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Abstract

This paper is devoted to time-global solutions of the Fisher-KPP equation inR
N :

ut = �u+ f (u), 0< u(x, t) < 1, x ∈ R
N, t ∈ R

wheref is aC2 concave function on[0,1] such thatf (0) = f (1) = 0 andf > 0
on (0,1). It is well known that this equation admits a finite-dimensional manifold
of planar travelling-fronts solutions. By considering the mixing of any density of
travelling fronts, we prove the existence of an infinite-dimensional manifold of
solutions. In particular, there are infinite-dimensional manifolds of (nonplanar)
travelling fronts and radial solutions. Furthermore, up to an additional assumption,
a given solutionu can be represented in terms of such a mixing of travelling fronts.

1. Introduction and main results

This paper is devoted to the question of the description of the set of the solutions
u(x, t), defined for all time, of the Fisher-KPP equation

ut = �u+ f (u), 0< u(x, t) < 1, x ∈ R
N, t ∈ R. (1)

We deal with the solutions that are defined for all time and for all pointsx ∈ R
N ,

and which we call “entire”. We assume that the nonlinearityf satisfies:f (0) =
f (1) = 0,f ′(0) > 0,f ′(1) < 0 andf (u) > 0 for any 0< u < 1. We also assume
thatf is a concave function of classC2 in [0,1]. An example of such a function
f is the quadratic nonlinearityf (u) = u(1 − u) considered byKolmogorov,
Petrovsky & Piskunov in their pioneering paper [20]. We refer toAronson &
Weinberger [2], Barenblatt & Zeldovich [3], Fife [9], Fisher [11], Freidlin
[12], Murray [28], Rothe [33] or Stokes [35] for a derivation of this equation
in models for population dynamics (like models for the spread of advantageous
genetic traits in a population) and other biological models.
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Because of the strong parabolic maximum principle, a solutionu of ut =
�u+ f (u) that is defined for all(x, t) ∈ R

n×R and satisfies 0� u � 1, is either
identically equal to 0, 1, or is in the range 0< u(x, t) < 1 for all (x, t). We only
deal here with the case 0< u < 1.

Problem (1) clearly admits solutionsu(t) that depend on time only, namely,u
solvesu′(t) = f (u), 0 < u < 1, t ∈ R. These solutionsu(t) are increasing int ,
they satisfyu(t)→ 0 ast → −∞ andu(t)→ 1 ast → +∞. Furthermore, they
are unique up to translation in time. It is convenient for what follows to defineξ(t)

as the only solution of that type such that

ξ(t) ∼ ef
′(0)t ast →−∞. (2)

The set of all the solutionsu(t) of (1) is equal to the 1-dimensional manifold
{t → ξ(t + h), h ∈ R}.

It is well known that problem (1) also has, in dimensionN � 2, an(N + 1)-
dimensional manifold of entire solutions of planar travelling waves type, namely
uν,c,h(x, t) = ϕc(x · ν+ ct+h)whereν varies in the unit sphereSN−1, h varies in
R andc varies in[c∗,+∞[ with c∗ = 2

√
f ′(0) > 0. In space dimensionN = 1,

there are two 2-dimensional manifolds of travelling-waves solutions:u+c,h(x, t) =
ϕc(x + ct + h) andu−c,h(x, t) = ϕc(−x + ct + h) (see for instanceAronson &
Weinberger [2], Bramson [6], Fife [9], Freidlin [12],Hadeler & Rothe [15],
Kanel’ [18], Rothe [33], Stokes [35]). For anyc � c∗, the functionϕc satisfies

ϕ′′c − cϕ′c + f (ϕc) = 0 in R, ϕc(−∞) = 0 andϕc(+∞) = 1.

The functionϕc is increasing, unique up to translation. For eachc � c∗, let λc be
the positive real number defined by

λc = c −√c2 − 4f ′(0)
2

= c −
√
c2 − c∗2

2
> 0 (3)

(λc satisfiesλ2
c − cλc + f ′(0) = 0). For anyc > c∗, it is known thatϕc(s)e−λcs

goes to a finite positive limit ass → −∞. Up to translation, we can then assume
that

∀ c > c∗, ϕc(s) ∼ eλcs ass →−∞. (4)

For the minimal speedc = c∗ = 2
√
f ′(0), we have, up to translation,

ϕc∗(s) ∼ |s|eλ∗s ass →−∞, λ∗ = λc∗ =
√
f ′(0) = c∗/2 (5)

(seeAgmon & Nirenberg [1], Berestycki & Nirenberg [4], Bramson [6],
Coddington & Levinson [8], Hadeler & Rothe [15], Kametaka [17], Pazy
[29], Uchiyama [37]).
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Many works have been devoted to the question of the behavior for large time and
the convergence to the travelling waves for the solutions of the Cauchy problem for
(1), especially in dimension 1, under a wide class of initial conditions (Aronson&
Weinberger [2], Bramson [6,7], Freidlin [12], Kametaka [17], Kanel’ [18],
Kolmogorov, Petrovsky & Piskunov [20], Larson [21], Lau [22], McKean
[24], Moet [26], Rothe [34], Uchiyama [37], Van Saarlos [38]). Other stabil-
ity results have been obtained for the KPP equation in straight infinite cylinders
(Berestycki & Nirenberg [4], Mallordy & Roquejoffre [23], Roquejoffre
[32]) and for a larger class of KPP type equations (Biro & Kersner [5], Peletier
& Troy [30,31],Van Saarlos [38],Zhao [40]) as well as under other restrictions
of the functionf (seeRothe [33], Stokes [35,36] if c∗ > 2

√
f ′(0), orAronson

&Weinberger [2], Fife &McLeod [10],Kanel’ [18,19] if f is of the “bistable”
type).

The entire solutions of (1) can be viewed as orbits{u(·, t), t ∈ R} lying in the
space of the functionsψ ∈ C2(RNx ) such that 0< ψ < 1. The goal of this paper is
then to describe the set of the orbits for (1) and the qualitative properties of these
orbits. The difficulty is that we have to deal both with a directwell-posed Cauchy
problem and an inverseill-posed Cauchy problem for a nonlinear heat equation.

The question of the existence of entire solutions of (1) other than the solutions
independent ofx and the travelling-waves solutions has been answered in the case
of planar solutions (solutions which depend only on time and on one space variable)
in an earlier paper [16]. In dimensionN = 1, 4 other manifolds of entire solutions
of (1) have been constructed: one of these manifolds is 5-dimensional, one is 4-
dimensional and two are 3-dimensional. Furthermore, the 4- and the 3-dimensional
manifolds, as well as the travelling-waves solutions and the solutionst → ξ(t +
h), are on the boundary of that 5-dimensional manifold of entire solutions of (1)
(see [16]).

One of the basic ideas in [16] for constructing new entire solutions of the
KPP equation (1) in dimension 1 consists in considering two travelling waves
ϕc′(−x + c′t + h′) andϕc(x + ct + h) with speedsc, c′ > c∗, one coming from
the left side and the other from the right side of the real axis and mixing.

In Section 1.1, we shall show how this mixing procedure can be extended, in
any space dimensionRN , by allowing both for the mixing of any finite number of
travelling waves (Theorem 1.1) and for the mixing of an integrable sum of travelling
waves, each of them being characterized by its direction and its speed. That leads to
the existence of an infinite-dimensional manifold of solutions of (1) (Theorem 1.2).
In Section 1.2, we state an “almost-uniqueness” result (Theorem 1.4): namely, up to
an additional assumption that is almost generically satisfied, each entire solution of
(1) belongs to the infinite-dimensional manifold of solutions constructed in Theo-
rem 1.2. Furthermore, we give an easy characterization of the entire solutions of (1)
that only depend on time (Theorem 1.5). Lastly, in Section 1.3, as a consequence of
the results in Sections 1.1 and 1.2, we get the existence of an infinite-dimensional
manifold of nonplanar travelling waves and of radial solutions of (1) (Theorems 1.7
and 1.8).
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1.1. Existence of an infinite-dimensional manifold of entire solutions

In [16], in the 1-dimensional case, we showed how two travelling waves with
speeds greater than the minimal speedc∗ and coming from opposite sides of the
real axis could mix together and give rise to an entire solution of (1); moreover,
the so-built entire solution behaves like each of these two travelling waves on each
side of the real axis as the time goes to−∞.

In the following theorem, in any dimensionN , we generalize that mixing proce-
dure by considering any finite number of travelling waves coming from directions
νi with speedsci � c∗ and mixing. We also allow both the mixing of travelling
waves coming from the same direction with different speeds and the mixing of
travelling waves with solutions of the typet → ξ(t + h). In statements (6)–(9)
below, we show the relationship between the so-built entire solutionsu and the
travelling waves from which they originated. We shall see that property (10) below
characterizes each of these new entire solutionsu.

Theorem 1.1 (Mixing a finite number of travelling waves). Let p be a positive
integer. For each i = 1, · · · , p, let νi be in the unit sphere SN−1, let ci ∈ [c∗,+∞]
and let hi ∈ R. Assume that ci �= cj as soon as νi = νj with i �= j . Furthermore,
assume that at most one ci takes the value+∞. Then there exists an entire solution
u(x, t) = u(νi ,ci ,hi ; i=1,··· ,p)(x, t) of (1) such that

∀ i, u(x, t) � ϕci (x · νi + ci t + hi) if c∗ � ci < +∞
u(x, t) � ξ(t + hi) if ci = +∞,

(6)

u(x, t) �
∑

i, ci<∞
ϕci (x · νi + ci t + hi) +

∑
i, ci=∞

ξ(t + hi). (7)

For any (ν, c) ∈ SN−1 × [c∗,+∞[,

if cν · νj < cj for all j, then u(−ct ν + x, t) −→
t→−∞0,

if ∃ i, cν · νi = ci, cν · νj < cj ∀ j �= i,

then u(−ct ν + x, t) −→
t→−∞ ϕci (x · νi + hi),

if cν · νi > ci for some i, then u(−ct ν + x, t) −→
t→−∞ 1,

(8)

if cν · νj > cj for all j, then u(−ct ν + x, t) −→
t→+∞0,

if ∃ i, cν · νi = ci, cν · νj > cj ∀ j �= i,

then u(−ct ν + x, t) −→
t→+∞ ϕci (x · νi + hi),

if cν · νi < ci for some i, then u(−ct ν + x, t) −→
t→+∞ 1.

(9)
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Moreover, as t →−∞:

u(x, t)e−f ′(0)t −→ ef
′(0)hi if ∃ i, ci = +∞, u(x, t)e−f ′(0)t → 0 otherwise,

∀ z ∈ R
N, 0< |z| < c∗ = 2

√
f ′(0),

u(−zt + x, t) e− 1
4 (c

∗2−|z|2)t → e
1
2 |z|hi e

1
2z·x if ∃ i, ci < +∞, 2λci νi = z,

u(−zt + x, t) e− 1
4 (c

∗2−|z|2)t → 0 otherwise, (10)

∀ ν ∈ SN−1,

u(−c∗t ν + x, t)→ ϕc∗(x · ν + hi) if ∃ i, (ν, c∗) = (νi, ci),

u(−c∗t ν + x, t)→ 0 otherwise.

All the above convergences hold in C2
loc(R

N
x ).

Lastly, the set of the solutions u of that type contains the planar travelling
waves, the functions of the type t → ξ(t +h) and the planar solutions constructed
in [16].

In the second statement of (8), if we take(ν, c) = (νi, ci), then the convergence
u(−ci t νi + x, t) −→ ϕci (x · νi + hi) ast → −∞ holds at least for the smallest
ci ’s but it does not hold in general for all theci ’s. Roughly speaking, that means
that only some fronts, those with small speeds, can be “viewed” ast → −∞, the
other ones being “hidden”. More restrictive conditions are required for some of the
travelling fronts to be seen ast → +∞: indeed, for a giveni, the convergence
u(−ci t νi + x, t) −→ ϕci (x · νi + hi) in (9) requires especially thatνi · νj > 0 for
all j �= i; the latter may not be satisfied in general.

The property (10) deals with the behavior of the functionu along the raysz|z|
ast → −∞ with |z| � c∗. Notice that, from (10),u(−zt, t)→ 0 ast → −∞ if
|z| < c∗ (the latter actually holds for each entire solution of (1), see (16) and more
comments after Theorem 1.2 below). Finally, notice that, unlike properties (8) or
(9), the asymptotic behavior (10) easily implies that the so-built finite-mixing-type
entire solutionsu are different from each other.

After the mixing of any finite number of travelling waves coming from any
directions, it is natural to wonder if a integrable sum of travelling waves (with
respect to a measure supported onSN−1 × [c∗,+∞]) can mix. The answer is yes,
and it will be the subject of Theorem 1.2 below. Before stating this theorem, we

introduce some notation. LetB(0, c∗) = B
(
0,2

√
f ′(0)

)
= {z ∈ R

N, |z| < c∗}
be the open ball ofRN with center 0 and radiusc∗. Let us define the topological
spaces

X = SN−1 × [c∗,+∞) ∪ {∞},
X̂ = SN−1 × (c∗,+∞) ∪ {∞} = X \ SN−1 × {c∗}

as follows: we use on the setSN−1 × [c∗,+∞) (resp.,SN−1 × (c∗,+∞)) the
topology induced by the Euclidean structure ofR

N and, on the other hand, we say
that a setA is a neighborhood of∞ inX (andX̂) if and only if∞ ∈ A and if there
exists a real numberc0 � c∗ such that(ν, c) ∈ A for all ν ∈ SN−1 andc � c0.



96 François Hamel & Nikolaı̈ Nadirashvili

The setX is compact and it can also be viewed as the set{x ∈ R
N, |x| � c∗} to

which we add a point at infinity, which can be thought of as an infinite speed.
Let M be the set of all nonnegative and nonzero Radon-measuresµ on X

(0 < µ(X) < +∞), such that the restrictionµ∗ of µ on the sphereSN−1 × {c∗}
can be written as a finite sum of Dirac distributions:

µ∗ =
∑

1�i�k
mi δ(νi ,c∗)

for some integerk � 0, some directionsνi ∈ SN−1 different from each other and
some positive real numbersmi . In particular, the setM contains all the nonnegative
Radon measures whose support is compactly included inSN−1 × (c∗,+∞).

For anyµ ∈ M, we denoteµ̂ the restriction ofµ on the setX̂ and$∗µ̂ the
image ofµ̂ by the continuous, one-to-one and onto map

$ : X̂ = SN−1 × (c∗,+∞) ∪ {∞} −→ B(0, c∗),

(ν, c) �= ∞ −→ z = 2λcν = (c −
√
c2 − c∗2) ν,

∞ −→ 0.

Let M̂ be the set of measuresµ ∈ M such thatµ∗ = 0 (i.e., k = 0). We say
that a sequence of measuresµn ∈ M̂ converges to a measureµ ∈ M̂ if: (a)∫
X̂
f dµ̂n → ∫

X̂
f dµ̂ for each continuous functionf on X̂ such thatf ≡ 0 on

SN−1×(c∗, c∗+ε) for someε > 0, (b)µn(X̂)→ µ(X̂) and (c)µn(∞)→ µ(∞).
LetE be the set of all entire solutions of (1). We say that some functionsun ∈ E

approach a functionu ∈ E in the sense of the topologyT if the functionsun go to
u in C1

loc(Rt ) andC2
loc(R

N
x ).

The following theorem provides the existence of an entire solutionuµ for each
measureµ ∈ M and, generalizing the property (10) in Theorem 1.1, we give
an interpretation, in terms of the measureµ, of the asymptotic behavior ofuµ as
t →−∞ along the raysν if one moves with speeds less thanc∗.
Theorem 1.2 (Main existence theorem). For any N � 1, there exists an infinite-
dimensional manifold of entire solutions of (1). Namely, there exists a one-to-one
map,µ → uµ, from M to E , which is continuous on M̂. Moreover, given a measure
µ ∈ M, the entire solution uµ satisfies the following properties:

(i) (behavior ast →−∞).

uµ(−c∗t ν + x, t) −→
t→−∞ϕc∗(x · ν + c

∗ lnmi) in C2
loc(R

N
x ) if ν = νi for some i,

uµ(−c∗t ν + x, t) −→
t→−∞ 0 otherwise

(11)

and, for any sequence tn →−∞,( |tn|
4π

)N/2
uµ(−tnz+ x, tn + t) e− 1

4 ((c
∗)2−|z|2)tn dz

⇀
tn→−∞ e(f

′(0)+ 1
4 |z|2)(t+ln M̂)+ 1

2x·z 1

M̂
$∗µ̂(dz) (12)



Travelling Fronts and Entire Solutions of the Fisher-KPP Equation inR
N 97

in Cc(B(0, c∗))′, under the convention that the right-hand side is zero if M̂ = 0;
namely, for any continuous function ψ(z) with compact support on B(0, c∗),
∫
B(0,c∗)

( |tn|
4π

)N/2
uµ(−tnz+ x, tn + t) e− 1

4 (c
∗2−|z|2)tn ψ(z) dz

−→
tn→−∞

∫
B(0,c∗)

e(f
′(0)+ 1

4 |z|2)(t+ln M̂)+ 1
2x·z ψ(z) 1

M̂
$∗µ̂(dz) (13)

in the sense of the topology T .

(ii) (monotonicity in time). The function uµ is increasing in time t .

(iii) (multiplication of µ by positive constants).For each positive real number α,
uαµ(x, t) = uµ(x, t + ln α) for all (x, t) ∈ R

N ×R; furthermore, uαµ → 1 (or 0)
as α→+∞ (resp. 0+) in the sense of T .

(iv) (case of absolutely continuous measures with respect todν × dc). If µ ∈ M̂
(i.e., µ(SN−1 × {c∗}) = 0, i.e., k = 0) and if the restriction µ̃ of µ on the set
SN−1 × (c∗,+∞) is absolutely continuous with respect to the Lebesgue measure
dν × dc, then

∀ ν ∈ SN−1, ∀ c � c∗, ∀h ∈ R,

uµ(−ct ν + x, t) �→ ϕc(x · ν + h) as t →±∞.
(14)

Lastly, the set of the solutions of the typeuµ contains the planar travelling waves,
the solutions t → ξ(t+h), as well as the other planar solutions constructed in [16]
and the finite-mixing-type solutions of Theorem 1.1. The solutions in Theorem 1.1
correspond to measures which can be written as finite sums of Dirac distributions.

For each solutionuµ of (1), the asymptotic behavior (11), (12) is a consequence
of the construction of suitable sub- and super-solutions foruµ (see the lower and
upper bounds (30) in Section 3 below). Note that, unlike the asymptotic behavior of
the functionuµ ast →−∞along the rayszt with |z| � c∗, the asymptotic behavior
(11), (12) along the rays of the “inner” coneC = {(zt, t), t � 0, z ∈ R

N, |z| � c∗}
characterizes each entire solution of the typeuµ, in the sense that ifµ1 �= µ2, then
u1 �= u2 (which is proved in Lemma 3.5, Section 3.5). Let us now comment on this
formula (12) more thoroughly. First, the following fact, known as the “hair-trigger”
effect (seeAronson & Weinberger [2]), holds for any solutionu of (1):

∀0 � c < c∗, min
|x|�ct

u(x, t)→ 1 ast →+∞. (15)

Notice here that this fact immediately implies that there are no stationary or time-
periodic solutions of (1). It follows that

∀ 0 � c < c∗, max
|x|�c|t |

u(x, t)→ 0 ast →−∞ (16)

for each solutionu of (1) (see Lemma 4.1 for more details). It is then not surprising
that, in the left-hand side of (12) (as in the first two statements of (10) inTheorem 1.1,
or in (25) in Section 2), the termsuµ(−ztn+x, tn+t), with |z| < c∗ andtn →−∞,
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have to be renormalized by asymptotically small factors.These asymptotically small

terms in (12) are of the type(|tn|/4π)−N/2e 1
4 ((c

∗)2−|z|2)tn . On the other hand, in the

right-hand side of (12), each terme(f
′(0)+ 1

4 |z|2)(t+ln M̂)+ 1
2x·z 1

M̂
is a solution of the

linearized heat equation aroundu = 0:

∂tU = �U + f ′(0)U.
Putting these together, the asymptotic behavior (12) can then be thought of as a
spectral decomposition of the functionuµ as t → −∞ along the rays|z| < c∗
in terms of pure exponential solutions of the linearized heat equation balanced by
the measure$∗µ̂(dz), the functionuµ being itself suitably renormalized by the

exponentially decaying weightse
1
4 (c

∗2−|z|2)tn (|tn|/4π)−N/2 which are larger and
larger as|z| approachesc∗.

