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Abstract

This paper is devoted to time-global solutions of the Fisher-KPP equafihin
ur=Au+ f(u), O<u(x,t) <1, xeRN, teR

where 1 is aC? concave function of0, 1] such thatf (0) = f(1) = 0andf > 0

on (0, 1). It is well known that this equation admits a finite-dimensional manifold
of planar travelling-fronts solutions. By considering the mixing of any density of
travelling fronts, we prove the existence of an infinite-dimensional manifold of
solutions. In particular, there are infinite-dimensional manifolds of (nonplanar)
travelling fronts and radial solutions. Furthermore, up to an additional assumption,
a given solution: can be represented in terms of such a mixing of travelling fronts.

1. Introduction and main results

This paper is devoted to the question of the description of the set of the solutions
u(x, t), defined for all time, of the Fisher-KPP equation

ur=Au+ f(w), O<u(x, 1)<l xeRN, reR. D

We deal with the solutions that are defined for all time and for all poirgsR”,

and which we call “entire”. We assume that the nonlineafitgatisfies:f (0) =

f() =0, 10 >0,f () <0andf(u) > 0forany O< u < 1. We also assume
that f is a concave function of clagg? in [0, 1]. An example of such a function

f is the quadratic nonlinearity (u) = u(1 — u) considered byKormoGorov,
PETROVSKY & PiskuNoOv in their pioneering paper [20]. We refer ARONSON &
WEINBERGER [2], BARENBLATT & ZELDOVICH [3], FIFE [9], FISHER [11], FREIDLIN

[12], Murray [28], RoTHE [33] or STokEs [35] for a derivation of this equation

in models for population dynamics (like models for the spread of advantageous
genetic traits in a population) and other biological models.
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Because of the strong parabolic maximum principle, a solutiaf u;, =
Au+ f(u) thatis defined for al{x, r) € R” x R and satisfies & u < 1, is either
identically equal to 0, 1, or is in the range<Qu(x, t) < 1 for all (x, t). We only
deal here with the case9u < 1.

Problem (1) clearly admits solutiongz) that depend on time only, namely,
solvesu’(t) = f(u), 0 <u < 1,t € R. These solutions(r) are increasing im,
they satisfyu(r) — 0 ast — —oo andu(t) — 1 ast — +oo. Furthermore, they
are unique up to translation in time. It is convenient for what follows to défine
as the only solution of that type such that

£t) ~ el O ast - —o0. 2)

The set of all the solutions(¢) of (1) is equal to the 1-dimensional manifold
{t > &t +h), h e R}

It is well known that problem (1) also has, in dimensi¥n= 2, an(N + 1)-
dimensional manifold of entire solutions of planar travelling waves type, namely
Uy,ce.n(x,1) = @c(x - v+ ct +h) wherev varies in the unit sphergV 1, 1 varies in
R andc varies in[c*, +oo[ with ¢* = 2,/f7(0) > 0. In space dimensioN = 1,
there are two 2-dimensional manifolds of travelling-waves solutimﬁ;(x 1) =
@c(x + ct + h) andu en X 1) = @c(—x +ct + h) (see for instanCARONSON &
WEINBERGER [2], BRAMSON [6], FiFE [9], FREIDLIN [12] HADELER & ROTHE [15],
KANEL’ [18], RoTHE [33], STOKES [35]). For anyc = ¢*, the functiony, satisfies

<P2/ - C(pé + f(pc) =0inR, ¢.(—o0) = 0 andy.(+o0) = 1.

The functiong, is increasing, unique up to translation. For each c*, let 1. be
the positive real number defined by

c—\2—4f(0) c—+c?—c*?

Ae = 5 = 5 >0 3)

(Ac satisfies)»f — che + f/(0) = 0). For anyc > c*, it is known thaty, (s)e <
goes to a finite positive limit as — —oo. Up to translation, we can then assume
that

Ve ¥, ge(s) ~ e ass - —oo. (4)
For the minimal speed = ¢* = 2,/ f/(0), we have, up to translation,

ger(s) ~ |s|e*S ass > —oo, A* =Ae =/f(0) =c*/2 (5)

(see AGMON & NIRENBERG [1], BERESTYCKI & NIRENBERG [4], BRAMSON [6],
CoDDINGTON & LEVINSON [8], HADELER & ROTHE [15], KAMETAKA [17], PazY
[29], UcHiyama [37]).
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Many works have been devoted to the question of the behavior for large time and
the convergence to the travelling waves for the solutions of the Cauchy problem for
(1), especially in dimension 1, under a wide class of initial conditid®soN &
WEINBERGER [2], BRAMSON [6, 7], FREIDLIN [12], KAMETAKA [17], KANEL’ [18],
KoLMoGOROV, PETROVSKY & PiskuNov [20], LArRsoN [21], Lau [22], McCKEAN
[24], MoET [26], RoTHE [34], UcHrYyaMA [37], VAN SaArLOs [38]). Other stabil-
ity results have been obtained for the KPP equation in straight infinite cylinders
(BERESTYCKI & NIRENBERG [4], MALLORDY & ROQUEJOFFRE [23], ROQUEJOFFRE
[32]) and for a larger class of KPP type equatioB®O & KERSNER [5], PELETIER
& Troy [30,31], VAN SaarLos [38], ZHAo [40]) as well as under other restrictions
of the functionf (seeRoTHE [33], STokEs [35, 36] if ¢* > 2,/ f/(0), Or ARONSON
& WEINBERGER [2], FIFE & McLEob [10], KANEL’ [18,19]if f is of the “bistable”
type).

The entire solutions of (1) can be viewed as orhits, 7), ¢ € R} lying in the
space of the functiong € C?(RY) such that O< ¢ < 1. The goal of this paper is
then to describe the set of the orbits for (1) and the qualitative properties of these
orbits. The difficulty is that we have to deal both with a direetl-posed Cauchy
problem and an inversd-posed Cauchy problem for a nonlinear heat equation.

The question of the existence of entire solutions of (1) other than the solutions
independent of and the travelling-waves solutions has been answered in the case
of planar solutions (solutions which depend only on time and on one space variable)
in an earlier paper [16]. In dimensigh = 1, 4 other manifolds of entire solutions
of (1) have been constructed: one of these manifolds is 5-dimensional, one is 4-
dimensional and two are 3-dimensional. Furthermore, the 4- and the 3-dimensional
manifolds, as well as the travelling-waves solutions and the solutienss (r +
h), are on the boundary of that 5-dimensional manifold of entire solutions of (1)
(see [16]).

One of the basic ideas in [16] for constructing new entire solutions of the
KPP equation (1) in dimension 1 consists in considering two travelling waves
@ (—x + 't + 1) andg.(x + ct + h) with speedsg, ¢’ > ¢*, one coming from
the left side and the other from the right side of the real axis and mixing.

In Section 1.1, we shall show how this mixing procedure can be extended, in
any space dimensidR”, by allowing both for the mixing of any finite number of
travelling waves (Theorem 1.1) and for the mixing of an integrable sum of travelling
waves, each of them being characterized by its direction and its speed. That leads to
the existence of an infinite-dimensional manifold of solutions of (1) (Theorem 1.2).
In Section 1.2, we state an “almost-uniqueness” result (Theorem 1.4): namely, up to
an additional assumption that is almost generically satisfied, each entire solution of
(1) belongs to the infinite-dimensional manifold of solutions constructed in Theo-
rem 1.2. Furthermore, we give an easy characterization of the entire solutions of (1)
that only depend on time (Theorem 1.5). Lastly, in Section 1.3, as a consequence of
the results in Sections 1.1 and 1.2, we get the existence of an infinite-dimensional
manifold of nonplanar travelling waves and of radial solutions of (1) (Theorems 1.7
and 1.8).
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1.1. Existence of an infinite-dimensional manifold of entire solutions

In [16], in the 1-dimensional case, we showed how two travelling waves with
speeds greater than the minimal spe&@nd coming from opposite sides of the
real axis could mix together and give rise to an entire solution of (1); moreover,
the so-built entire solution behaves like each of these two travelling waves on each
side of the real axis as the time goes-teo.

In the following theorem, in any dimensiaw, we generalize that mixing proce-
dure by considering any finite number of travelling waves coming from directions
v; with speeds; = ¢* and mixing. We also allow both the mixing of travelling
waves coming from the same direction with different speeds and the mixing of
travelling waves with solutions of the typer—~ &(t + h). In statements (6)—(9)
below, we show the relationship between the so-built entire solutiossd the
travelling waves from which they originated. We shall see that property (10) below
characterizes each of these new entire solutions

Theorem 1.1 (Mixing a finite number of travelling wavésLet p be a positive
integer. For eachi = 1, - - - , p, letv; beintheunit sphere S¥ 1, let¢; € [¢*, +00]
and let h; € R. Assumethat ¢; # ¢; assoonasv; = v; withi # j. Furthermore,
assumethat at most one ¢; takesthe value +o0o. Then there exists an entire solution
u(x,t) = ugy,¢ hy; i=1,-,p)(x, ) of (1) such that

ux,t) 2 @c,(x - vi +cit +h;) ifc* < ¢ < +oo

ux,t) 2 &+ h;) if ¢; = o0, ©)

l’

w(e, S Y galxvitat+h) + Y EC+h). @

i, ¢j<00 i, ¢j=00
For any (v, ¢) € SV=1 x [¢*, +oc,

ifcv-v; <¢jforall j, then u(—ctv+x,1) — O,
h ——00

if i, cv-vi=ci, cv-v <cVj#i,
then u(—ct v +x, t)t—> @e; (x - v + hy), (8
——00

ifcv-v; > ¢; for somei, thenu(—crv+x,1) — 1,
t——00

ifcv-v; >¢;forall j, then u(—ctv+x,t) — O,
t—400

if3i, cv-vi=ci, cv-vy > Vj#i,
then u(—ctv+x,t) — g (x - v + h;), ©)
t—+400

ifcv-v < for somei, thenu(—ctv+x,t) — 1
t—+40o0
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Moreover, ast — —oo:
ux, e 'Oy o'Ohiif 3i ¢ = 100, u(x,t)e ! O 5 0otherwise,
vzeRY, 0<|z <c*:2\/m,
u(—zt +x,1) e (G LN [ I)S R T 3i, ¢; <400, 2Aqvi =z,

u(—zt +x,t) P (G E O TN otherwise, (20)

Vv e SN_l,

u(—=c*tv+x,1) = @ (x - v+ hy) if3i, (v, c*) = (v, ¢;),
u(—c*tv+x,t) — 0 otherwise.

All the above convergences hold in C2_(RY).

Lastly, the set of the solutions u of that type contains the planar travelling
waves, the functions of the type r — &(¢ + h) and the planar solutions constructed
in[16].

In the second statement of (8), if we takec) = (v;, ¢;), then the convergence
u(—cit v +x,1) — ¢, (x - v; + h;) ast — —oo holds at least for the smallest
¢i’s but it does not hold in general for all thg's. Roughly speaking, that means
that only some fronts, those with small speeds, can be “viewed™-as—oo, the
other ones being “hidden”. More restrictive conditions are required for some of the
travelling fronts to be seen as— +oo: indeed, for a given, the convergence
u(—cit vi +x,1) — @ (x - v; + h;) in (9) requires especially that - v; > 0 for
all j # i; the latter may not be satisfied in general.

The property (10) deals with the behavior of the functioalong the raysé—|
ast — —oo with |z] £ ¢*. Notice that, from (10)u(—zt,t) — 0 ast — —oc if
|z] < ¢* (the latter actually holds for each entire solution of (1), see (16) and more
comments after Theorem 1.2 below). Finally, notice that, unlike properties (8) or
(9), the asymptotic behavior (10) easily implies that the so-built finite-mixing-type
entire solutions: are different from each other.

After the mixing of any finite number of travelling waves coming from any
directions, it is natural to wonder if a integrable sum of travelling waves (with
respect to a measure supportedsdfr 1 x [¢*, +-00]) can mix. The answer is yes,
and it will be the subject of Theorem 1.2 below. Before stating this theorem, we

introduce some notation. L&(0, ¢*) = B (0, 2,/f’(0)) ={zeRN, |z] <}
be the open ball oR" with center 0 and radius’. Let us define the topological
spaces

X =S¥ 1 x [¢*, +00) U {o0},

X =SV x (¢*, 400) U {oo} = X\ SV x {¢*}
as follows: we use on the sét¥~1 x [c*, +00) (resp.,SV 1 x (¢*, +00)) the
topology induced by the Euclidean structuréRof and, on the other hand, we say

that a setd is a neighborhood afo in X (andX) if and only if co € A and if there
exists a real numbery > ¢* such thatv,c¢) € Aforallv € S¥~1andc > ¢o.
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The setX is compact and it can also be viewed as the{set RY, |x| > ¢*} to
which we add a point at infinity, which can be thought of as an infinite speed.

Let M be the set of all nonnegative and nonzero Radon-meagui@s X
(0 < u(X) < 400), such that the restriction* of 1 on the spherg™ 1 x {¢*}
can be written as a finite sum of Dirac distributions:

W= Z m; 8(u; c¥)

1<i<k

for some integek > 0, some directions; € SV~ different from each other and
some positive real numbers . In particular, the set contains all the nonnegative
Radon measures whose support is compactly includéd'itt x (c*, +00).

For anyu € M, we denotel the restriction ofu on the set{ and®, . the
image offi by the continuous, one-to-one and onto map

®: X =85V x (¢*, +00) U {oo} —> B(0, ¢*),
(v, c) # 00— 2=2hv = (c — V2 = c*2) v,

oo — 0.

Let M be the set of measurgs € M such thatu* = 0 (i.e.,k = 0). We say
that a sequence of measurneé < M converges to a measuge € M if: €)
ff( fdp" — f;( fdj for each continuous functioi on X such thatf = 0 on
SN=1y (¢*, c* +¢) for somes > 0, (b) " (X) — w(X) and (C)u" (00) — (o).

Let & be the set of all entire solutions of (1). We say that some functibrs &
approach a function € £ in the sense of the topology if the functionsu™ go to
uin CL.(R,) andC2 (RY).

The following theorem provides the existence of an entire solutjpfor each
measurex € M and, generalizing the property (10) in Theorem 1.1, we give
an interpretation, in terms of the measureof the asymptotic behavior of, as
t — —oo along the rays if one moves with speeds less thein

Theorem 1.2 (Main existence theoremFor any N = 1, there exists an infinite-
dimensional manifold of entire solutions of (1). Namely, there exists a one-to-one
map, i — u,,, fromMto &, whichisconti nuouson M. Moreover, givenameasure
w € M, theentire solution u,, satisfies the following properties:

(i) (behaviorag — —o0).

uy(—c*tv+x, t)t—> e (x - v+ c*Inm;) in C%C(Ri\/) if v =v; for somei,
——00

uy(—c*tv+x,1) = 0 otherwise
——00
(11)
and, for any sequencet,, — —oo,
N/2
t "
<|4nn|) U (—tyz + X, 1y + 1) e 4?0 g7

y - 1
e (°>+%|Z|2)(f+'nM>+%x'zﬁ%ﬁ(dz) (12)

1 —>—00
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in C.(B(0, ¢*)), under the convention that the right-hand side is zero if M = O;
namely, for any continuous function v (z) with compact support on B(0, ¢*),

1\ — 5?1z
/ — Up(—thz +x,tp +1)e 2 " Y(z)dz
B(0,c*) 4

’ Y 1
N e(f (O)+711|Z|2)(t+|n M)+%x-z w(z) E q>*/:L(dZ) (13)

In—=>=00 JB(0,c*)
in the sense of the topology 7.
(i) (monotonicity in time). The function u,, isincreasing intimez.

(iii) (multiplication of x by positive constants)For each positive real number «,
Uap(x, 1) =uyu(x, t+Ine) forall (x,1) € RY x R; furthermore, Ugu — 1(0r0)
asa — +oo (resp. 0") inthesense of 7.

(iv) (case of absolutely continuous measures with respebtto dc). If i M
(i.e, w(SN"1 x {¢*}) = 0, i.e, k = 0) and if the restriction & of x on the set
SN=1 % (c*, +00) is absolutely continuous with respect to the Lebesgue measure
dv x dc, then

Vve SV 1 ve>c* VheR,

(14)
uy(—ctv+x,1) / @:(x-v+h) ast — +oo.

Lastly, theset of thesolutionsof thetypeu,, containstheplanar travellingwaves,
thesolutionst — &(z +h), aswell asthe other planar solutionsconstructedin [16]
and the finite-mixing-type solutions of Theorem 1.1 The solutionsin Theorem 1.1
correspond to measures which can be written as finite sums of Dirac distributions.

For each solution,, of (1), the asymptotic behavior (11), (12) is a consequence
of the construction of suitable sub- and super-solutions: fo¢see the lower and
upper bounds (30) in Section 3 below). Note that, unlike the asymptotic behavior of
the functioru, asr — —oo along the rayst with |z| = ¢*, the asymptotic behavior
(11), (12) along the rays of the “inner” cofie= {(zt,1), t < 0, z € RV, |z] < ¢*)
characterizes each entire solution of the typein the sense that ji1 # w2, then
u1 # uz (whichis proved in Lemma 3.5, Section 3.5). Let us now comment on this
formula (12) more thoroughly. First, the following fact, known as the “hair-trigger”
effect (seeAroNsSoON & WEINBERGER [2]), holds for any solution of (1):

VO < ¢ < ¥, m<in u(x,t) - 1 ast — +oo. (15)
|x|Zct
Notice here that this fact immediately implies that there are no stationary or time-
periodic solutions of (1). It follows that
VO<c<c®, maxu(x,t)— 0 ast - —o0 (16)
lx|=clt|
for each solutiom of (1) (see Lemma 4.1 for more details). It is then not surprising

that, inthe left-hand side of (12) (asinthe first two statements of (10) in Theorem 1.1,
orin (25) in Section 2), the terms, (—zt, +x, t, +1), with |z| < ¢* andt, — —oo0,
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have to be renormalized by asymptotically small factors. These asymptotically small
terms in (12) are of the typ@r,| /4m)~N/2¢3(€)*~12P1 _On the other hand, in the
right-hand side of (12), each teraff @ +alz)t+nM+3x2 L g 5 solution of the
linearized heat equation around= 0: M

»U = AU + f/(O)U.

Putting these together, the asymptotic behavior (12) can then be thought of as a
spectral decomposition of the functiary as: — —oo along the raygz| < c*

in terms of pure exponential solutions of the linearized heat equation balanced by
the measureb,.[i(dz), the functionu,, being itself suitably renormalized by the

exponentially decaying weightst ">~ (|1, | /47)~N/2 which are larger and
larger agz| approaches®.

Property (iv) implies that if the measuges absolutely continuous with respect
todv x dc on SN=1 x (¢*, 400) and if the restrictionu* of i on SN =1 x {c*} is
zero, then the function,, does not converge as- —oo (nor asr — +o0) to any
travelling front along any ray if the frame moves with any speed greater than or
equal to the minimal speed. (Let us also mention that some non-convergence results
more general than property (iv) are proved in Section 3.8.) On the contrary, for each
entire solution obtained from the mixing of a finite number of planar travelling
waves (Theorem 1.1), there exists at least one directioone speed; > ¢* and
one real numbet; € R such that(—c;z v; + x) = ¢, (x - v; + h;) ast — —oo.
Theorem 1.2 provides then the existence of entire solutions that are different from
those obtained from the finite mixing of travelling waves. But, by definition, the
manifold of the solutiona,,, which is infinite-dimensional, is actually much bigger
than the countably-many finite-dimensional manifolds of solutions obtained from
the mixing of a finite number of travelling waves.

Lastly, property (iii) simply says that multiplying a measyteby a positive
constant is the same as shifting in time.

Remark 1.3 (Behavior whenr — +00). As far as the asymptotic behavior of

ast — +oo is concerned, it is known from [2] that min<., u,(x, 1) — 1 as

t — 400, as soon as & ¢ < c*. We give here a sufficient (and almost necessary)
condition, which has an easy geometric interpretation, for a solufjda converge
uniformly to 1 as — +o0o0. Namely, as proved in Section 3.4,

e} U {oo}) > 0, theninfyv u, (-, 1) > Oforallr € Rand infgw u, (-, 1) — 1as
t — +o0,

— if there existayg € S¥~1 such thatu({c* < ¢ < 0o, v-vg = 0} U {o0}) = 0,
then infgy u, (-, 1) = 0forallz € R.

