ ∈ R \ {0}. (1.3)

For general initial data, the example in (1.2) shows that additional structural
assumptions are needed in order to obtain uniform existence. The immediate point
of that example is that since the term(U, (∂tB0)U) occurs in the equation for
d
dt

(U, B0U), ∂tB0 must be uniformly bounded in order for even the basicL2

estimate forU to be uniform. With Euler’s equation in mind, we therefore restrict
attention to those systems (1.1) having the additional structure

U =
(
u

S

)
, B0(U) =

(
E(S, εu) 0

0 I

)
, L(∂x) =

(
L(∂x) 0

0 0

)
, (1.4)

so that the variables whose time derivatives areO(1
ε
) occur inB0 multiplied by a

factor ofε. Although this ensures that∂tB0 will be uniformly bounded whenever
‖U‖Hs is, and hence that theL2 energy estimate forU is balanced, energy estimates
for first derivatives ofU are not balanced, on account of theO(1

ε
) term((B0)SSx)Ut

in the equation forUx . This imbalance is more severe than in the case of prepared
data, in which it first occurred in the estimates forUtx . In particular, since the
equation satisfied by first derivatives is the linearization of the original system,
that linearized system is not balanced, which means that small perturbations of the
initial data might cause large changes in solutions.

In the light of this non-uniform linearized stability, it is not surprising that there
exist solutions to systems (1.1) of form (1.4) obeying assumption (1.3) that are
not uniformly bounded for a time independent ofε. An explicit example will be
presented below.

Guided by the form of the scaled non-isentropic Euler equations, we will there-
fore make the additional hypotheses that

B(S, u, ∂x) = B0(U)(b(S, u) · ∇x) (1.5)

and that
E(S, εu) commutes with the orthogonal projector on

kerL(ξ) for all ξ .
(1.6)

Together with (1.4), (1.5) implies that system (1.1) has the form

E(S, εu) (∂tu + b(S, u) · ∇xu) + 1

ε
L(∂x)u = 0,

∂tS + b(S, u) · ∇xS = 0.
(1.7)

The initial assumptions on system (1.1) together with conditions (1.3) and (1.6) can
be expressed in terms of the functions appearing in (1.7) as
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Assumption 1.1. (i) We can write L(∂x) = ∑d
j=1 Lj∂xj , where the Lj are con-

stant real symmetric matrices, and the dimension of kerL(ξ) is constant for
ξ ∈ R \ {0}.

(ii) The matrix E(S, u) is a real symmetric positive definite matrix that is a C∞
function of (S, u) ∈ R × R

N and commutes with the orthogonal projection
onto kerL(ξ) for all ξ .

(iii) Also, b(S, u) = (b1, . . . , bd) ∈ R
d is C∞ in (S, u) ∈ R × R

N .

The following theorem shows that these hypotheses suffice to ensure uniform
existence of solutions to (1.7) having general initial data in an appropriate Sobolev
spaceHs(D), with the domainD being either the whole spaceRd or the torus
T
d . Actually, in view of [Sch1] and [Rau], the existence proof does not depend

significantly on the shape of the domain, so we could also consider bounded domains
with appropriate boundary conditions.

Theorem 1.2. Suppose that system (1.7) satisfies Assumption 1.1, and let s >

1 + d/2 be an integer. For all real M0, there is a positive T such that for all
ε ∈]0,1] and all initial data (u0, S0) ∈ Hs(D) satisfying

‖(u0, S0)‖Hs(D) � M0, (1.8)

the Cauchy problem for (1.7) has a unique solution (u, S) ∈ C0([0, T ];Hs(D)).

Note that, in general, the family of mappings(u0, S0) �→ (u, S) isnot uniformly
continuous with respect toε. This means that Assumption 1.1 is sufficient to ensure
uniform existence of solution but does not imply uniform stability of the linearized
equations. This explains why the nonlinear energy estimates cannot be obtained
from theL2 esimates by an elementary argument using differentiation of the equa-
tions. We give below a simple example of system (1.7) satisfying Assumption 1.1
which illustrates thisinstability.

There are two different assumptions about the initial data of the non-isentropic
Euler equations that allow them to be transformed so as to make Theorem 1.2
applicable. The original non-isentropic Euler equations are

∂tρ + u · ∇ρ + ρ∇ · u = 0,

ρ(∂tu + u · ∇u) + ∇p = 0,

∂tS + u · ∇S = 0.

(1.9)

Hereu is the fluid velocity. The fluid densityρ, entropyS, and pressurep are related
by an equation of state, which will be given here in the formρ = R(p, S), with R

assumed to be defined forp > 0 and allS, to be smooth and positive, and to satisfy
∂R
∂p

> 0. For instance, for ideal fluidsρ = p1/γ e−S/γ . Because the incompressible
limit can be understood as the limit in which the ratio of the fluid speed to the sound
speed tends to zero, we begin by rescaling the fluid velocityu by u = εv. Since
the velocity is the time derivative of the position of a fluid particle, those particles
will then travel a distanceO(ε) in times of order one and a distance of order one
in timeO

(1
ε

)
, which suggests rescaling either the spatial variablesx by y = x

ε
or

else the time byτ = εt . Introducing either one of these rescalings, replacing the
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new variable namey or τ by the original namex or t , and usingp, v andS as the
dependent variables transforms the Euler equations into the form

A(∂tp + v · ∇p) + ∇ · v = 0,

ρ(∂tv + v · ∇v) + 1

ε2∇p = 0,

∂tS + v · ∇S = 0,

whereA = 1
R(S,p)

∂R(S,p)
∂p

. In order to symmetrize these equations we need to
transform the pressure byp = p + O(ε) for some constantp. In order to avoid
changing the domain of definition ofE(S, εu) in Assumption 1.1 to take into
account the positivity ofp, let us use the transformationp = peεq , yielding

a(∂tq + v · ∇q) + 1

ε
∇ · v = 0,

r(∂tv + v · ∇v) + 1

ε
∇q = 0,

∂tS + v · ∇S = 0,

(1.10)

where

a = a(S, εq) = A(S, peεq)peεq, r = r(S, εq) = R(S, peεq)

peεq
.

Equations (1.10) have the form (1.7) with

u =
(
q

v

)
, b = v, E(S, εu) =

(
a(S, εq) 0

0 r(S, εq)I

)
, L(∂x) =

(
0 ∇·
∇ 0

)
.

The orthogonal projector onto kerL(ξ) is(0 0
0 P⊥(ξ)

)
,

whereP⊥(ξ) is the orthogonal projection onξ⊥. SinceP⊥(ξ) has fixed rank for
ξ �= 0 and commutes withrI , Assumption 1.1 is satisfied, so Theorem 1.2 implies
the following results for the Euler equations:

Theorem 1.3. Let s > 1+d/2 be an integer. For all positive p and M0, there exists
a positive T such that for k equal to zero or one, all ε in (0,1], and all initial data

p0 = peεq0(x/ε
k), u0 = εv0

(
x
εk

)
, S0 = S0

(
x
εk

)
satisfying

‖(q0(·), v0(·), S0(·))‖Hs(D) � M0, (1.11)

the Cauchy problem for (1.9) has a unique solution for 0 � t � T
ε1−k such that

(q, v, S) are continuous with values in Hs(D).
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The casek = 0 is usually considered to be the case of slightly compressible
fluids while the casek = 1 concerns large-amplitude high-frequency solutions.
In the latter case the parameterε has the meaning of a wavelength. As in [Ser,
E, Hei], the entropy then has high-frequency waves of amplitudeO(1). However,
the remaining hypotheses here are mutually exclusive with the hypotheses in those
works. Hereu andp are of orderε but thoseO(ε) terms have arbitrary initial data
and so include fast acoustic waves, whereas thereu andp areO(1) but have special
initial data that excludes fast acoustic waves even of sizeO(ε). In addition, [Ser, E,
Hei] only treat problems in one space dimension but allow solutions to depend on
x as well asx

ε
. The reason solutions depending onx as well asx

ε
cannot be treated

here is that assumption (1.3) would not be satisfied. An example will be presented
below showing that when (1.3) does not hold then solutions of (1.7) need not be
uniformly bounded for a time independent ofε, even when (1.6) holds.

We now turn to considering the limit of solutions of (1.10) inR
d asε → 0.