Property (iv) implies that if the measureµ is absolutely continuous with respect
to dν × dc onSN−1 × (c∗,+∞) and if the restrictionµ∗ of µ onSN−1 × {c∗} is
zero, then the functionuµ does not converge ast →−∞ (nor ast →+∞) to any
travelling front along any rayν if the frame moves with any speed greater than or
equal to the minimal speed. (Let us also mention that some non-convergence results
more general than property (iv) are proved in Section 3.8.) On the contrary, for each
entire solution obtained from the mixing of a finite number of planar travelling
waves (Theorem 1.1), there exists at least one directionνi , one speedci � c∗ and
one real numberhi ∈ R such thatu(−ci t νi + x)→ ϕci (x · νi + hi) ast →−∞.
Theorem 1.2 provides then the existence of entire solutions that are different from
those obtained from the finite mixing of travelling waves. But, by definition, the
manifold of the solutionsuµ, which is infinite-dimensional, is actually much bigger
than the countably-many finite-dimensional manifolds of solutions obtained from
the mixing of a finite number of travelling waves.

Lastly, property (iii) simply says that multiplying a measureµ by a positive
constant is the same as shiftinguµ in time.

Remark 1.3 (Behavior whent → +∞). As far as the asymptotic behavior ofuµ
as t → +∞ is concerned, it is known from [2] that min|x|�ct uµ(x, t) → 1 as
t →+∞, as soon as 0� c < c∗. We give here a sufficient (and almost necessary)
condition, which has an easy geometric interpretation, for a solutionuµ to converge
uniformly to 1 ast →+∞. Namely, as proved in Section 3.4,

– if, for all ν0 ∈ SN−1, there existsε > 0 such thatµ({c∗ � c < ∞, ν · ν0 �
ε} ∪ {∞}) > 0, then infRN uµ(·, t) > 0 for all t ∈ R and infRN uµ(·, t)→ 1 as
t →+∞,

– if there existsν0 ∈ SN−1 such thatµ({c∗ � c < ∞, ν · ν0 � 0} ∪ {∞}) = 0,
then infRN uµ(·, t) = 0 for all t ∈ R.

As a consequence, in dimensionN = 1, a solutionuµ(x, t) of (1) converges to
1 uniformly in x ∈ R as t → +∞ if and only if µ({c∗ � c < +∞, ν =
ν±} ∪ {∞}) > 0 for eachν± = ±1. Otherwise, infR uµ(·, t) = 0 for all t ∈ R.

Notice here that we shall see in Theorem 1.5 below that, whent → −∞, a
solutionu of (1) in R

N cannot converge to 0 uniformly inx ast →−∞, unlessu
depends ont only.
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1.2. Two partial uniqueness results

As already mentioned in the previous section, each solutionu(x, t) of (1) sat-
isfies (16), namely,

∀ 0 � c < c∗, max
|x|�c|t |

u(x, t)→ 0 ast →−∞.

We shall see later (Lemma 4.7 and Remark 4.8) that if a measureµ ∈ M is such
thatµ(SN−1×[c∗, c]) = 0 for somec ∈ [c∗,+∞[, then max|x|�c|t | uµ(x, t)→ 0
ast →−∞.

Conversely, we can actually characterize all the solutionsuof (1) satisfying such
a property withc > c∗, that is to say, thatu satisfies a slightly stronger assumption
than (16):

Theorem 1.4 (Partial uniqueness result). Let u(x, t) be a solution of (1). If there
exists ε > 0 such that

max
|x|�(c∗+ε)|t |

u(x, t)→ 0 as t →−∞,

thenu = uµ for some (unique)measureµ ∈ M. Therefore,u satisfies all properties
(i)–(iv) of Theorem 1.2. Moreover, µ is concentrated on the set SN−1 × [c∗ +
ε,+∞) ∪ {∞}.

The next theorem, which can be proved from Theorem 1.4, gives an easy char-
acterization of the functions depending only on timet among all the entire solutions
of (1):

Theorem 1.5 (Uniqueness in the class of solutions bounded away from 1). Let
u(x, t) be a solution of (1) . Then,

either ∀ t ∈ R, sup
x∈RN

u(x, t) = 1

or u(x, t) ≡ u(t).

As a consequence, any solution uµ of (1) is such that sup uµ(·, t) = 1 for all
t ∈ R as soon as µ is not concentrated on the single point {∞}, i.e., as soon as
µ �≡ 0 on SN−1 × [c∗,+∞).

This means that if a solutionu of (1) is such that the functionu(·, t0) is bounded
away from 1 at some timet0, thenu is independent ofx for all time. In particular,
there are no “pulse-like” solutions of (1), i.e., solutions such thatu(x, t0)→ 0 as
|x| → +∞ at some timet0 (see similar results for entire solutions of another class
of parabolic equations in [25]).

Having (16) and Theorems 1.2 and 1.4 in mind, we now formulate the following

Conjecture 1.6 (Uniqueness). The set E of all entire solutions of (1), such that
0 � u � 1, is the closure, in the sense of the topology T , of the set of the solutions
uµ.
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If this conjecture were true, that would mean that all the solutions of (1) could
be described, in a certain sense, from the travelling waves and from the solutions
t → ξ(t + h), which could also be thought of as travelling waves with an infinite
speed. By analogy, the travelling waves, with finite or infinite speeds, would then
play the role of a basis of eigenfunctions for this nonlinear problem, as do some
pure exponential functions for the heat equation∂tv = �v in R

N ×R (seeWidder
[39]).

1.3. Applications to travelling waves and radial solutions

As said earlier, there is a finite-dimensional manifold of planar travelling waves
for equation (1). Each planar travelling wave can be written asϕc(x · ν + ct + h)
for some directionν ∈ SN−1, some speedc � c∗ and some real numberh ∈ R.
Such a travelling waveϕc(x · ν + ct + h) propagates in the direction−ν with the
speedc.

We can now ask ourselves if there are nonplanar travelling waves for (1). By a
travelling wave for (1), we understand a solutionu(x, t) such that

∀ (x, t) ∈ R
N × R, ∀ τ ∈ R, u(x, t + τ) = u(x + c0τν0, t) (17)

for some directionν0 ∈ SN−1 and some speedc0 � 0 (up to a changeν0 → −ν0,
we can always assumec0 � 0). Such a wave is propagating in the direction−ν0
with the speedc0. The functionu can be written as

u(x, t) = v(x + c0tν0) (18)

wherev is (uniquely) defined byv(y) = u(y,0) for all y ∈ R
N . The functionv is

such that 0< v(y) < 1 for all y ∈ R
N and it satisfies the elliptic equation

�v − c0∂ν0v + f (v) = 0 in R
N (19)

where∂ν0v = ν0 · ∇v. Conversely, any solution 0< v < 1 of (19) gives rise to a
travelling waveu(x, t) = v(x + c0tν0) for (1), which propagates in the direction
−ν0 with the speedc0.

For each couple(ν0, c0) ∈ SN−1 × [0,+∞), set

S(ν0,c0) =
{
(ν, c) ∈ SN−1 × [c∗,+∞), c0ν0 · ν = c

}
(= S(c0ν0/2, c0/2)\B(0, c∗)) whereS(c0ν0/2, c0/2) is the sphere with center
c0ν0/2 and radiusc0/2, andB(0, c∗) is the open ball centered at the origin and
with radiusc∗. Note thatS(ν0,c0) is empty as soon as 0� c0 < c∗, and that, in
dimensionN = 1, S(ν0,c0) reduces to the single point(ν0, c0) if c0 � c∗. Finally,
let MTW be the subset ofM defined by

MTW = {
µ ∈ M, ∃ (ν0, c0) ∈ SN−1× [0,+∞), µ is concentrated onS(ν0,c0)

}
.

Theorem 1.7 (Travelling waves). (i) Let u be a travelling wave for (1) and assume
that u satisfies (17), namely, that u propagates in direction−ν0 with speed c0. Then,
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(i-a) c0 � c∗;
(i-b) the function v defined by (18) is increasing in each direction ν ∈ SN−1 such

that ν · ν0 > cos(arcsin( c
∗
c0
)), namely, ν belongs to the open cone directed

by ν0 with angle arcsin( c
∗
c0
). Furthermore, for each such ν, lims→−∞ v(a +

sν) = 0 and lims→+∞ v(a + sν) = 1 for all vector a ∈ R
N ;

(i-c) if c0 = c∗, thenu is a planar travelling wave with speed c∗, namely,u(x, t) =
ϕc∗(x ·ν0+c∗t+h) for some h ∈ R. In other words, if 0< v < 1 is a solution
of (19) for c0 = c∗ and for some ν0 ∈ SN−1, then v(y) = ϕc∗(y · ν0 + h)

for some h ∈ R.
(ii-a) In dimension N � 2, there exists an infinite-dimensional manifold of trav-

elling waves for (1). Namely, the restriction of the map µ → uµ on MTW

ranges in the set of travelling waves for (1), and it is one-to-one on MTW

and continuous on MTW ∩ M̂. If

µ =
k∑
i=1

miδ(νi ,c∗) + µ̂ ∈ M

is concentrated on S(ν0,c0) for some (ν0, c0), then uµ is a travelling wave
satisfying (17). Furthermore, vµ(y) = uµ(y,0) is the smallest solution of
(19) such that

vµ(y) � max

(
max

1�i�k
ϕc∗(y · νi + c∗ lnmi),∫

SN−1×(c∗,+∞)

ϕc(y · ν + c ln M̂)
1

M̂
dµ̃

)
(20)

for all y ∈ R
N , where M̂ = µ(X̂) (if M̂ = 0, then the second term in the

right-hand side of the above inequality drops out);
(ii-b) In dimension N � 2, for each c0 > c∗ and for each ν0 ∈ SN−1, there exists

an infinite-dimensional manifold of solutions v(y), 0< v < 1, of the elliptic
equation (19);

(ii-c) Let u(x, t) be a travelling wave of (1) satisfying (17). If u is of the type uµ
for some µ ∈ M, then µ is concentrated on S(ν0,c0).

(iii) Let u be a travelling wave for (1) satisfying (17)and let v be defined by (18).
Then,

(iii-a) ∀0 � c < c∗, max
|y|�c|s|

v(c0ν0s + y)→ 0 as s →−∞;

(iii-b) If there exists ε > 0 such that

max
|y|�(c∗+ε)|s|

v(c0ν0s + y)→ 0 as s →−∞,

then u = uµ for some measure µ ∈ MTW concentrated on S(ν0,c0) ∩ {c �
c∗ + ε} and u satisfies all properties (i) and (ii ) above.
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Let us now consider the case of radial solutions of (1). We say that a solution
u(x, t) of (1) is radially symmetric, or radial, if there exists a pointa ∈ R

N such
thatu can be written as

u(x, t) = v(|x − a|, t)
for all x ∈ R

N andt ∈ R. The functionv = v(r, t) satisfies

vt = vrr + N − 1

r
vr + f (v), r > 0, t ∈ R,

v(r, t)isC2in r ∈ [0,+∞[andC1in t,and,∀ t ∈ R, vr (0, t) = 0.
(21)

Note that the set of the solutions of (1) which are radially symmetric with respect
to a pointa ∈ R

N is the set of functions{(x, t) → u(x − a, t)} whereu is radially
symmetric with respect to the origin.

We can now ask ourselves if there are radial solutions of (1) and, if yes, what
is the size of the set of such solutions. Before answering this question in the next
theorem, let us define the set

MR = {µ ∈ M, ∀ ρ ∈ SO(N), ∀BorelA ⊂ X, µ(ρ(A)) = µ(A)}.
The setMR is the set of the measuresµ ∈ M that are rotationaly invariant. Since
the restriction of any measureµ ∈ M on the setSN−1 × {c∗} is a finite sum of
Dirac masses, it follows that, for each measureµ ∈ MR, we haveµ∗ = 0. In other
words,MR ⊂ M̂.

Theorem 1.8 (Radial solutions). (i-a)There exists an infinite-dimensional manifold
of radial solutions of (1). Namely, the map

MR × R
N → E

(µ, a) → uµ,a = uµ(· − a, ·)
ranges in the set of radial solutions of (1) . This map is continuous and its restriction
to the set of measures µ ∈ MR which are not concentrated on the single point
{∞}, is one-to-one. Furthermore, for each given (µ, a) ∈ MR ×R

N , the function
uµ,a is radially symmetric with respect to the point a and the function v defined by
uµ,a(x, t) = v(|x − a|, t) solves (21), and it is such that v(r, t)→ 1 as r →+∞
for all t ∈ R, provided µ is not concentrated on {∞}.
(i-b) There exists an infinite-dimensional manifold of solutions v of (21).
(ii) Each solution v of (21) is such that

∀0 � c < c∗, max
0�r�c|t |

v(r, t)→ 0 as t →−∞.

Furthermore, if v is a solution of (21) such that

max
0�r�(c∗+ε)|t |

v(r, t)→ 0 as t →−∞

for some ε > 0, then there exists a measureµ ∈ MR such that v(|x|, t) = uµ(x, t)

for all (x, t) ∈ R
N × R.
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Structure of the paper. The rest of the paper is organized as follows: Section 2
is devoted to the construction of solutions that are obtained from the mixing of a
finite number of travelling waves (Theorem 1.1). These solutions are constructed
from a sequence of Cauchy problems starting at times−n → −∞. Section 3
deals with the proof of Theorem 1.2 about the existence of an infinite-dimensional
manifold of solutions of (1). Section 4 is devoted to the proof of partial uniqueness
results (Theorems 1.4 and 1.5). Lastly, Section 5 deals with the cases of (nonplanar)
travelling waves and radial solutions of (1).

2. Construction of entire solutions from the mixing of a finite number of
travelling waves (Theorem 1.1)

This section is devoted to the proof of Theorem 1.1. Letp be a positive integer
p � 1 and for eachi = 1, · · · , p, let νi , ci , hi be such thatνi ∈ SN−1, c∗ � ci �
+∞, hi ∈ R. Assume thatci �= cj if νi = νj and assume that there exists at most
one indexi such thatci = +∞. Our goal is to prove that there exists an entire
solutionu of (1) satisfying properties (6)–(10) stated in Theorem 1.1.

Consider the case wherek := #{i, ci = c∗} � 1 and #{i, ci = +∞} = 1 (the
cases #{i, ci = c∗} = 0 or #{i, ci = +∞} = 0 are similar and even easier to deal
with). Up to a renumbering, we can then assume that

c1 = · · · = ck = c∗ < ck+1 � · · · � cp−1 < +∞ = cp.

For eachn ∈ N, letUn(x, t) be the solution of the Cauchy problem

(Un)t = �Un + f (Un), x ∈ R
N, t > −n

Un(x,−n) = max
(

max
1�i�p−1

ϕci (x · νi − cin+ hi), ξ(−n+ hp)
)
,

where 0� Un(x,−n) � 1. This Cauchy problem is well posed and the maximum
principle yields

0 � max

(
max

1�i�p−1
ϕci (x · νi + ci t + hi), ξ(t + hp)

)
� Un(x, t) � 1 (22)

for all x ∈ R
N andt � −n. Another application of the maximum principle shows

that the functions(Un(x, t))n are nondecreasing with respect ton. Indeed, for each
(x, t) ∈ R

N×R, if n′ > n > |t |, thenUn′(·,−n) � Un(·,−n), whenceUn′(x, t) �
Un(x, t). Eventually, there exists a functionu(x, t) such that 0� u(x, t) � 1 and
Un(x, t)→ u(x, t) for each(x, t) ∈ R

N×R. Furthermore, from standard parabolic
estimates and Sobolev’s injections, the functionu is an entire solution of (1). Let
us now prove thatu satisfies all properties (6)–(10).

Proof of (6). It follows immediately from (22).  !

Proof of (7). It follows from the following result due to Bramson; this result resorts
to the concavity of the functionf and to the maximum principle. !
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Lemma 2.1 (Bramson [6]). Let us extend the function f by 0 on the interval
[1,+∞). Let ui,0(x), i = 1, · · ·m, be m given nonnegative and bounded func-
tions. Let ui � 0 be the solutions of the Cauchy problems:

(ui)t = �ui + f (ui), t > 0, x ∈ R
N,

ui(·,0) = ui,0

and let u � 0 be the solution of

ut = �u+ f (u), t > 0, x ∈ R
N,

0 � u(·,0) � u1,0 + · · · + um,0.

Then u(x, t) � u1(x, t)+ · · · + um(x, t) for all t � 0 and for all x ∈ R
N .

Property (7) follows then immediately from Lemma 2.1 becauseUn satisfies

Un(x, t) �
p−1∑
i=1

ϕci (x · νi + ci t + hi)+ ξ(t + hp)

for eacht � −n andx ∈ R
N .

From (6), it follows thatu(x, t) > 0 for all (x, t) ∈ R
N ×R. On the other hand,

u(0, t)→ 0 ast →−∞ because of (7). Therefore, the strong maximum principle
implies thatu < 1 for all (x, t) ∈ R

N ×R. The functionu is then a solution of (1)
such that 0< u < 1.

Proof of (8). Let (ν, c) be inSN−1 × [c∗,+∞[. Assume, say, thatcν · νj < cj for
all 1 � j � p − 1. From (7),

0 � u(−ctν + x, t) �
p−1∑
i=1

ϕci ((ci − cν · νi)t + x · νi + hi)+ ξ(t + hp).

Therefore,u(−ctν + x, t)→ 0 locally inx ast →−∞. From standard parabolic
estimates, the convergence also takes place inC2

loc(R
N
x ). The other two cases (cν ·

νi = ci for somei, cν · νj < cj for all j �= i; andcν · νi > ci for somei) can be
treated similarly.  !

Proof of (9). It is similar to (8).  !

Proof of (10). From (6)–(7),

ξ(t + hp)e−f ′(0)t � u(x, t)e−f ′(0)t

�
p−1∑
i=1

e−f ′(0)tϕci (ci t + x · νi + hi)+ ξ(t + hp)e−f
′(0)t .
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Observe thatξ(t + hp)e
−f ′(0)t → ef

′(0)hp ast → −∞, sinceξ(s) ∼ ef
′(0)s as

s →−∞. On the other hand, because of (4), (5), we have ast →−∞

ϕci (x · νi + ci t + hi) =
{
O(|t |eλ∗c∗t ) locally in x if 1 � i � k

O(eλci ci t ) locally in x if k + 1 � i � p − 1.

Sinceλcc = λ2
c + f ′(0)F ′(0) for all c � c∗, it is found that

p−1∑
i=1

e−f ′(0)tϕci (ci t + x · νi + hi)→ 0 locally inx ast →−∞.

As a consequence,u(x, t)e−f ′(0)t → ef
′(0)hp locally inx ast →−∞. Sinceu is a

positive and bounded solution of (1), the standard parabolic estimates and Harnack
inequality (see, e.g.,Friedman [13],Gruber [14],Moser [27]) yield the existence
of a constantC such that|∇u(x, t)|, |uxixj (x, t)|, |uxixj xk (x, t)| � Cu(x, t+1) for

all (x, t) ∈ R
N×R. Hence, we conclude thatu(x, t)ef

′(0)t → ef
′(0)hp inC2

loc(R
N
x )

ast →−∞.
Take nowz ∈ R

N such that 0< |z| < c∗ = 2
√
f ′(0). We have

0 � u(−zt + x, t)e− 1
4 (c

∗2−|z|2)t

�
p−1∑
i=1

ϕci ((ci − z · νi)t + x · νi + hi)e−
1
4 (c

∗2−|z|2)t + ξ(t + hp)e− 1
4 (c

∗2−|z|2)t .