—if, for all vg € SN—1, there exists > 0 such thaw({c* < ¢ < 00, v - vy =

As a consequence, in dimensidh = 1, a solutionu, (x, ) of (1) converges to
1 uniformly inx € R ast — +oo if and only if u({c* £ ¢ < 400, v =
v} U {o0}) > O for eachws = £1. Otherwise, ink u,(-,t) = 0forallt € R.

Notice here that we shall see in Theorem 1.5 below that, when —co, a
solutionu of (1) in RY cannot converge to 0 uniformly inast — —oo, unlessu
depends om only.



Travelling Fronts and Entire Solutions of the Fisher-KPP Equatid&’in 99

1.2. Two partial uniqueness results

As already mentioned in the previous section, each solutions) of (1) sat-
isfies (16), namely,

VO<c<c*, max u(x,t)— 0 ast - —oo.
Ix|=clt|

We shall see later (Lemma 4.7 and Remark 4.8) that if a measaré is such
thatu (SV 1 x [¢*, ¢]) = O for somer € [¢*, +o0[, then max <es| Uu(x, ) — 0
ast — —oo.

Conversely, we can actually characterize all the solutiarf§1) satisfying such
a property withe > ¢*, that is to say, that satisfies a slightly stronger assumption
than (16):

Theorem 1.4 (Partial uniqueness result et u(x, ) be a solution of (1). If there
existse > 0 such that

max u(x,7r) > 0 ast - —oo,
[X|=(c*+e)t]
thenu = u,, for some (unique) measure . € M. Therefore, u satisfiesall properties
(i)—(iv) of Theorem 1.2 Moreover, u is concentrated on the set S¥=1 x [¢* +
g, +00) U {o0}.

The next theorem, which can be proved from Theorem 1.4, gives an easy char-
acterization of the functions depending only on tinaenong all the entire solutions
of (1):

Theorem 1.5 (Unigueness in the class of solutions bounded away frpniét
u(x, t) beasolution of (1). Then,

either VteR, supu(x,t)=1
xeRN
or u(x,t) =u().

As a consequence, any solution «,, of (1) issuch that sup u,(-,t) = 1 for all
t € R assoon as u is not concentrated on the single point {oo}, i.€., as soon as
w#0on SN 1 x [¢*, 400).

This means that if a solutianof (1) is such that the functian(-, #) is bounded
away from 1 at some timg, thenu is independent af for all time. In particular,
there are no “pulse-like” solutions of (1), i.e., solutions such i{at r0) — 0 as
|x| = +oo at some timeg (see similar results for entire solutions of another class
of parabolic equations in [25]).

Having (16) and Theorems 1.2 and 1.4 in mind, we now formulate the following

Conjecture 1.6 (Unigquenesp The set £ of all entire solutions of (1), such that
0 < u < 1, istheclosure, in the sense of the topology 7, of the set of the solutions

Uy
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If this conjecture were true, that would mean that all the solutions of (1) could
be described, in a certain sense, from the travelling waves and from the solutions
t — &(t + h), which could also be thought of as travelling waves with an infinite
speed. By analogy, the travelling waves, with finite or infinite speeds, would then
play the role of a basis of eigenfunctions for this nonlinear problem, as do some
pure exponential functions for the heat equatian= Av in RY x R (sSeeWIDDER
[39)).

1.3. Applications to travelling waves and radial solutions

As said earlier, there is a finite-dimensional manifold of planar travelling waves
for equation (1). Each planar travelling wave can be writtep &s - v + ct + h)
for some direction € S¥~1, some speed > ¢* and some real numbér € R.
Such a travelling wave. (x - v + ct + h) propagates in the directionv with the
speed-.

We can now ask ourselves if there are nonplanar travelling waves for (1). By a
travelling wave for (1), we understand a solutiogx, ¢) such that

Vx,) eRY xR, Vt eR, u(x,t+71)=u(x+ corvo, 1) a7

for some directiong € SV 1 and some speetp > 0 (up to a changey — —vo,
we can always assumg = 0). Such a wave is propagating in the directieny
with the speedy. The functionu can be written as

u(x,t) = v(x + cotvg) (18)

wherev is (uniquely) defined by (y) = u(y, 0) for all y € RV. The functiornw is
such that O< v(y) < 1 for ally € RY and it satisfies the elliptic equation

Av — codyov + f(v) =0inRY (19)

whered,,v = vp - Vv. Conversely, any solution @ v < 1 of (19) gives rise to a
travelling waveu (x, t) = v(x + cotvp) for (1), which propagates in the direction
—vp with the speedy.

For each couplév, co) € S¥~1 x [0, +00), set

Swo.co) = {(v, o) € SN x [¢*, +00), covp - v = c}

(= S(covo/2, co/2)\B(0, c*)) where S(covo/2, co/2) is the sphere with center
covo/2 and radiusp/2, andB(0, ¢*) is the open ball centered at the origin and
with radiusc*. Note thatS(,, ., iS empty as soon as 8 cg < ¢*, and that, in
dimensionN = 1, S(.c) reduces to the single poilio, co) if co = ¢*. Finally,

let Mrw be the subset oM defined by

Mrw = {n € M, 3(vo, co) € S¥ 1 x [0, +00), w is concentrated 08y, co) }-

Theorem 1.7 (Travelling waves (i) Let u be atravelling wave for (1) and assume
that u satisfies (17), namely, that u propagatesin direction —vg with speed cg. Then,



(i-a)
(i-b)

(ii-a)

(ii-b)

(ii-c)
(iii)

(iii-a)
(iii-b)
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co 2 ¥,

the function v defined by (18)isincreasing in each direction v € S¥~1 such
that v - vg > cos(arcsir(%)), namely, v belongs to the open cone directed
by vo with anglearcsir(%). Furthermore, for each such v, lim;_, _, v(a +
sv) = 0and lim,_, 1 v(a + sv) = 1 for all vector a € RV;

if co = ¢*, thenu isaplanar travelling wavewith speed c*, namely, u(x, t) =
@ex (x-vo+c*t+h) for someh € R. Inother words, if0 < v < lisasolution
of (19)for ¢o = ¢* and for some vy € S¥—1, then v(y) = @ (y - vo + h)
for someh € R.

In dimension N = 2, there exists an infinite-dimensional manifold of trav-
elling waves for (1). Namely, the restriction of the map v +— u, on Mrw
ranges in the set of travelling waves for (1), and it is one-to-one on Mrwy
and continuous on M7y N M. If

k
w=y midu.c+in €M
i=1

is concentrated on S,,,c) for some (vg, co), then u,, is a travelling wave
satisfying (17). Furthermore, v, (y) = u,(y, 0) is the smallest solution of
(19) such that

vu(y) 2 maX( 1@% Qe+ (y - vi + " Inm;),
1
@c(y-v+cIinM)—=dji (20)
SN=1x (c*,400) M

for all y € RV, where M = (X) (if M = 0, then the second term in the
right-hand side of the above inequality drops out);

Indimension N = 2, for each cg > ¢* and for each vg € SV~1, there exists
an infinite-dimensional manifold of solutionsv(y), 0 < v < 1, of theelliptic
equation (19);

Let u(x, 1) be atravelling wave of (1) satisfying (17). If u is of the type u,
for some € M, then p is concentrated on S, c)-

Let u beatravelling wavefor (1) satisfying (17) and let v be defined by (18).
Then,

VO< ¢ < ¥, m<ax v(covos +y) — 0ass — —oo;
[yI=cls|

If there exists ¢ > 0 such that

max  v(covps + y) — 0ass — —oo,
[yIS(c*+e)ls]

then u = u,, for some measure u € Mrw concentrated on Sy c) N {c =
c* + ¢} and u satisfies all properties (i) and (ii) above.



102 FraNcors HAMEL & NIKOLAT NADIRASHVILI

Let us now consider the case of radial solutions of (1). We say that a solution
u(x, t) of (1) is radially symmetric, or radial, if there exists a paine R" such
thatu can be written as

ux, 1) =v(lx —al, 1)
for all x e RN andr € R. The functionv = v(r, 1) satisfies

" v+ f(w), r>0,reR, (21)

v(r, )is C2in r € [0, +oolandClint,and,V¢ € R, v,(0, ) = 0.

vy = U +

Note that the set of the solutions of (1) which are radially symmetric with respect
to a pointz € RY is the set of function§(x, t) — u(x — a, 1)} whereu is radially
symmetric with respect to the origin.

We can now ask ourselves if there are radial solutions of (1) and, if yes, what
is the size of the set of such solutions. Before answering this question in the next
theorem, let us define the set

Mr={ueM, YpeSON), YBorelA C X, u(p(A)) = u(A)}.

The setMy, is the set of the measurgse M that are rotationaly invariant. Since
the restriction of any measuge € M on the setSV~1 x {¢*} is a finite sum of
Dirac masses, it follows that, for each measure Mg, we havew™ = 0. In other
words,Mpr Cc M.

Theorem 1.8 (Radial solution} (i-a) There existsan infinite-dimensional manifold
of radial solutions of (1). Namely, the map

Mr xRN > €

(,a) = uyq=u,(-—a,-)

rangesintheset of radial solutionsof (1). Thismapiscontinuousand itsrestriction
to the set of measures u € Mz which are not concentrated on the single point
{00}, isone-to-one. Furthermore, for each given (i, a) € Mz x RY, thefunction
u,,q i1sradially symmetric with respect to the point a and the function v defined by
Upa(x,t) =v(lx —al,t) solves(21), anditissuch that v(r, r) — lasr — +oo
for all + € R, provided u is not concentrated on {oco}.

(i-b) There exists an infinite-dimensional manifold of solutions v of (21).
(i)  Each solution v of (21)issuch that

VO<c<c*, max v(t)— 0ast — —oo.
0<r<clt|

Furthermore, if v isa solution of (21) such that

max v(r,t) — 0ast - —o0
0=<r=(c*+e)t|

for somee > 0, thenthereexistsa measure u € Mp suchthat v(|x|, 1) = u, (x, t)
for all (x,7) e RN x R.
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Structure of the paper. The rest of the paper is organized as follows: Section 2

is devoted to the construction of solutions that are obtained from the mixing of a
finite number of travelling waves (Theorem 1.1). These solutions are constructed
from a sequence of Cauchy problems starting at times— —oo. Section 3

deals with the proof of Theorem 1.2 about the existence of an infinite-dimensional
manifold of solutions of (1). Section 4 is devoted to the proof of partial uniqueness
results (Theorems 1.4 and 1.5). Lastly, Section 5 deals with the cases of (nonplanar)
travelling waves and radial solutions of (1).

2. Construction of entire solutions from the mixing of a finite number of
travelling waves (Theorem 1.1)

This section is devoted to the proof of Theorem 1.1. p & a positive integer
p=>landforeach =1,---, p,lety, ci, hi be suchthat; € SN-1, ¢* < ¢; <
+o0, h; € R. Assume that; # ¢; if v; = v; and assume that there exists at most
one index; such thatc; = 4o00. Our goal is to prove that there exists an entire
solutionu of (1) satisfying properties (6)—(10) stated in Theorem 1.1.

Consider the case wheke= #{i, ¢; = ¢*} =2 1 and #i, ¢; = +oo} = 1 (the
cases #i, ¢; = c*} =0or#i, ¢; = oo} = 0 are similar and even easier to deal
with). Up to a renumbering, we can then assume that

ca=-=c=c"<c41= - Scp1 < +00 = cp.
For eachn € N, let U, (x, t) be the solution of the Cauchy problem
(Un)i = AUy + f(Up), x€RY 1> —n

Un(x, —n) = max( LB g, vy — i o i), En ),
where 0 U, (x, —n) < 1. This Cauchy problem is well posed and the maximum
principle yields

0= max( max ¢, (x - v; +cit + h;), E(t +hp)> <U,x,) <1 (22)
1<i<p-1

for all x € RN andr > —n. Another application of the maximum principle shows
that the functionsU, (x, t)), are nondecreasing with respechtdndeed, for each
(x,1) e RN xR,ifn’ > n > |t|,thenU, (-, —n) = U,(-, —n), whencd/,; (x, t) =

U, (x, t). Eventually, there exists a functiafix, r) such that 0< u(x,7) < 1 and
U, (x,t) — u(x, t)foreach(x, r) € RN xR. Furthermore, from standard parabolic
estimates and Sobolev’s injections, the functiois an entire solution of (1). Let
us now prove that satisfies all properties (6)—(10).

Proof of (6). It follows immediately from (22). O

Proof of (7). It follows from the following result due to Bramson; this result resorts
to the concavity of the functioif and to the maximum principle.o
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Lemma 2.1 (Bramson [6]. Let us extend the function f by O on the interval
[1, 400). Let u; o(x), i = 1,---m, be m given nonnegative and bounded func-
tions. Let u; = 0 be the solutions of the Cauchy problems:

i) = Au; + f(u;), t>0, xeRV,
u;i(-,0) =u;o

and let u = 0 be the solution of

uy=Au+ fw), t>0 xeRV,
0= u(,0 Suio+--+umpo.

Thenu(x, 1) S ur(x,t) + -+ un(x,t) foral r > 0andfor all x € RV.
Property (7) follows then immediately from Lemma 2.1 becaissatisfies

p—1
Un(x,1) £ Y e, (x - vi 4 it +hi) + £ + hp)
i=1

for eachr > —n andx € RV.

From (6), it follows that(x, t) > Oforall (x, r) € RN x R. Onthe other hand,
u(0,t) - 0 ast - —oo because of (7). Therefore, the strong maximum principle
implies thatu < 1 for all (x, r) € RY x R. The functioru is then a solution of (1)
suchthatO< u < 1.

Proof of (8). Let (v, ¢) be inS¥—1 x [¢*, 400[. Assume, say, thab - v; < cj for
al1<j £ p—1. From (7),

p—1
O0Z u(—ctv+=x,t) < Z(pci((ci —cv-v)t+x - v +h) +E(+ hp).
i=1

Thereforeu(—ctv + x, t) — 0 locally inx ast — —oo. From standard parabolic
estimates, the convergence also takes placgjifRY). The other two casesi( -

v; = ¢; for somei, cv - v; < ¢; forall j # i; andcv - v; > ¢; for somei) can be
treated similarly. O

Proof of (9). Itis similarto (8). O
Proof of (10). From (6)—(7),

E(t + hp)e_f/(o)t § u(x, t)e—f/(O)t
p—1
= Ze_f/(O)tﬁaci (cit+x-vi+h)+E&E>1+ h[,)e_f/(o)t.
i=1
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Observe that (1 + hy)e /'O — f' O asr — —oo, sincet(s) ~ /'O as
s — —o0. On the other hand, because of (4), (5), we have-as—oo

G- vi + it + i) O(|tle* ") locallyinxifl <i <k
A J Ci i = n . .
b T ' oy locallyinxifk+1<i<p—1

Sincer.c = A2 + f/(0)F/(0) for all ¢ > ¢*, it is found that

p—1
Zeif/(o)tq)ci (cit +x -v; + h;) — Olocally inx ast — —oc.
i=1

As a consequence(x, t)e—/ O — ¢/ Oy |ocally inx ast — —oo. Sinceu is a
positive and bounded solution of (1), the standard parabolic estimates and Harnack
inequality (see, e.gERIEDMAN [13], GRUBER [14], Moskr [27]) yield the existence
of a constant such thatVu(x, 1), [ x;x; (X, D], [ty 2y (X, 1) < Cu(x,t+1)for
all (x, ) € RN xR. Hence, we conclude thatx, r)e/ @' — ¢/ Ot in c2 (RY)
ast — —oo.

Take nowz € RY such that O< |z| < ¢* = 2,/f/(0). We have

1, .x2 2
0 < u(—zt +x,t)e" 2~
pt 1, %2 1, %2
* 2 * 2
S D e (i =z vt +x v+ e 3T 4 g (1 4 pp e 3R
i=1

Sincec* = 2,/17(0), |z| > 0 and&(s) ~ ¢/ @5 ass — —oo, it follows that
E(t + h,,)e‘?lt(c*z—‘“z)’ approaches 0 as— —oo, uniformly in x.

Consider the case where there exigtsuch that = 2, vi,. Notice that there
exists at most one suehisincec; # c;,i.e.,A¢; # Ac;, assoon as; = v;. Foreach
i <k, we havex,, = A* = . Since|z| < ¢*, we find thatk + 1 < ig < p — 1.
Furthermore, for eache {1,--- ,k},¢i =c¢* > z-v; and

1,.%2 2 * (% A / 1,2
(Pc,-((Ci —Zzv) 4 xy; _|_hl.)g—z(c =219 _ 0(|t|e()" (c*=z-v))=f(0)+ 71z )f)

locally in x ast — —oo. Sincer*(c* — z - ;) — f'(0) + 1|z = 1*2 — 1%z -
v; + %1|z|2 = 711|z — 22*p;12 > 2, it follows thatee, ((c; —z - vi)t +x - v +
hi)e— =P Olocallyinx ast — —oo.Foreach € {k+1,---, p—1}such
thati # ig, the latter also holds similarly. On the other hand, singe- ¢* > z-v;,,
it is found that

1. .x2 2
Pei ((Cig — 2+ Vig)t + x - vig + hig)e 3¢~

ex(-io(x-Vi0+hio)e%|z—2A vigl?

~

L'[O

ek% (x-vigthig) _ e%z~x+%|z|h;0

~
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locally in x ast — —oo. On the other hand, (6) implies that
e ((Cig — 2+ vig)t + X - vjg + h,-o)e_%l(c*z_lz‘z)’ S u(—zt +x, t)e_%(c*z_‘zlz)l.
Eventually, we conclude that
u(—zt + x, t)ef%(c*zflz‘z)’ —» e3ex+3lalhig (23)

ast - —oo, locally in x, and also, as usual, iﬁ%C(Ri").
Consider now the case whete# 21, v; foralli = 1,---, p — 1. With the
same arguments as above, it is found that

2 .
w(—z1 + x, e~ 1€l gin CE.(RY) ast — —oo. (24)

Notice here that, from (23) and (24), it easily follows that, for any sequence
t, — —oo and for any; such that O< |z| < ¢*,

u(—zty +x,t, +1) e 1€l (' O+l 312l poox
if 3i, ¢; < +o00, 2Aqv =12, (25)

1, %2 2 .
u(—zty + x, ty + 1) e~ 3 719 0 otherwise,

in CL.(R,) andC2 (RY).

Let us now prove the last formula in (10). Take= SV~1. If there exists such
that(v, ¢*) = (v, ¢;) (L =i k), then, forallj € {1,--- ,k}\{i}, c*v-v; <c*
sincev; # v;. Moreover, for eacly = k 4+ 1, c*v - v; < ¢* < ¢;. Therefore, (8)
gives

u(—c*tv + x,1) = @er(x - vi 4+ hy) in CARY) ast — —o0
if 34, (v, c*) = (v, ¢).

Otherwise, if(v, c*) # (vi, ¢;) for all i, then, for allj € {1,--- ,k}, c*v - v; <
c*=c¢j,and, forallj =2 k+1,c*v-v; < c* < ¢;. Finally, the asymptotic limit

u(—c*tv+x,t) = 0in C%C(]Riv)ast — —00

follows from (8).

Let us now check that the set of the so-built entire solutioo&(1) contains the
planar travelling waves, the solutions that only depend on time and the solutions
constructed in [16].

Indeed, if (v,c) € S¥1 x [¢*, +oo[ andh € R, just takep = 1 and
(v1, c1, h1) = (v, ¢, h); the functionu(x, ) is then equal to the planar travelling
frontg.(x - v + ct + h).

If h € R, takep = 1 and(vs, c1, h1) = (vo, +00, h) for some arbitrary vector
vo € SN—1: the functionu(x, r) is then equal to the functiof(r + h).

In dimensionN = 1, under the notation of Theorem 1.1 in [16],cifc’ €
(c*,+00), h,’ € RandK > 0, takep = 3 and(vy, c1,h1) = (=1, 1),
(v2, c2, h2) = (1, ¢, h) and(vs, c¢3, h3) = (vg, +00, J'D—(’é) for some arbitraryg €
{£1}; by definition, the functiom (x, ¢) is then equal to tf1e solution » ..k (x, 1)
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constructed in Theorem 1.1 in [16] (other properties of the functiare also stated
in [16]). Similarly, the entire solutions constructed in Theorems 1.3, 1.4, 1.5in [16]
can easily be obtained from the mixing of two travelling fronts or from the mixing
of a travelling front with a solution depending only on time.