When the initial data are prepared so that they obey the condition that∇ · vε0 and
∇qε

0 areO(ε), thenqε converges to zero and(vε, Sε) converge to the solution of
the stratified incompressible Euler equations

∇ · v = 0,

r(S,0)(∂tv + v · ∇v) + ∇π = 0,

∂tS + v · ∇S = 0

(1.12)

with the limit initial data (see [Sch1]). For initial data not so constrained but still
satisfying (1.11) plus an additional condition to be described shortly, we prove that
(vε, Sε) converges strongly fort > 0 to the solution of (1.12) whose initial data is
the incompressible part of the data in (1.11). More specifically:

Theorem 1.4. Assume that (vε, qε, Sε) satisfy (1.10)and are uniformly bounded in
C0([0, T ];Hs(Rd))with s > 1+d/2and fixed T > 0. Suppose that the initial data
(vε0, S

ε
0) converge in Hs(Rd) to (v0, S0) as ε → 0, and that Sε

0 decays sufficiently
rapidly at infinity in the sense that

|Sε
0(x)| � C|x|−1−δ, |∇Sε

0(x)| � C|x|−2−δ (1.13)

for all ε and some fixed C and δ > 0. Then (vε, qε, Sε) converge weakly in
L∞([0, T ], H s(Rd)) and strongly in L2([0, T ], H s′

loc(R
d)) for all s′ < s to a limit

(v,0, S). Moreover, (v, S) is the unique solution in C0([0, T ];Hs(Rd)) of (1.12)
with initial data (w0, S0), with w0 being the unique solution in Hs(Rd) of

∇ · w0 = 0, curl(r0w0) = curl(r0v0), where r0 = r(S0,0).

The incompressible pressure π can be chosen in C0([0, T ] × R
d) and satisfies

∇π ∈ C0([0, T ];Hs−1(Rd)). (1.14)

As usual for incompressible problems, we can show that(v, S) belongs to
C0([0, T ];Hs) and satisfies

∇ · v = 0,

curl
(
r(S,0)(∂tv + v · ∇v)

) = 0,

∂tS + v · ∇S = 0,

(1.15)
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which is formally equivalent to (1.12). This implies thatg := (
r(S,0)(∂tv+v ·∇v)

)
belongs toC0([0, T ];Hs−1(Rd)) ⊂ C0([0, T ]×R

d)and satisfies curlg = 0. Thus,
there isπ ∈ C0([0, T ] × R

d) such that∇π = g.
Note that Theorem 1.3 ensures the existence of solutions of (1.10) satisfying

the first hypothesis of the theorem, provided the initial data satisfy (1.11) with fixed
M0.

In the isentropic case, this result has been obtained by [Asa] and [Uka]. The
basic idea is that since the speed of propagation of the acoustic waves is of order1

ε
,

those waves radiate to spatial infinity after a small initial layer. The relevant wave
equation is

ε2∂t (a
ε
0∂tϕ) − ∇ ·

(
1

rε0
∇ϕ

)
= 0, (1.16)

whereaε0 = a(Sε,0) and rε0 = r(Sε,0). In contrast to the isentropic case, this
equation has unknown variable coefficientsaε0 andrε0. The new ingredient in the
proof of Theorem 1.4 is a proof of the decay to zero of the local energy for the
solutions of (1.16). Indeed, since estimates (1.13) are propagated in time, (1.16)
appears as a time-dependent short-range perturbation of a constant-coefficient wave
equation. Energy decay implies a form of local strong convergence for(q, v), which
is the key to proving Theorem 1.4, since the absence of large terms in the equation
for S easily implies thatS also converges strongly.

As for the existence proof, we extend our analysis to systems of the form (1.7).
In order to state our result for that case, we defineE0(S) = E(S,0), whereE is the
coefficient appearing in the first equation in (1.7), and let4(Dx) be the operator
defined by the Fourier multiplier4(ξ), which is the orthogonal projector on the
kernel ofL(ξ).

Theorem 1.5. Assume that (uε, Sε) satisfy (1.7) and are uniformly bounded in
C0([0, T ];Hs(Rd)) with s > 1 + d/2 and fixed T > 0. Suppose that the initial
data (Sε

0, u
ε
0) converge in Hs(Rd) to (S0, u0). Assume further that

for all σ ∈ Hs(Rd) ∩ B and all τ ∈ R\{0}, the kernel of

iτE0(σ ) + L(∂x) in L2(Rd) is reduced to {0}, (1.17)

where B is a Banach space in which Sε is uniformly bounded and whose unit ball
is closed under convergence in C0([0, T ], H s′

loc(R
d)) for some s′ < s.

Then (uε, Sε) converges weakly in L∞([0, T ], H s(Rd)) and strongly in
L2([0, T ];Hs′

loc(R
d)) for all s′ < s. The limit is the unique solution in

C0([0, T ];Hs(Rd)) of

L(∂x)u = 0,

E0(S)(∂tu + b(S, u) · ∇u) + L(∂x)π = 0,

∂tS + b(S, u) · ∇S = 0,

(1.18)

satisfying the initial conditions

S|t=0 = S0, u|t=0 = v0, (1.19)
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where v0 ∈ Hs(Rd) satisfies

v0 = 4(Dx)v0, 4(Dx)(E0(S0)v0) = 4(Dx)(E0(S0)u0). (1.20)

The constraint variable π ∈ C0([0, T ] × R
d) and satisfies (1.14).

As described above, the key step in the proof of Theorem 1.5 is the following:

Proposition 1.6. Under the assumptions of Theorem 1.5, uε converges strongly to
u in L2([0, T ], H s′

loc(R
d)) for s′ < s.

The hypothesis thatSε(t) lies inB is included to allow for the possibility that the
conclusion of assumption (1.17) may hold only forσ in some appropriate subspace
of Hs . This hypothesis therefore plays no role in the proof of Theorem 1.5 itself,
but only in the proof that the theorem applies to the slightly compressible Euler
equations. Indeed, in order to apply Theorem 1.5 to those equations so as to obtain
Theorem 1.4, it suffices to show that assumption (1.17) is satisfied. The Banach
spaceB will be taken to be the space of functions satisfying (1.13), and assumption
(1.13) will be utilized in order to show that coefficientsa = aε0 andb = bε0 := 1/rε0
from (1.16) satisfy the first hypothesis of the following theorem, which implies
(1.17).

Theorem 1.7. Suppose that the coefficients a and b satisfy

|a(x) − a| � C(1 + |x|)−1−δ, |∇a(x)| � C(1 + |x|)−2−δ,

|b(x) − b| � C(1 + |x|)−1−δ, |∇b(x)| � C(1 + |x|)−2−δ,
(1.21)

and
∀x ∈ R

d , a(x) � c and b(x) � c, (1.22)

for some positive constants c, C, a, and b. Then, for all τ ∈ R, the kernel of
aτ2 + ∇ · (b∇) in L2(Rd) is reduced to {0}.

Theorem 1.2 is proved in Section 2. In Section 3 we proveTheorem 1.5 assuming
Proposition 1.6, and then use it to prove Theorem 1.4 assuming Theorem 1.7.
Finally, Proposition 1.6 andTheorem 1.7 are proved in Sections 4 and 5 respectively.
We end this introduction with the examples promised above showing the necessity
of various combinations of the assumptions included in the structure in (1.7) and
in Assumption 1.1. We also give an example showing that when Assumption 1.1 is
satisfied, the Cauchy problem for (1.7) is still non-uniformly stable.

Example 1. The system

S−1(ut + ux) + 1

ε
uy = 0, St + Sx = 0,

has the structure of (1.7) and satisfies (1.5) and (1.6) but not (1.3). Assume for
simplicity that the initial data forS depends only onx. Solving first the equation
for S to obtainS(t, x, y) = S0(x − t), and then the equation foru to obtain
u(t, x, y) = u0

(
x − t, y − t

ε
S0(x − t)

)
, we find that

ux(t, x, y) = u0
x

(
x− t, y− t

ε
S0(x− t)

)
− t

ε
S0
x (x− t)u0

y

(
x− t, y− t

ε
S0(x− t)

)
,

which is not uniformly bounded.
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Example 2. The system

ut − ux + 1

ε
ux = 0, vt + 1

ε
Sux = 0, St − Sx = 0

can be put into the form (1.1), (1.4) by multiplying the equations foru andv by the
matrix

E =
(

a − cS

−cS c(1 − ε)

)
wherea andc are positive functions ofS satisfyinga − cS2 � k > 0. However,
the resulting equations do not satisfy condition (1.5) because there is no term−vx
in the equation forv. Those equations also fail to satisfy condition (1.6), although
(1.3) does hold.

Since the system is well posed at least non-uniformly inε, what we are trying
to show is that theHs norm of the solution with some fixedHs initial data is not
uniformly bounded for some timeT (ε) = o(1).

In the periodic case, the solutions of the equations foru andS can be written
in the form

u(t, x) =
∑
k∈Z

uke
ik(x+t−t/ε), S(t, x) =

∑
k∈Z

Ske
ik(x+t).

Upon plugging the formv(t, x) = ∑
k∈Z

vk(t)e
inx into the equation forv and

solving the resulting ordinary differential equation forvn we find that

vn = v0
n +

∑
k∈Z

k

k − εn
Sn−kuk

(
eit (n−k/ε) − 1

)
. (1.23)

In order to simplify the computations, make the following assumptions:u±1 = 1
anduk = 0 for k �= ±1; Sk = 1

|k|p whenk is a multiple of four and vanishes

otherwise;v0 ≡ 0. Thenvn is nonzero only for oddn, in which case the sum in
(1.23) contains only a single nonzero term. In particular, forn = [1

ε

]+m equalling
one more than a multiple of four,

vn = ei(m+O(1))t − 1

ε(m + O(1))
(1
ε
+ m + O(1)

)p .
In order thatm should be small compared to1

ε
, let us restrict consideration tom

such that|m| � 2√
ε
. In order that|ei(m+O(1))t − 1| should not be close to zero

even fort close to zero, let us restrict consideration tom satisfying|m| � 1√
ε
.