Sincec∗ = 2
√
f ′(0), |z| > 0 andξ(s) ∼ ef

′(0)s as s → −∞, it follows that

ξ(t + hp)e− 1
4 (c

∗2−|z|2)t approaches 0 ast →−∞, uniformly in x.
Consider the case where there existsi0 such thatz = 2λci0νi0. Notice that there

exists at most one suchi0 sinceci �= cj , i.e.,λci �= λcj , as soon asνi = νj . For each

i � k, we haveλci = λ∗ = c∗
2 . Since|z| < c∗, we find thatk + 1 � i0 � p − 1.

Furthermore, for eachi ∈ {1, · · · , k}, ci = c∗ > z · νi and

ϕci ((ci − z · νi)t + x · νi + hi)e−
1
4 (c

∗2−|z|2)t = O
(|t |e(λ∗(c∗−z·νi )−f ′(0)+ 1

4 |z|2)t)
locally in x as t → −∞. Sinceλ∗(c∗ − z · νi) − f ′(0) + 1

4|z|2 = λ∗2 − λ∗z ·
νi + 1

4|z|2 = 1
4|z − 2λ∗νi |2 > 2, it follows thatϕci ((ci − z · νi)t + x · νi +

hi)e
− 1

4 (c
∗2−|z|2)t → 0 locally inx ast →−∞. For eachi ∈ {k+1, · · · , p−1} such

thati �= i0, the latter also holds similarly. On the other hand, sinceci0 > c∗ > z·νi0,
it is found that

ϕci0
((ci0 − z · νi0)t + x · νi0 + hi0)e−

1
4 (c

∗2−|z|2)t

∼ e
λci0

(x·νi0+hi0)e
1
4 |z−2λci0

νi0 |2t

∼ e
λci0

(x·νi0+hi0) = e
1
2z·x+ 1

2 |z|hi0
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locally in x ast →−∞. On the other hand, (6) implies that

ϕci0
((ci0 − z · νi0)t + x · νi0 + hi0)e−

1
4 (c

∗2−|z|2)t � u(−zt + x, t)e− 1
4 (c

∗2−|z|2)t .

Eventually, we conclude that

u(−zt + x, t)e− 1
4 (c

∗2−|z|2)t → e
1
2z·x+ 1

2 |z|hi0 (23)

ast →−∞, locally in x, and also, as usual, inC2
loc(R

N
x ).

Consider now the case wherez �= 2λci νi for all i = 1, · · · , p − 1. With the
same arguments as above, it is found that

u(−zt + x, t)e− 1
4 (c

∗2−|z|2)t → 0 inC2
loc(R

N
x ) ast →−∞. (24)

Notice here that, from (23) and (24), it easily follows that, for any sequence
tn →−∞ and for anyz such that 0< |z| < c∗,

u(−ztn + x, tn + t) e− 1
4 (c

∗2−|z|2)tn → e(f
′(0)+ 1

4 |z|2)t+ 1
2 |z|hi e

1
2z·x

if ∃ i, ci < +∞, 2λci νi = z,

u(−ztn + x, tn + t) e− 1
4 (c

∗2−|z|2)tn → 0 otherwise,

(25)

in C1
loc(Rt ) andC2

loc(R
N
x ).

Let us now prove the last formula in (10). Takeν ∈ SN−1. If there existsi such
that(ν, c∗) = (νi, ci) (1 � i � k), then, for allj ∈ {1, · · · , k}\{i}, c∗ν · νj < c∗
sinceνj �= νi . Moreover, for eachj � k + 1, c∗ν · νj � c∗ < cj . Therefore, (8)
gives

u(−c∗tν + x, t)→ ϕc∗(x · νi + hi) in C2
loc(R

N
x ) ast →−∞

if ∃ i, (ν, c∗) = (νi, ci).

Otherwise, if(ν, c∗) �= (νi, ci) for all i, then, for allj ∈ {1, · · · , k}, c∗ν · νj <
c∗ = cj , and, for allj � k + 1, c∗ν · νj � c∗ < cj . Finally, the asymptotic limit

u(−c∗tν + x, t)→ 0 inC2
loc(R

N
x )ast →−∞

follows from (8).
Let us now check that the set of the so-built entire solutionsu of (1) contains the

planar travelling waves, the solutions that only depend on time and the solutions
constructed in [16].

Indeed, if (ν, c) ∈ SN−1 × [c∗,+∞[ and h ∈ R, just takep = 1 and
(ν1, c1, h1) = (ν, c, h); the functionu(x, t) is then equal to the planar travelling
front ϕc(x · ν + ct + h).

If h ∈ R, takep = 1 and(ν1, c1, h1) = (ν0,+∞, h) for some arbitrary vector
ν0 ∈ SN−1; the functionu(x, t) is then equal to the functionξ(t + h).

In dimensionN = 1, under the notation of Theorem 1.1 in [16], ifc, c′ ∈
(c∗,+∞), h, h′ ∈ R andK > 0, takep = 3 and(ν1, c1, h1) = (−1, c′, h′),
(ν2, c2, h2) = (1, c, h) and(ν3, c3, h3) = (ν0,+∞, lnK

f ′(0) ) for some arbitraryν0 ∈
{±1}; by definition, the functionu(x, t) is then equal to the solutionuc,c′,h,h′,K(x, t)
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constructed in Theorem 1.1 in [16] (other properties of the functionu are also stated
in [16]). Similarly, the entire solutions constructed in Theorems 1.3, 1.4, 1.5 in [16]
can easily be obtained from the mixing of two travelling fronts or from the mixing
of a travelling front with a solution depending only on time.

That completes the proof of Theorem 1.1. !

3. Construction of the infinite-dimensional manifold of entire solutions
(proof of Theorem 1.2)

Let µ be a nonnegative and nonzero Radon measure on the setX and assume
that the restrictionµ∗ of µ on the sphereSN−1 × {c∗} can be written as:

µ∗ =
∑

1�i�k
miδ(νi ,c∗),

wherek ∈ N andνi ∈ SN−1, 0 < mi < +∞ for eachi = 1, · · · , k. Let us
moreover assume thatνi �= νj if i �= j . Let us defineµ̃ as the restriction ofµ
onSN−1 × (c∗,+∞) andµ̂ as the restriction ofµ on X̂ := SN−1 × (c∗,+∞) ∪
{∞} = X \ {(ν, c∗), ν ∈ SN−1}. Let M̂ be the set defined by

M̂ =
∫
X̂

dµ̂ = µ(X)−
∑

1�i�k
mi, 0 � M̂ < +∞.

Givenµ, we want to define an entire solution of (1) which should come from
the mixing of a integrable sum, weighted by the measureµ, of planar travelling
waves of the typeϕc(x · ν + ct). The construction is divided into several steps: we
first define a sequence of Cauchy problems starting at times−n (Section 3.1), we
find lower and upper bounds independent ofn (Section 3.2), we pass to the limit
n→+∞ (Section 3.3), we show in Section 3.5 that the limit functionuµ satisfies
the asymptotic behavior (11), (12) ast → −∞ (property (i) in Theorem 1.2).
We then prove the monotonicity ofuµ with respect tot and we study under what
condition the functionuµ goes to 1 ast → +∞ uniformly in x (Section 3.4).
Section 3.6 is devoted to the proof of property (iii) in Theorem 1.2. We prove in
Section 3.7 that the functionsuµ are continuous with respect toµ on the setM̂. In
Section 3.8, we deal with the case of a measureµ which is absolutely continuous
with respect to the Lebesgue measuredν × dc (property (iv) of Theorem 1.2).
In Section 3.9, we prove that the set of the functionsuµ contains the solutions
described in Theorem 1.1, which are obtained from the mixing of a finite number
of travelling waves.

3.1. Definition of a sequence of Cauchy problems

Let us first state the following lemma:
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Lemma 3.1. (a) If M̂ > 0, then, for each (x, t) ∈ R
N × R, the function

X̂→ (0,1),

(ν, c) �= ∞ → ϕc(x · ν + ct + c ln M̂),

∞ → ξ(t + ln M̂),

is measurable with respect to µ̂. (The reason why we add the extra term c ln M̂
and ln M̂ will become clear later.)

(b) Similarly, if M̂ > 0, the function

X̂→ (0,+∞),

(ν, c) �= ∞ →eλc(x·ν+ct+c ln M̂),

∞ → ef
′(0)(t+ln M̂),

where λc = c−
√
c2−c∗2

2 , is measurable with respect to the measure µ̂.

Note that in the definition of the map in (b), we haveeλcn (x·νn+cnt+cn ln M̂) →
ef

′(0)(t+ln M̂) for any sequencecn → +∞ andνn ∈ SN−1, becauseλc → 0 and
λcc→ f ′(0) asc→+∞.

Proof of Lemma 3.1. (b) Because of the definition of̂X andµ̂, it is sufficient
to show that the function(ν, c) → λc(x · ν + ct + c ln M̂) is continuous on
SN−1×(c∗,+∞). Sinceλc is continuous with respect toc, the conclusion follows.

(a) From what precedes, and since each functions → ϕc(s) is continuous, we
only have to prove that the functionss → ϕcn(s) converge locally to the function
s → ϕc(s) as soon ascn → c ∈ (c∗,+∞). But the latter follows from Proposition
5.5 in the paper byMallordy & Roquejoffre [23] (see also [16], Section 2). !

In the caseM̂ > 0, let us now define, for eachn ∈ N, the solutionun(x, t) of
the following Cauchy problem,

(un)t = �un + f (un), x ∈ R
N, t > −n,

un(x,−n) = max

(
max

1�i�k
(ϕc∗(x · νi − c∗n+ c∗ lnmi)),∫

SN−1×(c∗,+∞)

ϕc(x · ν − cn+ c ln M̂)
1

M̂
µ̃(dν × dc)

+ ξ(−n+ ln M̂)
µ(∞)

M̂

)

= max

(
max

1�i�k
(ϕc∗(x · νi − c∗n+ c∗ lnmi)),∫

X̂

ϕc(x · ν − cn+ c ln M̂)
1

M̂
dµ̂

)
,

(26)

by settingϕc(x · ν + ct + c ln M̂) := ξ(t + ln M̂) if (c, ν) = ∞.



Travelling Fronts and Entire Solutions of the Fisher-KPP Equation inR
N 109

In the caseM̂ = 0, we simply take

un(x,−n) = max
1�i�k

(ϕc∗(x · νi − c∗n+ c∗ lnmi)).

In the caseM̂ = 0, the functionun(−n, x) is well defined, continuous with
respect tox and satisfies 0� un(x,−n) � 1. These properties carry over in the case
M̂ > 0 from Lemma 3.1 and from Lebesgue’s dominated convergence theorem.
As a consequence, in each caseM̂ > 0 or M̂ = 0, the above Cauchy problem is
itself well defined and the maximum principle yields

∀ t � −n, ∀ x ∈ R
N, 0 � un(x, t) � 1.

Remark 3.2. Before going further, let us consider the caseµ = M0δν0,c0 where,
say,c0 > c∗, M0 > 0 andδ(ν0,c0) is the Dirac distribution at the point(ν0, c0),
and let us explain the role played by the total massM0. In this case,un(x, t) =
ϕc0(x · ν0 + c0t + c0 lnM0) and lnM0 can be viewed as a shift in time for the
travelling waveϕc(x · ν0 + c0t).

In the general case, given a measureµ onX, each functionun can be thought of
as a superposition of travelling wavesϕc(x · ν+ ct) (with finite or infinite speeds),
with some weights given by the density of the measureµ at the point(ν, c).

3.2. Lower and upper bounds

We first claim that, for allt � −n and for allx ∈ R
N ,

un(x, t) � max

(
max

1�i�k
ϕc∗(x · νi + c∗t + c∗ lnmi),∫

X̂

ϕc(x · ν + ct + c ln M̂)
1

M̂
dµ̂

) (27)

under the convention that the integral with respect toµ̂ drops out as soon aŝM = 0,
and thatϕc(x · ν + ct + c ln M̂) := ξ(t + ln M̂) if (ν, c) = ∞.

Proof of (27). Let us first observe thatun(x,−n) � ϕc∗(x · νi − c∗n + c∗ lnmi)
for eachi = 1, · · · , k. Since the functionϕc∗(x · νi + c∗t + c∗ lnmi) is an entire
solution of (1), the maximum principle givesun(x, t) � ϕc∗(x ·νi+c∗t+c∗ lnmi)
for all t � −n and for allx ∈ R

N . That provides (27) in the casêM = 0.
In the caseM̂ > 0, letv(x, t) be the function defined by

v(x, t) :=
∫
X̂

ϕc(x · ν + ct + c ln M̂)
1

M̂
dµ̂.

From standard parabolic estimates and since the functionf is smooth, there exists
a constantC0 such that, if 0� u(t, x) � 1 is an entire solution of (1), then|ut |,
|uxi |, |�u| � C0 globally in (x, t) ∈ R

N × R. Any travelling waveϕc(x · ν + ct)
is an entire solution of (1), whence|cϕ′(s)|, |ϕ′(s)|, |ϕ′′(s)| � C0 for all c � c∗
ands ∈ R. As far as the functionξ(t) is concerned, we also have|ξ ′(t)| � C0 for
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all t ∈ R. As a consequence of Lebesgue’s dominated convergence theorem, the
functionv(t, x) is of classC1 with respect tot and of classC2 with respect tox
and it satisfies

vt −�v =
∫
X̂

f
(
ϕc(x · ν + ct + c ln M̂)

) 1

M̂
dµ̂

� f

(∫
X̂

ϕc(x · ν + ct + c ln M̂)
1

M̂
dµ̂

)

sincef is concave on[0,1]. The claim (27) follows then from the maximum
principle.  !

The inequality (27) provides a lower bound independent ofn for the functions
un. We shall now get upper bounds for the functionsun. To this end, let us first state
an auxiliary lemma:

Lemma 3.3. (a) For each c > c∗, ϕc(s) ∼ eλcs as s → −∞ from (4). Further-
more, ϕc(s) � eλcs for all s ∈ R and the function v(s) = eλcs solves the linear
equation v′′ − cv′ + f ′(0)v = 0 in R.

(b) Also, ξ(s) � ef
′(0)s for all s ∈ R.

Proof. Let us start with the proof of (a). It is rather standard but we give it for
the sake of completeness. Choosec > c∗. Owing to the definition ofλc in (3),
the functionv(s) = eλcs satisfiesv′′ − cv′ + f ′(0)v = 0. For eacht ∈ R, define
vt (s) = v(s + t) = eλcs+λct . Sinceϕc is bounded and satisfies (4), it follows that
there exists a realt0 such that, for allt � t0, vt � ϕc in R. Let us now define
τ = inf {t ∈ R, vt � ϕc in R}. From (4), we getτ � 0 and by continuity, we have
vτ (s) � ϕc(s) for all s ∈ R.

Assume now thatτ > 0 and consider a sequencetn
<→τ asn → +∞. There

exists then a sequence of pointssn ∈ R such thatvtn(sn) < ϕc(sn). Sinceϕc
is bounded, the sequence(sn) is bounded from above. Up to extraction of some
subsequence, two cases may occur:sn → s∞ ∈ R or sn → −∞ asn → +∞.
Assume first thatsn → s∞ ∈ R asn → +∞. It follows thatvτ (s∞) = ϕc(s∞).
Definez = vτ − ϕc. This functionz is nonnegative and vanishes at the points∞.
Furthermore, the functionϕc satisfiesϕ′′c −cϕ′c+f ′(0)ϕc � ϕ′′c −cϕ′c+f (ϕc) = 0
sincef (u) � f ′(0)u for all u ∈ [0,1]. As a consequence,z′′ − cz′ + f ′(0)z � 0.
The strong maximum principle then yieldsz ≡ 0. This is impossible because
ϕc is bounded, unlikev. We deduce then thatsn → −∞ asn → +∞. Now,
ϕc(sn) ∼ eλcsn assn → −∞ whereasϕc(sn) � vτ (sn) = eλc(sn+τ). This is ruled
out becauseτ > 0. Eventually, we conclude thatτ = 0, which is the desired result.

Becausef (s) � f ′(0)s andξ(s) ∼ ef
′(0)s ass → −∞, the assertion (b) is

also straightforward.  !

Let us now turn to the main upper bound for the functionsun.
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Lemma 3.4. For all (x, t) ∈ R
N × R ,

lim sup
n→+∞

un(x, t) �
∑

1�i�k
ϕc∗

(
x · νi + c∗t + c∗ lnmi

)

+
∫
X̂

eλc(x·ν+ct+c ln M̂) 1

M̂
dµ̂

(28)

under the convention that the second term disappears if M̂ = 0, and

eλc(x·ν+ct+c ln M̂) = ef
′(0)(t+ln M̂) if (ν, c) = ∞.

Proof. Because of its definition, the functionun(x,−n) satisfies

∀ x ∈ R
N, 0 � un(x,−n) � u1,0(x)+ · · · + uk+2(x),

where

ui,0(x) = ϕc∗(x · νi − c∗n+ c∗ lnmi) for 1 � i � k if k > 0,

uk+1,0(x) =
∫
SN−1×(c∗,+∞)

ϕc(x · ν + ct + c ln M̂)
1

M̂
µ̃(dν × dc) if M̂ > 0,

uk+2,0(x) = ξ(−n+ ln M̂)
µ(∞)

M̂
if M̂ > 0.

(29)

For eachi = 1, · · · , k+2, letui,n(x, t) be the (nonnegative) solution of the Cauchy
problem:(ui,n)t = �ui,n + f (ui,n), t > −n andui,n(x,−n) = ui,0(x) (actually,
uk+2,n(x, t) is only a function oft). From Lemma 2.1, it follows that

∀ t � −n, ∀ x ∈ R
N, 0 � un(x, t) � u1,n(x, t)+· · ·+uk+1,n(x, t)+uk+2,n(t).

If 1 � i � k, thenui,n(x, t) = ϕc∗(x · νi + c∗t + c∗ lnmi).
Let us now find an upper bound foruk+1,n(x, t) (in the caseM̂ > 0). Choose

any(x0, t0) ∈ R
N × R. Let us first observe that the functionuk+1,0(x) satisfies:

uk+1,0(x) =
∫
SN−1×(c∗,+∞)

ϕc(x · ν − cn+ c ln M̂)
1

M̂
µ̃(dν × dc)

�
∫
SN−1×(c∗,+∞)

eλc(x·ν−cn+c ln M̂) 1

M̂
µ̃(dν × dc) =: vn,0(x)

(from Lemmas 3.1 and 3.3). Thẽµ-measurability of the function(ν, c) →
eλc(x·ν−cn+c ln M̂) on SN−1 × (c∗,+∞) is guaranteed from Lemma 3.1 and, on
the other hand, the integral∫

SN−1×(c∗,+∞)

eλc(x·ν−cn+c ln M̂) µ̃(dν × dc)

converges because the functionsc → λc andc → λcc = λ2
c + f ′(0) are globally

bounded on(c∗,+∞) and becauseµ is finite.
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Let us now consider the function

v(x, t) :=
∫
SN−1×(c∗,+∞)

eλc(x·ν+ct+c ln M̂) 1

M̂
µ̃(dν × dc).

As for vn,0(x), this functionv(x, t) is well defined andv(x,−n) = vn,0(x). Fur-
thermore, from Lebesgue’s dominated convergence theorem, and becauseλcc =
λ2
c + f ′(0), the functionv solves the following Cauchy problem:

vt = �v + f ′(0)v,
v(x,−n) = vn,0(x).

On the other hand,f (s) � f ′(0)s for all s � 0 (remember thatf is extended by
0 outside the interval[0,1]). The maximum principle then yields, for anyn � |t0|,

uk+1,n(x0, t0) � v(x0, t0) =
∫
SN−1×(c∗,+∞)

eλc(x0·ν+ct0+c ln M̂) 1

M̂
µ̃(dν × dc).

Let us now find an upper bound foruk+2,n(t0). This function solves the Cauchy
problemu′k+2,n(t) = f (uk+2,n) anduk+2,n(−n) = ξ(−n + ln M̂)µ(∞)

M̂
. Since

f (s) � f ′(0)s, we deduce that, for anyn � |t0|,

uk+2,n(t0) � ξ(−n+ ln M̂)
µ(∞)

M̂
ef

′(0)(t0+n).