That completes the proof of Theorem 1.10

3. Construction of theinfinite-dimensional manifold of entire solutions
(proof of Theorem 1.2)

Let u be a nonnegative and nonzero Radon measure on thé aed assume
that the restriction.* of 1 on the spher&™ 1 x {¢*} can be written as:

w = Z m;i8;.c*),

1<i<k

wherek € Nandv; € S¥1,0 < m; < +oo for eachi = 1,---, k. Let us
moreover assume that # v; if i # j. Let us defingi as the restriction of.
on SV1 x (c*, +00) andj: as the restriction of on X := SV—1 x (¢*, +o00) U
{00} = X \ {(v, ¢*), v € SN=1}. Let M be the set defined by

M:[dﬁ:u(X)— Z mi;, 0<M < +o0.
X 1<i<k

Given i, we want to define an entire solution of (1) which should come from
the mixing of a integrable sum, weighted by the meaguref planar travelling
waves of the type. (x - v + c¢t). The construction is divided into several steps: we
first define a sequence of Cauchy problems starting at tineeSection 3.1), we
find lower and upper bounds independenzdSection 3.2), we pass to the limit
n — +oo (Section 3.3), we show in Section 3.5 that the limit functignsatisfies
the asymptotic behavior (11), (12) as—> —oo (property (i) in Theorem 1.2).
We then prove the monotonicity @f, with respect ta and we study under what
condition the functions,, goes to 1 as — +oo uniformly in x (Section 3.4).
Section 3.6 is devoted to the proof of property (iii) in Theorem 1.2. We prove in
Section 3.7 that the functioms, are continuous with respect toon the set\1. In
Section 3.8, we deal with the case of a meagurehich is absolutely continuous
with respect to the Lebesgue measudrex dc (property (iv) of Theorem 1.2).

In Section 3.9, we prove that the set of the functienscontains the solutions
described in Theorem 1.1, which are obtained from the mixing of a finite number
of travelling waves.

3.1. Definition of a sequence of Cauchy problems

Let us first state the following lemma:
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Lemma3.1. (a) If M > 0, then, for each (x, 1) € RV x R, thefunction
X— (0.1,
(v, ¢) 00> @(x - v—i—ct—i—clnM),
0 > £+ In M),
is measurable with respect to . (The reason why we add the extratermcIn M

and In M will become clear later.)
(b) Smilarly, if M > 0, the function

X — (0, +00),

(V C) # 00 He}\.g(}C‘v+L‘l+C|ﬂ M)

00 > of @+,

/ %2 . A
where A, = # is measurable with respect to the measure /i.

Note that in the definition of the map in (b), we haye: (vn+ent+enn M)
e/ O0+InM) for any sequence, — +oo andv, € S¥-1 because.. — 0 and
Acc — f/(0) asc — +oo.

Proof of Lemma 3.1. (b) Because of the definition of andf, it is sufficient
to show that the functioniv, ¢) — Ac(x - v + ¢t + cIn M) is continuous on
SN=1 5 (¢*, +00). Sincex. is continuous with respect tg the conclusion follows.

(a) From what precedes, and since each functien ¢.(s) is continuous, we
only have to prove that the functions— ¢, (s) converge locally to the function
s > @.(s) as soon as, — c¢ € (¢*, +00). But the latter follows from Proposition
5.5in the paper bi¥aLLorDY & ROQUEJOFFRE [23] (see also [16], Section 2).0

In the caseV > 0, let us now define, for eaghe N, the solutioru,, (x, r) of
the following Cauchy problem,

(Un)e = Ay + fuy), xeRN, t>—n,

uy(x, —n) = max| max(ge(x - v; —c*n + c*Inmy)),
1<i<k

L1
/ @c(x-v—cn+clnM)—f(dv x dc)
SN=1x (c*,+00) M

u(o0) (26)

+&(=n+InM) —)
M
= max( max (ge(x - v; — c*n + c* Inm;)),
1<i<k
~ 1
oc(x-v—cn+clnM)—dn ),
X M

by settingg. (x - v + ¢t + cIln M) := £t + In M) if (¢, v) = oo.
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In the caseM = 0, we simply take

un(x, —n) = max (ge(x - v; — c*n + c*Inmy)).
1<i<k

In the caseM = 0, the functionu, (—n, x) is well defined, continuous with
respectto and satisfies & u, (x, —n) < 1. These properties carry over in the case
M > 0 from Lemma 3.1 and from Lebesgue’s dominated convergence theorem.
As a consequence, in each cage> 0 or M = 0, the above Cauchy problem is
itself well defined and the maximum principle yields

Vi>—-n, VxeRY, 0<u,(x,1) <1

Remark 3.2. Before going further, let us consider the case= My8.,,, Where,
say,co > ¢*, Mp > 0 anddy,¢,) iS the Dirac distribution at the poirtio, co),
and let us explain the role played by the total ma&s In this caseu,(x,t) =
@eo(x - vo + cot + coln Mg) and InMp can be viewed as a shift in time for the
travelling waveyp, (x - vo + cot).

Inthe general case, given a measuren X, each functiom,, can be thought of
as a superposition of travelling wavgs(x - v + cr) (with finite or infinite speeds),
with some weights given by the density of the meagued the point(v, ¢).

3.2. Lower and upper bounds

We first claim that, for alt > —n and for allx € RV,

un(x,t) = max( max g (x - v; + c*t + c*Inm;),
1<i<k
1 (27)
/ @e(x-v+ct+cln M)Td[/,>
X M

under the convention that the integral with respe¢t thops out as soon ag =0,
andthaip.(x -v+ct+clnM) =@ +InM) if (v, c) = cc.

Proof of (27). Let us first observe that, (x, —n) = @ (x - v; — c*n + c*Inm;)
foreachi =1, --- , k. Since the functiorp.« (x - v; + ¢*t + ¢*Inm;) is an entire
solution of (1), the maximum principle givasg (x, t) 2 @+ (x - v; +c¢*t +c* Inm;)
forall+ > —n and for allx € RV That provides (27) in the cagé = 0.

In the caseV > 0, letv(x, ¢) be the function defined by

~ 1
v(x, ) ::[ @c(x-v+ct+cinM)—dp.
X M

From standard parabolic estimates and since the fungtisrsmooth, there exists
a constantg such that, if 0< u(r, x) < 1 is an entire solution of (1), thel,|,
luy, |, |Au| £ Co globally in (x, ) € R¥ x R. Any travelling wavep, (x - v + ct)
is an entire solution of (1), whendey'(s)|, |¢'(s)|, |¢”(s)| £ Co forall ¢ = ¢*
ands € R. As far as the functiog () is concerned, we also hay(r)| < Cq for
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all + € R. As a consequence of Lebesgue’s dominated convergence theorem, the
functionv(z, x) is of classC! with respect ta and of classC? with respect tox
and it satisfies

~y 1
vt_AU:/ f(goc(x-v—l—ct%—clnM))Td,&
X M

L1
<f(f (pc(x'v—i—ct—i—clnM)—Adu)
b'e M

since f is concave or0, 1]. The claim (27) follows then from the maximum
principle. O

The inequality (27) provides a lower bound independent fafr the functions
u, . We shall now get upper bounds for the functiapsTo this end, let us first state
an auxiliary lemma:

Lemma3.3. (a) For each ¢ > ¢*, g.(s) ~ e** ass — —oo from (4). Further-
more, g.(s) < e for all s € R and the function v(s) = ¢*<* solvesthelinear
equationv” — cv' + f/(O)v =0inR.

(b) Also, £(s) < /' Os for all s € R.

Proof. Let us start with the proof of (a). It is rather standard but we give it for
the sake of completeness. Choase- ¢*. Owing to the definition of.. in (3),

the functionu(s) = ¢*<* satisfiesv” — cv’ + f/(0)v = 0. For each € R, define

v (s) = v(s + 1) = e*s A Sincey, is bounded and satisfies (4), it follows that
there exists a reap such that, for alk > g, v = ¢, in R. Let us now define
t=inf { e R, v' = ¢.inR}. From (4), we get = 0 and by continuity, we have
v7(s) 2 @c(s) forall s € R.

Assume now that > 0 and consider a sequence>rt asn — +oo. There
exists then a sequence of points € R such thatv’ (s,) < @.(s,). Sinceg,
is bounded, the sequen¢s,) is bounded from above. Up to extraction of some
subsequence, two cases may OCGlI—~> so, € R Ors, — —oo asn — +oo.
Assume first that,, — soc € R asn — +oo. It follows thatv® (se) = ¢c(500)-
Definez = v® — ¢.. This functionz is nonnegative and vanishes at the poigt
Furthermore, the functiop, satisfiesp —co.+ f'(0)¢. 2 ¢/ —cy.+ f(p:) =0
sincef(u) < f'(O)u for all u € [0, 1]. As a consequence’ — ¢z’ + f'(0)z < 0.
The strong maximum principle then yields= 0. This is impossible because
@ is bounded, unlikev. We deduce then tha, - —oo0 asn — +o0o. Now,
©c(sp) ~ e ass, — —oo whereasp.q(s,) = v7(s,) = e+ This is ruled
out because > 0. Eventually, we conclude that= 0, which is the desired result.

Becausef (s) < f/(0)s and&(s) ~ ¢/ @5 ass — —oo, the assertion (b) is
also straightforward. O

Let us now turn to the main upper bound for the functiops
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Lemma34. For all (x,¢) e RN xR,

lim sup uy, (x, 1) < Z @ (x v + ¢t + cFInmy)

n——+00

1<i<k (28)
+/ oretrvterteln M) _% i
X M
under the convention that the second term disappearsif # = 0, and
pre(rvtetteln My _ o/ O+ M) if (v, ¢) = oo.
Proof. Because of its definition, the functiof (x, —n) satisfies
VxeRY, 0=Zuy(x, —n) Sugo(x) + -+ up2(x),
where
ui o(x) = pex(x v —c*n+c*Inm;) forl<i <k if k > 0,

~ 1 A
Uk+1,0(x) = / @c(x-v4+ct+clnM)— (dv x dc) if M > 0,
SN=1y (c*,4+00) M

1(00)

U+2,0(x) = £(—n +In M) = if M > 0.
(29)
Foreach =1, ---,k+2,letu; ,(x, t) be the (nonnegative) solution of the Cauchy

problem:(u; »): = Auin + f(uin), t > —n andu; , (x, —n) = u; o(x) (actually,
ury2.,(x, t) is only a function of). From Lemma 2.1, it follows that

Vi —n, VxeRY, 0= u,(x,1) Surn(x, )+ Fty1n(x, 1) Fitks2n(t).

If1 < i Sk, thenu; ,(x, 1) = @ex(x - vi + ¢t + ¢* Inmy).
Let us now find an upper bound fofy1.,(x, ¢) (in the caseVl > 0). Choose
any (xo, 1) € RY x R. Let us first observe that the functiap, 1 0(x) satisfies:

A~ 1
ur+1,0(x) = / @e(x-v—cn+cInM)— a(dv x dc)
SN=1x (c*,+00) M
1
g\/\ e)L(;(X-V—Cn-FClnM)_A l‘l(dv X dC) — Un,o(X)
SN=1x (c*,4+00) M
(from Lemmas 3.1 and 3.3). Thg-measurability of the functionv,c)
eretrv—entcinM) gn gN-1 o (¢* 400) is guaranteed from Lemma 3.1 and, on
the other hand, the integral

/ ekc(x-v—cn—i-clnM) ,ll(dl) x dc)
SN=Lx(c*,+00)

converges because the functians> A, andc — A.c = AE + f/(0) are globally
bounded onc*, +00) and becausg is finite.
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Let us now consider the function
U(.x, t) = / )\ (x- U+Ct+C|nM) (d\) X dC)
SN=1x (c*,+00) M

As for vy, o(x), this functionv(x, t) is well defined and (x, —n) = v, o(x). Fur-
thermore, from Lebesgue’s dominated convergence theorem, and because
Af + f7(0), the functionv solves the following Cauchy problem:
v; = Av + f'(O)v,
v(x, —n) = vp,0(x).

Onthe other handt (s) < f/(0)s forall s = 0 (remember thaf is extended by
0 outside the intervdD, 1]). The maximum principle then yields for any= |1o|,

Ui+1,n(x0, f0) < v(xo, o) = / ehe(xovteioteln in 1 ——ju(dv x dc).
SN=1x(c*,400) M

Let us now find an upper bound fef 2 , (f0). This function solves the Cauchy
problemu),, () = f(ur2.,0) andugiz,(—n) = &(—n +In M)%. Since
f(s) £ f/(0)s, we deduce that, for any > |rg],

Uk+2.0(t0) £ E(—n+1In M)M( o) ol Oo+n)

From Lemma 3.3(b), it follows then that

ugyo.n(to) £ —— 1(00) o/ Oto+n M)
M

That completes the proof of Lemma 3.40

3.3. Passageto thelimitn — +o0

From (27) and from the maximum principle, it follows that, for edehr) €
RN x R, the sequence:, (x, 1))n>|1| is nondecreasing and satisfiesQ, (x, 1) <
1. Hence, there exists a functiap (x, ) such that, (x, 1) — u,(x, t) for each
(x,1) € RN x R. Furthermore, from standard parabolic estimates, the functions
u, (x, t) approach the function,, in the spaceé‘l%c(RiV) andC&)C(Rt). As a con-
sequence, the functiar, is an entire solution of (1), such thatQu, (x,7) = 1
forall (x,1) € RV x R.

Moreover, from the lower and upper bounds (27) and (28), the funatjon
satisfies,

V(x,1) e RY xR,

.1
max (max((pc*(x v+t +c*In m,-)),/ @e(x-v+ct+cln M)—Adﬁ)
1<i<k X M

A |
. * * . Ae(x-v4ct+cln M) ~
= k) = C 1 1 A
S upx,r) E gp*(xw)—l—ct—i—clnm)—i—/Ae di
1Si<k X M

(30)
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under the convention that the integrals oedisappear as soon & = 0, and
remembering that

~o 1 A
/A%(x-v—}—ct%—clnM)—Ad/l:/ ge(x - v+ct+cinM)
X M SN=1x(c*,+00)

X —]A-ﬁ(dv x dc) + S(t +1In ]\;I)M(?O)
M M

/Aekf(x'erctJrclnA;[)_]: dﬂZ/ ekc(x~v+ct+clnﬂ;1)
X M SN=1y (¢*,+00)

F/© e+ iy ()
M

1
X —p(dv x dc) + e
M

From (30), it follows thai, (x, r) > O for all (x, r). Furthermore, each of the
two terms in the upper bound of (30) goes to @ as —oo for each giverx € RV
(the convergence of the second term

. . V1 1 ~
/ e)u(;(x‘v+cl+c InM)EM(dV X dc)

X

ast — —oo is a consequence of Lebesgue’s dominated convergence theorem).
Hence,

VxeRY, u,(x,t) - 0 ast - —oo, (31)

whence the functiom, cannot be identically equal to 1. The strong maximum
principle then yields:, (x, ) < 1 for all (x,7) € RN x R. Eventually,u,, is an
entire solution of (1) such thatQ u < 1.

Lastly, sincef is of classC? on [0, 1] and from standard parabolic estimates,
the functions(u,,);, Vu,, (U )xix;s (Up)xixjx, AT€ globally bounded iRRY x R.

3.4. Monotonicity in time and behavior of u, ast — +oo

Let us prove property (ii) in Theorem 1.2, saying that is increasing in
time. Under the notation in (29),,(x, —n) = max(max<; <x #;,0(x), x4+1,0(x) +
urs2.0(x)) forall x € RV, Let us check thatvu, (x, —n) + f(u,(x, —n)) = 0in
D'(RV). To do this, itis sufficient to show thatu; o+ f (u;0) = 0inRRY for each
i=1- kandA(uk+1,0+ uk+20) + f(Urs1,0 + uk+2,0) = 0inRY,

First, we have, foreach=1, - - - , k (providedk > 0),

Auio+ f(uio) = gl(x -vi —c*n+c*Inmy)
+ f(@er(x - v; — c*n+c*Inm;))

=c*gl(x-vi—c*n+c*Inm;) >0
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sincec* > 0 andg.. > 0. Next, with the same arguments as at the beginning of
Section 3.2, the functiofn(x) := ug41,0(x)+ur4+2,0(x)is of clasC2 and (provided
M > 0)

A1
Az+f(z)=/AQDL/(XW—Cﬂ—}—cInM)—Ad,a
X M
~ 1
+f</ (Pc(x'v—cn—i—clnM)—AdM)
X M
/ A1
= | cp.(x-v—cn+clnM)=dp
X M
~ 1
—/ flpe(x-v—cn+cinM)—dp
X M

~ 1
+f</ wc(x-v—cn+c|nM)7dﬂ>
b M
> 0inRY

since f is concave andy,. > 0 for each(v,¢) € X, under the convention that,
for (v,¢) = o0, cp/(x - v —cn + clnM) =0 andcyl(x - v —cn +cinM) =
FE(=n+In kD) (> 0).

Therefore Au, (x, —n) + f(u,(x, —n)) = 0in D’ (RV), whence the function
un (x, 1) is nondecreasing with respectrtéor all x € RN andr > —n. As a conse-
quence, by passing to the limit— +oo, the functionu, (x, t) is nondecreasing
with respect ta in RV x R. Since the nonnegative functidpu,, satisfies a lin-
ear parabolic equation, it follows from the strong maximum principle that either
du, = 00rdu, > 0inRN xR. Thefirstcase isimpossible sinceu,, (x, 1) < 1
forall (x,7) € RY x R andu,(x,t) — 0ast — —oo for eachx € RV, from
(31). Eventually, we conclude that the functi@p is increasing in time.

Let us now study the behavior ef, when:r — +oo and prove the properties
that are stated in Remark 1.3. Let us first consider the case where there exists a
directionvg € S¥~1 such that

p({c* = ¢ < +oo, v-vg = 0} U {oo}) =0

and let us prove thaj(¢) := infpwy u, (-, 1) = 0 for allr € R. Indeed, the above
assumption and the upper bound in (30) yield, foralt 0,

uy (avo, 1) < E @ (v - v + 't + c* Inmy)
1<i<k
vo-v; <0

gaeinan 1~
+/ ekc(avo~v+ct+L|nM)_A d/fL-
{c*<c<400, vo-v<0} M

The limite — 400 implies thatg(¢) = O for each time € R.
Let us now consider the case where

Vuge SV 136 >0, u({c* < ¢ < +o0, v-1g = e} U{oo}) > 0.
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Suppose for contradiction thafzg) = 0 for somerg € R. From the lower bound in
(30), we immediately gt (co) = 0. Furthermore, there exists a sequence of points
Xn = yvo, With o, = 0 andvg, € S¥~1 such thati(a,vo,, 10) — 0asn — +oo.

Up to extraction of some subsequence, we can assumegthat v, € SV 1 as

n — +o00. Sincea,, = 0 and since each functign is increasing, the lower bound

in (30) yields

max{ max (g (c*tg + c* Inm;)),
1<i<k
voy i 20

~ 1
/ @c(cto+cIn M)— ji(dv xdc)) -0
{(von -v=0,c* <c<+00} M

asn — +oo. Take anys > 0. By passing to the limit — +oo in the above
formula, it follows that{l < i < k, vy - v; 2 ¢} = @. Furthermore, since
{von v 20,c* <c <400} D{ve -V 2 g, c* < c < +00} for n large enough,

~ o1
/ @c(cto+cInM)— fi(dv x dc) = 0.
{Voo'v2E, c*<c<+o00} M

Henceu({ve - v 2 ¢, ¢* < ¢ < +00}) = 0. Eventually, we have ({c* < ¢ <
400, V- Ve = &} U {o0}) = 0 for all ¢ and we have then reached a contradiction.
Thereforeg(¢) > 0 for all timer € R.

Sinceg(0) > 0, the maximum principle implies that(x, ) = n(¢) for all
x € RN andt > 0, where O< 5(t) < 1 is the solution of the Cauchy problem
n' = f(n) with n(0) = g(0). Sincen(t) — 1 ast — +oo, we conclude that
g®) =infgyu,(-, 1) - Llast - 4oo.