Furthermore, in order to avoid the necessity of determining where that expression
is not close to zero, let us consider the average of‖v(t)‖2

Hs over 0� t � ε1/4. In
order to show that theHs norm is not uniformly bounded on this interval it suffices
to show that its average over the interval is not uniformly bounded.

Sinceε−1/4
∫ ε1/4

0 ecit/
√
ε = O(ε1/4), which is negligible compared to the av-

erage of 1 over the same interval, the contribution to average norm squared from

the set ofvn of the above form withm in the above range isO
((1

ε

)2(s−p)+3/2
)
.
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Comparing this to the condition 2(s − p) + 1 < 0 for the initial data ofS to lie in
Hs , we see that ifs + 1

2 < p < s + 3
4 then the initial data will belong toHs but

the time-averagedHs norm of the solution will tend to infinity asε → 0.

Example 3. The system

a(S)ut + 1

ε
ux = 0, St = 0,

satisfies Assumption 1.1. WhenS0 is constant, the solution isu(t, x) = u0
(
x −

t/εa(S0)
)
. Thus, a small perturbation ofS0 induces in timeO(ε) a perturbation of

u which is not small. This is a typical example of instability.

2. Proof of the existence theorem

Consider a system of the form (1.7) and assume thatAssumption 1.1 is satisfied.
The system is symmetric hyperbolic. Therefore, for all fixedε > 0 there isT =
T (ε,M0) > 0 such that for all initial data which satisfy (1.8), the Cauchy problem
has a unique solution onC0([0, T ];Hs(D)). Moreover, ifT ∗(ε), the maximal time
of existence of such a smooth solution, is finite, then

lim sup
t→T ∗(ε)

‖(u(t), S(t))‖W1,∞(D) = ∞, (2.1)

(see, e.g., [Maj]). In particular, this implies that theHs norm of (u(t), S(t)) is
unbounded ast tends toT ∗(ε) if T ∗(ε) is finite.

In view of this preliminary remark, Theorem 1.2 is a consequence of the fol-
lowing estimates.

Proposition 2.1. Given s > 1+d/2 and M0, there is a constant C0 and a function
C(·) from [0,∞[ to [0,∞[ , such that for all T ∈]0,1] , ε ∈]0,1] and (u, S) ∈
C0([0, T ];Hs(D)) solution of (1.7) with initial conditions satisfying (1.8) , the
norm

M := sup
t∈[0,T ]

‖(u(t), S(t))‖Hs(D) (2.2)

satisfies the estimate
M � C0 + (T + ε)C(M). (2.3)

To see this, choose firstM1 > C0 and nextε1 > 0 andT1 ∈]0,1] such that
C0 + (T1 + ε1)C(M1) < M1. Consider initial data satisfying (1.8). LetT ∗(ε) de-
note the upper bound of theT > 0 such that the Cauchy problem has a solution in
C0([0, T ];Hs(D)). The classical existence result for symmetric hyperbolic equa-
tions implies thatT ∗(ε) > 0 and thatT ∗(ε) is bounded from below byT2 > 0 when
ε � ε1. For t < T ∗(ε), denote byM(t) the norm (2.2) defined on[0, t]. When
ε � ε1, (2.3) implies thatM(t) < M1 for t < min(T1, T

∗(ε)). Therefore (2.1)
implies thatT ∗(ε) > T1 for all ε � ε1. This shows that Proposition 2.1 implies
Theorem 1.2.
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From now on, we consider a solution(u, S) ∈ C0([0, T ];Hs(D)) of (1.7),
with initial data satisfying (1.8). We denote byM the norm defined in (2.2). To
simplify notation, let‖ · ‖s denote the norm inHs(D). To prove (2.3), we first give
an estimate for the entropyS.

Lemma 2.2. There are a constant C0 and a function C(·), depending only on M0,
such that

∀t ∈ [0, T ], ‖S(t)‖s � C0 + tC(M). (2.4)

Proof. We use the following well-known nonlinear estimates. Fork � 0, l � 0,
k + l � σ andσ > d/2, the product maps continuouslyHσ−k(D) × Hσ−l (D) to
Hσ−k−l (D) and

‖uv‖σ−k−l � C‖u‖σ−k‖v‖σ−l . (2.5)

Similarly, if F is a smooth function such thatF(0) = 0 andu ∈ Hσ (D), then
F(u) ∈ Hσ (D) and its norm is bounded by

‖F(u)‖σ � C(‖u‖σ ) (2.6)

whereC(·) is independent ofu and maps[0,∞[ into [0,∞[.
Forα ∈ N

d , |α| � s, introduceSα = ∂αx S. Then

(∂t + b(S, u) · ∂x)Sα = hα := −[
∂αx , (∂t + b(S, u) · ∂x)

]
S. (2.7)

The nonlinear estimate (2.6) implies thatb′(t) := b
(
S(t), u(t)

)−b(0,0) ∈ Hs(D)

with norm less thanC(M). Since the commutatorhα is a sum of terms∂βx b′∂γ S with
|β| + |γ | � s + 1,β > 0 andγ > 0, the rule (2.5) applied withσ = s − 1 > d/2,
implies that

‖hα(t)‖0 � C(M). (2.8)

Sinces > 1 + d/2, the firstx-derivatives of the coefficientb(S, u) areC1 with
norm bounded byC(M). The usualL2 energy estimate for the transport equation
(2.7) implies that

‖Sα(t)‖0 � etC(M)‖Sα(0)‖0 +
∫ t

0
e(t−t ′)C(M)‖hα(t ′)‖0 dt

′.

The lemma follows by adding up these estimates for|α| � s and using (2.8) together
with the elementary inequality

etC(M) � 1 + tC̃(M)

for nonnegativet less than some arbitrary fixedT .

In order to prove a bound analogous to (2.4) foru, the first step is to obtainL2

estimates for the partially linearized equations

E(∂t u̇ + b · ∇u̇) + 1

ε
L(∂x)u̇ = ḟ , (2.9)

with E = E(S, εu) andb = R(S, u).
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Lemma 2.3. There are C0 and C(·), depending only on M0, such that for all u̇ ∈
C0([0, T ];L2(D)) and ḟ ∈ C0([0, T ];L2(D)) satisfying (2.9),

‖u̇(t)‖0 � C0e
tC(M)‖u̇(0)‖0 + C(M)

∫ t

0
e(t−t ′)C(M)‖ḟ (t ′)‖0 dt

′. (2.10)

Proof. First, sinces − 1 > d/2, using (1.7) and properties (2.5), (2.6), we remark
that

‖∂tS(t)‖s−1 � C(M), ‖ε∂tu(t)‖s−1 � C(M). (2.11)

In particular, this implies thatE = E(S, εu) satisfies

‖∂t,xE(t)‖L∞(D) � C
(‖E(t)‖s + ‖∂tE(t)‖s−1

)
� C(M). (2.12)

The inverse matrixE−1(t) satisfies similar estimates. Moreover, (2.6) implies that
b = b(S, u) satisfies

‖∂xb(t)‖L∞(D) � C‖b(t)‖s � C(M). (2.13)

It is sufficient to prove (2.10) forH 1 functions. Multiply the equations in (2.9)
by u̇ and integrate over[0, t] × D. BecauseL(∂x) is skew-adjoint, the terms in
1/ε cancel out; as for the other terms, the derivatives of the coefficients involve
∂tE, ∂xE and∂xb, which are estimated inL∞ by C(M). Using the symmetry of
the matricesE(t), this implies that(

E(t)u̇(t), u̇(t)
)
0 �

(
E(0)u̇(0), u̇(0)

)
0

+
∫ t

0
‖ḟ (t ′)‖0‖u̇(t ′)‖0 dt

′ + C(M)

∫ t

0
‖u̇(t ′)‖2

0 dt
′,

where(·, ·)0 denotes the scalar product inL2(D). BecauseE is positive definite,

‖u̇(t)‖2
0 � ‖E−1(t)‖L∞

(
E(t)u̇(t), u̇(t)

)
0.

These estimates, Gronwall’s lemma and the bounds

‖E−1(t)‖L∞ � ‖E−1(0)‖L∞ + t‖∂tE−1(t)‖L∞ � C0 + tC(M),

imply (2.10), and the lemma is proved.