From Lemma 3.3(b), it follows then that

uk+2,n(t0) � µ(∞)

M̂
ef

′(0)(t0+ln M̂).

That completes the proof of Lemma 3.4. !

3.3. Passage to the limit n→+∞
From (27) and from the maximum principle, it follows that, for each(x, t) ∈

R
N ×R, the sequence(un(x, t))n>|t | is nondecreasing and satisfies 0� un(x, t) �

1. Hence, there exists a functionuµ(x, t) such thatun(x, t) → uµ(x, t) for each
(x, t) ∈ R

N × R. Furthermore, from standard parabolic estimates, the functions
un(x, t) approach the functionuµ in the spacesC2

loc(R
N
x ) andC1

loc(Rt ). As a con-
sequence, the functionuµ is an entire solution of (1), such that 0� uµ(x, t) � 1
for all (x, t) ∈ R

N × R.
Moreover, from the lower and upper bounds (27) and (28), the functionuµ

satisfies,

∀ (x, t) ∈ R
N × R,

max

(
max

1�i�k
(ϕc∗(x · νi + c∗t + c∗ lnmi)),

∫
X̂

ϕc(x · ν + ct + c ln M̂)
1

M̂
dµ̂

)

� uµ(x, t) �
∑

1�i�k
ϕc∗

(
x · νi + c∗t + c∗ lnmi

)+ ∫
X̂

eλc(x·ν+ct+c ln M̂) 1

M̂
dµ̂

(30)



Travelling Fronts and Entire Solutions of the Fisher-KPP Equation inR
N 113

under the convention that the integrals overX̂ disappear as soon aŝM = 0, and
remembering that

∫
X̂

ϕc
(
x · ν + ct + c ln M̂

) 1

M̂
dµ̂ =

∫
SN−1×(c∗,+∞)

ϕc
(
x · ν + ct + c ln M̂

)
× 1

M̂
µ̃(dν × dc)+ ξ(t + ln M̂

)µ(∞)

M̂∫
X̂

eλc(x·ν+ct+c ln M̂) 1

M̂
dµ̂ =

∫
SN−1×(c∗,+∞)

eλc(x·ν+ct+c ln M̂)

× 1

M̂
µ̃(dν × dc)+ ef ′(0)(t+ln M̂) µ(∞)

M̂
.

From (30), it follows thatuµ(x, t) > 0 for all (x, t). Furthermore, each of the
two terms in the upper bound of (30) goes to 0 ast →−∞ for each givenx ∈ R

N

(the convergence of the second term

∫
X̂

eλc(x·ν+ct+c ln M̂) 1

M̂
µ̂(dν × dc)

as t → −∞ is a consequence of Lebesgue’s dominated convergence theorem).
Hence,

∀ x ∈ R
N, uµ(x, t)→ 0 ast →−∞, (31)

whence the functionuµ cannot be identically equal to 1. The strong maximum
principle then yieldsuµ(x, t) < 1 for all (x, t) ∈ R

N × R. Eventually,uµ is an
entire solution of (1) such that 0< u < 1.

Lastly, sincef is of classC2 on [0,1] and from standard parabolic estimates,
the functions(uµ)t , ∇uµ, (uµ)xixj , (uµ)xixj xk are globally bounded inRN × R.

3.4. Monotonicity in time and behavior of uµ as t →+∞

Let us prove property (ii) in Theorem 1.2, saying thatuµ is increasing in
time. Under the notation in (29),un(x,−n) = max(max1�i�k ui,0(x), uk+1,0(x)+
uk+2,0(x)) for all x ∈ R

N . Let us check that�un(x,−n)+ f (un(x,−n)) � 0 in
D′(RN). To do this, it is sufficient to show that�ui,0+f (ui,0) � 0 in R

N for each
i = 1, · · · , k and�(uk+1,0 + uk+2,0)+ f (uk+1,0 + uk+2,0) � 0 in R

N .
First, we have, for eachi = 1, · · · , k (providedk > 0),

�ui,0 + f (ui,0) = ϕ′′c∗(x · νi − c∗n+ c∗ lnmi)

+ f (ϕc∗(x · νi − c∗n+ c∗ lnmi))

= c∗ϕ′c∗(x · νi − c∗n+ c∗ lnmi) > 0
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sincec∗ > 0 andϕ′c∗ > 0. Next, with the same arguments as at the beginning of
Section 3.2, the functionz(x) := uk+1,0(x)+uk+2,0(x) is of classC2 and (provided
M̂ > 0)

�z+ f (z) =
∫
X̂

ϕ′′c (x · ν − cn+ c ln M̂)
1

M̂
dµ̂

+ f
(∫

X̂

ϕc(x · ν − cn+ c ln M̂)
1

M̂
dµ̂

)

=
∫
X̂

cϕ′c(x · ν − cn+ c ln M̂)
1

M̂
dµ̂

−
∫
X̂

f (ϕc(x · ν − cn+ c ln M̂))
1

M̂
dµ̂

+ f
(∫

X̂

ϕc(x · ν − cn+ c ln M̂)
1

M̂
dµ̂

)
> 0 in R

N

sincef is concave andcϕ′c > 0 for each(ν, c) ∈ X̂, under the convention that,
for (ν, c) = ∞, cϕ′′c (x · ν − cn + c ln M̂) = 0 andcϕ′c(x · ν − cn + c ln M̂) =
f (ξ(−n+ ln M̂)) (> 0).

Therefore,�un(x,−n)+ f (un(x,−n)) � 0 in D′(RN), whence the function
un(x, t) is nondecreasing with respect tot for all x ∈ R

N andt > −n. As a conse-
quence, by passing to the limitn → +∞, the functionuµ(x, t) is nondecreasing
with respect tot in R

N × R. Since the nonnegative function∂tuµ satisfies a lin-
ear parabolic equation, it follows from the strong maximum principle that either
∂tuµ ≡ 0 or∂tuµ > 0 inR

N×R.The first case is impossible since 0< uµ(x, t) < 1
for all (x, t) ∈ R

N × R anduµ(x, t) → 0 ast → −∞ for eachx ∈ R
N , from

(31). Eventually, we conclude that the functionuµ is increasing in timet .
Let us now study the behavior ofuµ whent → +∞ and prove the properties

that are stated in Remark 1.3. Let us first consider the case where there exists a
directionν0 ∈ SN−1 such that

µ({c∗ � c < +∞, ν · ν0 � 0} ∪ {∞}) = 0

and let us prove thatg(t) := inf RN uµ(·, t) = 0 for all t ∈ R. Indeed, the above
assumption and the upper bound in (30) yield, for allα � 0,

uµ(αν0, t) �
∑

1�i�k

ν0·νi<0

ϕc∗(αν0 · νi + c∗t + c∗ lnmi)

+
∫
{c∗<c<+∞, ν0·ν<0}

eλc(αν0·ν+ct+c ln M̂) 1

M̂
dµ̃.

The limit α→+∞ implies thatg(t) = 0 for each timet ∈ R.
Let us now consider the case where

∀ ν0 ∈ SN−1, ∃ ε > 0, µ({c∗ � c < +∞, ν · ν0 � ε} ∪ {∞}) > 0.
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Suppose for contradiction thatg(t0) = 0 for somet0 ∈ R. From the lower bound in
(30), we immediately getµ(∞) = 0. Furthermore, there exists a sequence of points
xn = αnν0n with αn � 0 andν0n ∈ SN−1 such thatu(αnν0n, t0)→ 0 asn→+∞.
Up to extraction of some subsequence, we can assume thatν0n → ν∞ ∈ SN−1 as
n→+∞. Sinceαn � 0 and since each functionϕc is increasing, the lower bound
in (30) yields

max
(

max
1�i�k

ν0n·νi�0

(ϕc∗(c
∗t0 + c∗ lnmi)),

∫
{ν0n·ν�0,c∗<c<+∞}

ϕc(ct0 + c ln M̂)
1

M̂
µ̃(dν × dc)

)
→ 0

asn → +∞. Take anyε > 0. By passing to the limitn → +∞ in the above
formula, it follows that{1 � i � k, ν∞ · νi � ε} = ∅. Furthermore, since
{ν0n · ν � 0, c∗ < c < +∞} ⊃ {ν∞ · ν � ε, c∗ < c < +∞} for n large enough,∫

{ν∞·ν�ε, c∗<c<+∞}
ϕc(ct0 + c ln M̂)

1

M̂
µ̃(dν × dc) = 0.

Hence,µ({ν∞ · ν � ε, c∗ < c < +∞}) = 0. Eventually, we haveµ({c∗ � c <

+∞, ν · ν∞ � ε} ∪ {∞}) = 0 for all ε and we have then reached a contradiction.
Therefore,g(t) > 0 for all timet ∈ R.

Sinceg(0) > 0, the maximum principle implies thatu(x, t) � η(t) for all
x ∈ R

N and t � 0, where 0< η(t) < 1 is the solution of the Cauchy problem
η′ = f (η) with η(0) = g(0). Sinceη(t) → 1 ast → +∞, we conclude that
g(t) = inf RN uµ(·, t)→ 1 ast →+∞.

3.5. Asymptotic behavior of uµ as t →−∞
In this section, we prove the formulas (11), (12) about the asymptotic behavior

of the functionuµ ast →−∞.

Proof of (11). Assume thatk � 1 and choosei0 ∈ {1, · · · , k}. From (30), it follows
that

ϕc∗(x · νi0 + c∗ lnmi0) � uµ(−c∗tνi0 + x, t)
� ϕc∗(x · νi0 + c∗ lnmi0)+ v(x, t)+ w(x, t)+ z(t),

where

v(x, t) =
∑
i �=i0

ϕc∗(c
∗(1− νi0 · νi)t + x · νi + c∗ lnmi),

w(x, t) =
∫
SN−1×(c∗,+∞)

eλc(−c∗νi0 ·ν+c)t+λcx·ν+λcc ln M̂ 1

M̂
µ̃(dν × dc),

z(t) = µ(∞)

M̂
ef

′(0)(t+ln M̂).
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Sinceνi0 · νi < 1 for eachi �= i0, the functionv(x, t) goes to 0 locally inx as
t →−∞.As far as the functionw is concerned, we have−c∗νi0 ·ν+c > 0 for each
(ν, c) ∈ SN−1× (c∗,+∞). Furthermore, for each compact subsetK of R

N , there
exists a constantC(K) such that for allx ∈ K and for all(ν, c) ∈ SN−1×(c∗,+∞),
we have 0� eλcx·ν+λcc ln M̂ � C(K) (becauseλc and λcc are bounded uni-
formly with respect toc). Hence, from Lebesgue’s dominated convergence the-
orem,w(x, t) → 0 ast → −∞, locally in x. Lastly, z(t) → 0 ast → −∞,
uniformly in x.

We finally get thatuµ(−c∗tνi0 +x, t)→ ϕc∗(x · νi0 + c∗ lnmi0) locally in x as
t → −∞. Furthermore, this convergence also holds in the spacesC2

loc(R
N
x ) since

the first, second and third derivatives ofuµ with respect tox are globally bounded.
If ν is such thatν �= νi for all 1 � i � k, then the same reasoning implies that

uµ(−c∗t ν + x, t)→ 0 ast →−∞ in C2
loc(R

N
x ).  !

Proof of (12). Consider first the casêM > 0. Let us set

αN =
(∫

RN

e−
1
4 |y|2dy

)−1

= (4π)−N/2.

Take a continuous functionψ(z) with compact support, included inB(0, c∗). Let
0 � a < c∗ be such that the support ofψ is included in the open ballB(0, a). Let
tn be a sequence such thattn →−∞. We aim here to prove that

Un(x, t) :=
∫
B(0,c∗)

αN
√|tn|Nuµ(−ztn + x, tn + t)e− 1

4 (c
∗2−|z|2)tn ψ(z) dz

−→
tn→−∞

∫
B(0,c∗)

e(f
′(0)+ 1

4 |z|2)(t+ln M̂)+ 1
2x·z ψ(z) 1

M̂
$∗µ̂(dz) (32)

in C1
loc(Rt ) andC2

loc(R
N
x ), under the convention that the right-hand side is zero if

M̂ = 0.
By additivity, it is sufficient to consider the case whereψ is nonnegative.
From standard parabolic regularity theory and since the functionf is of class

C2, the functionuµ is at least of classC2 with respect tot and of classC3 with
respect tox. As a consequence, the functionsUn(x, t) are of classC2 with respect
to t and of classC3 with respect tox. In order to show the above formula (32), it
is enough to prove that the functionsUn(x, t) converge pointwise to∫

B(0,c∗)
e(f

′(0)+ 1
4 |z|2)(t+ln M̂)+ 1

2x·zψ(z) 1

M̂
$∗µ̂(dz)

astn → −∞ and thatUn and their second-order (or third-order) derivatives with
respect tot (resp.,x) are locally bounded.

First, from (30) and sinceψ is nonnegative,

Un(x, t) � w′
n(x, t) (33)
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where

w′
n(x, t) =

∫
B(0,a)

αN
√|tn|N(

∫
X̂

ϕc((c − z · ν)tn + ct + x · ν + c ln M̂)
1

M̂
dµ̂
)

× e− 1
4 (c

∗2−|z|2)tnψ(z) dz.

Let us now prove that

w′
n(x, t)→

∫
B(0,c∗)

e(f
′(0)+ 1

4 |z|2)(t+ln M̂)+ 1
2x·z ψ(z) 1

M̂
$∗µ̂(dz)

astn →−∞, pointwise in(x, t). From Fubini’s theorem, we have

w′
n(x, t) =

∫
X̂

∫
B(0,a)

αN
√|tn|N ϕc((c − z · ν)tn + ct + x · ν + c ln M̂)

× e−
1
4 (c

∗2−|z|2)tn ψ(z) dz 1

M̂
dµ̂

=
∫
X̂

∫
B(0,a)

αN
√|tn|N g(ν, c, z, tn, x, t)eλc((c−z·ν)tn+ct+x·ν+c ln M̂)

× e−
1
4 (c

∗2−|z|2)tn ψ(z) dz 1

M̂
dµ̂,

where

0 � g(ν, c, z, tn, x, t) = ϕc((c − z · ν)tn + ct + x · ν + c ln M̂)

eλc((c−z·ν)tn+ct+x·ν+c ln M̂)
� 1

(the inequalityg � 1 follows from Lemma 3.3). Because of (3), we have

λcc − λcz · ν − c∗2

4
+ |z|2

4
= λ2

c − λcz · ν +
|z|2
4

= 1

4
|2λcν − z|2

(notice that these equalities are also true in the case(ν, c) = ∞with the convention
that, in this case,λc = 0 andλcc = f ′(0)). As a consequence, it follows that

w′
n(x, t) =

∫
X̂

h(ν, c, tn, x, t)e
λcct+λcx·ν+λcc ln M̂ 1

M̂
dµ̂ (34)

where

h(ν, c, tn, x, t) =
∫
B(0,a)

αN
√|tn|Ng(ν, c, z, tn, x, t)e 1

4 |2λcν−z|2tn ψ(z) dz.

For each compact subsetK of R
N ×R, there exists a constantC(K) such that

∀ (ν, c) ∈ X̂, ∀ (x, t) ∈ K,

eλcct+λcx·ν+λcc ln M̂ 1

M̂
� C(K).
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Furthermore, after the change of variablesz = 2λcν + y|tn|−1/2, we find that
∀ (x, t) ∈ R

N+1, ∀ (ν, c) ∈ X̂, ∀ tn < 0,

|h(ν, c, tn, x, t)| � ‖ψ‖∞
∫

RN

αNe
− 1

4 |y|2dy = ‖ψ‖∞

because of the definition ofαN and because|g| is bounded by 1. Putting together
the above estimates into (34), it is found that∀ (x, t) ∈ K, ∀ (ν, c) ∈ X̂, ∀ tn < 0,

|h(ν, c, tn, x, t)|eλcct+λcx·ν+λcc ln M̂ 1

M̂
� ‖ψ‖∞ C(K).

Let us now prove that∀ (x, t) ∈ R
N × R, ∀ (ν, c) ∈ X̂,

h(ν, c, tn, x, t)→ ψ(2λcν) astn →−∞. (35)

Take(x, t) ∈ R
N × R and(ν, c) ∈ X̂. With the change of variablesz = 2λcν +

y|tn|−1/2 and from of the definition ofαN ,

h(ν, c, tn, x, t)− ψ(2λcν)
=
∫
√|tn|(B(0,a)−2λcν)

αN g(ν, c,2λcν + y|tn|−1/2, tn, x, t)e
− 1

4 |y|2

× ψ(2λcν + y|tn|−1/2) dy −
∫

RN

αN e
− 1

4 |y|2 ψ(2λcν) dy

=
∫

RN

αN kν,c,tn,x,t (y)e
− 1

4 |y|2dy,

where

kν,c,tn,x,t (y) =
(
χ√|tn|(B(0,a)−2λcν)(y) g(ν, c,2λcν + y|tn|−1/2, tn, x, t)

× ψ(2λcν + y|tn|1/2)− ψ(2λcν)
)

and where, for any subsetA of R
N ,χA denotes the characteristic function of the set

A. The functiony → kν,c,tn,x,t (y) is globally bounded by 2‖ψ‖∞, independently
of tn (remember that|g| is bounded by 1).

Two cases may now occur: 2λcν �∈ B(0, a) or 2λcν ∈ B(0, a).
If 2λcν �∈ B(0, a), thenψ(2λcν) = 0 and we immediately observe that

kν,c,tn,x,t (y) → 0 astn → −∞ for eachy ∈ R
N sinceψ(2λcν + y|tn|−1/2) →

ψ(2λcν) = 0 astn →−∞.
On the other hand, if 2λcν ∈ B(0, a), thenχ√|tn|(B(0,a)−2λcν)(y) → 1 as

tn → −∞ for eachy ∈ R
N (remember thatB(0, a) is open). Furthermore, for

eachy ∈ R
N ,

g(ν, c,2λcν + y|tn|−1/2, tn, x, t)

=
ϕc

(
(c − (2λcν + y|tn|−1/2) · ν)tn + ct + x · ν + c ln M̂

)
e
λc

(
(c−(2λcν+y|tn|−1/2)·ν)tn+ct+x·ν+c ln M̂

) → 1



Travelling Fronts and Entire Solutions of the Fisher-KPP Equation inR
N 119

astn →−∞ because of (4) and becausec− 2λc > 0 (notice that the convergence
g(ν, c,2λcν + y|tn|−1/2, tn, x, t) → 1 holds both in the case(ν, c) �= ∞ and in
the case(ν, c) = ∞). Eventually, we conclude thatkν,c,tn,x,t (y) → 0 astn →
−∞ for eachy ∈ R

N . The claim (35) follows then from Lesbesgue’s dominated
convergence theorem.

As a consequence, in each case 2λcν �∈ B(0, a) or 2λcν ∈ B(0, a), a second
application of Lesbesgue’s dominated convergence theorem yields

w′
n(x, t) −→

tn→−∞

∫
X̂

eλcct+λcx·ν+λcc ln M̂ψ(2λcν)
1

M̂
dµ̂

=
∫
X̂

e(f
′(0)+λ2

c )t+λcx·ν+(f ′(0)+λ2
c ) ln M̂ψ(2λcν)

1

M̂
dµ̂

=
∫
B(0,c∗)

e(f
′(0)+ 1

4 |z|2)(t+ln M̂)+ 1
2x·z ψ(z) 1

M̂
$∗µ̂ (dz)

by definition of the map$. Therefore, remembering (33), it is found that

lim inf
tn→−∞Un(x, t) = lim inf

tn→−∞

∫
B(0,c∗)

αN
√|tn|N uµ(−ztn + x, tn + t)

× e− 1
4 (c

∗2−|z|2)tnψ(z) dz

�
∫
B(0,c∗)

e(f
′(0)+ 1

4 |z|2)(t+ln M̂)+ 1
2x·zψ(z) 1

M̂
$∗µ̂ (dz).