3.5. Asymptotic behavior of u, ast — —oo

In this section, we prove the formulas (11), (12) about the asymptotic behavior
of the functionu,, ast — —oo.

Proof of (11). Assume that = 1 and choosg € {1, - - - , k}. From (30), it follows
that

@+ (x - vig + cF Inmig) < uy(—c*tvig + x, 1)
< 9o (x - v + cFInmyg) +v(x, 1) + wix, 1) + z(2),

where

v(x,t) = Zgoc*(c*(l— Vig - Vi)t + x - vi + c*Inmy),
i#io

* Y 1 -
w(x,t) 2/ e)\c(—c Vig VOt +Aex-vticcin M = fi(dv x dc),
SN=1x(c*,+00) M

0 % 9
2() = M) @i,
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Sincev;, - v; < 1 for eachi # ip, the functionv(x, ) goes to O locally inx as
t — —oo.As far as the functiow is concerned, we havec*v;,-v+c¢ > 0 for each
(v, ¢) € SN1 x (¢*, +00). Furthermore, for each compact sub&edf R", there
exists aconstari(K) such 'Ehatforalk e K andforall(v, ¢) € S¥=1x(c*, +00),
we have 0< erexvtieclM < (k) (becausel. and A.c are bounded uni-
formly with respect tac). Hence, from Lebesgue’s dominated convergence the-
orem,w(x,t) — 0 ast — —oo, locally in x. Lastly,z(t) — 0 astr - —oo,
uniformly in x.

We finally get thaiz,, (—c*tvy +x, 1) = @e(x - vig +c* Inm;y) locally in x as
t — —oo. Furthermore, this convergence also holds in the spage€R?) since
the first, second and third derivativesuf with respect tor are globally bounded.

If vissuchthab # v; forall 1 < i < k, then the same reasoning implies that
uy(—c*tv+x,1) - 0ast » —ooin C%C(Ri\’). O

Proof of (12). Consider first the cas¥ > 0. Let us set

-1
ay = (/ e_llllyzdy> = (47)~N/?,
RN

Take a continuous functioth (z) with compact support, included iB(0, ¢*). Let
0 £ a < ¢* be such that the support ¢f is included in the open baB(0, a). Let
t, be a sequence such that> —oo. We aim here to prove that

N 1, %2
Up(x, 1) ::/ any/ltnl wp(=zty + x, 1y + 1)e” 4 2l ¥ (2) dz
B(0,c*)

’ 1 1
_ e(f (0)+%|z|2)(t+ln M)+%X~Z ¥ (2) E(D*/’:L(dZ) (32)

In—>—=0 JB(0,c*)

in CL_(R,) andC2_(RY), under the convention that the right-hand side is zero if
M =0.

By additivity, it is sufficient to consider the case wherds nonnegative.

From standard parabolic regularity theory and since the fungtianof class
C?, the functionu,, is at least of clas€? with respect ta and of classC?® with
respect tor. As a consequence, the functidiis(x, r) are of classC? with respect
to r and of clas<C® with respect tox. In order to show the above formula (32), it
is enough to prove that the functiob (x, ) converge pointwise to

/ 1,2 Y 1 1 ~
/ €(f O)+zlzl )(H_InMH_QX'ZK”(Z)_ACD*M(CZZ)
B(0,c*) M

asr, — —oo and thatU,, and their second-order (or third-order) derivatives with
respect ta (resp.,x) are locally bounded.
First, from (30) and sincé is nonnegative,

Upn(x, 1) Z w)(x,1) (33)
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where

N ~ 1
w;l(x, t) = / an+/ |t (/ oc((c—z-Vty+ct+x-v+cln M)Tdu)
B(0,a) X M
2
X e‘%(c —lz1®)t, ¥ (2) dz.
Let us now prove that
' 1 1 1
wy, (x, 1) — ' O+GRAHINID 502 3y (2) = @, [ (dz)
B(0,c*) M

ast, — —oo, pointwise in(x, ¢t). From Fubini’s theorem, we have
/ N 9
w,(x, 1) = | an+/ It ec((c—z -Vt +ct+x-v+clnM)
X JB(0,a)
1, %2 1 N
x e alc —1z)ty V() dz —dj
M
N .
— /: / aN\/m g(v, C, 7, by, X, t)e)\c((c—z-u)tn+ct+x-v+cIn M)
X J B(0,a)
1, %2 1 N
x e~ a1z V(z) dz —dp,
M

where

ge((c—z- Wty +ct+x-v+cinM)
ere((c=z Wty +et+x-vtcln M)

Oég(])’C’Zatﬂ’-x’t): gl

(the inequalityg < 1 follows from Lemma 3.3). Because of (3), we have

C*Z |Z|2 |Z|2 1
)\cc_)\cZ'V_T‘i‘TZkg_kc‘Z’V‘i‘T = Z|2)LCV_Z|2
(notice that these equalities are also true in the Gase = oo with the convention
that, in this case). = 0 andi.c = f’(0)). As a consequence, it follows that

-1

w), (x, 1) =/ h(v, ¢, ty, x, f)ehectTrerviice M = g (34)
X M

where

N 1 12
h(v,c,tn,x,r>=f 0 any/Itl g, ¢, 2, 1, x, 1)ed? =2y (2) dz.
B(0,a)

For eagh compact subsktof RV x R, there exists a consta6i K ) such that
Y(v,c)e X, Vix,1) €K,

o 1
ekcct+)»cx-u+}»cc|nM - § C(K).

~

M
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Furthermore, after the change of variables= 2i.v + y|ta|~Y2, we find that
V(x,1) e RV V(v ¢) € X, V1, <0,

_1,,2
lh(v, ¢, ty, x, )] < ||¢||oofRN aye Pl dy = |yl

because of the definition ofy and becausg| is bounded by 1. Putting together
the above estimates into (34), itis found thak, 1) € K,V (v,¢) € X, V1, <0,

) nar 1
BV, €.ty e Her Rt e oo COK).

Let us now prove that (x,7) € RN x R,V (v, ¢) € X,
h(v, c, ty, x,t) — W (2A.v) @St, — —00. (35)

Take(x,?) € R¥N x Rand(v, ¢) € X. With the change of variables= 2i.v +
y|t.| Y2 and from of the definition oy,

h(v,c,ty, x,t) — Y (2Ahcv)

11,2
= / ay g, c, 20V + y|tn|—l/2’ tn, X, t)e” 47!
VIt[(B(0,a)—2hcv)

1,2
X Y@y + ¥l %) dy‘fRN ay "3y 2rev) dy

—32
= N kv,c,t,,,x,t(y)e 4 dy7
RN
where
kv,c 2,0 (¥) = <XM(B(O,a)—2AL-v) () g, ¢, 2hcv + Ytnl ™2, b, x, 1)
X Y@ + 3|02 — Y @2ev))

and where, for any subsgtof R", x4 denotes the characteristic function of the set
A. The functiony — k, ¢, x.:(y) is globally bounded by [P/ ||, independently
of #, (remember thalg| is bounded by 1).

Two cases may now occuriv € B(0, a) or 2..v € B(0, a).

If 2x.v ¢ B(0,a), theny(2r,v) = 0 and we immediately observe that
ky.c.i,x0(y) — 0 ast, — —oo for eachy € RY sincey (2a.v + ylt,|7Y?) —
¥ (2rev) = 0 ast, —» —o0.

On the other hand, if Zv € B(0,a), then x /;10,0)-21,0)(Y) — 1 as
t, — —oo for eachy € RY (remember thaB(0, a) is open). Furthermore, for
eachy e RV,

71/23 tnv -xv t)

g, ¢, 2hcv + yltyl
V¢ ((c — hev + Y|tal Y2 W)ty +ct +x v +cln M)
_ . -1
ekv((cf(Z)\Cery\t,, [=1/2)- )ty +ct+x-v+cln M)
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ast, — —oo because of (4) and because 2., > 0 (notice that the convergence
g, ¢, 2hev + yltu|~Y2, 1, x,t) — 1 holds both in the case), ¢) # oo and in
the casgv, ¢) = o0). Eventually, we conclude that, . ;, .:(y) — 0 ast, —
—oo for eachy € R¥. The claim (35) follows then from Lesbesgue’s dominated
convergence theorem.

As a consequence, in each caggew2¢ B(0,a) or 2..v € B(0, a), a second
application of Lesbesgue’s dominated convergence theorem yields

N 1 .
w;l (.X, t) SN ekrcl+)ncx-v+)ucc In MI//(Z)\,CV) - d,bL
f M

n—>—00 X

/ / ~ 1
= / o OFADHhexv+(f (0+22) |nM1//(2)LCU)_A dj
X M
('O +31212) 4N M)+ 3x2 1.
= ¢ 4 27 (2) = Dyt (d2)
B(0,c*) M

by definition of the mapb. Therefore, remembering (33), it is found that
liminf U, (x.1) = liminf an /Il
thy—>—00 ty— —00 B(0,c*)

1, %2 2
e 3 =l )I"W(Z) dz

% 1,2 Y 1 1 ~
‘/ S O+ EHN D502y () Z o[ (d7).
B(O,c%) M

u,u(_Ztn + X, + t)

1\¥4

Similarly, by using the upper bound in (30), we claim that

. N 7;(0*27|7‘2)l
lim sup any/|tal uu(—=zty +x,t, +1)e” 4 il (z) dz
t,—>—00 J B(0,c*)

= / ORI by () 0, (d2). (36)
B(0,c*) M
Indeed, we have/, (x, ) < v)/(x, ) + w) (x, t) with
N
e = [ axinl" Y (ot =z
B(0,a) 1<i<k

1, %2 2
+c*t+x-v; —i—c*lnmi))e_?‘(c —1290 y(2) dz
N nl .
w;l/(x’ t) — f ay |tn| (/: e)nc((c—z.v)tn-&-ct-l—x-v-i-c|nM)_Adu)
B(0,a) X M

X e*%(t‘*zfldz)tn V(2) dz.

Let us first prove that), (x, 1) — 0 ast, — —oo. Choose a compact subgétof
RN xR. Because*—z-v; = ¢*—a > Oforallz € B(0,a) andforall 1< i <k,
and because.«(s) ~ |s|e*™* ass — —oo, it follows that there exists a constant
C = C(K) and a real numbef such that, for allx, r) € K and for allz, < —T,
v1<i <k,

Qe ((c* —z- vty +c*t+x-v; +cFInmy) £ C(t| + 1)t €z,
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Sincer*c* = (A2 + f(0) = (W92 + #, we have

2 2 2
c lz|
)»*C*—)»*Z'Vi_T_"T:(k*)z—)»*Z'Vi"‘f'T

= F12%y — 2P = L |ty — 2

>%(c*—a)2>0

forall z € B(0,a) and for all 1< i < k. Hence, even if it means changing the
constaniC, we get

N *
V. ek, Vi, £ T, W01 S CVltl (ta] + 1)ed €=

Hence v, (x, t) — 0 ast, — —oo, uniformly for (x,7) € K.
On the other hand, as far) (x, ¢), we have

/ V) 1
w(x, 1) — S OFFED NI+ 5ty (1) 2 @, fi(dz) asty — —oc.
B(0,c*) M

(Here, unlike the case ab) (x, 7), we do not have to use the functigtiv, c, z,
ta, X, 1).) Hence, we get (36).
As a conclusion,

Un(x, 1) = O FEPHn D ey o) Lo nan
B(0,c*) M

ast, — —oo, for each(x, r) € RV x R.

Furthermore, from the arguments above, the functigns:, r) are uniformly
(with respect ta,,) bounded in each compact subgebf RV x R. On the other
hand, since the function, is a positive entire and globally bounded solution
of (1), it follows from standard parabolic estimates and Harnack inequality that
there exists a consta@tsuch that, for allx, r) € RN x R, we have]|Vu, (x, )|,

[ Qg i (5 O 1@ ) xix o (x5 1) < Cu(x, t+1). As aconsequence, the derivatives
of the functionsU, (at least up to the second ordersimnd the third order ix)
are locally bounded irix, ¢), uniformly with respect ta,. This implies that the
convergence

N 1,%2_ 1,2
Uy(x,1t) = / any/ |l uu(_ztn +x, 6+ l‘)e_él(c I )I"lﬂ(z) dz
B(0.c%)

’ 1 7 1 1 A~
R O+ b2y () 0,4 (d2)
B(O,c*) M

actually takes place iGL (R,) andCZ . (RY).

Consider now the cas® = 0. Under the same notation as above, the term
w) (x, t) disappears and we haveDU, (x, ) < v)/(x,t), whenceU, (x, 1) — 0
in T asn — +o0.

This completes the proof of (32), which gives (12)z



Travelling Fronts and Entire Solutions of the Fisher-KPP Equatid@in 121

From (11), (12), we deduce the following

Lemma 3.5. The map u — u,, isone-to-one.

Proof. Consider two measures andu in M and assume that,, = u,,. From
(12), it follows that they;'s and them;'s are identical foru, andug, that is to say,
thatu] = 3.

Formula (12) especially implies that eithéf; = M>, or bothM; and M are
positive. In the first case, thgiy = i = 0 and, eventuallyt; = u2. Consider
now the case where botif; and M, are positive. Formula (12) applied to= 0
ands = — In M1 gives

1
M

/ Y (2) Py ft1(dz)
B(0,c*)

O+ 220N FTa—in A 1
:/ O+ 3B Ity oy L g
B(0.c*) Mz

for each functionyy € C.(B(0,c*)). Take a sequence of functiong, ¢
C.(B(0, ¢*)) such that 0< v, < 1 andvy,, = 1in B(0, c* — 1/n), and pass
to the limitn — +o0. It follows that

1 . 10V L1512 (I Kol K11y L .
- 0B = [ S OHE 20
My B(0,c*) Mo

By definition of M1 and of the mag, the left-hand side is equal to 1. Applying the
mean value theorem to the right-hand side, givesd'/ ©+3lz02n z—In411) fo
somezg such thatizo| < c¢*. This yieldsM; = M». From (12), we conclude that
®, 1 = Dyjio 0N B(O, ¢*), whenceli, = i on X from the definition of the map
®. Eventually, we getey = up. 0O

Before ending this section, let us make more precise the behavigy(ef 1)

whent — —oo, locally inx € R¥. This corresponds to the case= 0 in (12). We
claim that

’ o0 , ~
wy (x, ty + e O %ef (0)(¢+In 4T) 37)

in the sense df for each sequenag — —oo (under the convention that the right-
hand side is zero ilf = 0). Let us first consider the cagé > 0. The inequalities
(30) yield

A~ X0 / !
£ty + 1 +In i1 rom < Uy (x, ty + 1)) O (38)
M

o0 - ~
Sv)(x, 1) +wy, (x, 1) + LA)@/‘ O (t+In M)
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where

v (x, 1) = Z Qe (x - Vi + ¢ty + 4 cFInmy)e O
1<i<k

w;,”(x, 1) = / e()\rc—f’(O))ln+)\Cct+)ucx~v+)x(cInA;I_]A' ;l(dv x dC).
SN=Lx (c*,+00) M

Sinceé(s) ~ ¢/'©® ass — —oo, the left-hand side of (38) goes to
%ef/(o)(t*'””’) ast, — —oo. Let us now investigate the ternf’(x, r) of the

right-hand side. LeK be a compact subset B x R. Sincegp.+ (s) ~ Is|e*™s as
s — —o0, there exists a positive constafifK ) and a reall’ such that

V) €K, Vi, £ =T, 0Z0”"(x, 1) £ CK)(|ty] + De? <=/ Oin,

Becausé.*c* — f/(0) = A*2 = £/(0) > 0, wefindthav (x, 1) — Oas, — —oo
locally in (x, t).

As far as the termw/” (x, t) is concerned, since.c — f/(0) = A2 > 0 for each
¢ € (¢*, +00), we conclude from Lebesgue’s dominated convergence theorem that
w)'(x,t) — 0 ast, — —oolocally in (x, t).

Eventually,

Uy (x, by 4 1)e = O L?o)ef’(O)(anM)

locally in (x, t) ast, — —oo. On the other hand, since
”V”u(x» D, |(”M)x,-x]- (x, D], |(”p.)xixjxk(xa 3l g C”u(x» t+1)

for some constar@ and for all(x, r) € RY x R, the functiongx, 1) uy(x, ty +
e~ O and their derivatives im (or in x) up to the second order (resp., third
order) are locally bounded {i, ¢), uniformly with respect te, . We finally conclude
thatu,, (x, t, + 1)e= /' On — %ef'(o)(’“” M) ast, — —oo in the sense of the
topology 7.

If M =0, thenu(oo) = 0, the termw,” (x, t) disappears and the convergence
wy (x, 1y + 1)e= 'O — 0in T follows.

Remark 3.6. For each entire solutianof (1), maX, < u(x,t) — 0ast — —oo

for eachc e [0, ¢*[ (see Lemma 4.1 in Section 4) and (12) gives the asymp-
totic behavior of the function € B(0, ¢*) — u,(zt,t) ast — —oo, for each
entire solution of (1) of the type, with u € M. Similarly, we know that
miny <, u(x,t) — 1 ast — +oo for eachc e [0, ¢*[. We could try to de-

fine more precisely the behavior of the functiore B(0, c¢*) — 1 — u,(zt,1)
whens — +o0. But that seems intricate because of the lack of a suitable upper
bound ofu,, for large time.
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3.6. Multiplication of u by positive constants

The puropose of this section is to prove property (iii) in Theorem 1.2. Take a
measure. € M and writeu as

n= Z mid ;v + L,
1<i<k

wherek is a nonnegative integer ang = 0.

Choose any positive real number The measure . belongs toM. By def-
inition, g, (x,t) = lim,- 4o U,(x,t) whereU, is the solution of the Cauchy
problem(U,); = AU, + f(U,),t > —n, x € R¥, with initial condition at time
t=-n

U,(x,—n) = max( max (@« (x - v; — c*n + c* In(am;))),
1<i<k

/ @e(x v —cn+cIn@M)) 1A d(aﬂ))
% M

o
=Up—Ina(x, —n +INa),

whereu,,_n« is defined as in (26) by replaced by: — In «. By uniqueness of the
above Cauchy problem, it follows that, (x, 1) = u,_in«(x, t + Ina) for anyn
andr > —n, x e RV,

As shownin Section 3.3, itis true that the sequeng€ex, 1)), is nondecreasing
for any nondecreasing sequence of positive numietken’ being not necessarily
integers. Thereforey, _inq (x, r+INa) — u,(x, t+Ina) asn — +oc. Eventually,
thatyieldsuy,, (x, 1) = u,(x, t+Ina) forall (x, 1) € RN x R, which is the desired
result.

In addition, as a consequence of the general asymptotic properties (15) and
(16) that are satisfied by any solutierof (1), itimmediately follows that, for each
measurew € M, uy,, — 1 in the sense of the topology, asa« — +o0, and
Ugy — 0asa — 0t.

3.7. Continuity with respect to u

Let 4" be a sequence ot such thap” converges tq € M in the sense that;

(@) [; fdp™ — [ fdj for any continuous functiorf on X such thatf = 0 on
SN=1 % (¢*, ) for somec > c*,

(b) M" = pu"(X) > M = p(X),

(€) u"(00) - u(oco) asn — +oo.
The functionsu,» (x, t) are entire solutions of (1). From standard parabolic

estimates, they converge in the sense of the topalogyp to extraction of some
subsequence, to a solutidf(x, r) of (1). We then have to prove thét = u,,.
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The formula (30) applied to,,, yields

.1
/ @e(x-v+ct+clnM”? )M( )
SN=1x(c*,400) M Mn
<y (x, 1) (39)

/ ekc(x-v+ct+c|nM’l)Ai dii" + M"foo)ef’(O)(erlnM")
SN=1x (c*,400)

Mn Mn

A

forall (x, 1) € RN x R. From assumptions (b) and (c), it immediately follows that

E(t +InM")

— &t +InM)

asn — +o00.