We first use Lemma 2.3 to give estimates for

uk := (
E−1(S, u)L(∂x)

)k
u, k ∈ {0, . . . s}. (2.14)

Lemma 2.4. There are C0 and C(·), depending only on M0, such that for all k � s

and t ∈ [0, T ] ,

‖uk(t)‖0 � C0 + tC(M). (2.15)
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Proof. For k = 0, this is an immediate consequence of Lemma 2.3. Introduce
LE(∂x) := E−1L(∂x). This operator is bounded fromC0(Hσ ) to C0(Hσ−1) for
σ ∈ {0, . . . , s + 1}. Fork � 1, we commuteLk

E with the equation, premultiplied
by E−1. Next, we multiply the result byE. This yields the equation

E(∂t + b∂x)uk + 1

ε
L(∂x)uk = Efk, fk := [

∂t + b∂x, L
k
E

]
u.

Using Lemma 2.3, to prove (2.15) it is sufficient to show that

‖fk(t)‖0 � C(M). (2.16)

We have [
∂t + b∂x, L

k
E

] =
k−1∑
l=0

L
j
E

[
∂t + b∂x, LE

]
L
k−j−1
E , (2.17)

and [
∂t + b∂x, LE

] =
d∑

j=1

Cj∂xj ,

where theCj are sums of bilinear functions ofb and∂t,xE−1 or ∂xb andE−1. The
key point is thatCj does not involve the time derivatives ofb. Therefore, (2.12)
and (2.13) imply that

‖Cj (t)‖s−1 � C(M). (2.18)

The identity (2.17) implies that the components offk are finite sums of terms of
the form

(∂β1
x e1) . . . (∂

βk
x ek)∂

γ
x c∂

α
x um

with |β1|+. . .+|βk|+|γ |+|α| � k � s, |α| > 0 and thus|γ | � k−1 � s−1. In this
formula,(e1, . . . , ek), c andum denote coefficients ofE−1, Cj andu respectively.
The multiplicative property (2.5) and the estimates (2.12) and (2.18) imply that the
L2 norm of each term is bounded byC(M), so (2.16) and the lemma follows.

Now we really use the special structure of the equations, i.e., (1.5) and part (ii)
of Assumption 1.1. Introduce the matrix-valued functions

E0(S) = E(S,0),

F (S, u) = E(S, u)E−1
0 (S) = Id + F ′(S, u),

F−1(S, u) = E0(S)E
−1(S, u) = Id − F ′′(S, u).

(2.19)

With little risk of confusion, to shorten notation, we also denote byE0,E,F ,F ′ . . . ,
the functionE0(S(t, x)), E

(
S(t, x), εu(t, x)

)
. . . . We can factor outεu in F ′ and

F ′′. In particular, we can write

F ′′ = εG with ‖G(t)‖s � C(M). (2.20)

BecauseE0 depends only onS, the equation forS implies that(∂t +b ·∂x)E0 =
0, so the equation foru is equivalent to

(∂t + b · ∂x)(E0u) + 1

ε
L(∂x)u = GL(∂x)u. (2.21)
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Introduce the orthogonal projector4(ξ)onto the kernel ofL(ξ). Because the kernel
has constant dimension,4 is a real analytic function ofξ for ξ �= 0, homogeneous
of degree zero. In the periodic caseD = T

d , ξ ∈ Z
d and one needs the definition

of 4 at the origin,4(0) = Id. We denote by4(Dx), or simply by4, the convo-
lution operator associated with the Fourier multiplier4(ξ). The operator4(Dx)

is bounded fromHσ (D) to itself for allσ and4(Dx)L(∂x) = 0. Therefore,4E0u

satisfies
(∂t + b · ∂x)(4(Dx)E0u) = [

b∂x,4(Dx)](E0u)

+ [
4(Dx),G

]
L(∂x)u.

(2.22)

To estimate the right-hand sidef , we use the following result.

Lemma 2.5. Suppose thatG is a matrix with coefficients inHs(D)with s > 1+d/2,
such that G(x) and 4(ξ) commute for all x and ξ . Then, for all σ ∈ {0, . . . , s−1}
and v ∈ Hσ (D),

‖[4(Dx),G]v‖σ+1 � C‖G‖s‖v‖σ . (2.23)

Proof. This is a classical result about the commutation of a pseudodifferential
operator4(Dx) and the multiplication by a functionG ∈ Hs . We briefly recall a
sketch of proof. WhenD = R

d , we can use the paradifferential calculus ofBony
[Bo]. Denoting byTG the operator of para-multiplication byG and more generally
by TA the paradifferential operator of symbolA(x, ξ), we have

‖TGv − Gv‖σ+1 � ‖G‖s‖v‖σ ,
‖4(Dx)TGv − T4Gv‖σ+1 � ‖G‖s‖v‖σ ,

TG4(Dx)v = TG4v.

Since the symbolsG(x)4(ξ) and4(ξ)G(x) are equal, (2.23) follows.
WhenD = T

d , expanding the functions into their Fourier series, theν-th Fourier
coefficient ofw := [4(Dx),G]v is

wν =
∑
µ

(
4(ν)Gν−µ − Gν−µ4(µ)

)
vµ.

When|ν − µ| < |µ|/2, we use the fact that the matricesGµ and4(ν) commute
and that4(ν) − 4(µ) = O|(|µ − ν|/|ν|) to obtain∣∣4(ν)Gν−µ − Gν−µ4(µ)

∣∣ � C|µ − ν||Gν−µ|/|ν|.
The factor|µ−ν|

|ν| has the effect of making one “derivative”, i.e., factor of|ν|, in the

expression
∑

ν(1 + |ν|)2σ+2|wν |2 apply only toG, not tov, thereby yielding an
estimate in which at mostσ derivatives are applied tov, as desired.

When|ν−µ| � |µ|/2 it suffices to use the estimate
∣∣4(ν)Gν−µ−Gν−µ4(µ)

∣∣
� 2|Gν−µ|, since then|ν| � 3|ν − µ|, which allows all the factors of|ν| to be
converted to factors of|ν − µ| that apply only toG. Hence, for fors > 1 + d/2,
this implies that∑

ν

(1 + |ν|)2σ+2|wν |2 � C
( ∑

ν

(1 + |ν|)2s |Gν |2
)( ∑

ν

(1 + |ν|)2σ |vν |2
)
,
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which is (2.23). This proof can also been carried overR
d , replacing the Fourier

series by Fourier integrals, but the splitting of the frequencies sketched above is
exactly what the paradifferential calculus does.

Condition (1.6) implies thatE(t, x), E0(t, x), F(t, x), and hence alsoG(t, x),
commute with4(ξ). Lemma 2.5 and the estimate (2.20) therefore imply that the
right-hand sidef of equation (2.22) satisfies

‖f (t)‖s � C(M)

Repeating the proof of Lemma 2.2 for the transport equation (2.22), we obtain

Corollary 2.6. There are C0 and C(·), depending only on M0, such that

∀t ∈ [0, T ], ‖4(Dx)E0u(t)‖s � C0 + tC(M). (2.24)

Having estimated4(Dx)E0u andLk
Eu, we can now estimateu. The idea is

that the system(Ls
E, |Dx |s4(Dx)E0) is elliptic in x. We start with the following

estimate.

Lemma 2.7. There exists a K , and there exist C0 and C(·) depending only on M0,
such that for σ ∈ {1, . . . , s}, t ∈ [0, T ] and v ∈ Hσ (D),

‖v‖σ � K‖L(∂x)v‖σ−1 + C̃
(‖4(Dx)E0(t)v‖σ + ‖v‖σ−1

)
, (2.25)

and

‖v‖σ � C̃
(‖(LE(t)(∂x))

σ v‖0 + ‖4(Dx)E0(t)v‖σ + ‖v‖σ−1
)
, (2.26)

with C̃ := C0 + (t + ε)C(M).

Proof. We start from the estimates

‖v‖σ � K
(‖L(∂x)v‖σ−1 + ‖4(Dx)v‖σ + ‖v‖σ−1

)
, (2.27)

which are immediate using Fourier transforms of Fourier series expansions. By
(2.5),

‖4(Dx)v‖σ � K‖E−1
0 (t)‖s‖E0(t)4(Dx)v‖σ .

Lemma 2.5 implies that

‖E0(t)4(Dx)v − 4(Dx)E0(t)v‖σ � ‖E0(t)‖s‖v‖σ−1.

Thus (2.25) follows from (2.27) and Lemma 2.2, which implies that there areC0
andC(·) such that

‖E−1
0 (t)‖s + ‖E0(t)‖s � C0 + tC(M). (2.28)

Next, we prove (2.26) by induction onσ . We have

‖L(∂x)v‖0 � ‖E(t)‖L∞‖LE(t)(∂x)v‖0.
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Recall thatE = E0 + F ′E0, and thatF ′ satisfies estimates similar to (2.20).
Therefore, there areC0 andC(·) such that

‖E(t)‖s � C0 + tC(M) + εC(M). (2.29)

Therefore, forσ = 1, (2.26) immediately follows from (2.25) and (2.29).
If (2.26) is satisfied at the orderσ < s, then

‖LE(t)v‖σ � C̃
(‖Lσ+1

E(t)v‖0 + ‖4(Dx)E0(t)LE(t)v‖σ + ‖LE(t)v‖σ−1
)
.

By (2.29),
‖LE(t)v‖σ−1 � C̃‖v‖σ .