Similarly, by using the upper bound in (30), we claim that

lim sup
tn→−∞

∫
B(0,c∗)

αN
√|tn|Nuµ(−ztn + x, tn + t)e− 1

4 (c
∗2−|z|2)tn ψ(z) dz

�
∫
B(0,c∗)

e(f
′(0)+ 1

4 |z|2)(t+ln M̂)+ 1
2x·zψ(z) 1

M̂
$∗µ̂ (dz). (36)

Indeed, we haveUn(x, t) � v′′n(x, t)+ w′′
n(x, t) with

v′′n(x, t) =
∫
B(0,a)

αN
√|tn|N ∑

1�i�k

(
ϕc∗((c

∗ − z · νi)tn

+ c∗t + x · νi + c∗ lnmi)
)
e−

1
4 (c

∗2−|z|2)tn ψ(z) dz

w′′
n(x, t) =

∫
B(0,a)

αN
√|tn|N

(∫
X̂

eλc((c−z·ν)tn+ct+x·ν+c ln M̂) 1

M̂
dµ̂

)

× e−
1
4 (c

∗2−|z|2)tn ψ(z) dz.

Let us first prove thatv′′n(x, t)→ 0 astn → −∞. Choose a compact subsetK of
R
N ×R. Becausec∗ −z ·νi � c∗ −a > 0 for all z ∈ B(0, a) and for all 1� i � k,

and becauseϕc∗(s) ∼ |s|eλ∗s ass → −∞, it follows that there exists a constant
C = C(K) and a real numberT such that, for all(x, t) ∈ K and for alltn � −T ,
∀1 � i � k,

ϕc∗((c
∗ − z · νi)tn + c∗t + x · νi + c∗ lnmi) � C(|tn| + 1)eλ

∗(c∗−z·νi )tn .
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Sinceλ∗c∗ = (λ∗)2 + f ′(0) = (λ∗)2 + (c∗)2
4 , we have

λ∗c∗ − λ∗z · νi − c∗2

4
+ |z|2

4
= (λ∗)2 − λ∗z · νi + |z|2

4
= 1

4 |2λ∗νi − z|2 = 1
4 |c∗νi − z|2

> 1
4 (c

∗ − a)2 > 0

for all z ∈ B(0, a) and for all 1� i � k. Hence, even if it means changing the
constantC, we get

∀ (x, t) ∈ K, ∀ tn � −T , |v′′n(x, t)| � C
√|tn|N(|tn| + 1)e

1
4 (c

∗−a)2tn .

Hence,v′′n(x, t)→ 0 astn →−∞, uniformly for (x, t) ∈ K.
On the other hand, as forw′

n(x, t), we have

w′′
n(x, t)→

∫
B(0,c∗)

e(f
′(0)+ 1

4 |z|2)(t+ln M̂)+ 1
2x·zψ(z) 1

M̂
$∗µ̂(dz) astn →−∞.

(Here, unlike the case ofw′
n(x, t), we do not have to use the functiong(ν, c, z,

tn, x, t).) Hence, we get (36).
As a conclusion,

Un(x, t)→
∫
B(0,c∗)

e(f
′(0)+ 1

4 |z|2)(t+ln M̂)+ 1
2x·z ψ(z) 1

M̂
$∗µ̂(dz)

astn →−∞, for each(x, t) ∈ R
N × R.

Furthermore, from the arguments above, the functionsUn(x, t) are uniformly
(with respect totn) bounded in each compact subsetK of R

N × R. On the other
hand, since the functionuµ is a positive entire and globally bounded solution
of (1), it follows from standard parabolic estimates and Harnack inequality that
there exists a constantC such that, for all(x, t) ∈ R

N ×R, we have:‖∇uµ(x, t)‖,
|(uµ)xixj (x, t)|, |(uµ)xixj xk (x, t)| � Cu(x, t+1).As a consequence, the derivatives
of the functionsUn (at least up to the second order int and the third order inx)
are locally bounded in(x, t), uniformly with respect totn. This implies that the
convergence

Un(x, t) =
∫
B(0,c∗)

αN
√|tn|Nuµ(−ztn + x, tn + t)e− 1

4 (c
∗2−|z|2)tnψ(z) dz

→
∫
B(0,c∗)

e(f
′(0)+ 1

4 |z|2)(t+ln M̂)+ 1
2x·zψ(z) 1

M̂
$∗µ̂ (dz)

actually takes place inC1
loc(Rt ) andC2

loc(R
N
x ).

Consider now the casêM = 0. Under the same notation as above, the term
w′′
n(x, t) disappears and we have 0� Un(x, t) � v′′n(x, t), whenceUn(x, t)→ 0

in T asn→+∞.
This completes the proof of (32), which gives (12). !
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From (11), (12), we deduce the following

Lemma 3.5. The map µ → uµ is one-to-one.

Proof. Consider two measuresµ1 andµ2 in M and assume thatuµ1 = uµ2. From
(11), it follows that theνi ’s and themi ’s are identical forµ1 andµ2, that is to say,
thatµ∗1 = µ∗2.

Formula (12) especially implies that eitherM̂1 = M̂2, or bothM̂1 andM̂2 are
positive. In the first case, then̂µ1 = µ̂2 = 0 and, eventually,µ1 = µ2. Consider
now the case where botĥM1 andM̂2 are positive. Formula (12) applied tox = 0
andt = − ln M̂1 gives

1

M̂1

∫
B(0,c∗)

ψ(z)$∗µ̂1(dz)

=
∫
B(0,c∗)

e(f
′(0)+ 1

4 |z|2)(ln M̂2−ln M̂1) ψ(z)
1

M̂2
$∗µ̂2(dz)

for each functionψ ∈ Cc(B(0, c∗)). Take a sequence of functionsψn ∈
Cc(B(0, c∗)) such that 0� ψn � 1 andψn = 1 in B(0, c∗ − 1/n), and pass
to the limitn→+∞. It follows that

1

M̂1
$∗µ̂1(B(0, c

∗)) =
∫
B(0,c∗)

e(f
′(0)+ 1

4 |z|2)(ln M̂2−ln M̂1)
1

M̂2
$∗µ̂2(dz).

By definition ofM̂1 and of the map$, the left-hand side is equal to 1. Applying the

mean value theorem to the right-hand side, gives 1= e(f
′(0)+ 1

4 |z0|2)(ln M̂2−ln M̂1) for
somez0 such that|z0| � c∗. This yieldsM̂1 = M̂2. From (12), we conclude that
$∗µ̂1 = $∗µ̂2 onB(0, c∗), whenceµ̂1 = µ̂2 on X̂ from the definition of the map
$. Eventually, we getµ1 = µ2.  !

Before ending this section, let us make more precise the behavior ofuµ(x, t)

whent →−∞, locally inx ∈ R
N . This corresponds to the casez = 0 in (12). We

claim that

uµ(x, tn + t)e−f ′(0)tn → µ(∞)

M̂
ef

′(0)(t+ln M̂) (37)

in the sense ofT for each sequencetn →−∞ (under the convention that the right-
hand side is zero ifM̂ = 0). Let us first consider the casêM > 0. The inequalities
(30) yield

ξ(tn + t + ln M̂)
µ(∞)

M̂
e−f ′(0)tn � uµ(x, tn + t)e−f ′(0)tn (38)

� v′′′n (x, t)+ w′′′
n (x, t)+

µ(∞)

M̂
ef

′(0)(t+ln M̂)
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where

v′′′n (x, t) =
∑

1�i�k
ϕc∗(x · νi + c∗tn + c∗t + c∗ lnmi)e

−f ′(0)tn

w′′′
n (x, t) =

∫
SN−1×(c∗,+∞)

e(λcc−f ′(0))tn+λcct+λcx·ν+λcc ln M̂ 1

M̂
µ̃(dν × dc).

Since ξ(s) ∼ ef
′(0)s as s → −∞, the left-hand side of (38) goes to

µ(∞)

M̂
ef

′(0)(t+ln M̂) astn → −∞. Let us now investigate the termv′′′n (x, t) of the

right-hand side. LetK be a compact subset ofR
N × R. Sinceϕc∗(s) ∼ |s|eλ∗s as

s →−∞, there exists a positive constantC(K) and a realT such that

∀ (x, t) ∈ K, ∀ tn � −T , 0 � v′′′n (x, t) � C(K)(|tn| + 1)e(λ
∗c∗−f ′(0))tn .

Becauseλ∗c∗−f ′(0) = λ∗2 = f ′(0) > 0, we find thatv′′′n (x, t)→ 0 astn →−∞
locally in (x, t).

As far as the termw′′′
n (x, t) is concerned, sinceλcc− f ′(0) = λ2

c > 0 for each
c ∈ (c∗,+∞), we conclude from Lebesgue’s dominated convergence theorem that
w′′′
n (x, t)→ 0 astn →−∞ locally in (x, t).

Eventually,

uµ(x, tn + t)e−f ′(0)tn → µ(∞)

M̂
ef

′(0)(t+ln M̂)

locally in (x, t) astn →−∞. On the other hand, since

‖∇uµ(x, t)‖, |(uµ)xixj (x, t)|, |(uµ)xixj xk (x, t)| � Cuµ(x, t + 1)

for some constantC and for all(x, t) ∈ R
N ×R, the functions(x, t) → uµ(x, tn+

t)e−f ′(0)tn and their derivatives int (or in x) up to the second order (resp., third
order) are locally bounded in(x, t), uniformly with respect totn.We finally conclude

thatuµ(x, tn + t)e−f ′(0)tn → µ(∞)

M̂
ef

′(0)(t+ln M̂) astn → −∞ in the sense of the
topologyT .

If M̂ = 0, thenµ(∞) = 0, the termw′′′
n (x, t) disappears and the convergence

uµ(x, tn + t)e−f ′(0)tn → 0 in T follows.

Remark 3.6. For each entire solutionu of (1), max|x|�c|t | u(x, t)→ 0 ast →−∞
for eachc ∈ [0, c∗[ (see Lemma 4.1 in Section 4) and (12) gives the asymp-
totic behavior of the functionz ∈ B(0, c∗) → uµ(zt, t) as t → −∞, for each
entire solution of (1) of the typeuµ with µ ∈ M. Similarly, we know that
min|x|�ct u(x, t) → 1 as t → +∞ for eachc ∈ [0, c∗[. We could try to de-
fine more precisely the behavior of the functionz ∈ B(0, c∗) → 1 − uµ(zt, t)

when t → +∞. But that seems intricate because of the lack of a suitable upper
bound ofuµ for large time.
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3.6. Multiplication of µ by positive constants

The puropose of this section is to prove property (iii) in Theorem 1.2. Take a
measureµ ∈ M and writeµ as

µ =
∑

1�i�k
miδ(νi ,c∗) + µ̂,

wherek is a nonnegative integer andmi � 0.
Choose any positive real numberα. The measureαµ belongs toM. By def-

inition, uαµ(x, t) = limn→+∞ Un(x, t) whereUn is the solution of the Cauchy
problem(Un)t = �Un + f (Un), t > −n, x ∈ R

N , with initial condition at time
t = −n

Un(x,−n) = max

(
max

1�i�k
(ϕc∗(x · νi − c∗n+ c∗ ln(αmi))),∫

X̂

ϕc(x · ν − cn+ c ln(αM̂))
1

αM̂
d(αµ̂)

)
= un−ln α(x,−n+ ln α),

whereun−ln α is defined as in (26) byn replaced byn− ln α. By uniqueness of the
above Cauchy problem, it follows thatUn(x, t) = un−ln α(x, t + ln α) for anyn
andt � −n, x ∈ R

N .
As shown in Section 3.3, it is true that the sequence(un′(x, t))n′ is nondecreasing

for any nondecreasing sequence of positive numbersn′, then′ being not necessarily
integers.Therefore,un−ln α(x, t+ln α)→ uµ(x, t+ln α)asn→+∞. Eventually,
that yieldsuαµ(x, t) = uµ(x, t+ ln α) for all (x, t) ∈ R

N×R, which is the desired
result.

In addition, as a consequence of the general asymptotic properties (15) and
(16) that are satisfied by any solutionu of (1), it immediately follows that, for each
measureµ ∈ M, uαµ → 1 in the sense of the topologyT , asα → +∞, and
uαµ → 0 asα→ 0+.

3.7. Continuity with respect to µ

Letµn be a sequence of̂M such thatµn converges toµ ∈ M̂ in the sense that:

(a)
∫
X̂
f dµ̂n → ∫

X̂
f dµ̂ for any continuous functionf on X̂ such thatf ≡ 0 on

SN−1 × (c∗, c) for somec > c∗,
(b) M̂n = µn(X̂)→ M̂ = µ(X̂),
(c) µn(∞)→ µ(∞) asn→+∞.

The functionsuµn(x, t) are entire solutions of (1). From standard parabolic
estimates, they converge in the sense of the topologyT , up to extraction of some
subsequence, to a solutionU(x, t) of (1). We then have to prove thatU = uµ.
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The formula (30) applied touµn yields

∫
SN−1×(c∗,+∞)

ϕc(x · ν + ct + c ln M̂n)
1

M̂n
dµ̃n + ξ(t + ln M̂n)

µn(∞)

M̂n

� uµn(x, t) (39)

�
∫
SN−1×(c∗,+∞)

eλc(x·ν+ct+c ln M̂n) 1

M̂n
dµ̃n + µn(∞)

M̂n
ef

′(0)(t+ln M̂n)

for all (x, t) ∈ R
N ×R. From assumptions (b) and (c), it immediately follows that

ξ(t + ln M̂n)
µn(∞)

M̂n
→ ξ(t + ln M̂)

µ(∞)

M̂
asn→+∞.

Choose now anyε,A > 0 such thatc∗ + ε < A and letχ(c) be a continuous
function defined onR and such that 0� χ � 1,χ(c) = 1 if c∗ + ε � c � A and
χ(c) = 0 if c �∈ [c∗ + ε/2,2A]. We have

∫
SN−1×(c∗,+∞)

ϕc(x · ν + ct + c ln M̂n)
1

M̂n
dµ̃n

� In :=
∫
SN−1×(c∗,+∞)

χ(c)ϕc(x · ν + ct + c ln M̂n)
1

M̂n
dµ̃n.

The term In also reads In = IIn + III n where

IIn =
∫
SN−1×(c∗,+∞)

χ(c)
(
ϕc(x · ν + ct + c ln M̂n)

1

M̂n

− ϕc(x · ν + ct + c ln M̂)
1

M̂

)
dµ̃n

III n =
∫
SN−1×(c∗,+∞)

χ(c)ϕc(x · ν + ct + c ln M̂)
1

M̂
dµ̃n.

From the assumption (a) and from the choice ofχ ,

III n →
∫
SN−1×(c∗,+∞)

χ(c) ϕc(x · ν + ct + c ln M̂)
1

M̂
dµ̃ asn→+∞.

On the other hand,

|IIn| �
∫
SN−1×(c∗,+∞)

( ∣∣∣ 1

M̂n
− 1

M̂

∣∣∣+ c‖ϕ′c‖∞| ln M̂n − ln M̂| 1

M̂

)
χ(c) dµ̃n.

Since the functionsuν,c(x, t) = ϕc(x · ν + ct) are bounded solutions of the
parabolic equation (1), there exists a constantK, independent of(ν, c) such that
‖∂tuν,c(x, t)‖ � K for all (x, t) ∈ R

N+1. Therefore,c‖ϕ′c‖∞ � K for all
c ∈ (c∗,+∞). Since the sequence(µn(X)) is bounded, we finally conclude that
IIn → 0 asn→+∞.
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Thus,

In →
n→+∞

∫
SN−1×(c∗,+∞)

χ(c)ϕc(x · ν + ct + c ln M̂)
1

M̂
dµ̃

�
∫
SN−1×(c∗+ε,A)

ϕc(x · ν + ct + c ln M̂)
1

M̂
dµ̃.

Passing to the limitsε → 0 andA → +∞ eventually implies, thanks to the
monotone convergence theorem, that

lim inf
n→+∞

∫
SN−1×(c∗,+∞)

ϕc(x · ν + ct + c ln M̂n)
1

M̂n
dµ̃n

�
∫
SN−1×(c∗,+∞)

ϕc(x · ν + ct + c ln M̂)
1

M̂
dµ̃.

Similarly, we can prove that

lim sup
n→+∞

∫
SN−1×(c∗,+∞)

eλc(x·ν+ct+c ln M̂n) 1

M̂n
dµ̃n

�
∫
SN−1×(c∗,+∞)

eλc(x·ν+ct+c ln M̂) 1

M̂
dµ̃.

Putting all the above results into (39) leads to:∫
SN−1×(c∗,+∞)

ϕc(x · ν + ct + c ln M̂)
1

M̂
dµ̃+ ξ(t + ln M̂)

µ(∞)

M̂

� U(x, t)

�
∫
SN−1×(c∗,+∞)

eλc(x·ν+ct+c ln M̂) 1

M̂
dµ̃+ ef ′(0)(t+ln M̂) µ(∞)

M̂

for all (x, t) ∈ R
N+1. In other words, for all(x, t) ∈ R

N × R,∫
X̂

ϕc(x · ν + ct + c ln M̂)
1

M̂
dµ̂ � U(x, t) �

∫
X̂

eλc(x·ν+ct+c ln M̂) 1

M̂
dµ̂.

(40)

Remember that, by definition, the functionuµ is the pointwise limit of the
functionsun(x, t), which are solutions of the Cauchy problems∂tun = �un +
f (un), t > −n,

un(x,−n) =
∫
X̂

ϕc(x · ν − cn+ c ln M̂)
1

M̂
dµ̂.

From the maximum principle, it follows then thatun(x, t) � U(x, t) for all t � −n
andx ∈ R

N .
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Let vn be the function defined byvn(x, t) = U(x, t) − un(x, t) � 0. The
function vn satisfies∂tvn = �vn + f (U) − f (un) � �vn + f ′(0)vn for all
t > −n, x ∈ R

N . Fix a couple(x, t) ∈ R
N+1. Forn > |t |,

0 � vn(x, t) � ef
′(0)(t+n)

√
4π(t + n)N

∫
RN

vn(y,−n)e−
|y−x|2
4(t+n) dy

� ef
′(0)(t+n)

√
4π(t + n)N

∫
RN

(∫
X̂

(eλc(x·ν−cn+c ln M̂)

− ϕc(x · ν − cn+ c ln M̂))
1

M̂
dµ̂
)

× e− |y−x|2
4(t+n) dy

because of (40). Moreover, from Lemma 3.3,eλc(x·ν−cn+c ln M̂) − ϕc(x · ν − cn+
c ln M̂) � 0 for all(ν, c) ∈ X̂ (the case(ν, c)also works because of our conventions
and becauseξ(s) � ef

′(0)s for all s ∈ R). We then get

0 � vn(x, t) �
∫
X̂

wn(ν, c)dµ̂, (41)

where

wn(ν, c) = ef
′(0)(t+n)

√
4π(t + n)N

∫
RN

(
eλc(y·ν−cn+c ln M̂) − ϕc(y · ν − cn+ c ln M̂)

)

× 1

M̂
e
− |y−x|2

4(t+n) dy.

On the one hand,

0 � wn(ν, c) � φn(x, t)

= ef
′(0)(t+n)

√
4π(t + n)N

∫
RN

eλc(y·ν−cn+c ln M̂) 1

M̂
e
− |y−x|2

4(t+n) dy.

By definition, the functionφn is a solution of the linear Cauchy problem∂tφn =
�φn + f ′(0)φn for t > −n andφn(x,−n) = 1

M̂
eλc(x·ν−cn+c ln M̂). By unique-

ness of this Cauchy problem and sinceλcc = λ2
c + f ′(0), we conclude that

φn(x, t) = 1
M̂
eλc(x·ν+ct+c ln M̂). Therefore, 0� wn(ν, c) � 1

M̂
eλc(x·ν+ct+c ln M̂)

and this function(ν, c) → 1
M̂
eλc(x·ν+ct+c ln M̂) is such that∫

X̂

1

M̂
eλc(x·ν+ct+c ln M̂) dµ̂ < +∞.