W' (00) ~ . H(00)
Mn M

Choose now any, A > 0 such that* + ¢ < A and lety (¢) be a continuous
function defined oiR and suchthat® x < 1,x(c) =1ifc*+e < ¢ < Aand
x()=0ifc & [c* + /2, 2A]. We have

i 1 ~n
cx-v+ct+cinMY—dp
SN=1x(c*,400) Mn

A 1
> 1, :=/ x(@pe(x-v+ct+cinM"Y—di".
SN=1x(c*,+00) Mn

The term ), also reads,| = Il, + Il ,, where

Ao 1
I, = / X(c)(goc(x-v—}—ct—i—clnM" -
SN=1x(c*,+00) Mn
~ 1
—@c(x-v+ct+cln M)7> dp”
M
~ 1
", = / x(@@e(x-v+ct+cinM)—dp".
SN=1x (c*,+00) M
From the assumption (a) and from the choicey of

.1
in,, — x(@) gc(x-v+ct+cinM) —di asn — +oo.
SN=Lx (c*,+00) M

On the other hand,

| < / (
SN=1x(c*,400)

Since the functions:, (x,1) = ¢.(x - v + ct) are bounded solutions of the
parabolic equation (1), there exists a const&nindependent ofv, ¢) such that
[18,uy.c(x, )] £ K for all (x,t) € RVFL Therefore,cllg.lle < K for all

¢ € (c*, +00). Since the sequendg” (X)) is bounded, we finally conclude that
I, - 0asn — +o0.

1

Mn

L1 i
+ llgl ool In 877 — |nM|ﬁ>x(c)du”.
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Thus,

~ 1
l, — X(c)wc(x~v+ct+c|nM)Ed,&

n=>+00 JgN-1x (c*,+00)

L1
2/ @e(x - v+ct+clnM)=djf.
SN=1x(c*+e,A) M

Passing to the limits — 0 andA — +oo eventually implies, thanks to the
monotone convergence theorem, that

. P A
liminf oc(x-v+ct+clnMYY—dn
SN=1x (c*,+00) Mn

n——+00
~ 1
> @e(x-v+ct+cIinM)—df.
SN=1x (c*,+00) M
Similarly, we can prove that

lim sup e)uc(x‘v+cl+c|n M")i d/ln
n—+00 JSN=1x (c*,+00) M"

oty Lo
§/ e)uc(x-v+ct+c|nM)_Ad’u.
SN=Lx (c*,+00) M

Putting all the above results into (39) leads to:

~ 1 ~ o0
/ (pc(x~v+ct—|—c|nM)—Ad,a—|—$(t+|nM)'u(A )
SN=Lx (c*,+00) M M
SUx, 1)
S/ ek(-(x-v+ct+cln1t;1)idll+ef/(0)(t+ln1l;1)/’L(oo)
T JSN=Ly (¥, 4 00) M M

for all (x,r) € R¥N*1 In other words, for allx, 7) € RY x R,
~ 1 Ae(xv+ct+cln M) 1.
pe(x-v+ct+cecinM)—da SU(x,t) S | e —dji.
X M X M
(40)
Remember that, by definition, the functian is the pointwise limit of the

functionsu,, (x, t), which are solutions of the Cauchy probleds, = Au, +
f(un)!t > —n,

~ 1
uy(x, —n) = / @e(x-v—cn+clnM)—dp.
X M

From the maximum principle, it follows thenthat(x, r) < U(x, r)forallt =2 —n
andx € RV,
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Let v, be the function defined by, (x,r) = U(x,t) — u,(x,1) = 0. The
function v, satisfiesd;v, = Av, + f(U) — f(u,) < Av, + f'(0)v, for all
t > —n,x € RN, Fixa couple(x, r) e RN+, Forn > |1,

ef/(o)(l"r”) _ ly—x|?
0= vp(x,t) S ——— vn(y, —n)e 4 dy
RN

A (t + n)N

ef/(o)(t-i-n) N
§ —/ (/ (ekc(x-v—cn+c|nM)
«/4n(t+n)N RN VX

~ 1
—¢c(x-v—cn+c|nM))7d;l)
M

7\;'—“2
X e At+n) dy

because of (40). Moreover, from Lemma 3B,V —cn+ein i) _ o, (. y — en 4
cIin M) = Oforall(v, ¢) € X (the casév, ¢) also works because of our conventions
and becausé(s) < e/ @5 for all s € R). We then get

0= 0,0 S [ wn(v. 1, (41)
X
where
o O +n) . .
wn(v’ C) — —Nf (e)\,c(y-v—cl’l-i-c nM) — (Pc(y -v—cn+ Cln M))
Jar(t +n) JRN
ly—x[2

X _Ae_4(1+n) dy

M

On the one hand,

0= w,(v,¢) S Pu(x, 1)

’ 0 N —.
_ O pveentenin L b=l
Nz M |

By definition, the functionp, is a solution of the linear Cauchy probleinp, =
A¢n + 0V, fort > —n and¢, (x, —n) = i relrv—entein i) By ynique-
ness of this Cauchy problem and sinte = kf + f/(0), we conclude that
Gulx, 1) = %ekc(x~v+ct+clnM). Therefore, Og wy (v, ¢) § ﬁ];e)uc(x-v—i-ct+c|nM)

and this function(v, ¢) — i rewvterteM M) is sych that

/ _];e)\é.(x-v+ct+c|nll;[) dﬂ < 400.
X
Choose now any couple, ¢) € S¥~1 x (¢*, +00). By making the change of

variablesy = x + 21.(t + n)v + /4@ + n)z and by using (3), a straightforward
calculation gives

1 . ) ~
Wy (v, €) = — ehelevertein i / 7 N2 (1 — i, (2)) dz
M RN
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where

e (2) = o hebevterteln M)+ £ (0) (t41n) = A2 (1 4+1n)— Ao/ ATF1)Z-v

X Qe (x-v+2kc(t+n)+\/4(t+n)z~v—cn+c|nl\A4).

Lemma 3.3 implies that & ,(z) < 1andy,(z) — 1forallz € RY asn — +oo0.
Therefore, Lebesgue’s dominated convergence theorem implies,thatc) — 0
asn — +o00.

Similarly, we can prove thaty,(cc) — 0 asrn — +oo. Eventually, an-
other application of Lebesgue’s dominated convergence theorem in (41) leads to
vp(x,t) > 0asn — +o0.

As a conclusionlJ (x,t) — u,(x,t) — 0 asn — +oo, whenceU (x,t) =
u,(x,t). Since the coupléx, 1) € RN+1 s arbitrary, we conclude thdf = Uy.
Lastly, since the limitz,, is uniquely determined by the sequerieé€) and does not
depend on its subsequences, it follows that the whole sequepoeconverges to
u, in the sense of the topolody asn — +oo.

3.8. Case where [1 is absolutely continuous with respect to dv x dc

This section is devoted to the proof of the non-convergence property (14) in the
case of a measure € M such thatu* = 0 andj is absolutely continuous with
respect to the Lebesgue measdirex dc.

The formula (14) is actually a consequence of more general results that we state
below. Consider a measuree M such thaiu* = 0 and

wd{(v,¢) € SN 1 x (¢*, +00), coug- v =c}) =0

for somecg > ¢* andvg € SV-1. Note that the seE = {(v,¢) € SVN1 x
(c*, +00), covp - v = ¢} can also be written a8 = S(covo/2, co/2) \ B(0, c*)
whereS(covo/2, co/2) is the sphere centered at the paigitg/2 with radiusco/2.
Then we claim that

VheR, wuyu(—cotvo+x,t) 7 @olx -vo+h) ast — Foo. (42)

Postponing the proof, we see that property (14) immediately follows from (42).
Indeed, if a measure € M is such thap* = 0 andi <« dv x dc, thenu(E) =0
for all (co, vo).

Let us now turn to the

Proof of (42). Choose a measuree M suchthap ™ = 0and suchthat({(v, ¢) €

SN=1 x (¢*, +00), covg - v = ¢}) = 0 for somecg > ¢* andvg € SV 1.

Let us first study the limit — —oo. Assume that there exists a real number
ho € R such that

uu(—cot vo+ x,1) = @co(x - vo + ho) ast - —oo (43)

for eachx e RY (this implies that the convergence actually takes place in
CE(RY))
Ioc( x /)
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Letus first consider the case whgresV —1 x (¢*, +00)) = 0 (which implies
thatM = p(oo) > 0, sincen* = 0). From (30), we have

o0 ’ Y
uy(—cot vo+x,1) < LA) el O+ M)

Passing to the limit — —oo leads top,, (x - vo + ho) < 0 for allx € RY. Thatis
clearly impossible.

We now have to consider the case whe(§" 1 x (¢*, +00)) > 0 (thatimplies
in particular that > 0). Let F be the set

F={,c)e SV 1x(c* +00), ¢ < covp - v}.

The setF can also be written agF = B(covo/2,co/2) \ B(O, c*) where
B(covo/2, co/2) is the open ball centered at the pointg/2 with radiuscg/2.
Suppose tha(F) > 0. Take now any point € RY. From the lower bound of
(30), it follows that

~\ 1
uy(—cotvo+x,1) 2 / e ((c —covg-V)t+x-v+cln M) —dji.
F M
For any cogple{u, ¢)in F,we haver — covg - v < 0, whencep. ((¢c — covo - v)t +

x-v+clnM) — 1ast - —oo. Hence, from Lebesgue’s dominated convergence
theorem, the right-hand side of the previous inequality goes to

ast — —oo. Thereforeg.,(x - vo + ho) = B > 0 for eachx € RN, whereg is
independent of. This is impossible. We deduce then that

w(F) =0.

From the upper bound of (30), and sincéE) = w(F) = 0, it follows that

uy(—cot vo+x,1) S wx, 1) +z(t), (44)
where
w(x l‘):/ ekl,(c—covo-v)t+kcx-v+kccInMi d[l
G M
2(t) = My O+
and

G ={(wc)e SN x (c* +0), ¢ > covo - V).

Choose any € R". For eachv, ¢) € G, we haver — covp - v > 0. Furthermore,
0< A £¢*/2and 0 Ace = A2 + £/(0) £ 2f7(0). Hence, for <0,

e)hc(c—covov)t—i-)ncx-v—i-kcc In M < ec*|x|/2+2f’(0)\ In M|
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and
phrele—covon)ithexvtieeNM 0 ger —s —o0.

We conclude from Lebesgue’s dominated convergence theoreruhat) — 0
ast — —oo for eachx € RV. The passage to the limit— —oc in (44) leads to
@eo(x - vo + o) < Oforallx € RV,

Eventually, the assumption (43) is impossible and therefore we have the for-
mula (42) whenr — —oo.

Let us now turn to the proof of (42) for the limit— +oo. We just outline it
because it is very similar to the previous case —oo. Assume then that

u, (—cotvg + x,1) = @qo(x - vo + hg) ast — +0oo

for somehg € R. From (30),

max(f @e(x v+ (c—covo-v)t+cln M)
SN=1x (c*,+00)

« L i, £+ M)”“f“)
M M

< uy(—covot + x, 1)

1
§ / e)xc(x-v+(c—covo~v)t+c|nM) TdM
SN=1x (c*,+00) M

4 OO rou+n i,

Assume first that.(co) > 0. Then,M > 0, and, passing to the limit— oo
yields g, (x - vo + ho) = % (> 0) for all x € RV. That is impossible. Hence,
(o) = 0.

Second, as was shown aboygG) = 0, otherwisep.,(x - vo + ho) = B’ :=
#G) - oforallx € RV,

Third, it follows then that

uu(x — covot, 1) é / ek(.(x~v+(c—covo-u)t+c|nM)E]: dﬂ,
F

The limitt — 400 yields ¢y (x - vo + ho) < O forallx € R, which is clearly
impossible. Hence, the claim (42) also holds whes +oco. O

Letus now prove an additional property that also shows that iiigabsolutely
continuous with respect to the Lebesgue meaduredc, thenu,, does not behave,
along the raysr with |z| < ¢* andt — —oo, inthe same way as a solution obtained
from the mixing of a finite number of travelling waves. More precisely, i M
is such thafx is absolutely continuous with respectdo x dc, then

1, %2 2
vzeRY, 0<|z] <, uy(—zt,t) = 0(e3 €71 a5 5 0. (45)
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Note that, from (10), for each function in Theorem 1.1, there exists €
B(0, ¢*)\{0} such thau(—z1, 1) # o(ed©?=1zP1y agt - oo,

Let u € M be such thap* = 0 anddji = g(v, ¢)dv x dc form someL?!
functiong on SN~1 x (¢*, +00). Choosez € B(0, ¢*)\{0}. From (30), it follows
that 1..%\2 2

wp(—zt, e~ 4O <y @) 4 w(n) + 2(0),

where

v(0) = Y ge((c* =z )+t Inmy),

1<i<k

w(t) = / e[AC(fz‘”“)*%(c*)Z*%|Z|2]’“C“'”M—% g(v,¢)dv x dc,
SN=1x(c*,+00) M

() = MO s @it

As was shown in the proof of (10)(r) — 0 ast — —o0, since|z| < ¢*. On the
other hand, the term(z) clearly goes to 0 as— —oo. Finally, let us observe that,
because of (3),

k(=2 v +) = 32+ Fl2l? = 22 —hez - v + 12l
=1l2nv—z2 20

Furthermore, the Lebesgue measure of thé(set) € SV 1 x (¢*, +00), 20V =
z} (which is a single point) is equal to 0. Since the functibre’<¢'" ™ s uniformly

M
bounded, Lebesgue’s dominated convergence theorem implies that> 0 as
t — —oo. That completes the proof of (45).

3.9. The set {u,,} contains the solutions obtained from the mixing of a finite
number of travelling waves

This section is devoted to proving that the entire solutions of (1) that are obtained
from the mixing of afinite number of travelling waves (see Theorem 1.1) are actually
of the typex,, . In other words, the set of the entire solutions of the typeontains
the solutions obtained from the mixing of a finite number of travelling waves.

In order to do this, lep be a positive integes > 1 and, foreach =1, --- , p,
choose(v;, c;, hi) € S¥71 x [¢*, +oo] x R. Assume that; # c; if v; = v; and
assume that there is at most one indsxch that; = +o0o. We want to prove that
the entire solutiom(x, #) of (1) constructed in Theorem 1.1 is of the typg for
someu € M.

As in Section 2, let us consider the case whiere= #{i, ¢; = ¢*} =2 1 and
#{i, ¢; = +oo} = 1 (the other cases being easier). Up to a renumbering, we can
assume that

ca=-=c=c"Sc41= - Scp1 < +00 =¢p.
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The functionu(x, ¢) is the limit of the solutiond/,, (x, t) of the Cauchy problems

WUy = AU, + f(Uy), x¢€ RN, t> —n,

whereU,, (x, —n) is a maximum of travelling waves (with finite or infinite speeds):
U,(x, —n) = max( max (g (x - v;i —cin+ h;)), E(—n + hp)> .
1<i<p-1

Notice that 0< U, (x, —n) < 1.
Let us now consider the following measwe= M, which is the sum of a finite
number of Dirac distributions:

k p—1
w= 80+ D dida) + apdoos
i=1 i=k+1

where they; are defined as follows: first, elementary arguments give the existence
of a unique positive real numbeéf such that

p—1 A )
Z o (e N1y |, f'©Ohy—in i) _ 7.
i=k+1
if we then sety; = Me*i %= - o foreachi = k +1,---, p — 1 and

— Mel'@Up=I 1) e have, by definitionE?., , ;a; = M.
The functionu , (x, ) is the limit of the solutlonan(x t) of the Cauchy prob-
lems

(up) = Auy + f(uy), x € ]RN, t>—n

where, owing to the definition given in (26), (x, —n) is the maximum of some
travelling waves with the minimal speed and of an average of travelling waves
with speeds greater thafi:

un (e, —n) = max( max(ges (x - v — *n + i),
1<i<k

Z @e; (x - v; — ¢in + ¢ In Mete i In M)

+ &(—n + In M)l @ p=In M)).

We have 0< u, (x, —n) < 1forallx € RV,

The key point consists in proving that, by considering these above two sequences
of Cauchy problems with different initial data, we actually get the same function
at the limit. This is done in the following

Lemma3.7. For all (x,1) € RY x R, u(x, 1) = u,(x, ).
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Postponing the proof of this lemma, we see that the manifold of the solutions
of (1) of the typeu,, contains all the solutions constructed in Theorem 1.1. From
Theorem 1.1, it follows that the manifold, } then contains the finite-dimensional
manifold of the planar travelling waves, the maniféid— &(r + i), h € R} and
the finite-dimensional manifolds of the planar solutions that have been constructed
in [16].

Before doing the proof of Lemma 3.7, we state an auxiliary result. In what
follows, we call (S(#)),-0 the semi-group generated by the Laplace operator in
RY. In particular, for each bounded measurable funcgam RY and for each
t > 0andx € RV,

1 ly—x?
S -9kx) = / gy)e & dy.
Vazi" Jry

Lemma3.8. (a) For each y > ¢* and (x, 1) € RY x R,
Zn(x, 1) = e/ On (S(t +n) - 1|4|§y,1) x) -0

asn — +oo (witht +n > 0), where 1,>,,,(y) = 1if [y =2 ynand O
otherwise.
(b) For each y > ¢*, 7 < 0and x € RV, theintegral

T %
hy (x,7) :=/ el OIS —5) - 1y 2y ) (x) ds
—00
converges.

Proof. (a) Forn > [¢],

el On T

O § Zn(x, t) é —N/ e 4u+tn) dy
VAr(t +n)" Jlyizyn

The change of variables= ynz + x leads to

yNn" y2nlz|?

N/ MO~ gy
JAr(t +n) Jz+=5121

yn

0= z,(x,1) <

Sincey > ¢* = 2,/f7(0), there existg) > 0 andng € N such that, ifr > ng and
|z 4+ <] =1, then
: rro - 2L
At +n) ~
Therefore, fom = ng, it follows that

—n —nlz|2.

)/NnN

¥ e_""/ e g
Var (t +n)N/? le+57121
N,N
yn

Oé Zn(-xvt) g

< - e nn/ e—|y\2dy
Var (gt +n)N/2 RN

after the change of variablegnnz = y. Thereforez, (x, t) — 0 asn — 4o0.
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(b) Taker < Oandx € RY. Since 0= (S(r —s) - 12,5 (x) < 1foralls < T,
we have only to prove that the integral I,

-1 , 1 ly—x[?
0<| :=/ ") <0>(r—s>—N/ e 9 dy ds,
—00 JaAr(t — ) JIyIZylsl

converges. With the changes of variabjes- |s|z (possible because< 7 < 0)
andt = t — s, it is found that

o _N/2 N "(0)f— It —7)z—x|2
|=/ Art) N2 — 1) / el O =" qz dr
1 lzI12y

00 2
R B e )
1 lzI2y

X ‘(22 .
Inthe above integra};‘i‘ T < 1. Furthermore, sinc& = 2,/ f/(0) andy > c*,
there exist$ > 0 such thatf’(0) — %1|Z|2 < —§ as soon ag| = y. Hence,

o0
oI < (/ 4ty N2 — I)Ne‘”dt> X </ e%z'x+%flzzdz) .
1 RN

The integral irr converges because> 0. So does the integral in because < 0.
That completes the proof of Lemma 3.8(b)Xd

Note that since O (S(z —s) - 1>, s;)(x) = 1forallz e R, s < r and

x € R, it follows that the integrak,, (x, t) converges for al(x, 7) € RY x R.
Let us now turn to the

Proof of Lemma 3.7. Remember the definitions of the sequences of the functions
u, and U, at the beginning of this subsection. SinceOu, < U, < 1 and
f'(s) £ f(0) (> 0) on[O0, 1], it follows that, for eachn, the functionw, =

lu, — U,| satisfies

(wp)r < Awp, + f'Ow,, t>—n, x € RV.
Therefore,
0 < wax, 1) £ /" O (St 4 1) - wy (-, —n))(x).