Moreover,E0(t)LE(t)(∂x) = F−1L(∂x) and4(Dx)L(∂x) = 0. Thus, Lemma 2.5
and (2.20) imply that

‖4(Dx)E0(t)LE(t)v‖σ � εC(M)‖v‖σ .
This implies that there areC0 andC(·) such that

‖LE(t)v‖σ � C̃
(‖Lσ+1

E(t)v‖0 + ‖v‖σ
)
.

Substituting in (2.25) at the orderσ + 1, implies (2.26) at the same order, and the
proof of Lemma 2.7 is now complete.

The next estimate finishes the proof of Proposition 2.1.

Lemma 2.8. There are C0 and C(·) which depend only on M0, such that for t ∈
[0, T ] one has

‖u(t)‖s � KC0 + (t + ε)C(M).

Proof. TheL2 norm ofu(t) is estimated in (2.15), takingk = 0. Next, Lemma
2.4, Corollary 2.6 and Lemma 2.7 imply by induction onσ ∈ {0, . . . , s} that there
areC0 andC(·) such that

‖u(t)‖σ � KC0 + (t + ε)C(M). (2.30)

The last estimate, withσ = s gives Lemma 2.8.

3. The incompressible limit

Consider a family of solutions(uε, Sε) of (1.7), uniformly bounded in
C0([0, T ];Hs(Rd)) with s > 1 + d/2 and fixedT > 0. In this section,we study
the limit of (uε, Sε) asε tends to zero. We first list the convergences which fol-
low directly from the bounds and next use Proposition 1.6 to finish the proof of
Theorem 1.5.

The equation forS implies that∂tSε is bounded inC0([0, T ];Hs−1(Rd)) (see
(2.11)). Therefore, after extracting a subsequence, we can assume that

Sε → S strongly inC0([0, T ];Hs′
loc(R

d)) (3.1)
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for all s′ < s. The limit S belongs to the spaceC0
w([0, T ];Hs) of functions in

L∞([0, T ];Hs) which are continuous for the weak topology ofHs . In particular,
S ∈ C0([0, T ];Hs′

loc(R
d)). In addition,S ∈ L∞([0, T ];Hs(Rd) ∩ B).

Extracting further subsequences, we can also assume that

uε → u weakly∗ in L∞([0, T ], H s(Rd)). (3.2)

Moreover,wε := 4(Dx)(E0(S
ε)uε) is bounded inC0([0, T ];Hs(Rd)) and satis-

fies the transport equation (2.22)

(∂t + b(Sε, uε) · ∇)wε = f ε,

wheref ε is bounded inC0([0, T ];Hs(Rd)) by Lemma 2.5. Therefore, the family
∂tw

ε is bounded inC0([0, T ], H s−1). By (3.1), (3.2),4(Dx)(E0(S
ε)uε) converges

weakly to4(Dx)(E0(S)u). Therefore, the uniform estimates ofwε and∂twε imply
that fors′ < s,

4(Dx)(E0(S
ε)uε) → 4(Dx)(E0(S)u)

strongly inC0([0, T ];Hs′
loc(R

d)).
(3.3)

Equation (2.21) implies that

ε∂t (E0(S
ε)uε) + L(∂x)u

ε = εgε (3.4)

wheregε is bounded inC0([0, T ];Hs−1). Moreover,E0(S
ε)uε converges weakly,

and thus its time derivative converges in the sense of distributions. Therefore
ε∂t (E0(S

ε)uε) converges to zero in that sense. SinceL(∂x)u
ε converges weakly to

L(∂x)u, we conclude that

L(∂x)u = 0, or equivalently, 4(Dx)u = u. (3.5)

Proof of Theorem 1.5 (given Proposition1.6).

Step 1. We first show that some subsequence of the(uε, Sε) converges and that
the limit (u, S) satisfies the version of (1.18) where the constraintπ is eliminated.

We now make use of the assumption that Proposition 1.6 holds: Together with
(3.1) and (3.2), Proposition 1.6 implies that, for all bounded open setsD ⊂ R

d , we
have on[0, T ] × D

b(Sε, uε) → b(S, u) in L2,

∇uε → ∇u in L2,

∇Sε → ∇S in L2,

E(Sε, εuε) → E0(S) in L∞.

In addition, Proposition 1.6 together with the equation foru in (1.7) plus (3.5) imply
that

ε∂tu
ε → 0 in L2.
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SinceE − E0 = O(ε), this shows that{
E(Sε, εuε) − E0(S

ε)
} (

∂tu
ε + b(Sε, uε) · ∇uε

) → 0.

Therefore

E(Sε, εuε)
(
∂tu

ε + b(Sε, uε) · ∇uε
)

= {
E(Sε, εuε) − E0(S

ε)
} (

∂tu
ε + b(Sε, uε) · ∇uε

)
+ ∂t

(
E0(S

ε)uε
) + b(Sε, uε) · ∇(

E0(S
ε)uε

)
→ ∂t

(
E0(S)u

) + b(S, u) · ∇(
E0(S)u

)
= E0(S)

(
∂tu + b(S, u) · ∇u

)
in the sense of distributions. Applying4(Dx) to the first equation in (1.7) implies
that

4(Dx)
(
E0(S)

(
∂tu + b(S, u) · ∇u

)) = 0. (3.6)

In addition, passing to the limit in the equation ofSε implies that the limitS satisfies

∂tS + b(S, u) · ∇S = 0.

Thus(u, S) satisfies

L(∂x)u = 0,

4(Dx)
(
E0(S)(∂tu + b(S, u) · ∇u)

)
= 0,

(∂tS + b(S, u) · ∇S) = 0.

(3.7)

Step 2. Next, we prove thatu ∈ C0
w([0, T ];Hs(Rd)) and that(u, S) satisfy the

initial condition (1.19), (1.20). The convergence (3.1) implies thatS|t=0 is the limit
S0 of the initial dataSε|t=0. Similarly, the uniform bounds and the convergences
(3.2), (3.3) and (3.5) imply that

u = 4(Dx)u ∈ L∞([0, T ];Hs(Rd)),

f := 4(Dx)(E0(S)u) ∈ C0
w([0, T ];Hs).

(3.8)

Moreover,
(
E0(S

ε)uε
)
|t=0 converges toE0(S0)u0 in Hs(Rd). Together with (3.3),

this implies
(4(Dx)E0(S)u)|t=0 = 4(Dx)E0(S0)u0. (3.9)

Introduce the spaceHs
E of functionsv ∈ Hs such thatv = 4(Dx)v. For

t ∈ [0, T ], letK(t) denote the operator

v �→ 4(Dx)E0(S(t))4(Dx)v

from Hs
E to itself. BecauseE0(S(t)) ∈ Hs is positive definite, one proves by

induction onk � s, that there isC such that

1

C
‖v‖2

k �
(
K(t)v, v

)
Hk � C‖v‖2

k.
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Therefore,K(t) is an isomorphism fromHs
E onto itself. In particular, this implies

that (1.20) uniquely determinesv0. Moreover, (3.8) implies that for almost all
t ∈ [0, T ],

u(t) = K(t)−1f (t). (3.10)

We show thatu ∈ C0
w([0, T ];L2(Rd)). Fix t0 ∈ [0, T ] andφ ∈ L2

E (R
d).

Considerψ := K(t0)
−1φ ∈ L2

E (R
d). Then, becauseE0(S) is uniformly bounded in

L∞ and is continuous in times on compact sets,E0(S(t))ψ ∈ C0([0, T ];L2(Rd))

andφ(t) := 4(E0(t)ψ) ∈ C0([0, T ];L2(Rd)). By (3.10), we have(
4u(t), φ

)
0 = (

4u(t), φ(t)
)
0 + (

4u(t), φ − φ(t)
)
0

= (
f (t), ψ

)
0 + (

4u(t), φ − φ(t)
)
0.

Becauseu is uniformly bounded inL2 and φ(t) is continuous with values in
L2, the last term tends to zero whent → t0. With (3.8), this shows thatu(t) is
weakly continuous att0. Because of the uniform bounds, this implies thatu ∈
C0
w([0, T ];Hs(Rd)). With (3.10) and (3.9), one sees that the initial conditionu|t=0

satisfies (1.19).

Step 3. The usual iterative method shows that equations (3.7) with initial data (1.19)
have a unique solution(u∗, S∗) in C0([0, T ];Hs(Rd)) ∩ C1([0, T ];Hs−1(Rd)).

Becauseu ∈ C0
w([0, T ];Hs(Rd)), (3.7) implies that

∂t (I − 4(Dx))u = 0, 4(Dx)(E0∂tu) ∈ C0
w([0, T ];Hs−1(Rd)).

With Lemma 2.7, this implies that∂tu ∈ C0
w([0, T ];Hs−1(Rd)).

Thus, we can estimate the difference(u − u∗, S − S∗) in L2, implying that
u = u∗ andS = S∗.

The uniqueness of the limit implies that the full sequence(uε, Sε) converges to
(u, S).