Choose now any couple(ν, c) ∈ SN−1 × (c∗,+∞). By making the change of
variablesy = x + 2λc(t + n)ν +√

4(t + n)z and by using (3), a straightforward
calculation gives

wn(ν, c) = 1

M̂
eλc(x·ν+ct+c ln M̂)

∫
RN

π−N/2e−|z|2(1− ηn(z)) dz
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where

ηn(z) = e−λc(x·ν+ct+c ln M̂)+f ′(0)(t+n)−λ2
c (t+n)−λc

√
4(t+n)z·ν

× ϕc
(
x · ν + 2λc(t + n)+

√
4(t + n)z · ν − cn+ c ln M̂

)
.

Lemma 3.3 implies that 0� ηn(z) � 1 andηn(z)→ 1 for allz ∈ R
N asn→+∞.

Therefore, Lebesgue’s dominated convergence theorem implies thatwn(ν, c)→ 0
asn→+∞.

Similarly, we can prove thatwn(∞) → 0 asn → +∞. Eventually, an-
other application of Lebesgue’s dominated convergence theorem in (41) leads to
vn(x, t)→ 0 asn→+∞.

As a conclusion,U(x, t) − un(x, t) → 0 asn → +∞, whenceU(x, t) =
uµ(x, t). Since the couple(x, t) ∈ R

N+1 is arbitrary, we conclude thatU = uµ.
Lastly, since the limituµ is uniquely determined by the sequence(µn) and does not
depend on its subsequences, it follows that the whole sequence(uµn) converges to
uµ in the sense of the topologyT asn→+∞.

3.8. Case where µ̃ is absolutely continuous with respect to dν × dc
This section is devoted to the proof of the non-convergence property (14) in the

case of a measureµ ∈ M such thatµ∗ = 0 andµ̃ is absolutely continuous with
respect to the Lebesgue measuredµ× dc.

The formula (14) is actually a consequence of more general results that we state
below. Consider a measureµ ∈ M such thatµ∗ = 0 and

µ({(ν, c) ∈ SN−1 × (c∗,+∞), c0ν0 · ν = c}) = 0

for somec0 � c∗ and ν0 ∈ SN−1. Note that the setE = {(ν, c) ∈ SN−1 ×
(c∗,+∞), c0ν0 · ν = c} can also be written asE = S(c0ν0/2, c0/2) \ B(0, c∗)
whereS(c0ν0/2, c0/2) is the sphere centered at the pointc0ν0/2 with radiusc0/2.
Then we claim that

∀h ∈ R, uµ(−c0t ν0 + x, t) �→ ϕc0(x · ν0 + h) ast →±∞. (42)

Postponing the proof, we see that property (14) immediately follows from (42).
Indeed, if a measureµ ∈ M is such thatµ∗ = 0 andµ̃& dν×dc, thenµ(E) = 0
for all (c0, ν0).

Let us now turn to the

Proof of (42). Choose a measureµ ∈ M such thatµ∗ = 0 and such thatµ({(ν, c) ∈
SN−1 × (c∗,+∞), c0ν0 · ν = c}) = 0 for somec0 � c∗ andν0 ∈ SN−1.

Let us first study the limitt → −∞. Assume that there exists a real number
h0 ∈ R such that

uµ(−c0t ν0 + x, t)→ ϕc0(x · ν0 + h0) ast →−∞ (43)

for eachx ∈ R
N (this implies that the convergence actually takes place in

C2
loc(R

N
x )).
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Let us first consider the case whereµ̃(SN−1 × (c∗,+∞)) = 0 (which implies
thatM̂ = µ(∞) > 0, sinceµ∗ = 0). From (30), we have

uµ(−c0t ν0 + x, t) � µ(∞)

M̂
ef

′(0)(t+ln M̂).

Passing to the limitt →−∞ leads toϕc0(x · ν0 + h0) � 0 for all x ∈ R
N . That is

clearly impossible.
We now have to consider the case whereµ̃(SN−1×(c∗,+∞)) > 0 (that implies

in particular thatM̂ > 0). LetF be the set

F = {(ν, c) ∈ SN−1 × (c∗,+∞), c < c0ν0 · ν}.
The setF can also be written asF = B(c0ν0/2, c0/2) \ B(0, c∗) where
B(c0ν0/2, c0/2) is the open ball centered at the pointc0ν0/2 with radiusc0/2.
Suppose thatµ(F) > 0. Take now any pointx ∈ R

N . From the lower bound of
(30), it follows that

uµ(−c0tν0 + x, t) �
∫
F

ϕc

(
(c − c0ν0 · ν)t + x · ν + c ln M̂

) 1

M̂
dµ̃.

For any couple(ν, c) in F , we havec− c0ν0 · ν < 0, whenceϕc((c− c0ν0 · ν)t +
x · ν+ c ln M̂)→ 1 ast →−∞. Hence, from Lebesgue’s dominated convergence
theorem, the right-hand side of the previous inequality goes to

β :=
∫
F

1

M̂
dµ̃ = µ(F)

M̂
> 0

ast → −∞. Therefore,ϕc0(x · ν0 + h0) � β > 0 for eachx ∈ R
N , whereβ is

independent ofx. This is impossible. We deduce then that

µ(F) = 0.

From the upper bound of (30), and sinceµ(E) = µ(F) = 0, it follows that

uµ(−c0t ν0 + x, t) � w(x, t)+ z(t), (44)

where

w(x, t) =
∫
G

eλc(c−c0ν0·ν)t+λcx·ν+λcc ln M̂ 1

M̂
dµ̃

z(t) = µ(∞)

M̂
ef

′(0)(t+ln M̂)

and
G = {(ν, c) ∈ SN−1 × (c∗,+∞), c > c0ν0 · ν}.

Choose anyx ∈ R
N . For each(ν, c) ∈ G, we havec− c0ν0 · ν > 0. Furthermore,

0 � λc � c∗/2 and 0� λcc = λ2
c + f ′(0) � 2f ′(0). Hence, fort � 0,

eλc(c−c0ν0·ν)t+λcx·ν+λcc ln M̂ � ec
∗|x|/2+2f ′(0)| ln M̂|
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and

eλc(c−c0ν0·ν)t+λcx·ν+λcc ln M̂ → 0 ast →−∞.

We conclude from Lebesgue’s dominated convergence theorem thatw(x, t)→ 0
ast → −∞ for eachx ∈ R

N . The passage to the limitt → −∞ in (44) leads to
ϕc0(x · ν0 + h0) � 0 for all x ∈ R

N .
Eventually, the assumption (43) is impossible and therefore we have the for-

mula (42) whent →−∞.
Let us now turn to the proof of (42) for the limitt → +∞. We just outline it

because it is very similar to the previous caset →−∞. Assume then that

uµ(−c0tν0 + x, t)→ ϕc0(x · ν0 + h0) ast →+∞
for someh0 ∈ R. From (30),

max

(∫
SN−1×(c∗,+∞)

ϕc(x · ν + (c − c0ν0 · ν)t + c ln M̂)

× 1

M̂
dµ̃, ξ(t + ln M̂)

µ(∞)

M̂

)
� uµ(−c0ν0t + x, t)
�
∫
SN−1×(c∗,+∞)

eλc(x·ν+(c−c0ν0·ν)t+c ln M̂) 1

M̂
dµ̃

+ µ(∞)

M̂
ef

′(0)(t+ln M̂).

Assume first thatµ(∞) > 0. Then,M̂ > 0, and, passing to the limitt →+∞
yieldsϕc0(x · ν0 + h0) � µ(∞)

M̂
(> 0) for all x ∈ R

N . That is impossible. Hence,
µ(∞) = 0.

Second, as was shown above,µ(G) = 0, otherwiseϕc0(x · ν0 + h0) � β ′ :=
µ(G)

M̂
> 0 for all x ∈ R

N .
Third, it follows then that

uµ(x − c0ν0t, t) �
∫
F

eλc(x·ν+(c−c0ν0·ν)t+c ln M̂) 1

M̂
dµ̃.

The limit t → +∞ yieldsϕc0(x · ν0 + h0) � 0 for all x ∈ R
N , which is clearly

impossible. Hence, the claim (42) also holds whent →+∞.  !
Let us now prove an additional property that also shows that whenµ̃ is absolutely

continuous with respect to the Lebesgue measuredν×dc, thenuµ does not behave,
along the rayszt with |z| < c∗ andt →−∞, in the same way as a solution obtained
from the mixing of a finite number of travelling waves. More precisely, ifµ ∈ M
is such that̃µ is absolutely continuous with respect todν × dc, then

∀ z ∈ R
N, 0< |z| < c∗, uµ(−zt, t) = o(e

1
4 (c

∗2−|z|2)t ) ast →−∞. (45)
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Note that, from (10), for each functionu in Theorem 1.1, there existsz ∈
B(0, c∗)\{0} such thatu(−zt, t) �= o(e

1
4 ((c

∗)2−|z|2)t ) ast →−∞.
Let µ ∈ M be such thatµ∗ = 0 anddµ̃ = g(ν, c)dν × dc form someL1

functiong onSN−1 × (c∗,+∞). Choosez ∈ B(0, c∗)\{0}. From (30), it follows
that

uµ(−zt, t)e− 1
4 ((c

∗)2−|z|2)t � v(t)+ w(t)+ z(t),
where

v(t) =
∑

1�i�k
ϕc∗((c

∗ − z · νi)t + c∗ lnmi),

w(t) =
∫
SN−1×(c∗,+∞)

e[λc(−z·ν+c)−
1
4 (c

∗)2+ 1
4 |z|2]t+λcc ln M̂ 1

M̂
g(ν, c) dν × dc,

z(t) = µ(∞)

M̂
e

1
4 |z|2t+f ′(0) ln M̂ .

As was shown in the proof of (10),v(t)→ 0 ast → −∞, since|z| < c∗. On the
other hand, the termz(t) clearly goes to 0 ast →−∞. Finally, let us observe that,
because of (3),

λc(−z · ν + c)− 1
4(c

∗)2 + 1
4|z|2 = λ2

c − λcz · ν + 1
4|z|2

= 1
4|2λcν − z|2 � 0.

Furthermore, the Lebesgue measure of the set{(ν, c) ∈ SN−1×(c∗,+∞), 2λcν =
z} (which is a single point) is equal to 0. Since the function1

M̂
eλcc ln M̂ is uniformly

bounded, Lebesgue’s dominated convergence theorem implies thatw(t) → 0 as
t →−∞. That completes the proof of (45).

3.9. The set {uµ} contains the solutions obtained from the mixing of a finite
number of travelling waves

This section is devoted to proving that the entire solutions of (1) that are obtained
from the mixing of a finite number of travelling waves (seeTheorem 1.1) are actually
of the typeuµ. In other words, the set of the entire solutions of the typeuµ contains
the solutions obtained from the mixing of a finite number of travelling waves.

In order to do this, letp be a positive integerp � 1 and, for eachi = 1, · · · , p,
choose(νi, ci, hi) ∈ SN−1 × [c∗,+∞] × R. Assume thatci �= cj if νi = νj and
assume that there is at most one indexi such thatci = +∞. We want to prove that
the entire solutionu(x, t) of (1) constructed in Theorem 1.1 is of the typeuµ for
someµ ∈ M.

As in Section 2, let us consider the case wherek := #{i, ci = c∗} � 1 and
#{i, ci = +∞} = 1 (the other cases being easier). Up to a renumbering, we can
assume that

c1 = · · · = ck = c∗ � ck+1 � · · · � cp−1 < +∞ = cp.
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The functionu(x, t) is the limit of the solutionsUn(x, t) of the Cauchy problems

(Un)t = �Un + f (Un), x ∈ R
N, t > −n,

whereUn(x,−n) is a maximum of travelling waves (with finite or infinite speeds):

Un(x,−n) = max

(
max

1�i�p−1
(ϕci (x · νi − cin+ hi)), ξ(−n+ hp)

)
.

Notice that 0� Un(x,−n) � 1.
Let us now consider the following measureµ ∈ M, which is the sum of a finite

number of Dirac distributions:

µ =
k∑
i=1

ehi/c
∗
δ(νi ,c∗) +

p−1∑
i=k+1

αiδ(νi ,ci ) + αpδ∞,

where theαi are defined as follows: first, elementary arguments give the existence
of a unique positive real number̂M such that

p−1∑
i=k+1

eλci (hi−ci ln M̂) + ef ′(0)(hp−ln M̂) = 1;

if we then setαi = M̂eλci (hi−ci ln M̂) > 0 for eachi = k + 1, · · · , p − 1 and
αp = M̂ef

′(0)(hp−ln M̂), we have, by definition,Epi=k+1αi = M̂.
The functionuµ(x, t) is the limit of the solutionsun(x, t) of the Cauchy prob-

lems

(un)t = �un + f (un), x ∈ R
N, t > −n

where, owing to the definition given in (26),un(x,−n) is the maximum of some
travelling waves with the minimal speedc∗ and of an average of travelling waves
with speeds greater thanc∗:

un(x,−n) = max
(

max
1�i�k

(ϕc∗(x · νi − c∗n+ hi)),
p−1∑
i=k+1

ϕci (x · νi − cin+ ci ln M̂)eλci (hi−ci ln M̂)

+ ξ(−n+ ln M̂)ef
′(0)(hp−ln M̂)

)
.

We have 0� un(x,−n) � 1 for all x ∈ R
N .

The key point consists in proving that, by considering these above two sequences
of Cauchy problems with different initial data, we actually get the same function
at the limit. This is done in the following

Lemma 3.7. For all (x, t) ∈ R
N × R, u(x, t) = uµ(x, t).
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Postponing the proof of this lemma, we see that the manifold of the solutions
of (1) of the typeuµ contains all the solutionsu constructed in Theorem 1.1. From
Theorem 1.1, it follows that the manifold{uµ} then contains the finite-dimensional
manifold of the planar travelling waves, the manifold{t → ξ(t + h), h ∈ R} and
the finite-dimensional manifolds of the planar solutions that have been constructed
in [16].

Before doing the proof of Lemma 3.7, we state an auxiliary result. In what
follows, we call(S(t))t>0 the semi-group generated by the Laplace operator in
R
N . In particular, for each bounded measurable functiong on R

N and for each
t > 0 andx ∈ R

N ,

(S(t) · g)(x) = 1√
4πt

N

∫
RN

g(y) e−
|y−x|2

4t dy.

Lemma 3.8. (a) For each γ > c∗ and (x, t) ∈ R
N × R,

zn(x, t) := ef
′(0)n (S(t + n) · 1|·|�γ n

)
(x) → 0

as n → +∞ (with t + n > 0), where 1|·|�γ n(y) = 1 if |y| � γ n and 0
otherwise.

(b) For each γ > c∗, τ < 0 and x ∈ R
N , the integral

hγ (x, τ ) :=
∫ τ

−∞
ef

′(0)(τ−s)(S(τ − s) · 1|·|�γ |s|)(x) ds

converges.

Proof. (a) Forn > |t |,

0 � zn(x, t) � ef
′(0)n

√
4π(t + n)N

∫
|y|�γ n

e
− |y−x|2

4(t+n) dy.

The change of variablesy = γ nz+ x leads to

0 � zn(x, t) � γNnN√
4π(t + n)N

∫
|z+ x

γ n
|�1

e
(f ′(0)− γ2n|z|2

4(t+n) )ndz.

Sinceγ > c∗ = 2
√
f ′(0), there existsη > 0 andn0 ∈ N such that, ifn � n0 and

|z+ x
γ n
| � 1, then

f ′(0)− γ 2n|z|2
4(t + n) � −η − η|z|2.

Therefore, forn � n0, it follows that

0 � zn(x, t) � γNnN√
4π

N
(t + n)N/2

e−ηn
∫
|z+ x

γ n
|�1

e−ηn|z|2dz

� γNnN√
4π

N
(ηn(t + n))N/2

e−ηn
∫

RN

e−|y|2dy

after the change of variables
√
ηnz = y. Therefore,zn(x, t)→ 0 asn→+∞.
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(b) Takeτ < 0 andx ∈ R
N . Since 0� (S(τ − s) · 1|·|�γ |s|)(x) � 1 for all s < τ ,

we have only to prove that the integral I,

0 � I :=
∫ τ−1

−∞
ef

′(0)(τ−s) 1√
4π(τ − s)N

∫
|y|�γ |s|

e
− |y−x|2

4(τ−s) dy ds,

converges. With the changes of variablesy = |s|z (possible becauses � τ < 0)
andt = τ − s, it is found that

I =
∫ ∞

1
(4πt)−N/2(t − τ)N

∫
|z|�γ

ef
′(0)t− |(t−τ)z−x|2

4t dz dt

=
∫ ∞

1
(4πt)−N/2(t − τ)N

∫
|z|�γ

e(f
′(0)− 1

4 |z|2)t+ 1
2z·x+ 1

2τ |z|2− |x+τz|2
4t dz dt.

In the above integral,e−
|x+τz|2

4t � 1. Furthermore, sincec∗ = 2
√
f ′(0) andγ > c∗,

there existsδ > 0 such thatf ′(0)− 1
4|z|2 � −δ as soon as|z| � γ . Hence,

0 � I �
(∫ ∞

1
(4πt)−N/2(t − τ)Ne−δt dt

)
×
(∫

RN

e
1
2z·x+ 1

2τ |z|2dz
)
.

The integral int converges becauseδ > 0. So does the integral inz, becauseτ < 0.
That completes the proof of Lemma 3.8(b). !

Note that since 0� (S(τ − s) · 1|·|�γ |s|)(x) � 1 for all τ ∈ R, s < τ and
x ∈ R

N , it follows that the integralhγ (x, τ ) converges for all(x, τ ) ∈ R
N × R.

Let us now turn to the

Proof of Lemma 3.7. Remember the definitions of the sequences of the functions
un andUn at the beginning of this subsection. Since 0� un � Un � 1 and
f ′(s) � f ′(0) (> 0) on [0,1], it follows that, for eachn, the functionwn =
|un − Un| satisfies

(wn)t � �wn + f ′(0)wn, t > −n, x ∈ R
N.

Therefore,

0 � wn(x, t) � ef
′(0)(t+n)(S(t + n) · wn(·,−n))(x).

Choose a couple(x, t) ∈ R
N × R. Let ε be an arbitrary positive real number

and letγ be such thatc∗ < γ < ck+1 (� ci for all i � k+ 1). From Lemma 3.8(a)
and since|wn| � 2, we have

ef
′(0)(t+n)(S(t + n) · (wn(·,−n)1|·|�γ n))(x)→ 0 asn→+∞.

Therefore,

lim sup
n→+∞

wn(x, t) � lim sup
n→+∞

ef
′(0)(t+n)(S(t + n) · (wn(·,−n)1|·|<γn))(x).
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Let us now find an upper bound for the functionwn(y,−n) for |y| < γn.
Owing to the definitions ofun(·,−n) andUn(·,−n), we have (for ally ∈ R

N ),

0 � w(y,−n) �
∣∣∣∣max

(
max

k+1�i�p−1
(ϕci (y · νi − cin+ hi)), ξ(−n+ hp)

)

−
( p−1∑
i=k+1

ϕci (y · νi − cin+ ci ln M̂)eλci (hi−ci ln M̂)

+ ξ(−n+ ln M̂)ef
′(0)(hp−ln M̂)

)∣∣∣∣.
Sinceγ < ci for eachi � k + 1, y · νi − cin→−∞ asn→+∞, uniformly for
|y| < γn. From (2) and (4), we have, forn large enough and for all|y| < γn,∣∣ϕci (y · νi − cin+ hi)− eλci (y·νi−cin+hi)∣∣ � ε eλci (y·νi−cin),∣∣ϕci (y · νi − cin+ ci ln M̂)eλci (hi−ci ln M̂) − eλci (y·νi−cin+hi)∣∣ � ε eλci (y·νi−cin),∣∣ξ(−n+ hp)− e−f ′(0)n+f ′(0)hp ∣∣ � ε e−f ′(0)n,∣∣ξ(−n+ ln M̂)ef

′(0)(hp−ln M̂) − e−f ′(0)n+f ′(0)hp ∣∣ � ε e−f ′(0)n,

where the first two inequalities hold fori = k+1, · · · , p−1. In what follows, we
setλcp (y · νp + cpt + hp) := f ′(0)t + f ′(0)hp andλcp (y · νp + cpt) := f ′(0)t
for all t ∈ R. Thus,

0 � lim sup
n→+∞

wn(x, t)

� lim sup
n→+∞

ef
′(0)(t+n)

∫
|y|<γn

1√
4π(t + n)N

|In(y)| e−
|y−x|2
4(t+n) dy

+ 2ε lim sup
n→+∞

p∑
i=k+1

zin(x, t),

(46)

where

∀ |y| < γn, In(y) = max
k+1�i�p

(eλci (y·νi−cin+hi))−
p∑

i=k+1

eλci (y·νi−cin+hi)

and

zin(x, t) = ef
′(0)(t+n)

∫
|y|<γn

1√
4π(t + n)N

e
λci (y·νi−cin)− |y−x|2

4(t+n) dy.