Choose a coupléx, 1) € RY x R. Lete be an arbitrary positive real number
and lety be such that* < y < cx41 (S ¢; foralli = k+ 1). From Lemma 3.8(a)
and sincdw,| < 2, we have

e O (St 4+ ). (wy(-, —n)1>y))(x) — 0 asn — +oo.
Therefore,

lim supw, (x, 1) < lim supe’ @ (St + n) - (wy (-, =1) L)) <yn)) (x).

n—+oo n——+o00
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Let us now find an upper bound for the functian (y, —n) for |y| < yn.
Owing to the definitions ofi,, (-, —n) andU, (-, —n), we have (for ally € RV),

0= w(y,—n) = ‘maX< max  (@e (y-vi —cin+h)), §(—n+ hp))
k+1<i<p-1
p-1 A
- ( > (v vi —cin 4 i In Myt himein M
i=k+1

+ é:(_n + |n M)ef,(o)(hpfln M)> ‘
Sincey < ¢;foreachi 2 k+1,y-v; —cin — —o0 asn — +o0, uniformly for
ly| < yn. From (2) and (4), we have, farlarge enough and for aly| < yn,

|<Pc~ (y-vi —cin+hj) — e vi—cinthi)| < o phe; (yvi—cin)
1 = ’

|9e; (3 - i — cin + ¢; In M)k Bi=eiln M) _ (rvi—einthi) | < g ghey (vvieim),
|‘§(—n +hy) — e*f/(o)”+f/(0)hp| <e¢ e*f’(o)n7
|&(=n + In Mye! @ p=in M) _ e /'Ot Oy | < g o= On

where the first two inequalities hold fo=k + 1, - - - , p — 1. In what follows, we

setic, (y - vp +cpt +hp) := f'(0)t + f'(0)h, andic, (y - vy +cpt) := f'(O)t
forall r € R. Thus,

0 < lim supw;, (x, t)

n——+00
i £ t-n) 1 et
< lim supe L)l e ay
n—+00 lyl<yn /4 (t + n) (46)
p
+2elimsup Y zh(x. 1),

n——+00 ikl

where

p
Yyl <yn, la(y) = m<a)é (e)»q(Y'Vi*CinJrhi))_ Z el vi—cinthi)
k+1sisp

i=k+1
and
i 1Ot +n) 1 res (yvi—cimy— =2
Zn(x, t) =e —Ne < t A(t+n) dy
lyl<yn /4m(t + n)

Let us first estimate the ternz'ﬁ(x, t). We have

. . of ©+n) . e
g ) S Pl = — /N T T dy.
R

VA (t + n)N



Travelling Fronts and Entire Solutions of the Fisher-KPP Equatid@n 135

As already observed in Section 3.7, and s'uc&,e cire, + f'(0) = 0, theright-hand
side of the above inequality is equal to

¢i (x t) — e)x(,’.(x-v,-+c,-l)
n 9

(inbothcase¢ +1<i < p-—1,i.e.,c <oo,andi = p,i.e.,c; = +0o0).
Letus find an upper bound fordy) forall [y| = yn.Foreach = k+1,---, p
let ©2;, be the set

)Lc,- (y-vi—cin+h;) — max e cj

¢; (y-vj—cjn+h; )}
k+1<j<p

={ivl <yn.e
and, foreaci =k +1,---, pandj # i, let us define
={yeQ, Ine S Ay(y-vj—cin+hj) —he(y-vi —cin+h;) <0},
W ={ye Q;,)\Cj(y v —cin+hj) — A, (y-vi —cin+hi) < Ing}
(with & small enough so that in < 0). Due to the definition of the se®, , we have

<ynl= U n(AYUBY).
{lyl < yn} k+1§i§p#i( n )

As a consequenc¥,|y| < yn,

p
< e (vj—ejnthy) - pra vi—cinthi)+ine
HOI=DY Z(l{yeA’n’}e ’ ey €
i=k+1 ji

and
el O (t+n) ly—x[?

lim sup —— |l,(y)|e” @ dy

n—-+o0 Jiyl<yn JAT@ F )"
< limsup Z Z(anj(x 1)+ b (x, 1))

n—-+00

i=k+1j#i
where
. "(0)(t+ 2
" = M 3 (rvj—cn+hy)— 4 d
S i (%, 1) ij N € Y,
yed] Ar(t + n)
. f'(0)(t+n)
Oib:,l](x,t):/ e—ge)‘cl(yvt Ll‘l+h) 4(t+n) dy
eB! A (t + n)

The change of variables = x + 2(1 + n)A¢;v; + 4t +n) ¢ in ay; (x 1) leads,

after a straightforward calculation, to
all (x. 1) = e WrE ety / ) xN/2,—1el? de.
{(t2+n)g; vi+/At+n) ¢) €Arl}
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But it is found that
[(x + 20+ v +VAG ) 0) € Af{]

Ine
=>|:05n+ ) é()"c‘,'vj_)\'civi)'§§ani|
n ’

JAG T

wherea,, = ()\C_/.Cj —AeCi)n+Ach; _)‘thj — ()»Cj Vi — A Vi) (x +2(t +n)kcj vj).
By assumption(c;, v;) # (cj, v;) as soon as # j. Therefore, for each# j, the
vectori,; vj — A, vi is not zero. Set

)\cj Vi — Ag Vi

el = ———mmmm
|)\'Cj l)j - )"Ci vi'
and complete; into an orthonormal basigy, e, - - - , ey ). By making the change
of variablesy; = ¢;- ¢ (I =1,---, N), we get
0= af (x.1)
< e (”f'x+cjt+h-’)7t_N/2/ e_Z%dZ1
- Ine

{an‘i‘m S Mcj Vj—Ae; Vilz1San}

2 2
X e~ Ttz dzy.
RN—l

Eventually,a,’;j (x,t) - 0asn — +oo.
On the other hand,

. 1) (t+n) i ly—x|2
0<bh](x,0)<¢ f e—Ne*e,- (vi—ein+hi)= gny dy
RN /4m(t +n)
=& e)hz:[- (X'Vi"l‘cif“l‘hi),
as already observed in Section 3.7.
Putting together all the previous estimates leads to
P
0 < limsupwy(x, 1) < ¢ Z (p — k + L)ele xvitcitthi)
n—+o00 imk+1

Sinces > 0 was arbitrary, it follows thatv, (x,7) — 0 asn — +o0. In other
words,u(x, t) = u, (x, t) and the proof of Lemma 3.7 is done

For eachv, ¢, h) € S¥—1 x [¢*, +00] x R, let us set

P,y = pex - v +ct+h) if ¢ < 400,
Pw,eny =+ h) if ¢ = 400,

and let us callf W the set of such functiong, . »), namely, the set of all planar
travelling waves for (1), with finite speed & +00) or infinite speedd = +0).

We can define a law froff W to the setf of all entire solutions of (1) as
follows:
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Definition 3.9. For any integerp > 1 and anyp-uple (v;, ¢;, hj) € (V1 x
[c*, +00] x R])?, we denote b)@fﬂd)(w,ci,h,)(x, t) the function defined by

4 .

D Py (X, ) = lim Uy(x, 1),

i=1 n——+0o
whereU,, is the solution of the Cauchy problem

(Un)t = AUy + f(Uy), t>—-n, x eRY
Uﬂ(xa —l’l) = 12%); d)(l)i,ci,hi)(-x’ _n)

As it was shown in Section 2, the functi@f_;d,.c;.i,) (x, 1) is well defined and
it belongs tcf.

The law @& is commutative and associative. Furthermore, each function
®F_1B(w;.ci.h) (x, 1) is a solution of (1) of the type described in Theorem 1.1. In-
deed, given g-uple (v;, ¢;, h;), there exists a subsétc {1,---, p} such that
(vi,ci) # (vj,cj)fori # j,i, j € I,and such that, foralt € {1,---, p}, there
existsi € I such thai(vg, cx) = (v;, ¢;) andh, < h;. Then, we immediately have

Un (xa —l’l) = rpea}X‘ib(v,-,ci,h,-)(x, —i’l)

Therefore, by definition, the functio®;_,¢ ;. c;.n,)(x, 1) is an entire solution of
the type described in Theorem 1.1.

Conversely, each solution constructed as in Theorem 1.1 is of the type
DL 1D, ;. hy) (x, 1) for somem-uple (v;, ¢;, hi)1<i<m-

Finally, we formulate the following

Conjecture 3.10. The set £ of all entire solutions u of (1), suchthat 0 < u <
1, is the closure, in the sense of the topology 7 of all the solutions of the type
®F_ 1P ci.np (x, 1), when p variesinN* and (v, ¢;, ;) € SV~ x [¢*, +00] x R.

4. Partial uniqueness results

Our goal in this section is to prove Theorem 1.4 and 1.5. First of all, we need a
preliminary lemma, whose result has already been mentionned in Section 1.

4.1. A preliminary lemma
Lemma 4.1. For any solution u(x, t) of (1), wehave: VO < ¢ < ¢*,

im max u(x,t)=0
1= =00 |x|Zc|t|

Iim minu(x,) =1
t—>+400 |x|<Zct
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Proof. Letu(x, ) be a solution of (1). Since is positive, there exists a function

p(x) which is positive in the open ball of radius 1 and centee R", which

vanishes outside this open ball and which is such giaj < u(x, 0) in RV.
Letv(x, t) be the solution of the Cauchy problem

vy = Av + f(v), xeRY, t>0,

(47)
v(x,0) = p(x).

The maximum principle implies then thatx, 1) < u(x, ¢) forallx € RY andr >
0. Since liminf,_.ou=*%N) £ () > 0, the results 0ARONSON & WEINBERGER
(see [2]) imply that, for all O ¢ < ¢*, we have lim_, 1 min, <, v(x, 1) = 1.
The same assertion then holds well for

Fix now aspeed € [0, c*[ and assume that lim spp_ ., max<qj u(x, 1) >
0. There exist then a real > 0 and two sequences, € RY ands, - —oo
such that/x,| < cl|t,| andu(x,,t,) = ¢. By the standard parabolic estimates,
V,u(x, t) is uniformly bounded iRY x R. Hence, there exists a real> 0 such
thatu(x, t,) = ¢/2 for anyx such thafx — x,| < r. Let p(x) be a continuous
nonnegative function such thatd p(x) < ¢/2if |x| < randp(x) =0if |x| = r.
Let v be the solution of the Cauchy problem (47). On the one hand, the maximum
principle implies that(x, 1) < u(x + x,, 1 + ,) for all x € RN ands > 0. In
particular,v(—x,, —t;) < u(0,0) < 1. On the other hand, sincer, — +o0,
|x,| < c|t,| andc < ¢*, the above result of Aronson and Weinberger yields that
v(—x,, —t,) —> 1 as—t, — +oo. This eventually leads to a contradiction and
Lemma 4.1 is proved. O

4.2. Partial uniqueness ( proof of Theorem 1.4)

This section is devoted to the proof of Theorem 1.4. Before entering into the
proof, we first state a few general lemmas.

The following lemma states that an entire solutibof (1) can be approximated
by a suitable sequence of solutions of Cauchy problems.

Lemma4.2. Let U(x, t) be an entire solution of (1) and let y > ¢*. For each
n €N, let U,(x, t) bethe solution of the Cauchy problem

WU = AU, + f(Uy), x€RY, 1> —n,

U(x,—n) if|x| <yn,

Un s = .
(x, =) lO otherwise.

<
Then U, (x,t) — U(x,t) asn — +o0.

Proof. From the maximum principle, & U, (x,t) S U(x,t) < 1foreachh ¢ N
andforallx e RY,r > —n.
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The nonnegative function, (x,7) = U(x, t) — U, (x, t) satisfies

vy = Avy, + f(U) — f(Uy)
< Avy + £/ (O,

becausef’(s) < f/(0) for all s € [0, 1].
Choose now anyx, t) € RN x R. For anyn > ||,

ef/(o)([“‘n) _ ly—x|?
0= vp(x, 1) = ﬁ /N vn(y, —n)e 4 dy
Var(t +n R

ef/(o)(f‘i‘") ly—x|?

= —Nf e Adutn) dy
JaAr(t +n) Jlyl=yn

by definition ofU, (-, —n). In other words,
0 < vy(x, 1) £ 'O (S(r 4 0) - 112,0) ().

From Lemma 3.8(a), it follows that,(x,) — 0 asn — +o0, that is to say,
U,(x,t) > U(x,t). O

The following lemma states that if an entire solution of (1) convergesto 0 in a
conef|x| £ c|t|} whenr — —oo, then it has exponential decay in strict subcones.

Lemma4.3.Let U(x,t) be an entire solution of (1) and assume that
max, <., U(x,t) — 0ast — —oo, for somec > 0. Then, for each y < [0, c[,
there exists ag > 0 such that

Va €[0,a0], max U(x,t)=o(e*") ast - —oo.
x|yt

Proof. Letcandy be asinLemma4.3. Take> 0 (to be chosen later) and assume
that the conclusion does not hold, namely, that there eXists0 and a sequence
1 — —oo such thatl (x,, 1) = e® for some|x,| < y|!|.

SinceU is a positive entire solution of (1), the Harnack inequality yields the
existence of a positive constafig such that

U(x,t +1) = Cose® for all xsuch thatx — x,| < 1.

/

n

Therefore, even if it means changifigwe have, by setting, = ¢, + 1,
U(x,t,) = 8e*™ forall x such thatx — x,| < 1.

Let us fixn > 0 such that; < min(f’(0), %(c — )% andu > 0 such that
fu) = (f'(0) — n)u for all u € [0, u]. There exists then a real numbEr< 0
such that

VIEST, Vx| Sclt], 02U, t) S .
Let v be the function defined by

vix,t) =Ul(x, t)e_(f/(o)_”)t.
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It satisfies O< v(x, 1) < e~ ©@-1 gnd

ifr =T, [x] = cltl,

_ >
v A {—(f’(o)—n)v it ST, x| 2 clel.

On the other hand, for large enough such that < T,

Sel@—f'O+mt |x — x| =1,

) 2 .
Ve tn) 2 {O if [x —x,| = 1.

The maximum principle gives

v(xm T) 2 Il‘l + ”n,

where
Sel@—f" O+t 1y[?
n :—N/ e AT-m) dy,
VAT (T — 1) JIyI=t

T 1 ly—xnl2
, =—(f'(0) — n)/ —/ v(y,s)e A=) dy ds.
tn /A (T — s)N lyIZyls|

Whenn — +o0,
I, ~ C1|tn|_N/2e("‘_f (0)+7])tn’

whereCy = §(47)~N/?|B(0, 1)| > 0and|B(0, 1)| is the Lebesgue measure of the
unit ball.

Let us now find an upper bound fdi,|. Remember first that & v(y,s) <
e~ "©=ms for all (y, s). Make the change of variablas= x, + z|s| (possible
because < t < 0). If |y| = c|s|, then|z| = max@©, ¢ — %). Therefore,

T N
N
IIInI§C’1/ S N/ _
tn T —s" Jlz1Zmax0,c—kah)

) 521212
e~ S O-ms ,~77—5 4, ds,

whereC’, = (f'(0) — n)(4r)~/2. After a straightforward calculation, the change
of variables = T — s leads to

T—t, N
|”n|§C/1/ t ¢-7)"
= 0 N/2

X /
|z1=max(0,c— 22l

< L1tV N,

2 1
e 21P= G 1P+ (F @©-n—312P) g, g

whereC] = Cie—(f’((»—n)T and

T—tn T .2_T2\ 2. 1,2
n, =/ ,fN/Z/ 3P T P+ O =031 g gy
0 |z]Zmax(0,c—

fznly

t—=T
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Sincey < candn > 0, itis possible to fix a real numbgrsuch that

Z-<:,3 <1

c

/ 1 Y 2 / U 1 2
f(O)—n—Z<c—E) <fO-F =72

From now ony is taken large enough so thatl T — B1,. Let us divide Il}, into
three parts:
T—1,

1 T—pBtn
|||1=/ |||2=/ ... and |||3=/
0 1 T—Bt,

SinceT < 0 andn < f/(0), the term Il can be bounded by
1 2 T2 2 g 0 /(0 1 2
Iy g/ =N/ f em TS O g7 dr = S O )Nf e P ay.
0 RN RN

Therefore, I} is bounded independently of
Whenr > 1, we have —V/2 < 1. The second term Bican then be bounded by

T_ﬁtn .
Ny < / f 22Ot 47 gy
1 RN

=4mn*wﬂ(/e—W@)Uﬂ»—m4
RN

% (e(f/(O)—n)(T—ﬂtn) _ ef/(O)—n)
= 0P O-Dly a5y - 4oo.

Let us now estimate the third term
T—t,
|||3=/ t_N/Z/ BT P O gz gy,
T—Bin |z|Zmax(0,c—22l)
Y

Remember that,| < y|t,| = y|t, — 1. Therefore, sincg > £, we have, for all
tsuchthatl — Bt, <t < T —1t,,

_ x| zc_zltn—ll
t=T — B il

2
for n large enough. Hence, by dropping the tarrwr 1217 < 1inlll3, we get, for
n large enough,

Tty ’ n—1]
I3 §/ S O=n=ge=F 1 x/ ez gz,

T—pt, RN
From our choice 0B,

U P A B v SR PN |
f©®—n 4(6 RN )<< f(0) >

1
- Z(c—y)z
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for n large enough. As a consequence,
T—t, . 01 2
s < C/ O3 g,
o T—pt,

for some constant = C(T). Whatever the sign of'(0) — 3 — %(c — )% may
be, it is easily found that

-/ 1
3 = O(jty[eV @331 0l asp — oo,

Eventually, we obtain

/ o/ 1 2
M, =0 <|tn|N+1(e/3(f O —n)ltnl + e 0—3—37(c—y) )‘*‘\t,,|)) asn — +oo.

On the other hand, we had
li’l ~ C1|tn|7N/26(f/(0)77)7°()‘tn| asn — +OO

SinceB < 1 andn < min(f’(0), :—2L(c —9)?), itis possible to fixxg > 0 such
thatVa € [0, ag],

0<B(f[O—n<fO-—n—ua
1
(fO=-3—Fc=yA* <fO-n-a
Take nowa € [0, ag]. It follows that|ll,,| = o(l,,) asn — +o0. Therefore,

v, T) = %|tn|*N/26(f,(0)*77*0!)|ln|

for n large enough. Sincg’(0) — n — a > 0, we conclude that
Uy, T) = v(x,, T)e(f,(o)’”)T — 400 asn — +0o.

This is impossible becaugeé < 1.
Finally, it follows that, ifa € [0, ag], then

max U(x,t) = o(e*") ast - —oo.
[x|=ylt]

The proof of Lemma 4.3 is completen
Let us now turn to the

Proof of Theorem 1.4. Letu be an entire solution of (1) such that there exists 0
such that

max u(x,t) - 0 ast - —oo.
[x|=(c*+e)lt]

Foreach: € N, letu, andv, be the solutions of the following Cauchy problems:
(n): = Aup + f(uy), x€RN, 1> —n

u(x, —n) if |x| < (c*+¢/2n

u,(x, —n) = .
n( ) 0 otherwise
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and

(W) = Avy + /O, x¢ RN, t>—n

vp(x, —n) = u,(x, —n).

Sincec* 4+ ¢/2 > ¢*, we know from Lemma 4.2 that, (x, t) é u(x,t) as
n — 4oo. We are now going to compate, with the functionv,, which is a
solution of a linear (more tractable) parabolic equation.

From the maximum principle, it immediately follows that® u,, < 1 and
v, 2 0. Furthermore, sincé¢(s) < f/(0)s for all s € [0, 1], we get

un(x, 1) S vu(x, 1) forallx e RY, 1 > —n.

Let us now find an upper bound foy. Sincef is of classC? and f/(0) > 0,
there exist two positive real numbegsand« such thatf is increasing ino0, ]
and f(s) = f'(0)s — ks2forall s € [0, n]. Sincec* + ¢/2 < ¢* + ¢, Lemma 4.3
provides the existence of a real numbet (0, f/(0)) and a, say, negative tinig,
such that

0<u(x,t) Le* <pforallt < Tand|x| < (c* +¢/2)t]. (48)

Lemma 4.4. Thereexistsaconstant Co = Ca(f, a, k, T) suchthat, for eacht < T
and x € RV, we have

Vo>t un(e,t) S v ) S up(x, e + Coheryesa(x, 1)
under the notation of Lemma 3.8(b).

Proof. First of all, we have already observed that< v,.

Let us now prove the upper bound foy. Remember that & u,(x,t) <
u(x, t) from the maximum principle. From (48) and from our choiceyadndx,
Ve <T, |x| £ (c*+¢&/]t], n > |t],

fux, 1) 2 flun(x, 1))
> £ (Oun(x, 1) — & un(x, 1)?
= Oy (x, 1) —k € up(x, ).

Set

e

Uy(x,1) = u,(x, t)eg‘ ' (Z up(x, ) andw,(x,1) = U,(x,t) — v, (x, 1).