Step 4. It remains to show that (3.7) implies (1.18). Define

g = −(
E0(S)(∂tu + b(S, u) · ∇u)

)
.

Becauseu ∈ C0([0, T ];Hs(Rd)), using (3.7) and Lemma 2.7 implies that∂tu and
thusg belong toC0([0, T ];Hs−1(Rd)). Moreover,4(Dx)g = 0. We want to solve
the equation

L(∂x)π = g. (3.11)

IntroduceM(ξ) the partial inverse ofL(ξ) such that

M(ξ)L(ξ) = L(ξ)M(ξ) = I − 4(ξ), M(ξ)4(ξ) = 0;
M is C∞ onR

d\{0} and homogeneous of order−1. The operatorM(Dx) defined
by the Fourier multiplierM(ξ)is therefore well defined onHs whend � 3 and
π = −iM(Dx)g satisfies (3.11) and (1.14).

In general,M(Dx) is defined on the space of functionsϕ in the Schwartz’
classS such that the Fourier transform̂ϕ vanishes at the origin. Introduceθ ∈ S
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such that̂θ has compact support and is equal to 1 for|ξ | � 1. Forϕ ∈ S define
ϕI := ϕ − ϕ̂(0)θ ∈ S. Forg ∈ L2(Rd), the formula

〈π, ϕ〉 = −i 〈 g,M(Dx)ϕ
I〉

defines a distributionπ = MIg ∈ S ′. Its Fourier transform is given by

〈π̂ , ψ〉 = −i

∫ 〈
ĝ(ξ),M(ξ)

(
ψ(ξ) − ψ(0)θ̂(ξ)

)〉
dξ.

In particular,π̂(ξ) = −iM(ξ)ĝ(ξ) on R
d\{0}. Thus,π ∈ H 1 + C∞ andπ ∈

Hs + C∞ wheng ∈ Hs−1. Note that in dimensiond � 3,MIg = M(Dx)g since
Mĝ ∈ L2 + Lp for 1/2 + 1/d < p < 1 and the functionsψ ∈ S such that
ψ(0) = 0 are dense inLp′

for p′ > 0.
The definition implies that

〈L(∂x)π, ϕ〉 = i 〈 g,M(Dx)(L(∂x)ϕ)
I 〉

= i 〈 g,M(Dx)(L(∂x)ϕ)〉 = 〈g, (I − 4(Dx))ϕ 〉.

Thus L(∂x)π = (I − 4(Dx))g. Similarly, one shows that∂jπ = Mj(Dx)g

whereMj(Dx) is the convolution operator associated with the Fourier multiplier
iξjM(ξ) ∈ L∞. Thus,∂jπ ∈ Hs−1 wheneverg ∈ Hs−1.

Knowing thatg ∈ C0([0, T ];Hs−1(Rd)) and4(Dx)g = 0,π(t) = MIg(t) ∈
C0([0, T ] × R

d) satisfies (3.11) and (1.14).

Proof of Theorem 1.4 (given Theorem 1.7). Consider the Banach spaceB of
the functions which satisfy (1.13). In the transport equation∂tS

ε + uε · ∇Sε, the
speeduε is uniformly bounded. Thus, the decay assumptions (1.13) forS0(x) are
propagated and the solutionsSε are also uniformly bounded inL∞([0, T ];B). It
only remains to show that assumption (1.17) is satisfied by the system (1.10). The
operatoriτE0(S) + L(∂x) is (

iτA0(S) ∇·
∇ iτR0(S)

)
(3.12)

whereA0 = A(S,0) andR0 = R(S,0). Forτ �= 0 andt ∈ [0, T ], (q, u) is in the
kernel ofiτE0(S(t)) + L(∂x) if and only if

aτ2q + ∇ · (b∇q) = 0

u = ib∇q,
(3.13)

wherea(x) = A(S(t, x),0) andb(x) = 1/R(S(t, x),0). BecauseS(t) ∈ B, the
hypotheses of Theorem 1.7 hold. The equivalence of (3.12) and (3.13) means that
Theorem 1.7 then implies that assumption (1.17) holds.
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4. Decay of the local energy

In this section we prove Proposition 1.6. Consider a family of solutions of (1.7),
(uε, Sε). It is assumed to be bounded inC0([0, T ];Hs(Rd)) with s > 1+d/2 and
T > 0, independent ofε. MoreoverSε is bounded inL∞([0, T ];B). As explained
at the beginning of Section 3, we can extract a sub-sequence such thatSε converge
strongly toS in C0([0, T ];Hs′

loc) for all s′ < s, uε converges tou weaklyJ in
L∞([0, T ], H s) and4(Dx)(E0(S

ε)uε) converges strongly to4(Dx)(E0(S)u) in
C0([0, T ];Hs′

loc) for all s′ < s.
The main step in the proof of Proposition 1.6 is to prove the strong convergence

of (I − 4)uε.

Proposition 4.1. (I − 4(Dx))u
ε converges to 0 for the strong topology in

L2([0, T ], H s′
loc(R

d)) for all s′ < s.

The strategy of the proof is very simple. In the spirit ofP. Gérard ([Gér]), we
introduce the microlocal defect measures of subsequences ofuε. They are measures
M, onRt ×Rτ valued in the spaceL of trace class operators onL2(Rd). They can
be written

M(dt, dτ) = M(t, τ )µ(dt, dτ), (4.1)

whereµ is a scalar nonnegative Radon measure andM is an integrable function
with respect toµ with values inL. The usual feature of defect measures is that they
are supported in the characteristic variety of the equation. In our case, this means
that forµ-almost all(t, τ ), M(t, τ ) is valued inH 1(Rd) and(

iE0(t)τ + L(∂x)
)
M(t, τ ) = 0. (4.2)

Assumption (1.17) then implies thatM(t, τ ) = 0 for µ-almost allt andτ �= 0.
Thus,M is supported inτ = 0 so (4.2) implies that

L(∂x)M(t, τ ) = 0 or (I − 4(Dx))M(t, τ ) = 0, µ-a.e. (4.3)

As a corollary, the microlocal defect measure of(I − 4(Dx))u
ε vanishes and,

together with the uniform bounds inHs , this implies Proposition 4.1.
We now proceed to the details.
As noticed in (2.11), equation (1.7) implies thatε∂tuε is bounded in

C0([0, T ];Hs−1). As in (2.21), equation (1.7) implies that

εE0(S
ε)∂tu

ε + L(∂x)u
ε = εf ε, (4.4)

wheref ε is bounded inC0([0, T ];Hs−1). To avoid boundary terms in the inte-
grations by parts, we extend the functions tot ∈ R: First, choose extensions̃Sε of
Sε, supported in{−1 � t � T + 1}, uniformly bounded inC0

0(R;Hs(Rd) ∩ B)

and converging tõS in C0
0(R;Hs′

loc(R
d)). Next, introduce a family of functions

χε ∈ C∞
0 (]0, T [) such that

χε(t) = 1, for t ∈ [ε1/2, T − ε1/2],
‖ε∂tχε‖L∞ � 2ε1/2.
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Thenũε = χεu
ε satisfies

εE0(S̃
ε)∂t ũ

ε + L(∂x )̃u
ε = f̃ ε, (4.5)

wheref̃ ε tends to zero inC0(R;Hs−1).
Introduce the wave-packets operator

Wεv(t, τ, x) := cε−3/4
∫

R

e

(
i(t−s)τ−(t−s)2

)
/ε
v(s, x) ds, (4.6)

with c = 1/(2π3)−1/4.The operatorWε is an isometry fromL2(R1+d) toL2(R2+d)

‖Wεv‖L2(R2+d ) = ‖v‖L2(R1+d ). (4.7)

Lemma 4.2. The wave packets Uε := Wεũε satisfy

sup
ε∈]0,1]

∑
j+|α|�1

‖τ j ∂αx Uε‖L2(R2+d ) < +∞, (4.8)

F ε := (
iτE0(S̃

ε(t)) + L(∂x)
)
Uε → 0 in L2(R2+d) as ε → 0. (4.9)

Proof. The operatorWε commutes with∂x and thus preserves smoothness inx.
Therefore,Uε is a bounded family inL2([0, T ]×R;Hs(Rd)), implying (4.8) when
j = 0.

Moreover, ifε∂tv ∈ L2, then

Wε(ε∂tv) − iτWεv = 2cε−3/4
∫

R

e

(
i(t−s)τ−(t−s)2

)
/ε
(s − t)v(s, x) ds.

Hence,
‖Wε(ε∂tu) − iτWεu‖L2 � C

√
ε‖u‖L2. (4.10)

This implies (4.8) forj = 1. Similarly, if a(t, x) ∈ C1 ∩ W1,∞(R1+d),

aWεu − Wε(au) = cε−3/4
∫

R

e

(
i(t−s)τ−(t−s)2

)
/ε(

a(t, x) − a(s, x)
)
uε(s, x) ds

and since|a(t, x) − a(s, x)| � |t − s|‖∂ta‖L∞ , we have

‖Wε(au) − aWεu‖L2 �
√
ε ‖∂ta‖L∞‖u‖L2. (4.11)

Equation (4.5) implies that
(
iτE0(S̃

ε)+L(∂x)
)
Uε is the sum ofWεf̃ ε and errors

terms which are dominated by (4.10), (4.11). SinceSε is uniformly bounded in
W1,∞, this implies (4.9).