Let us first estimate the termszin(x, t). We have

zin(x, t) � φin(x, t) =
ef

′(0)(t+n)
√

4π(t + n)N
∫

RN

eλci (y·νi−cin)e−
|y−x|2
4(t+n) dy.
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As already observed in Section 3.7, and sinceλ2
ci
−ciλci+f ′(0) = 0, the right-hand

side of the above inequality is equal to

φin(x, t) = eλci (x·νi+ci t)

(in both casesk + 1 � i � p − 1, i.e.,ci <∞, andi = p, i.e.,ci = +∞).
Let us find an upper bound for In(y) for all |y| � γ n. For eachi = k+1, · · · , p,

letGin be the set

Gin =
{
|y| < γn, eλci (y·νi−cin+hi) = max

k+1�j�p
e
λcj (y·νj−cj n+hj )

}
,

and, for eachi = k + 1, · · · , p andj �= i, let us define

A
ij
n = {y ∈ Gin, ln ε � λcj (y · νj − cjn+ hj )− λci (y · νi − cin+ hi) � 0},

B
ij
n = {y ∈ Gin, λcj (y · νj − cjn+ hj )− λci (y · νi − cin+ hi) < ln ε}

(with ε small enough so that lnε < 0). Due to the definition of the setsGin, we have

{|y| < γn} = ∪
k+1�i�p

∩
j �=i(A

ij
n ∪ Bijn ).

As a consequence,∀ |y| < γn,

|In(y)| �
p∑

i=k+1

∑
j �=i

(
1{y∈Aijn } e

λcj (y·νj−cj n+hj ) + 1{y∈Bijn } e
λci (y·νi−cin+hi)+ln ε

)

and

lim sup
n→+∞

∫
|y|<γn

ef
′(0)(t+n)

√
4π(t + n)N

|In(y)|e−
|y−x|2
4(t+n) dy

� lim sup
n→+∞

p∑
i=k+1

∑
j �=i

(a
ij
n (x, t)+ bijn (x, t))

where

0 � a
ij
n (x, t) =

∫
y∈Aijn

ef
′(0)(t+n)

√
4π(t + n)N

e
λj (y·νj−cj n+hj )− |y−x|2

4(t+n) dy,

0 � b
ij
n (x, t) =

∫
y∈Bijn

ef
′(0)(t+n)

√
4π(t + n)N

εe
λci (y·νi−cin+hi)− |y−x|2

4(t+n) dy.

The change of variablesy = x + 2(t + n)λcj νj +
√

4(t + n) ζ in aijn (x, t) leads,
after a straightforward calculation, to

a
ij
n (x, t) = e

λcj (νj ·x+cj t+hj )
∫
{(x+2(t+n)λcj νj+

√
4(t+n) ζ ) ∈Aijn }

π−N/2e−|ζ |2 dζ.
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But it is found that[
(x + 2(t + n)λcj νj +

√
4(t + n) ζ ) ∈ Aijn

]
⇒
[
αn + ln ε√

4(t + n) � (λcj νj − λci νi) · ζ � αn

]

whereαn = (λcj cj −λci ci)n+λci hi−λcj hj −(λcj νj −λci νi) ·(x+2(t+n)λcj νj ).
By assumption,(ci, νi) �= (cj , νj ) as soon asi �= j . Therefore, for eachi �= j , the
vectorλcj νj − λci νi is not zero. Set

e1 =
λcj νj − λci νi
|λcj νj − λci νi |

and completee1 into an orthonormal basis(e1, e2, · · · , eN). By making the change
of variableszl = el · ζ (l = 1, · · · , N ), we get

0 � a
ij
n (x, t)

� e
λcj (νj ·x+cj t+hj )π−N/2

∫
{αn+ ln ε√

4(t+n)�|λcj νj−λci νi |z1�αn}
e−z2

1dz1

×
∫

RN−1
e−(z2

2+···+z2
N)dz2 · · · dzN .

Eventually,aijn (x, t)→ 0 asn→+∞.
On the other hand,

0 � b
ij
n (x, t) � ε

∫
RN

ef
′(0)(t+n)

√
4π(t + n)N

e
λci (y·νi−cin+hi)− |y−x|2

4(t+n) dy

= ε eλci (x·νi+ci t+hi),

as already observed in Section 3.7.
Putting together all the previous estimates leads to

0 � lim sup
n→+∞

wn(x, t) � ε

p∑
i=k+1

(p − k + 1)eλci (x·νi+ci t+hi).

Sinceε > 0 was arbitrary, it follows thatwn(x, t) → 0 asn → +∞. In other
words,u(x, t) = uµ(x, t) and the proof of Lemma 3.7 is done. !

For each(ν, c, h) ∈ SN−1 × [c∗,+∞] × R, let us set

φ(ν,c,h) = ϕc(x · ν + ct + h) if c < +∞,

φ(ν,c,h) = ξ(t + h) if c = +∞,

and let us callT W the set of such functionsφ(ν,c,h), namely, the set of all planar
travelling waves for (1), with finite speed (c < +∞) or infinite speed (c = +∞).

We can define a law fromT W to the setE of all entire solutions of (1) as
follows:
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Definition 3.9. For any integerp � 1 and anyp-uple (νi, ci, hi) ∈ (SN−1 ×
[c∗,+∞] × R])p, we denote by⊕pi=1φ(νi ,ci ,hi )(x, t) the function defined by

p⊕
i=1

φ(νi ,ci ,hi )(x, t) := lim
n→+∞Un(x, t),

whereUn is the solution of the Cauchy problem

(Un)t = �Un + f (Un), t > −n, x ∈ R
N

Un(x,−n) = max
1�i�p

φ(νi ,ci ,hi )(x,−n).

As it was shown in Section 2, the function⊕pi=1φ(νi ,ci ,hi )(x, t) is well defined and
it belongs toE .

The law ⊕ is commutative and associative. Furthermore, each function
⊕pi=1φ(νi ,ci ,hi )(x, t) is a solution of (1) of the type described in Theorem 1.1. In-
deed, given ap-uple (νi, ci, hi), there exists a subsetI ⊂ {1, · · · , p} such that
(νi, ci) �= (νj , cj ) for i �= j , i, j ∈ I , and such that, for allk ∈ {1, · · · , p}, there
existsi ∈ I such that(νk, ck) = (νi, ci) andhk � hi . Then, we immediately have

Un(x,−n) = max
i∈I φ(νi ,ci ,hi )(x,−n).

Therefore, by definition, the function⊕pi=1φ(νi ,ci ,hi )(x, t) is an entire solution of
the type described in Theorem 1.1.

Conversely, each solutionu constructed as in Theorem 1.1 is of the type
⊕mi=1φ(νi ,ci ,hi )(x, t) for somem-uple(νi, ci, hi)1�i�m.

Finally, we formulate the following

Conjecture 3.10. The set E of all entire solutions u of (1) , such that 0 � u �
1, is the closure, in the sense of the topology T of all the solutions of the type
⊕pi=1φ(νi ,ci ,hi )(x, t), when p varies in N

∗ and (νi, ci, hi) ∈ SN−1×[c∗,+∞]×R.

4. Partial uniqueness results

Our goal in this section is to prove Theorem 1.4 and 1.5. First of all, we need a
preliminary lemma, whose result has already been mentionned in Section 1.

4.1. A preliminary lemma

Lemma 4.1. For any solution u(x, t) of (1) , we have: ∀0 � c < c∗,

lim
t→−∞ max

|x|�c|t |
u(x, t) = 0

lim
t→+∞ min

|x|�ct
u(x, t) = 1
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Proof. Let u(x, t) be a solution of (1). Sinceu is positive, there exists a function
ρ(x) which is positive in the open ball of radius 1 and center 0∈ R

N , which
vanishes outside this open ball and which is such thatρ(x) � u(x,0) in R

N .
Let v(x, t) be the solution of the Cauchy problem

vt = �v + f (v), x ∈ R
N, t > 0,

v(x,0) = ρ(x).
(47)

The maximum principle implies then thatv(x, t) � u(x, t) for all x ∈ R
N andt �

0. Since lim infu→0 u
−(1+2/N)f (u) > 0, the results ofAronson & Weinberger

(see [2]) imply that, for all 0� c < c∗, we have limt→+∞ min|x|�ct v(x, t) = 1.
The same assertion then holds well foru.

Fix now a speedc ∈ [0, c∗[ and assume that lim supt→−∞ max|x|�c|t | u(x, t) >
0. There exist then a realε > 0 and two sequencesxn ∈ R

N and tn → −∞
such that|xn| � c|tn| andu(xn, tn) � ε. By the standard parabolic estimates,
∇xu(x, t) is uniformly bounded inRN × R. Hence, there exists a realr > 0 such
thatu(x, tn) � ε/2 for anyx such that|x − xn| � r. Let ρ(x) be a continuous
nonnegative function such that 0< ρ(x) � ε/2 if |x| < r andρ(x) = 0 if |x| � r.
Let v be the solution of the Cauchy problem (47). On the one hand, the maximum
principle implies thatv(x, t) � u(x + xn, t + tn) for all x ∈ R

N and t � 0. In
particular,v(−xn,−tn) � u(0,0) < 1. On the other hand, since−tn → +∞,
|xn| � c|tn| andc < c∗, the above result of Aronson and Weinberger yields that
v(−xn,−tn) → 1 as−tn → +∞. This eventually leads to a contradiction and
Lemma 4.1 is proved.  !

4.2. Partial uniqueness (proof of Theorem 1.4)

This section is devoted to the proof of Theorem 1.4. Before entering into the
proof, we first state a few general lemmas.

The following lemma states that an entire solutionU of (1) can be approximated
by a suitable sequence of solutions of Cauchy problems.

Lemma 4.2. Let U(x, t) be an entire solution of (1) and let γ > c∗. For each
n ∈ N, let Un(x, t) be the solution of the Cauchy problem

(Un)t = �Un + f (Un), x ∈ R
N, t > −n,

Un(x,−n) =
{
U(x,−n) if |x| < γn,

0 otherwise.

Then Un(x, t)
�−→U(x, t) as n→+∞.

Proof. From the maximum principle, 0� Un(x, t) � U(x, t) � 1 for eachn ∈ N

and for allx ∈ R
N , t � −n.
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The nonnegative functionvn(x, t) = U(x, t)− Un(x, t) satisfies

∂tvn = �vn + f (U)− f (Un)
� �vn + f ′(0)vn

becausef ′(s) � f ′(0) for all s ∈ [0,1].
Choose now any(x, t) ∈ R

N × R. For anyn > |t |,

0 � vn(x, t) � ef
′(0)(t+n)

√
4π(t + n)N

∫
RN
vn(y,−n)e−

|y−x|2
4(t+n) dy

= ef
′(0)(t+n)

√
4π(t + n)N

∫
|y|>γn

e
− |y−x|2

4(t+n) dy

by definition ofUn(·,−n). In other words,

0 � vn(x, t) � ef
′(0)(t+n) (S(t + n) · 1|·|>γn

)
(x).

From Lemma 3.8(a), it follows thatvn(x, t) → 0 asn → +∞, that is to say,
Un(x, t)→ U(x, t).  !

The following lemma states that if an entire solution of (1) converges to 0 in a
cone{|x| � c|t |} whent →−∞, then it has exponential decay in strict subcones.

Lemma 4.3. Let U(x, t) be an entire solution of (1) and assume that
max|x|�c|t | U(x, t)→ 0 as t → −∞, for some c > 0. Then, for each γ ∈ [0, c[,
there exists α0 > 0 such that

∀α ∈ [0, α0], max
|x|�γ |t |

U(x, t) = o(eαt ) as t →−∞.

Proof. Letc andγ be as in Lemma 4.3. Takeα > 0 (to be chosen later) and assume
that the conclusion does not hold, namely, that there existsδ > 0 and a sequence
t ′n →−∞ such thatU(xn, t ′n) � δeαt

′
n for some|xn| � γ |t ′n|.

SinceU is a positive entire solution of (1), the Harnack inequality yields the
existence of a positive constantC0 such that

U(x, t ′n + 1) � C0δe
αt ′n for all xsuch that|x − xn| � 1.

Therefore, even if it means changingδ, we have, by settingtn = t ′n + 1,

U(x, tn) � δeαtn for all x such that|x − xn| � 1.

Let us fixη > 0 such thatη < min(f ′(0), 1
2(c − γ )2) andµ > 0 such that

f (u) � (f ′(0) − η)u for all u ∈ [0, µ]. There exists then a real numberT < 0
such that

∀ t � T , ∀ |x| � c|t |, 0 � U(x, t) � µ.

Let v be the function defined by

v(x, t) = U(x, t)e−(f ′(0)−η)t .
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It satisfies 0� v(x, t) � e−(f ′(0)−η)t and

vt −�v �
{

0 if t � T , |x| � c|t |,
−(f ′(0)− η)v if t � T , |x| � c|t |.

On the other hand, forn large enough such thattn < T ,

v(x, tn) �
{
δe(α−f ′(0)+η)tn if |x − xn| � 1,

0 if |x − xn| � 1.

The maximum principle gives

v(xn, T ) � In + IIn,

where

In = δe(α−f ′(0)+η)tn√
4π(T − tn)N

∫
|y|�1

e
− |y|2

4(T−tn) dy,

IIn =− (f ′(0)− η)
∫ T

tn

1√
4π(T − s)N

∫
|y|�γ |s|

v(y, s)e
− |y−xn|2

4(T−s) dy ds.

Whenn→+∞,
In ∼ C1|tn|−N/2e(α−f ′(0)+η)tn ,

whereC1 = δ(4π)−N/2|B(0,1)| > 0 and|B(0,1)| is the Lebesgue measure of the
unit ball.

Let us now find an upper bound for|IIn|. Remember first that 0� v(y, s) �
e−(f ′(0)−η)s for all (y, s). Make the change of variablesy = xn + z|s| (possible
becauses � τ < 0). If |y| � c|s|, then|z| � max(0, c − |xn||s| ). Therefore,

|IIn| � C′1
∫ T

tn

|s|N√
T − sN

∫
|z|�max(0,c− |xn||s| )

e−(f ′(0)−η)se−
s2|z|2
4(T−s) dz ds,

whereC′1 = (f ′(0)− η)(4π)−N/2. After a straightforward calculation, the change
of variablest = T − s leads to

|IIn| � C′1
∫ T−tn

0

(t − T )N
tN/2

×
∫
|z|�max(0,c− |xn|

t−T )
e
T
2 |z|2− T 2

4t |z|2+(f ′(0)−η− 1
4 |z|2)t dz dt

� C′′1 |tn|N III n,

whereC′′1 = C′1e−(f
′(0)−η)T and

III n =
∫ T−tn

0
t−N/2

∫
|z|�max(0,c− |xn|

t−T )
e
T
2 |z|2− T 2

4t |z|2+(f ′(0)−η− 1
4 |z|2)t dz dt.
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Sinceγ < c andη > 0, it is possible to fix a real numberβ such that

γ

c
< β < 1

f ′(0)− η − 1

4

(
c − γ

β

)2

< f ′(0)− η

2
− 1

4
(c − γ )2.

From now on,n is taken large enough so that 1< T − βtn. Let us divide IIIn into
three parts:

III 1 =
∫ 1

0
· · · , III 2 =

∫ T−βtn

1
· · · and III3 =

∫ T−tn

T−βtn
· · · .

SinceT < 0 andη < f ′(0), the term III1 can be bounded by

III 1 �
∫ 1

0
t−N/2

∫
RN

e−
T 2
4t |z|2ef ′(0)−η dz dt = ef

′(0)−η(2|T |−1)N
∫

RN

e−|y|2dy.

Therefore, III1 is bounded independently ofn.
Whent � 1, we havet−N/2 � 1. The second term III2 can then be bounded by

III 2 �
∫ T−βtn

1

∫
RN

e
T
2 |z|2e(f ′(0)−η)t dz dt

= (2|T |−1)N/2
(∫

RN

e−|y|2dy
)
(f ′(0)− η)−1

×
(
e(f

′(0)−η)(T−βtn) − ef ′(0)−η
)

= O(eβ(f
′(0)−η)|tn|) asn→+∞.

Let us now estimate the third term

III 3 =
∫ T−tn

T−βtn
t−N/2

∫
|z|�max(0,c− |xn|

t−T )
e
T
2 |z|2− T 2

4t |z|2+(f ′(0)−η− 1
4 |z|2)t dz dt.

Remember that|xn| � γ |t ′n| = γ |tn − 1|. Therefore, sinceβ > γ
c
, we have, for all

t such thatT − βtn � t � T − tn,

c − |xn|
t − T � c − γ

β

|tn − 1|
|tn| > 0

for n large enough. Hence, by dropping the terme− T 2
4t |z|2 � 1 in III 3, we get, for

n large enough,

III 3 �
∫ T−tn

T−βtn
e
(f ′(0)−η− 1

4 (c− γ
β
|tn−1|
|tn| )

2)t
dt ×

∫
RN

e
T
2 |z|2dz.

From our choice ofβ,

f ′(0)− η − 1

4
(c − γ

β

|tn − 1|
|tn| )2 < f ′(0)− η

2
− 1

4
(c − γ )2
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for n large enough. As a consequence,

III 3 � C

∫ T−tn

T−βtn
e(f

′(0)− η
2− 1

4 (c−γ )2)t dt

for some constantC = C(T ). Whatever the sign off ′(0) − η
2 − 1

4(c − γ )2 may
be, it is easily found that

III 3 = O(|tn|e(f ′(0)− η
2− 1

4 (c−γ )2)+|tn|) asn→+∞.

Eventually, we obtain

|IIn| = O
(
|tn|N+1(eβ(f

′(0)−η)|tn| + e(f ′(0)− η
2− 1

4 (c−γ )2)+|tn|)
)

asn→+∞.

On the other hand, we had

In ∼ C1|tn|−N/2e(f ′(0)−η−α)|tn| asn→+∞.

Sinceβ < 1 andη < min(f ′(0), 1
2(c − γ )2), it is possible to fixα0 > 0 such

that∀α ∈ [0, α0],
0< β(f ′(0)− η) < f ′(0)− η − α
(f ′(0)− η

2
− 1

4
(c − γ )2)+ < f ′(0)− η − α.

Take nowα ∈ [0, α0]. It follows that|IIn| = o(In) asn→+∞. Therefore,

v(xn, T ) � C1

2
|tn|−N/2e(f ′(0)−η−α)|tn|

for n large enough. Sincef ′(0)− η − α > 0, we conclude that

U(xn, T ) = v(xn, T )e
(f ′(0)−η)T →+∞ asn→+∞.

This is impossible becauseU � 1.
Finally, it follows that, ifα ∈ [0, α0], then

max
|x|�γ |t |

U(x, t) = o(eαt ) ast →−∞.

The proof of Lemma 4.3 is complete. !
Let us now turn to the

Proof of Theorem 1.4. Letu be an entire solution of (1) such that there existsε > 0
such that

max
|x|�(c∗+ε)|t |

u(x, t)→ 0 ast →−∞.