Taken = |T|. The functionw,, satisfies

(Wa)s — Aw, — 'O wy = (f () — f (O + ke up)ee”

0 forall —n <t ST, |x| £ (c* +¢/2)]t]
T |-Co forall —n <t < T, |x| = (c*+¢/2)t],

V
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where Cor
C2= (I flloo + £'(0) +ke*Tyea®" .

an

On the other handy,, (x, —n) = u,(x, —n)(eﬁf_ — 1) = 0. From the maximum
principle, it follows that, for al-n <t < T and for allx € RV,

t
wp(x, 1) Z —C2 / el OUI(S(t = 5) - Lz (crpej2yis) ) ds.

—n
Sincec* +¢/2 > ¢*, Lemma 3.8(b) implies that, for altn <+ < T andx € RY,
Wy (x, 1) 2 —Cohesqepa(x, 1)
=—-C; / loo e OU=9(S(t —5) - Ly 125 42215 (¥) ds.
By definition ofw,, it follows that
V —n<t<T,VxeRY, v,(x,0) <uplx, t)eg"m + Coherqepa(x, 1)
and the proof of Lemma 4.4 is complete

Lemma 4.5. Up to extraction of some subsequence, the functions v,, locally con-
vergein RY x (—oo, T) to a positive function v, which isa C* solution of

dv=Av+ f/Ov, xeRY, r<T.
Furthermore, under the notation of Lemma 4.4,
Vi<T, ¥x eRY, u(x,n) Svlx, 1) < vx, New® + Coheryesa(x, 1). (49)
Proof. From Lemma 4.4, we have
(0, T) < v,(0. T) < (0, T)e®”" + Coherye2(0. T).

Lemma4.2 impliesthat, (0, T) — u(0, T) asn — +oo. Therefore, the sequence
(v, (0, T)), is bounded. On the other hand, each functiQtx, r) is positive for

t > —n and for allx € R", from the strong maximum principle. We finally get
from the Harnack inequality that the sequence of functiansx, 1)), is locally
bounded iRRY x (—oo, T). From standard parabolic estimates, it is also bounded
in eachCk(K) for each compact subsé& ¢ RY x (—oo, T). Up to extraction

of some subsequence, the functiopéx, 7) locally converge to a nonnegatie&®
functionv(x, r), which is a solution of

dv=Av+ f'(Ov, xeRN r<T.

The estimates (49) follow from Lemmas 4.2 and 4.4. Furthermore, from (49),
we deduce that is not identically equal to 0. Hence(x, r) > 0 for all (x, 1) €
RN x (—o0, T), from the strong maximum principle.o

Since the functions, are solutions of the linear heat equation, it turns out that
we can find an explicit formula for the limit functian
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Lemma 4.6. Up to extraction of some subsequence, the functions v, (x, ¢) actually
converge for each (x, 1) € RY x R toa C* function v(x, 1) solving v; = Av +
S/ (0)v, and there exists a nonzero and nonnegative Radon measure p on the open
ball B = B(0, c* + ¢/2) such that

Vi, 1) eRY xR, w(x,1) = ef’<°)f/Be%Z'H%‘Z'Zp(dz). (50)

Furthermore, thereisareal number 8 € (0, ¢*) such that the support of p belongs
to B(0, p).

Proof. By definition of the functions,,, we have, fon large enough,

e/ O(T—1+n) 2
v (0, T -1 = / u(y, —n)e 7= dy
lyl<(c*+&/2)n

Vi@ —1+n)"

N/2
— oSO -1 n
T—-1+n

/ 1
X f ) NN 2y (nz, —n)e' ' © —3lz®n
|z|<c*+e/2

(T=Dn

AT-1 &
X edT-THm "1 d7,

Sincev, (0, T — 1) converges (ta(0, T — 1)) asn — +oo and since the positive
(T—Dn 2
functionse @™+ " are uniformly bounded away from 0 iB asn — +o0, it

follows that the positive functions

fu(@) = (@) V2N /2 y(nz, —n) O ilePon

are bounded irL1(B). Up to extraction of some subsequence, there exists then a
nonnegative Radon measyr®n B such that

fu(@dz — p(dz)in (C.(B(O, c* +¢/2))) asn — +oo.
Remember that € (0, f/(0)) has been chosen so that (48) is satisfied. Set
B=2/f(0) —ac,c.
Take any continuous functioft whose support is compactly included{in 8 <

|z| < ¢*+¢/2}. In particular, there exists a real numises 0 such that supgr C
{z, B+ = |z] < c* + ¢/2). By definition of p, we have

/ @Y ()dz — / Y (z)p(dz)asn — +oo.
B B

Let us prove that this limit is equal to 0. By definition,

’/ Jn()¥ (2)dz
B

(4m) N2 N2y (a2 eI O=51Pny 2) 47

/ﬁ+5§|z|<c*+e/2

A

! 1 2
/ ()~ N2V Pu(nz, —n)eS O~ 2By (7)) dz.
B+8<lzl<c*+e/2
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Sinceq satisfies (48), & u(nz, —n) < e %" in B for n large enough. Due to our
choice ofg, f'(0) — (B + 8)2 — « < 0. Therefore,

/ fa(@¥(2)dz — 0 asn — +oo.
B

As a consequencgB ¥ (2)p(dz) = 0 for any continuous functiofy whose
support is compact and includedfin g8 < |z| < ¢* + ¢/2}. In other words, the
support ofp is included inB(0, B).

Note that the above arguments also imply that

VB e (B, c*+¢/2), / fa(x)dz — 0asn — +o00.  (51)
z, B/<|z|<c*+e/2

Choose now any couple, r) € RY x R. For alln > |¢], it is found that

ly—x|?

1 -
u(y, —n) e 4w dy

NI /B<o,<c*+s/2)n)

NJ2
_ ( n ) of O g
- ns
t+n
Jtzx]2

1 2
Iy = / Fale) €25 AR gy,
B(0,c*+¢/2)

vn(x, 1) = of O@+n)

where

Let x (z) be a fixed smooth function such thatOyx < 1, x = 1in B(0, ¢*) and
x = 0 outsideB(0, ¢* + ¢/4). Let ¢’ be an arbitrary positive real number. For

large enoughe_% <1+ ¢ forall z € B(O, ¢* + ¢/2), whence
I, = (1+€)(A1+ Ap),
where
Ar= / X@ fu@et il gz,
B(0,c*+¢/2)

Ay = / 1 — x (@) fo(z)e2@ T4l g,
B(0,c*+¢/2)

Sincey is a continuous function whose supportis compactly include®{® c* +
£/2), and due to the definition of the measureve have

1
Al — x () e?Z"‘H’lIZ'zp(dz) asn — +00.
B(0.c*+e/2)

Furthermore, since the supportefs included inB(0, ) with 8 < c¢*andy =1
on B(0, ¢*), it follows that

1 2
Al — e3vx gl p(dz) asn — +oo.
B(O,c*+¢/2)
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On the other hand, singe= 10onB(0, c¢*) and 0< x < 10onB(0, ¢* +¢/2),

|A2| = C(t, x) fn(z)dz

7, c*<z|Sct4e/2

for some constant (¢, x) € R. From (51), we geti, — 0 asn — +oo.
Therefore,

. 1 2
limsupl, < (1+ &) e253 5l 5 (d7).
n——+o0o B(0,c*+¢/2)

Similarly, we can show that

L. 1 11,2
liminf 1, > (1— &) 25541 5 (d7).
n—>+00 B(0,c*+¢/2)

Since¢’ is arbitrary, we get

1 t 2
I, — e2v°*21% p(dz) asn — +o0.
B(O,c*+¢/2)

Sincev,(x,1) = (7)N/2/" 01, it follows thatv, (x,) converges to a
function v(x, 1), for each(x, 1) € RY x R, and that the functiow is given by
the formula (50).

Lastly, it follows from

S OT () 00,7~ 1) = O [ paz)
B

’ 1%
< f'OT=DH3(*+e/2% | (p)

and 0< v(0, T — 1) < +oothatp(B) = p(B(, c* + ¢/2)) = p(B(0,c*)) €
(0, 4+00). From the formula (50), it follows then that the functioris actually a
positive and locally bounde@® solution ofv, = Av + f/(O)vinRY x R. O

So far, we have proved the existence of a nonnegative finite Radon measure
on B(0, c¢* + ¢/2), the support of which is included iB(0, 8) for someg < c*.
For the sake of simplicity, we also callthe restriction of the measugeto the ball
B(0, ¢*).

Sincep is nonnegative and nonzero 810, ¢*), elementary arguments provide
the existence of a unique positive real numiier 0 such that

/ e~ O+1DINM gy — 1 (52)
B(0,c*)

Let us now callu the unique nonzero, nonnegative and finite Radon measure on
X = S¥=1 x (¢*, +00) U {00} such that

A ’ 1 Y
O, u(dz) = Me S OFZRDINM 50y (53)
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By definition ofA?l,fB(O,c*) ®,/i(dz) = M, thatisto sayi(X) = M. By extending
wby 0onSV-1 x {¢*}, we getu € M. Furthermore, due to the definition of the
map®, the support of: is included inSV =1 x [cg, +00[ U {oo} wherecg > ¢* is
such thag = 24,.

The remaining part of this section consists in proving that u,,.

In order to do this, we first prove the following

Lemma4.7. For each 0 < [0, cg[,

max u,(x,t) - 0 ast - —oo.
|x|=61|

Proof. Choosé& ¢ [0, cg[. From the upper bound in (30), it follows that
up(x,t) < f e)“'(x'V+Ct+cInM)_]A-dM
=/, -

:/ helevterteln i) —%du—i- H(0) | rr@+in it
{(veSN-1, c>cp} M

For eachr < 0 and|x| < 9]¢|, we have
Vv e SN_l, Ve Zco, Aelx-v4ct) S A0t — colt]) = Ae(® — co)ltl.
On the other hand, & A.c < 2f/(0) for all ¢ = ¢*. Therefore, for < 0,

1

il eAC(x~v+ct+L'|n M) d//L
M JweSN-1, c>co}

< iAer’(O)IlnM\/ Pe6=colil g, s g
M (veSN-1 ¢>co)

ast — —oo, from Lesbesgue’s dominated convergence theorem. Eventually, the
conclusion of Lemma 4.6 follows.O

Remark 4.8. By slightly modifying the proof of the above Lemma 4.7, we get the
following more general result: if: € M is such thain(S¥ 1 x [¢*, ¢]) = O for

somec = c*, then rgax u,(x,t) — 0ast - —oo. Indeed,
|x|=clt|

Uy (x,1) < / phe(xvtetteln A;I)_]: du + M(?O) o' O+ M).
{veSN-1.c>¢) M

(Note that, for the measure, M > 0 becausg.* = 0.) Take anyy > 0 and let
§ > 0be suchthan(S¥1x (¢, c+38)) < . Foreachx| < ¢jt|,r < 0,v e V-1
andc > ¢, we havex - v + ¢t £ —ct + ¢t = (¢ — ¢)t £ 0. Therefore,

21Ol M|
max u,(x,t) S ————1n
x| <ele| M
4 max / helxvterteln M)d_AM n ﬂ(?o) o O+ BT
Ix|=clt] J{weSN-1, c>c+5) M M
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As was shown in the course of Lemma 4.7, the second and third terms of the right-
hand side converge to 0 as—» —oo. Sincen > 0 is arbitrary, we conclude that
maX <g|¢| Um (x, 1) — 0 ast — —oo.

Let us now turn to the proof of
Lemma 4.9. The function u is equal to the function u,.
Proof. Let us first choose a real numbgrsuch that
¢* < ¥ < min (co, c* + ¢/2).
Letii,, U,, U, andV, be the solutions of the following Cauchy problems:
(itn): = Aily + f(iln), xeRN, t>-n
(Bn)r = Alp + f/(O)D,, xRN, t>—n

u(x,—n) if |x| < pn

up(x, —n) = vy(x, —n) = [0 otherwise

(Un)l = Afln + f([]n)s X € RN, t>—n
(V)i = AV + 'OV,  xeRY, 1> —n

. _ - if %
0 (e, =) = Oy, =y = |6 Tl <
0 otherwise
Sincey > ¢*, Lemma 4.2 yields
V) e RY xR, din(x,1) > u(x, 1), Up(x,1) = u,(x, 1) asn — +oo.

On the other hand,

N/2 |2
Ga, 1) = [ —— ef/(o)t/ @ R Ll dz.
t+n B(0,7)

where we recall that

! 22
fa(2) = (4m)"N2pN12 y(nz, —n) e O~

As in the proof of Lemma 4.6 and singe> ¢* > 8, we get
Up(x, ) = U(x, 1) = ef/(o)l/ e%z'”‘%lz‘zp(dz) =v(x,1). (54)
B(0.7)
Similarly,

\tz+x\2

- n N2 1 o
Vo= (——)  effor / F,(@)edesilt= s 4
t+n B@©,7)

where 2
_ Lo 22
Fo(z) = @m) NNy (nz, —n) 'O,
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Furthermore, since the function, is such that

max u,(x,t) - 0 ast - —oo
[x|=clt|

for somer > ¢* (take forinstance = C*% and apply Lemma4.7), it also follows,
asinLemma 4.6, that there exists a finite nonnegative Radon mgasui®(0, ),

whose support is included iB(0, B) for somef < ¢*, and such that

Fu(z)dz — p(dz) in (C.(B(0,7))) asn — +o00
(up to extraction of some subsequence), and
\7,1()(, t) > Vix,t) = ef/(o)t/ e%“*‘ﬁmzﬁ(a’z) asn — +oo.
B(0,y)

From the asymptotic behavior (12), which is satisfied by the funetjgrwe finds
that

1 . . _
Fu(2)dz — eV O+ M g 5 a2z in (C.(BO, ¢)))'.
M
Eventually, from the definition ofi in (53), it follows thatg = p on B(0, ¢*),
whence
Vx,r) eRY xR, V(x, 1) =v(x,0). (55)

Sincey < min (c*+¢/2, co), Lemma 4.3 yields the existence of a real number
a € (0, f/(0)) and of a, say, negative tin¥ such that

Vi<T, Vx eRY, 0<Zu(x,0), uu(x,1) < e <,

wheren > 0 is such thatf is increasing in0, 7] and f(s) = f'(0)s — ks2 on
[0, n], with « > 0. With the same proof as for Lemma 4.4, and by using (54) and
(55), we finally finds tha¥ s < T, Vx e RV,

u(r, 1) € 00e,1) < ule, e + Cahy(x, 1), )
(e, 1) S 0(x, 1) S uy(x, Ded®” + Cahy(x, 1),

whereCs = (| flloo + £/(0) + kel yea" .
Definew = u — u,. Sincef'(s) < f/(0) for all s € [0, 1], the function|w|
satisfies
dw < Aw+ f/O)|w|, teR, x eRV.

For eachn large enough, it easily follows from (56) that
lw(x, —n)| = |u(x, —n) —uy(x, —n)|
< W, —m) + (v, —m)2z e + Cahy (x, —n).
Choose any € R" and, sayr < 0. The maximum principle yields
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where

= e/ O (S 1 1) - 2% e ¥ (u(-, —n) + up (-, =n))))(x)
o

I, = /" O (St 4 n) - (Cahy (-, —n))) (x)

for n large enough.
Let us first estimate the term.IBy definition ofv, andV,,,

y 1 ly—x|?
= (O [ T )+ w5, - dy
! ( IyIZ7n /47 (t +n)N g

x 257 4 22 6= (5, (x, 1) + V, (x., ).
o (07

Sincey > ¢*, Lemma 4.2 yields

o/ O 4n) f 1
iz I F )

— 0 asn — +o0.

y—xi?
E*W (u(y, —n) +uu(y, —n)) dy

Sinced, (x, 1) andV, (x, 1) are bounded, we finally conclude that4> 0 asn —
+00.
On the other hand, because of the definition pfthe term 1), is equal to

I, = Cgef'(o)(t+n)

x <S(t +n) - (/_ /" O (§(—n — ) - L 12515 ) ds)) (x)

oo

—n
= c3/ el OU=I(§(t —5) - 1 1555 (x) ds.

o0
Since

t
/ e QU= (S(t —5) - 12505 (X) ds = hy(x, 1)
—0o0o

converges (because of Lemma 3.8(b)), Lebesgue’s dominated convergence theorem
implies that I, — 0 asn — +o0.

As a consequencéy|(x, t) = 0 for eachx € RY ands < 0. The maximum
principle for |w| yields w(x, r) = O for each coupldx, r) € RY x R. In other
words,u = u,, and the proof of Lemma 4.9 is completex

In order to complete the proof of Theorem 1.4, we have only to show the
following

Lemma 4.10. The support of x isincluded in S¥ =1 x [¢* + &, +00[ U {o0}.



152 FraNcgoIS HAMEL & NIKOLAT NADIRASHVILI

Proof. We already know that supp c SV~ x[cq, 4+00[ U {00} for somerg > c*.
SetM = u(X). From the definition of/ in (52), we haveM > 0.

Choose any coupléw,¢) € S¥=1 x (¢*,¢* +¢) and letBgs C SV1 x
(c*, +00) be an open neighborhood @f, ¢) such that

1
V.0 € By, ()T —cZ S He-D=6>0.  (57)

From the lower bound in (30) applied to the point ) = ((¢c* + e)nv, —n), itis
found that

« _ -1 « _
@c((c*+e)nv-v—cn+cln M)ﬁdu Su((c* + &)nv, —n).
.0

Because of (57) and because of Lebesgue’s dominated convergence theorem, the
left-hand side in the previous inequality approaci]%lq%(B(g,a) asn — +o00.0n

the other hand, the hypothesis madeamplies that the right-hand side approaches

0. As a consequence,

w(Bw,s) =0

SinceS¥—1 x (¢*, ¢* + &) can be covered by a countable sets of the Bpe,, it
follows that

w(SN L x (¢*, c* +¢)) = 0. |

The proof of Theorem 1.4 is now complete

Remark 4.11. Note that, under the assumption of Theorem jL.i4,not necessarily
concentrated o8V ~1 x (c* + ¢, +00) U {o0}, that is to sayu (S¥ =1 x {c* + ¢})
may not be 0.

Indeed, for anycg > c¢*, we can prove that the measuse = dv x 8,
which is concentrated oY1 x {co}, gives rise to a function,, satisfying
MaX | <cor| (X, 1) — 0 ast — —oo. The measurgw being radially symmet-
ric, each function, (x, —n) defined as in (26) is radially symmetric with respect
to the origin, and, eventually, the function, is itself radially symmetric with
respect to the origin (see more details in Section 5.2). Therefore,

max u(x,t) = max u(rlt],0,---,0,1)
|x|Zcolt| 0=r=<co
CocolnM

< e—A/ o (=rviteot g,
M SN-1

by definition of and from (30). The function

g(r) = / g0 (=rviteolt gy,
SN-1
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is such that
g/(r) — _)‘Co/ vleACO(—t‘v1+co)t dv
SN—l

— _)\co/ vl(ekCO(—rv1+co)t _ e)LCo(rv1+co)l) dv
SN-1n{v1 >0}

>0.
Therefore,
)»CocolnM
max u(x,t) < —A/ eeo(—covrteot gy, 5
[x|Zcolt] M gN—1

ast — —oo (from Lebesgue’s dominated convergence theorem).

4.3. Uniqueness in the class of the solutions bounded away from 1
(Proof of Theorem 1.5)

This section is devoted to the proof of Theorem 1.5. k@t ) be an entire
solution of (1) and assume that there exists a tigseich that sup:(-, 7o) < 1. Our
goal is to prove thai(x, ) depends only on.

Let us first prove the following

Lemma4.12. Set M (t) = supu(-,t). Then M(t) — Qast — —oo.

Proof. Assume otherwise. There exist then a real 0 and two sequences —
—oo andx, € RY such thatu(x,,t,) > . By standard parabolic estimates,
V.u(x, t) is uniformly bounded iR" x R. Hence, there exists a reat- 0 such
thatu(x, t,) = ¢/2if [x — x| <.

Let p(x) now be a continuous nonnegative function such that@(x) < /2
if |x] < r andp(x) = 0 otherwise. From the results AkRonsoN & WEINBERGER
[2], the functionv(x, 7) solving the Cauchy problem

vy =Av+ f(v), t >0, v(x,0) = p(x),

goes to 1 as — +oo, uniformly in any compact subset &" .
From the maximum principle, it follows that

ViZ2t,, vO0,1—1,) = ulx,,1).