FollowingP. Gérard ([Gér]), we introduce next the microlocal defect measures
of uε. We denote byK [or L] the space of compact operators [resp., trace class
operators] inL2(Rd) and byK+ [or L+] the subclass of nonnegative self adjoint
operators inK [resp.,L]. The spaceK is equipped with the norm of bounded
operators inL2(Rd). The spaceL can be identified with the dual space ofK, with
the duality bracket tr(KL). Note thatL ∈ C0

0(R
2,K) acts inL2(R2+d), by the

obvious formula

(LU)(t, τ, x) = (
L(t, τ )U(t, τ, ·))(x).
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Lemma 4.3. For all bounded family, Uε in L2(R2+d), there is a subsequence
such that there is a finite nonnegative Borel measure µ on R

2 and there is M ∈
L1(R2,L+, µ) such that for all L ∈ C0

0(R
2;K),∫

R2+d

(LUε)(t, τ, x) . Uε(t, τ, x) dt dτ dx

−→
∫

R2
tr
(
L(t, τ )M(t, τ )

)
µ( dt, dτ)

(4.12)

as ε tends to 0 in the subsequence.
Moreover, ifUε satisfies (4.8) and (4.9), then, for almost all (t, τ ) ∈ [0, T ]×R,

M(t, τ ) is a bounded operator from L2(Rd) to H 1(Rd) and(
iτE0(S̃) + L(∂x)

)
M(t, τ ) = 0 µ-a.e. (4.13)

Proof. (See [Gér].)

Step 1. Extracting a subsequence, we can assume that

‖Uε(t, τ )‖2
L2(Rd )

→ µ (4.14)

in the vague topology, whereµ is a nonnegative bounded Borel measure onR
2.

Introduce a countable orthonormal basisφj of L2(Rd). LetKj,k be the operator
v �→ Kj,kv = (

v, φj
)
0φk. Then, extracting subsequences, we can assume that for

all j andk,(
Kj,kU

ε(t, τ ), Uε(t, τ )
)
0 = (

Uε(t, τ ), φj
)
0

(
φk, U

ε(t, τ )
)
0

→ µj,k = mj,kµ,
(4.15)

whereµj,k is a bounded Borel measure onD, which is absolutely continuous with
respect toµ, hence of the formmj,kµwithmj,k ∈ L1(R2;µ). Note thatmk,j = mj,k

and that the matrices{mj,k}1�j,k�n are nonnegative. In addition, because∑
1�j�n

∣∣(Uε(t, τ ), φj
)
0

∣∣2 � ‖Uε(t, τ )‖2
0,

we have ∑
1�j�n

mj,j (t, τ ) � 1 µ-a.e. (4.16)

Introduce the operators inL2(Rd):

Mn(t, τ )v =
∑

1�j,k�n

mj,k(t, τ )
(
v, φk

)
0φj . (4.17)

They are bounded forµ-almost all(t, τ ). They are hermitian symmetric and non-
negative. Moreover, the sequenceMn is nondecreasing. With (4.16), this implies
that for almost all(t, τ ) the sequenceMn(t, τ ) converges in the trace class norm,
the limit M(t, τ ) ∈ L+ and

trM(t, τ ) � 1 µ-a.e. (4.18)
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Because tr(Kj,kM(t, τ )) = mj,k(t, τ ), (4.15) means that the convergence (4.12)
holds forL(t, τ ) = ϕ(t, τ )Kj,k for all indicesj and k and all ϕ ∈ C0

0(R
2).

Therefore, it extends by linearity and density to allL(t, τ ) = ϕ(t, τ )K withK ∈ K
and next to allL ∈ C0

0(R
2;K).

By construction, note that∫
R2

‖M(t, τ )‖Lµ(dt, dτ) =
∫

R2
tr
(
M(t, τ )

)
µ(dt, dτ)

� lim sup
ε→0

‖Uε‖2
L2(R2+d )

.
(4.19)

Step 2. Suppose now thatUε is bounded inL2(R2;H 1(Rd)). Forδ � 0, introduce
the operators

Pδ = (Id − δMx)
−1/2(Id − Mx)

1/2.

They are bounded inL2 for δ > 0 and uniformly bounded fromH 1 toL2 for δ � 0.
They are self-adjoint and nonnegative andPδ � Pδ′ if δ � δ′, as is easily seen us-
ing the Fourier transform onRd . Applying (4.12) to the test operatorPδL(t, τ )Pδ,
shows that the measure associated withPδU

ε is PδM(t, τ )Pδµ(dt, dτ). The uni-
form boundedness ofPδU

ε in L2 and (4.19) imply that there isC such that

∀δ ∈]0,1],
∫

tr
(
PδM(t, τ )Pδ

)
µ(dt, dτ) � C.

Since the familyPδ is non-increasing, the norms

‖PδM(t, τ )Pδ‖L = tr
(
PδM(t, τ )Pδ)

are non-increasing functions ofδ. Therefore, the estimate above and Fatou’s Lemma
imply that

sup
δ∈]0,1]

‖PδM(t, τ )Pδ‖L ∈ L1(R2, µ) (4.20)

and therefore
sup

δ∈]0,1]
‖PδM(t, τ )Pδ‖L < ∞ µ-a.e. (4.21)

In particular, forµ-almost all (t, τ ), the operatorsPδM(t, τ )Pδ are uniformly
bounded fromL2 to L2; henceM(t, τ ) extends as a bounded operator fromH−1

to H 1. In addition, (4.18) implies thatP0M(t, τ )P0 ∈ L+ and (4.19) implies that
P0MP0 ∈ L1(R2;L, µ). In particular,

∂xjM ∈ L1(R2;L, µ). (4.22)

Using (4.12) with the test operatorsL(1− δMx)
−1/2∂xj and lettingδ tend to zero,

implies that, for allL ∈ C0
0(R

2;K), we have∫
R2

(
L(t, τ )∂xj U

ε)(t, τ ), Uε(t, τ )
)

0
dt dτ

−→
∫

R2
tr
(
L(t, τ )∂xjM(t, τ )

)
µ(dt, dτ).

(4.23)
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Step 3. Next, we show that ifUε satisfies (4.8) and (4.9), then (4.13) holds. The
convergence (4.9) and the estimate (4.8) imply that for allL ∈ C0

0(R
2;K),∫ (

L(t, τ )F ε, Uε(t, τ )
)

0
dt dτ → 0.

Moreover, the local strong convergence ofS̃ε implies that for all compact operators
K ∈ K,

K
(
E0(S̃

ε) − E0(S̃)
)
Uε −→ 0 in L2.

Using (4.12) and (4.23), this implies that∫
tr
(
L(t, τ )

(
iτE0(S̃(t)) + L(∂x)

)
M(t, τ )

)
µ(dt, dτ) = 0.

BecauseL is arbitrary, (4.13) follows.

Proof of Proposition 4.1. Assumption (1.17) plus (4.13) imply thatM(t, τ ) = 0
for τ �= 0, µ-almost everywhere. Thus,τM = 0, and by using (4.13) again, we
find thatL(∂x)M = 0 µ-almost everywhere. This is equivalent to

(I − 4(Dx))M(t, τ ) = 0 µ-a.e.

This implies that for allϕ ∈ C0
0(R

2) and allK ∈ K, we have∫
R2

ϕ(t, τ )
(
K(I − 4)Uε(t, τ ),K(I − 4)Uε(t, τ )

)
0
dt dτ −→ 0. (4.24)

Becausẽuε is supported in{0 � t � T },∫
{t�−1}∪{t�T+1}

‖Uε(t, τ )‖2
0 dt dτ −→ 0.

By (4.8),τUε is bounded inL2. Thus, with (4.24), we see that for allK ∈ K,∫
R2

∥∥K(I − 4)Uε(t, τ )
∥∥2

0 dt dτ −→ 0

whenε → 0, in the subsequence extracted in Lemma 4.3. Because

K(I − 4)Uε = Wε
(
K(I − 4)̃uε

)
,

this means thatK(I − 4)̃uε tends to zero inL2(R1+d) (see (4.7)). Sinceuε is
bounded inC0([0, T ];L2), ũε − uε converges to zero inL2(R1+d), and therefore
we have proved that

∀K ∈ K,
∥∥K(I − 4)uε

∥∥
L2([0,T ]×Rd )

−→ 0. (4.25)

Since the limit is zero, no extraction of subsequence is necessary for this result and
the convergence holds for the given familyuε.

Given that(I − 4)uε is uniformly bounded inC0([0, T ];Hs(Rd)), (4.25)
implies and is equivalent to the convergence of(I − 4)uε to zero inL2([0, T ];
Hs′

loc(R
d)) for all s′ < s. This completes the proof of Proposition 4.1.