Taket = 1o and pass to the limit, — —oo in this inequality. The left-hand side
goes to 1 whereas(x,, ro) < supu(-, tg) < 1 by hypothesis. This is impossible.
O

Let us now turn to the

Proof of Theorem 1.5. Takeu as above (there exists € R such that sup(-, 10) <
1). FromLemma4.12 and Theorem 1.4, there exists ameasar®1 suchthatr =
u,. Furthermore, from Lemma 4.1f,is concentrated o’ 1 x [¢, +00) U {o0}
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for eachc > ¢*. Therefore,u = u(00)és. As a consequence, the functioms
defined in (26) do not depend anNeither does,,. In other wordsy = u,, only
depends on time. Actually, if © = ©(00)8x0, thenM = 1.(co) and the formula
(37) implies that, (1) ~ e/ @)/ OF ga5¢ 5 _oo, Therefore, it eventually
follows that the set of such solutiong, wherep = 11(00)do andu(co) describes
(0, +00), is equal to the one-dimensional family of solutidns— &£(t + k), h €
R}.

As a consequence, if a solutiap of (1) is such thaj is not concentrated on
{oo}, thenu cannot depend ononly, whence supgw u,(x,¢) = 1forallz € R.
That completes the proof of Theorem 1.51

5. Nonplanar travelling waves and radial solutions

In this section, we apply the general results stated in Theorems 1.2 and 1.4, and
we deal with special solutions of (1), namely, travelling waves and radial solutions.

5.1. Nonplanar travelling waves

This subsection is devoted to the

Proof of Theorem 1.7. (i) Let u(x, t) be a travelling wave for (1), satisfying (17)
for some(vg, co) € SV1 x [0, +00[ and letv be defined by (18).

(i-a) Assume thaty < ¢*. From (18),v(0) = u(—cotvo, t) for all € R. Since
0 £ ¢p < ¢*, Lemma 4.1 yields lim., 4o u(—cotvg, t) — 1, whencev(0) = 1.
This is impossible since & v(y) < 1forall y.

Before proving the monotonicity properties satisfied by each travelling wave
for (1) in a cone of directions (Theorem 1.7 (i-b), let us state the following

Lemma5.1. Let u(x, r) be an entire solution of (1) such that the fields u; /u and
V.u/u are globally bounded. Then, for each vector p € RY such that |p| =

Jpp <c*=2/f(0),wehaveu, + p- Viu > 0inRN x R.

Proof. To this end, it is enough to prove th@i(x, 1) + p - Viu(x, ) = 0 for all
(x,1) € RN xR. Indeed, suppose the latter is true. The functios: 8,u+p - V,u
satisfies the linear parabolic equation

U = AU + f'(u)U.

From the strong parabolic maximum principlé,is then either identically equal
to 0 orU(x,1) > O for all (x,r) € RY x R. The first case would imply that
the functionw () = u(pt, t) is constant, but, sincgp| < ¢*, that would be in
contradiction with Lemma 4.1. HencE, = d;u + p - V,u > 0 and the conclusion
of Lemma 5.1 will follow.

Let us now denote by(x, r) the function

dru(x, 1)+ p - Vyu(x,t)

o(x, 1) = u(x. 1)
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By assumption, this functionis globally bounded and we then only have to prove
that infgy g v = 0.

Suppose for contradiction that igf . v = —¢ < 0. There exists a sequence
(xn, t,) € RN x R such that(x,, t,) — —e asn — +o0. Up to extraction of
some subsequence, two and only two cases may occur:

Casel. u(x,,t,) > a € (0,1 asn — +o0,

Case2. u(x,,t,) — 0asn — +oo.
Let us first deal with Case 1. After a straightforward calculation, it is found that

the functionv satisfies
(f( A )>v nRY xR,

Let us set
up(x,t) =ulx +x,,t +t;)and v, (x, 1) = v(x +x,, 1 + t,).

From standard parabolic estimates, the functiepsconverge inCi (R,) and
Cloc(RN ) to a functionu, (Up to extraction of some subsequence). The function
oo IS Such that 2 uo, < 1 and it solves

dthoo = Alioo + fitse) INRY x R.

Furthermore, sinca(x,,t,) — « € (0,1] asn — 400, we haveu(0,0) =
a > 0. Therefore, the functions(x, t) is positive everywhere (because of the
strong parabolic maximum principle) and the globally bounded sequences of func-
tionsVyu, /u,, f'(u,) and f (u,)/u, converge to the globally bounded functions
Vilioo/Uoo, [/ (Uso) @nd f (o) /1o, reSpectively.

Similarly, the globally bounded functiomg converge locally in the sense of the
topology7 (up to extraction of some subsequence) to a globally bounded function

Voo, Which is equal to
OtUhoo + 0 - Villeo

Voo =
Uoo

The functionus is such thabe (x, 1) = —eforall (x, 1) € RN x R andvs (0, 0) =
—e¢. Furthermoreyp, satisfies
f(uoo)

U

Voo = AVso ViVoo + (f( 00) — )voo inRY x R.

o
The point(0, 0) is a global minimum for the function,, andv.(0,0) = —¢ < 0.
On the other handy»,(0,0) = « € (0, 1] and f'(@) — f(a)/a < 0 since the
function f is concave oifi0, 1] and f (0) = 0. From the strong parabolic maximum
principle for the functiorvs, it follows then thatv,, = —e in RY x R~ In other

words,

Otltoo + P+ Villoo
=-¢<0

Uoco

in RN x R~. Sinceuy, is positive,

Qoo + p - Voo < 0INRY x R™. (58)
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But, sinceu is a solution 0fd; 10 = Aus + f (o) Such thaii,, < 1, we have
eitheru, = 1 0rus < 1. The case., = 1isin contradiction with (58). The case
Uso < 1 means that the functian,, is a solution of (1), such that @ uy, < 1.
Since|p| < ¢*, Lemma 4.1 implies in particular thai(t) = u(pt,t) — 0 as
t — —oo. But this positive functionw is decreasing for < 0 by (58). We have
then reached a contradiction. As a conclusion, Case 1 is ruled out.

Let us now deal with Case 2. Up to extraction of some subsequence,

u(x,,t,) > 0 asn — +oo.

Let us set

M(X+,0t+xn,t+tn) e%,{r)c7 (X,l‘)ERNXR-
u(xnvtn)

wy(x,t) =

Since the fields:;/u andV,u/u are globally bounded, there exists a constant
such thatw, (x, 1) < eCW+XD for all (x,7) € RY x R and all n. In particular,
the sequencéw, ) is locally bounded and the functions, ¢) — u(x + x,, t +t,,)
approach 0 locally ilRY x R. On the other hand, each functiar satisfies

t ,t+ 1 1
Jux +pt +x0, 1 +12) _|p|2> w,. (r.0) e RV xR
u(x + pt + xp,t +t,) 4

(wp)r = Awy, + (

From standard parabolic estimates, the functwpsonverge locally in the sense
of the topology7 (up to extraction of some subsequence), to a nonnegative and
locally bounded functiom,. The functionw., solves

1 .
diioo = Awoo + (f'(0) = Z1pI?) woo INRY xR (59)
and it satisfies
VieR, Vx e RN,  wao(x, 1) < CUHRD, (60)

Due to the definition ofv,, and to the choice ofx,, 7,), we have

) Lt -V ,
0wy (0,0) = Ll n)u;:p p )xu(xn n) =v(x,, ty) > —& asn — +oo.
nstn

Hence,
0t Weo (0,0) = —e. (61)

Choose now any pointr, 1) € RY x R. Because of (59) and (600 (x, 1)
can be written as

/ 1 2
Woo(x, 1) = e O7alPDIHD f px =y, t +)weo(y, —k) dy
R
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2
forall k > |¢|, wherep(z, 1) = (4nt) N/2¢~ % foranyr > 0andz € RV.Asa
consequence,

Bwoo (x, 1) = e/ O=3le*) etk / dp(x — y,t + k) woo(y, —k) dy
RN

1
+(f(0) — Z|p|2> Woo (X, ).

Notice thatd. p(z,7) = —2p(z,7) forall T > 0 andz € RV. Sincew is
nonnegative, it follows that

1
dWoo(x, 1) = (f’(o) - ;,rI/OI2 - ) Woo (X, 1).

2(t + k)
Passing to the limik — +o0 in the above formula leads to

1
dwoo(x, 1) = (f'(0) — Z|p|2) Woo (X, ).

Since|p| < ¢* = 2,/ f(0) andwe, = 0, we getd;weo(x, 1) = 0 for all (x,1) €
RN x R. That is in contradiction with (61). Therefore, Case 2 is ruled out too and
the proof of Lemma 5.1 is completen

Let us now return to the proof of Theorem 1.7.

(i-b) Letv e S¥—1 be such thav - vg > cos(arcsir(%)). Let p be the vector
defined byp = co(vo - v)v — covo. We have

e
Ip|? = c& — ci(vo - v)? < g —c} co§(arcsw(5)) = (¢

Let us now check that the functionsatisfies the assumption of Lemma 5.1,
that is to say that, /u andV,u/u are globally bounded. Indeed, singés writ-
ten asu(x, r) = v(x + cotvg), we haveu;/u = cgdy,v/v andVyu/u = Vo/v.
Therefore, we only have to check tHav /v is bounded. But since is a positive
solution of Av — ¢pdyov + f(v) = 0in R, Schauder interior estimates imply
that|Vu(y)| £ Cimax,_y <1 v(z) and Harnack-type inequalities [14] imply that
max,_y<1 v(z) = Camin,_, <1 v(z) = Cou(y) for some constant§; andC>
independent of. Therefore|Vu(y)| < C1Cou(y) for all y € RY, which was the
desired result.

As a consequence, Lemma 5.1 can be applied and yigld$ o - Viu > 0
in RY x R. Due to the definition ob, it follows thatcovg - Vv + p - Vv > 0in
RV, i.e.,co(vo - v)v - Vv > 0. Sincevg - v > 0 andco > 0, we getv - Vv > 0
in RV Let v be as above and choosec RY. We havev(a + co(v - vo)sv) =
u(a + co(v - vo)sv — cosvo, s). From the calculation above,

. a ~+ co(v - vg)sv — cosVvo
lim sup| ( ) | < c*.

s—>—400 ||

From Lemma 4.1, lin., _o v(a + co(v - vg)sv) = 0 and lim_, ;oo v(a + co
(v - vo)sv) = 1. Lastly, sincecg(v - vg) > 0, the conclusion in (i-b) follows.
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(i-c) Suppose thatyg = ¢*. From (i-b) and by continuity, the functiomis then
nondecreasing in any directiorsuch thav - vg = 0. Itis then both nondecreasing
and nonincreasing in any directiensuch thatv - vg = 0. Thereforeyp is planar
and can be written as(y) = w(vo - y). The functionw satisfies 0< w < 1
onR andw” — ¢*w’ + f(w) = 0 in R with w(—o00) = 0, w(+o00) = 1 (from
(i-b)). As a consequencey(s) = ¢q(s + h) for someh € R. In other words,
u(x,t) = g (x - vo + c*t + h) is a planar travelling wave propagating with the
speed*.

(ii-a) From Theorem 1.2, the only thing we have to prove is that, when

k
w= Zmia(v,-,c*) +ieM
i=1
is concentrated o8, ¢, for some(vg, co), thenu,, is a travelling wave for (1)
satisfying (17) and the functior), defined by (18) is the smallest solution of (19)
such that (20) holds.
Let u be as above. Singe is concentrated 08, ¢,), We haveu (co) = 0. By
definition, u,, (x, ¢) is the limit of u,, (x, r) whereu, is the solution of the Cauchy
problem

(Un)r = Aup + f(uy), t>-—n, x € RY

up(x, —n) = max(lrgiai)](( (@ (x - vi — c*n + " Inmy)), 62)

.~ 1
/ (pc(x~v—cn+c|nM)—Ad[L>.
SN=1x(c*,+00) M

Choose any(x,#) € RY x R andt € R. We shall prove that,, (x,t + ) =

u, (x + cotvo, t). The proof is quite similar to that given in Section 3.6 to prove
property (iii) of Theorem 1.2. Observe thgt(x, t + ) = liM, yoo un(x, t + 1)
and thatu, (x, t + t) can be written ag,, (x,t + ) = U, (x, t) whereU,, is the
solution of the Cauchy problem

WUy = AU, + f(U,), t>-n—1, xeRY,

U,(x,—n — 1) = u,(x, —n).

Sincecovg - v = ¢ for each(v, ¢) € S(p,co) @andu is concentrated 08y, o), the
functionU,,(x, —n — 1) can be rewritten as

Up(x,—n —r1)

= max( max (e ((x + covot) - v; — c*(n + 1) + c* Inmy)),
1<i<k

~ 1
/ goc((x—i—covot)-v—c(n+r)+c|nM)7du).
SN=1x (c*,+00) M

In other words{J,,(x, —n — t) = un4¢(x + covot, —n — t), whereu,,, . is defined
as in (62) by replacing: with n + 7. By uniqueness of the Cauchy problem,
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it follows that U, (x, t) = u,4:(x + covot, t) for eachn. On the other hand, as
already observed in Section 3, the functiapéx, t) are nondecreasing with respect
ton = 0 (» may not necessarily be an integer). As a consequengg,(x +
covoT, t) — uu(x + covot, t) asn — +o00. Remember now that, (x,t + 7) =
lim,,— 100 Uy (x, t) by definition ofU,,. Eventually, (17) follows.

From the first inequality in (30) and using the definitiorvgky) = u,(y, 0),
we immediately get (20). On the other hand,dety) be a solution of (19) such
thatw satisfies (20) (withw instead ofv). The functionU (x, ) = w(x + cotvo) iS
a solution of (1) such that

U(x, —n) = w(x — convo)

\%

> max| max (g ((x — convg) - v; + c* Inm;)),
1<i<k

A1
/ @c((x — convp) -v+c|nM)Td;1)
SN=1x (c*,+00) M
= Mn(xv _n)

sinceu is concentrated 01(,,,¢,) andcovp - v = ¢ for each(v, ¢) € Squg.co)-
ThereforeU (x, t) 2 uy,(x, t) for eachn and passing to the limit — +oo leads
toU(x,1) 2 uy(x,t) forall (x,1) € RN x R. In particular,w(y) = U(y, 0) >
u,(y, 0) = v,(y), which gives the desired result.

(ii-b) Takeco > ¢* andvg € SV~ and defineM .., as the set

Mg.co) = (€ M, wis concentrated 0By, co)}-

The applicationu — v,.(-) (= u, (-, 0)) is one-to-one ooM 5 ) N M. Indeed,

if vy, = vy, then it is immediately found that,, = u,,, whencep; = u»
from Theorem 1.2. Furthermore uif* (€ M g,¢0)) = 1 (€ Myp.¢p)) inthe sense
described in Section 1.1, then» — u, in the sense of, whencev,» — v,

in C%C(RN). Therefore, in dimensioV = 2, there exists an infinite-dimensional
manifold of solutions of (19) such that O< v < 1.

(ii-c) Let u be an entire solution of (1) of the typg, and assume that is a
travelling wave satisfying (17). We have to prove that the measiseoncentrated
0N S(uo,co)- L€V, be the function defined as in (18) by, (x, t) = v, (x + cotvo).
From the lower bound in (30), it follows that

v (y) = uyu(y — cotvo, t)

> max( max (e« ((c* — covo - vi)t + y - vi + c* Inmy)),
1<i<k
~ 1
@c((c—covo-V)t+y-v+cinM)—dj
X M
> max( max (@ ((c® — covo - Vi)t + y - v; + c*Inmy)),
1<i<k, covo-vi>c*

~ 1
/ @c((c—covo-V)t+y-v+clnM)— du).
XN{covo-v>c} M
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If there exists an integer € {1, --- , k} such thatcgug - v; > ¢*, then the right
hand side of the above inequality goes to 1, for each R", asr goes to—oo.

That would imply thatw,, is identically equal to 1, which is impossible. Similarly,

if B:= M(f( N {covo - v > c}) is positive, thenV is itself positive and, passing to
the limit: — —oo in the above inequality leads to, through Lebesgue’s dominated
convergence theorem, (y) = ﬂ% forally e RV, Thereforeu, (x,1) 2 ﬁ% for

all (x, 1) e RN x R. Sinceﬁﬁ% is a positive real number, that contradicts property
(16). Eventually, the measure of the €0 {covp - v > ¢} is zero.

Similarly, by studying the limit ag — +o0, it follows that (X N {covg - v
> c}) = 0. As a consequence, the measurie concentrated on the s&,, ).

(iii-a), (iii-b) Property (iii-a) immediately follows from (16) and from the definition
of v in (18). Property (iii-b) follows from Theorem 1.4 and from property (ii-c) in
Theorem 1.7.

That completes the proof of Theorem 1. 7%

5.2. Radial solutions

This subsection is devoted to the

Proof of Theorem 1.8. (i-a). Take any coupléu,a) € Mz x RN and define
Upa(x,t) =u,(x —a,rt). Proving that, , is radially symmetric with respect to
a, itis equivalent to proving that, is radially symmetric with respect to the origin.
By definition, we haver, (x, t) = lim,_ 4o u,(x, t), whereu, is the solution of
the Cauchy problem (26) with initial condition

~ 1
u,(x, —n) = / @cx-v—cn+clinM)—dpu
X M

(remember thatt* = 0 for u € Mg, whenceM = u(X) > 0). For any rotation
p € SO(N), we haveu, (p(x), —n) = u,(x, —n), becauseu is itself rotationally
invariant. By uniqueness of the Cauchy problem, it follows thato (x), r) =
up(x,1) forallt > —n andx € RV. The passage to the limit — +oc leads to
up(p(x),t) = u,(x,t) forall (x,1) € RY x R. In other words, the function,,
is radially symmetric with respect to the origin, that is to say, the funatjpp is
radially symmetric with respect to the point

The functionv defined byu,, ,(x, t) = v(|x —al, 1) clearly satisfies (21). Fur-
thermore, if. is not concentrated on the single pofisd}, then supcgy . q(x, 1)
= 1forallr € R. Sinceu, 4 (x, t) < 1forallx ands, we conclude that(r,r) — 1
asr - +oo, forallz € R.

Consider now a sequencg”, a”) € Mg x RN such thap” — u € Mg (in
the sense of Section 1.1) antl — a € R"Y. From Theorem 1.2, the functiong»
converge to the function,, in the sense of the topolodgy. Since these functions
(u,n) are locally bounded, say, up to their first-order (or second-order) derivatives
inr (resp.x), we conclude that the functioms,» ,» converge to the function, ,
in 7.
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Lastly, choose two measurgg andu in Mg, such thatu1 andu are not
concentrated ofioo}. Let a; anday be two points inRY. Suppose that,,, 4, =
Uupap- WE have

u/Ll,al(ala 0) = uug,az(al’ 0) = Upp,a (2a2 — a1, 0)

sinceu ,, 4, is radially symmetric with respect to the point Similarly, it is found
that

Upp,a (2a2 — a1,0) = uul,al(zaZ —a1,0) = u,ul,al(gal — 2a3,0)

sinceu,,, 4, is radially symmetric with respect to the poimt. Going one step
further, we getr,,; 4, (3a1—2a2, 0) = w1, 4,(3a1—2a2, 0) = 1y, 4, (4a2—3a1, 0).
By induction, it is then found that

Upq,a1 (a1,0) = up(2k(az — a1) + a1, 0)

for each integek € N. Sinceus is not concentrated on the single poiib},
we haveu,, ,(x,0) — 1 as|x| — +oo. On the other hand;,, «,(a1,0) < 1.
Therefore, by passing to the limit — +oo, it follows thata, — a3 = 0. As a
consequence, since we had assumedufpat, = ., q,, We getu,, = u,, and
Lemma 3.5 yieldgt1 = u2. Hence(u1, a1) = (u2, a2). In other words, the map
(1, a) = uy 4 IS ONe-to-one ifu is in the set of measurgs € Mg which are not
concentrated on the single poinab}.

(i-b) Fixa =0.The magu € Mg +— v, suchthav,(|x|, r) = u,(x, ) ranges

in the set of solutions(r, ¢) of (21). Furthermore, with the same arguments which
were used in the proof of (i-a), it follows that this map is one-to-one on the set of
measureg:. which are not concentrated dno}. On the other hand, this map is
continuous in the sense thatif — u, thenv,» — v, in CL. with respect ta

and inC2 . with respect to-.

(i) Property (2) immediately follows from (16) and from Theorem 1.4.
That completes the proof of Theorem 1.81
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