To prove Proposition 1.6, we show that the defect measure ofuε − u vanishes,
whereu denotes the weak limit ofuε. Repeating the proof of Lemma 4.3, we can
show that
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Lemma 4.4. There are a subsequence εn → 0, a finite nonnegative Borel measure
µ∗ on [0, T ] , and M∗ ∈ L1([0, T ],L+, µ∗) , such that for all L ∈ C0([0, T ];K),∫

[0,T ]

(
L(t)(uε − u)(t),(uε − u)(t)

)
0
dt

−→
∫
[0,T ]

tr
(
L(t)M∗(t)

)
µ∗ (dt)

(4.26)

as ε tends to 0 in the subsequence.

Proof of Proposition 1.6. BecauseSε converges locally uniformly toS, and because
of the uniform estimates onuε, we have∥∥φ(

E0(S
ε) − E0(S)

)
uε

∥∥
L2([0,T ]×Rd )

−→ 0.

for all φ ∈ C0
0(R

d). Thus∥∥K(
E0(S

ε) − E0(S)
)
uε

∥∥
L2([0,T ]×Rd )

−→ 0.

for all K ∈ K. Together with the strong convergence (3.3), this implies that∥∥K4(Dx)E0(S)(u
ε − u)

∥∥
L2([0,T ]×Rd )

−→ 0.

This implies that

4(Dx)E0(S(t))M∗(t) = 0 µ∗-a.e. (4.27)

Since(I−4)u = 0, (4.25) which is equivalent to the conclusion of Proposition 4.1,
implies that

(I − 4(Dx))M∗(t) = 0, µ∗-a.e. (4.28)

Thus, forµ∗-almost allt , M∗(t) is valued in the spaceL2
E = ker(I −4)∩L2 and

(4.27) implies that4E0(S(t))4M∗(t) = 0. Taking the scalar product withM∗ (as
in Step 2 in the proof of Theorem 1.5), implies that(

E0(S(t))4M∗(t)·,4M∗(t) · ) = 0

for µ∗-almost allt . Therefore,4M∗(t) = M∗(t) = 0 and the definition ofM∗
implies that for allK ∈ K,∥∥K(uε − u)

∥∥
L2([0,T ]×Rd )

−→ 0 (4.29)

asε → 0 in the subsequence. Since the limit is zero, the entire family converges.
Given the uniform bounds foruε, (4.29) implies thatuε − u tends to zero in
L2([0, T ];Hs′

loc(R
d)) for all s′ < s and Proposition 1.6 is proved.
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5. Absence of eigenvalues

In this section, we prove Theorem 1.7. We assume that the coefficientsa andb
satisfy (1.21). Forτ ∈ R, we introduce the operator

Pu := aτ2u + ∇ · (b∇u). (5.1)

It it clear that ifu ∈ L2(Rd) andPu = 0, thenu ∈ H 1(Rd) and(
b∇u,∇u

)
0 = τ2(au, u)

0.

In particular, whenτ = 0 this implies thatu = 0. Thus in the remaining part of
the section, we assume thatτ2 > 0. Moreover, ifPu = 0, thenMu = −(aτ2u +
∇b.∇u)/b ∈ L2 and thusu ∈ H 2(Rd).

The proof of Theorem 1.7 is very classical (see [RS] and [H¨o] for example).
We first show that the solutions ofPu = 0 are rapidly decreasing, and next we use
the strong uniqueness theorem for second order elliptic equation to conclude that
u vanishes on a neighborhood of infinity and hence thatu vanishes identically.

Lemma 5.1. If u ∈ H 2(Rd) satisfies Pu = 0, then for all n ∈ N, |x|nu and |x|n∇u

are square integrable on R
d .

This is well known and follows from much more precise results when the
coefficients are smooth (see e.g. Corollary 14.5.6 and Theorem 30.2.10 of [H¨o]).
For the sake of completeness, we sketch a direct proof of the result that applies to
C1 coefficients. A similar proof for operators of the formM + V (x) can be found
in [RS].

Proof. To simplify notation, we can assume without restriction thatτ2a/b = 1.
Then

1

b
Pu = Mu + u + V (x,Dx)u = 0, (5.2)

where

V (x,Dx)u = 1

b
∇b · ∇u +

(
aτ2

b
− 1

)
u. (5.3)

Consider even functionsψ andϕ in C∞(R), to be chosen later on. Introduce the
multiplier

Mu = 2A · ∇u + Bu with

{
A(x) = ψ(|x|)x,
B(x) = ∇ · A(x) − ϕ(|x|). (5.4)

We assume thatψ and its derivatives up to order four areO(1/|x|) at infinity
and thatϕ and its derivatives up to order two are bounded. Thus,A, B, and their
derivatives up to order 2 are bounded. Sinceu ∈ H 2, integration by parts yields

−
∫

(M + 1)u.(2A · ∇ + B)u dx =
∫

C|u|2 dx

+
∫ ∑

1�j,k�d

Ej,k∂ju∂ku dx
(5.5)
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with

C = (∇ · A − B − MB/2) = ϕ − MB/2,

Ej,k = (B − ∇ · A)δj,k + 2∂jAk = (2ψ − ϕ)δj,k + 2ψ ′xjxk/|x|.
With r = |x|, the quadratic formE = (Ej,k) is bounded from below byθ(r) where

θ := min
{
2ψ − ϕ,2(ψ + rψ ′) − ϕ

}
.

Substituting (5.2) plus this bound forE into (5.5) yields∫
ϕ|u|2 dx+

∫
θ |∇u|2 dx

�
∫

|V (x,Dx)u||Mu| dx + 1
2

∫
MB|u|2 dx.

(5.6)

Forα � 0 andε > 0 we choose

ψ = ψα,ε(r) := (1 + r2)α

(1 + εr2)α+1/2 , r := |x|, (5.7)

which converges to(1 + r2)α whenε → 0. Note that

rψ ′
α,r (r) + ψα,ε(r) = 2α + 1

1 + εr2 ψα,ε − 2α

1 + r2ψα,ε.

Next we we choose

ϕ = ϕα,ε(r) := 2α + 1

2α + 1 + εr2 ψα,ε. (5.8)

Thenϕ � min{ψ, rψ ′ +ψ + 2ψα,ε/(1+ r2)} and thusθ � ϕ − 4ψα,ε/(1+ r2)}.
Note that for any fixedε > 0, ψα,ε andϕα,ε areO(1/r) and their derivatives of
orderk areO(1/r1+k) so that the energy estimate (5.6) holds for this choice of
weights. Thus, for allα � 0 andε > 0, we have∫

ϕα,ε
(|u|2 + |∇u|2) dx �

∫
|V (x,Dx)u||Mα,εu| dx

+
∫

4
ψα,ε

(1 + r2)
|∇u|2 dx + 1

2

∫
MBα,ε|u|2 dx,

(5.9)
whereMα,ε andBα,ε are associated withψα,ε as indicated in (5.4).

Now, we show by induction onn, that(1+|x|)nδ/2(|u|+ |∇u|) is inL2. This is
true by assumption forn = 0 sinceu ∈ H 1. Assume that this property holds up to
n − 1. Introduceα = nδ and use (5.9). We use the induction hypothesis to bound
the right-hand side. We haveAα,ε = ψα,εx andBα,ε = dψα,ε + rψ ′

α,ε −ϕα,ε, thus

|ψα,ε(x)| � C(1 + |x|)2α, |Aα,ε(x)| � C(1 + |x|)2α+1,

|Bα,ε(x)| � C(1 + |x|)2α, |MBα,ε(x)| � C(1 + |x|)2α−2,
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whereC is independent ofε. Thus the last two terms in (5.9) are uniformly domi-
nated by the norm of(1 + |x|)α−1(|u| + |∇u|) in L2. Moreover,

|Mu(x)| � Cψα,ε

(|x||∇u| + |u(x)|) � C (1 + |x|)2α+1(|∇u| + |u(x)|),
and the assumptions (1.21) imply that

|V (x,Dx)u(x)| � (1 + |x|)−1−δ
(|∇u(x)| + |u(x)|).

Therefore, the first term in the right-hand side of (5.9) is dominated by the norm of
(1+|x|)α−δ/2(|u|+ |∇u|) in L2. Thus, by the induction hypothesis, the right-hand
side of (5.9) is bounded by a constant independent ofε, and lettingε tend to zero,
Fatou’s Lemma implies that(1+|x|)α(|u|+|∇u|) is inL2. Therefore the induction
hypothesis is satisfied for alln and the Lemma is proved.

Proof of Theorem 1.7. The conditions (1.21) imply that the assumptions of Theo-
rem 17.2.8 in [H¨o] are satisfied. Therefore, any solutionu ∈ H 2(R2) of Pu = 0
which satisfies(1+ |x|)n(|u| + |∇u|) ∈ L2 for all n � 0, is identically zero. With
Lemma 5.1, this proves that the equationPu = 0 has no nontrivial solution inH 2.
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