For eachn ∈ N, letun andvn be the solutions of the following Cauchy problems:

(un)t = �un + f (un), x ∈ R
N, t > −n

un(x,−n) =
{
u(x,−n) if |x| < (c∗ + ε/2)n
0 otherwise
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and

(vn)t = �vn + f ′(0)vn, x ∈ R
N, t > −n

vn(x,−n) = un(x,−n).

Sincec∗ + ε/2 > c∗, we know from Lemma 4.2 thatun(x, t)
�→ u(x, t) as

n → +∞. We are now going to compareun with the functionvn, which is a
solution of a linear (more tractable) parabolic equation.

From the maximum principle, it immediately follows that 0� un � 1 and
vn � 0. Furthermore, sincef (s) � f ′(0)s for all s ∈ [0,1], we get

un(x, t) � vn(x, t) for all x ∈ R
N, t � −n.

Let us now find an upper bound forvn. Sincef is of classC2 andf ′(0) > 0,
there exist two positive real numbersη andκ such thatf is increasing in[0, η]
andf (s) � f ′(0)s − κs2 for all s ∈ [0, η]. Sincec∗ + ε/2 < c∗ + ε, Lemma 4.3
provides the existence of a real numberα ∈ (0, f ′(0)) and a, say, negative timeT ,
such that

0 � u(x, t) � eαt � η for all t � T and|x| � (c∗ + ε/2)|t |. (48)

Lemma 4.4. There exists a constantC2 = C2(f, α, κ, T ) such that, for each t � T

and x ∈ R
N , we have

∀ n > |t |, un(x, t) � vn(x, t) � un(x, t)e
κ
α
eαt + C2hc∗+ε/2(x, t)

under the notation of Lemma 3.8(b).

Proof. First of all, we have already observed thatun � vn.
Let us now prove the upper bound forvn. Remember that 0� un(x, t) �

u(x, t) from the maximum principle. From (48) and from our choice ofη andκ,
∀ t � T , |x| � (c∗ + ε/2)|t |, n > |t |,

f (u(x, t)) � f (un(x, t))

� f ′(0)un(x, t)− κ un(x, t)2
� f ′(0)un(x, t)− κ eαt un(x, t).

Set

Un(x, t) = un(x, t)e
κ
α
eαt (� un(x, t)) andwn(x, t) = Un(x, t)− vn(x, t).

Taken � |T |. The functionwn satisfies

(wn)t −�wn − f ′(0)wn = (f (un)− f ′(0)un + κeαtun)e κα eαt

�
{

0 for all − n � t � T , |x| � (c∗ + ε/2)|t |
−C2 for all − n � t � T , |x| � (c∗ + ε/2)|t |,
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where
C2 = (‖f ‖∞ + f ′(0)+ κeαT )e κα eαT .

On the other hand,wn(x,−n) = un(x,−n)(e κα e−αn − 1) � 0. From the maximum
principle, it follows that, for all−n < t � T and for allx ∈ R

N ,

wn(x, t) � −C2

∫ t

−n
ef

′(0)(t−s)(S(t − s) · 1|·|�(c∗+ε/2)|s|)(x) ds.

Sincec∗ + ε/2> c∗, Lemma 3.8(b) implies that, for all−n < t � T andx ∈ R
N ,

wn(x, t) � −C2hc∗+ε/2(x, t)

= −C2

∫ t

−∞
ef

′(0)(t−s)(S(t − s) · 1|·|�(c∗+ε/2)|s|)(x) ds.

By definition ofwn, it follows that

∀ − n < t � T , ∀ x ∈ R
N, vn(x, t) � un(x, t)e

κ
α
eαt + C2hc∗+ε/2(x, t)

and the proof of Lemma 4.4 is complete. !
Lemma 4.5. Up to extraction of some subsequence, the functions vn locally con-
verge in R

N × (−∞, T ) to a positive function v, which is a C∞ solution of

∂tv = �v + f ′(0)v, x ∈ R
N, t < T .

Furthermore, under the notation of Lemma 4.4,

∀ t < T , ∀ x ∈ R
N, u(x, t) � v(x, t) � v(x, t)e

κ
α
eαt + C2hc∗+ε/2(x, t). (49)

Proof. From Lemma 4.4, we have

un(0, T ) � vn(0, T ) � un(0, T )e
κ
α
eαT + C2hc∗+ε/2(0, T ).

Lemma 4.2 implies thatun(0, T )→ u(0, T ) asn→+∞. Therefore, the sequence
(vn(0, T ))n is bounded. On the other hand, each functionvn(x, t) is positive for
t > −n and for allx ∈ R

N , from the strong maximum principle. We finally get
from the Harnack inequality that the sequence of functions(vn(x, t))n is locally
bounded inRN × (−∞, T ). From standard parabolic estimates, it is also bounded
in eachCk(K) for each compact subsetK ⊂ R

N × (−∞, T ). Up to extraction
of some subsequence, the functionsvn(x, t) locally converge to a nonnegativeC∞
functionv(x, t), which is a solution of

∂tv = �v + f ′(0)v, x ∈ R
N, t < T .

The estimates (49) follow from Lemmas 4.2 and 4.4. Furthermore, from (49),
we deduce thatv is not identically equal to 0. Hence,v(x, t) > 0 for all (x, t) ∈
R
N × (−∞, T ), from the strong maximum principle. !

Since the functionsvn are solutions of the linear heat equation, it turns out that
we can find an explicit formula for the limit functionv:
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Lemma 4.6. Up to extraction of some subsequence, the functions vn(x, t) actually
converge for each (x, t) ∈ R

N × R to a C∞ function v(x, t) solving vt = �v +
f ′(0)v, and there exists a nonzero and nonnegative Radon measure ρ on the open
ball B = B(0, c∗ + ε/2) such that

∀ (x, t) ∈ R
N × R, v(x, t) = ef

′(0)t
∫
B

e
1
2z·x+ t

4 |z|2ρ(dz). (50)

Furthermore, there is a real number β ∈ (0, c∗) such that the support of ρ belongs
to B(0, β).

Proof. By definition of the functionsvn, we have, forn large enough,

vn(0, T − 1) = ef
′(0)(T−1+n)

√
4π(T − 1+ n)N

∫
|y|<(c∗+ε/2)n

u(y,−n)e− |y|2
4(T−1+n) dy

= ef
′(0)(T−1)

(
n

T − 1+ n
)N/2

×
∫
|z|<c∗+ε/2

(4π)−N/2nN/2u(nz,−n)e(f ′(0)− 1
4 |z|2)n

× e (T−1)n
4(T−1+n) |z|2dz.

Sincevn(0, T − 1) converges (tov(0, T − 1)) asn→+∞ and since the positive

functionse
(T−1)n

4(T−1+n) |z|2 are uniformly bounded away from 0 inB asn → +∞, it
follows that the positive functions

fn(z) := (4π)−N/2nN/2 u(nz,−n) e(f ′(0)− 1
4 |z|2)n

are bounded inL1(B). Up to extraction of some subsequence, there exists then a
nonnegative Radon measureρ onB such that

fn(z)dz ⇀ ρ(dz) in (Cc(B(0, c
∗ + ε/2)))′ asn→+∞.

Remember thatα ∈ (0, f ′(0)) has been chosen so that (48) is satisfied. Set

β = 2
√
f ′(0)− α ∈ (0, c∗).

Take any continuous functionψ whose support is compactly included in{z, β <
|z| < c∗ + ε/2}. In particular, there exists a real numberδ > 0 such that suppψ ⊂
{z, β + δ � |z| < c∗ + ε/2}. By definition ofρ, we have∫

B

fn(z)ψ(z)dz→
∫
B

ψ(z)ρ(dz)asn→+∞.

Let us prove that this limit is equal to 0. By definition,∣∣∣∣
∫
B

fn(z)ψ(z)dz

∣∣∣∣
=
∣∣∣∣∣
∫
β+δ�|z|<c∗+ε/2

(4π)−N/2nN/2u(nz,−n)e(f ′(0)− 1
4 |z|2)nψ(z) dz

∣∣∣∣∣
�
∫
β+δ�|z|<c∗+ε/2

(4π)−N/2nN/2u(nz,−n)e(f ′(0)− 1
4 (β+δ)2)n|ψ(z)| dz.
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Sinceα satisfies (48), 0� u(nz,−n) � e−αn in B for n large enough. Due to our
choice ofβ, f ′(0)− 1

4(β + δ)2 − α < 0. Therefore,∫
B

fn(z)ψ(z)dz→ 0 asn→+∞.

As a consequence,
∫
B
ψ(z)ρ(dz) = 0 for any continuous functionψ whose

support is compact and included in{z, β < |z| < c∗ + ε/2}. In other words, the
support ofρ is included inB(0, β).

Note that the above arguments also imply that

∀β ′ ∈ (β, c∗ + ε/2),
∫
z, β ′<|z|<c∗+ε/2

fn(z)dz → 0 asn→+∞. (51)

Choose now any couple(x, t) ∈ R
N × R. For alln > |t |, it is found that

vn(x, t) = ef
′(0)(t+n) 1√

4π(t + n)N
∫
B(0,(c∗+ε/2)n)

u(y,−n) e− |y−x|2
4(t+n) dy

=
(

n

t + n
)N/2

ef
′(0)t In,

where

In =
∫
B(0,c∗+ε/2)

fn(z) e
1
2z·x+ t

4 |z|2− |tz+x|2
4(t+n) dz.

Let χ(z) be a fixed smooth function such that 0� χ � 1, χ = 1 in B(0, c∗) and
χ = 0 outsideB(0, c∗ + ε/4). Let ε′ be an arbitrary positive real number. Forn

large enough,e−
|tz+x|2
4(t+n) � 1+ ε′ for all z ∈ B(0, c∗ + ε/2), whence

In � (1+ ε′)(A1 + A2),

where

A1 =
∫
B(0,c∗+ε/2)

χ(z) fn(z)e
1
2z·x+ t

4 |z|2 dz,

A2 =
∫
B(0,c∗+ε/2)

(1− χ(z)) fn(z)e 1
2z·x+ t

4 |z|2dz.

Sinceχ is a continuous function whose support is compactly included inB(0, c∗ +
ε/2), and due to the definition of the measureρ, we have

A1 →
∫
B(0,c∗+ε/2)

χ(z) e
1
2z·x+ t

4 |z|2ρ(dz) asn→+∞.

Furthermore, since the support ofρ is included inB(0, β) with β < c∗ andχ = 1
onB(0, c∗), it follows that

A1 →
∫
B(0,c∗+ε/2)

e
1
2z·x+ t

4 |z|2ρ(dz) asn→+∞.
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On the other hand, sinceχ = 1 onB(0, c∗) and 0� χ � 1 onB(0, c∗ + ε/2),

|A2| � C(t, x)

∫
z, c∗�|z|�c∗+ε/2

fn(z) dz

for some constantC(t, x) ∈ R. From (51), we getA2 → 0 asn→+∞.
Therefore,

lim sup
n→+∞

In � (1+ ε′)
∫
B(0,c∗+ε/2)

e
1
2z·x+ t

4 |z|2ρ (dz).

Similarly, we can show that

lim inf
n→+∞ In � (1− ε′)

∫
B(0,c∗+ε/2)

e
1
2z·x+ t

4 |z|2ρ(dz).

Sinceε′ is arbitrary, we get

In →
∫
B(0,c∗+ε/2)

e
1
2z·x+ t

4 |z|2ρ(dz) asn→+∞.

Sincevn(x, t) = ( n
t+n )

N/2ef
′(0)t In, it follows that vn(x, t) converges to a

function v(x, t), for each(x, t) ∈ R
N × R, and that the functionv is given by

the formula (50).
Lastly, it follows from

ef
′(0)(T−1)ρ(B) � v(0, T − 1) = ef

′(0)(T−1)
∫
B

e
1
4 |z|2 ρ(dz)

� ef
′(0)(T−1)+ 1

4 (c
∗+ε/2)2 ρ(B)

and 0< v(0, T − 1) < +∞ thatρ(B) = ρ(B(0, c∗ + ε/2)) = ρ(B(0, c∗)) ∈
(0,+∞). From the formula (50), it follows then that the functionv is actually a
positive and locally boundedC∞ solution ofvt = �v + f ′(0)v in R

N × R.  !
So far, we have proved the existence of a nonnegative finite Radon measureρ

onB(0, c∗ + ε/2), the support of which is included inB(0, β) for someβ < c∗.
For the sake of simplicity, we also callρ the restriction of the measureρ to the ball
B(0, c∗).

Sinceρ is nonnegative and nonzero onB(0, c∗), elementary arguments provide
the existence of a unique positive real numberM̂ > 0 such that∫

B(0,c∗)
e−(f ′(0)+

1
4 |z|2) ln M̂ρ(dz) = 1. (52)

Let us now callµ the unique nonzero, nonnegative and finite Radon measure on
X̂ = SN−1 × (c∗,+∞) ∪ {∞} such that

$∗µ(dz) = M̂e−(f ′(0)+
1
4 |z|2) ln M̂ρ(dz). (53)
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By definition ofM̂,
∫
B(0,c∗) $∗µ̂(dz) = M̂, that is to say,̂µ(X̂) = M̂. By extending

µ by 0 onSN−1 × {c∗}, we getµ ∈ M. Furthermore, due to the definition of the
map$, the support ofµ is included inSN−1× [c0,+∞[ ∪ {∞} wherec0 > c∗ is
such thatβ = 2λc0.

The remaining part of this section consists in proving thatu = uµ.
In order to do this, we first prove the following

Lemma 4.7. For each θ ∈ [0, c0[,
max
|x|�θ |t |

uµ(x, t)→ 0 as t →−∞.

Proof. Chooseθ ∈ [0, c0[. From the upper bound in (30), it follows that

uµ(x, t) �
∫
X̂

eλc(x·ν+ct+c ln M̂) 1

M̂
dµ

=
∫
{ν∈SN−1, c�c0}

eλc(x·ν+ct+c ln M̂) 1

M̂
dµ+ µ(∞)

M̂
ef

′(0)(t+ln M̂).

For eacht � 0 and|x| � θ |t |, we have

∀ ν ∈ SN−1, ∀ c � c0, λc(x · ν + ct) � λc(θ |t | − c0|t |) = λc(θ − c0)|t |.
On the other hand, 0� λcc � 2f ′(0) for all c � c∗. Therefore, fort � 0,

1

M̂

∫
{ν∈SN−1, c�c0}

eλc(x·ν+ct+c ln M̂) dµ

� 1

M̂
e2f ′(0)| ln M̂|

∫
{ν∈SN−1, c�c0}

eλc(θ−c0)|t | dµ→ 0

ast → −∞, from Lesbesgue’s dominated convergence theorem. Eventually, the
conclusion of Lemma 4.6 follows. !
Remark 4.8. By slightly modifying the proof of the above Lemma 4.7, we get the
following more general result: ifm ∈ M is such thatm(SN−1 × [c∗, c]) = 0 for
somec � c∗, then max

|x|�c|t |
um(x, t)→ 0 ast →−∞. Indeed,

um(x, t) �
∫
{ν∈SN−1,c>c}

eλc(x·ν+ct+c ln M̂) 1

M̂
dµ+ µ(∞)

M̂
ef

′(0)(t+ln M̂).

(Note that, for the measurem, M̂ > 0 becauseµ∗ = 0.) Take anyη > 0 and let
δ > 0 be such thatm(SN−1× (c, c+δ)) � η. For each|x| � c|t |, t � 0,ν ∈ SN−1

andc > c, we havex · ν + ct � −ct + ct = (c − c)t � 0. Therefore,

max
|x|�c|t |

um(x, t) � e2f ′(0)| ln M̂|

M̂
η

+ max
|x|�c|t |

∫
{ν∈SN−1, c�c+δ}

eλc(x·ν+ct+c ln M̂) dµ

M̂
+ µ(∞)

M̂
ef

′(0)(t+ln M̂).
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As was shown in the course of Lemma 4.7, the second and third terms of the right-
hand side converge to 0 ast → −∞. Sinceη > 0 is arbitrary, we conclude that
max|x|�c|t | um(x, t)→ 0 ast →−∞.

Let us now turn to the proof of

Lemma 4.9. The function u is equal to the function uµ.

Proof. Let us first choose a real numberγ̃ such that

c∗ < γ̃ < min (c0, c
∗ + ε/2).

Let ũn, ṽn, Ũn andṼn be the solutions of the following Cauchy problems:

(ũn)t = �ũn + f (ũn), x ∈ R
N, t > −n

(ṽn)t = �ṽn + f ′(0)ṽn, x ∈ R
N, t > −n

ũn(x,−n) = ṽn(x,−n) =
{
u(x,−n) if |x| < γ̃ n

0 otherwise,

(Ũn)t = �Ũn + f (Ũn), x ∈ R
N, t > −n

(Ṽn)t = �Ṽn + f ′(0)Ṽn, x ∈ R
N, t > −n

Ũn(x,−n) = Ũn(x,−n) =
{
uµ(x,−n) if |x| < γ̃ n

0 otherwise.

Sinceγ̃ > c∗, Lemma 4.2 yields

∀ (x, t) ∈ R
N × R, ũn(x, t)→ u(x, t), Ũn(x, t)→ uµ(x, t) asn→+∞.

On the other hand,

ṽn(x, t) =
(

n

t + n
)N/2

ef
′(0)t

∫
B(0,γ̃ )

fn(z) e
1
2z·x+ t

4 |z|2− |tz+x|2
4(t+n) dz,

where we recall that

fn(z) = (4π)−N/2nN/2 u(nz,−n) e(f ′(0)− |z|2
4 )n.

As in the proof of Lemma 4.6 and sinceγ̃ > c∗ > β, we get

ṽn(x, t)→ ṽ(x, t) := ef
′(0)t

∫
B(0,γ̃ )

e
1
2z·x+ t

4 |z|2ρ(dz) = v(x, t). (54)

Similarly,

Ṽn(x, t) =
(

n

t + n
)N/2

ef
′(0)t

∫
B(0,γ̃ )

Fn(z)e
1
2z·x+ t

4 |z|2− |tz+x|2
4(t+n) dz,

where

Fn(z) = (4π)−N/2nN/2 uµ(nz,−n) e(f ′(0)− |z|2
4 )n.
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Furthermore, since the functionuµ is such that

max
|x|�c|t |

uµ(x, t)→ 0 ast →−∞

for somec > c∗ (take for instancec = c∗+c0
2 and apply Lemma 4.7), it also follows,

as in Lemma 4.6, that there exists a finite nonnegative Radon measureρ̃ onB(0, γ̃ ),

whose support is included inB(0, β̃) for someβ̃ < c∗, and such that

Fn(z)dz ⇀ ρ̃(dz) in (Cc(B(0, γ̃ )))
′ asn→+∞

(up to extraction of some subsequence), and

Ṽn(x, t)→ V (x, t) := ef
′(0)t

∫
B(0,γ̃ )

e
1
2z·x+ t

4 |z|2ρ̃(dz) asn→+∞.

From the asymptotic behavior (12), which is satisfied by the functionuµ, we finds
that

Fn(z)dz ⇀
1

M̂
e(f

′(0)+ 1
4 |z|2) ln M̂$∗µ̂(dz) in (Cc(B(0, c

∗)))′.

Eventually, from the definition of̂µ in (53), it follows thatρ̃ = ρ on B(0, c∗),
whence

∀ (x, t) ∈ R
N × R, Ṽ (x, t) = v(x, t). (55)

Sinceγ̃ < min (c∗+ε/2, c0), Lemma 4.3 yields the existence of a real number
α̃ ∈ (0, f ′(0)) and of a, say, negative timẽT such that

∀ t � T̃ , ∀ x ∈ R
N, 0 � u(x, t), uµ(x, t) � eα̃t � η,

whereη > 0 is such thatf is increasing in[0, η] andf (s) � f ′(0)s − κs2 on
[0, η], with κ > 0. With the same proof as for Lemma 4.4, and by using (54) and
(55), we finally finds that∀ t � T̃ , ∀ x ∈ R

N ,

u(x, t) � v(x, t) � u(x, t)e
κ
α̃
eα̃t + C3hγ̃ (x, t),

uµ(x, t) � v(x, t) � uµ(x, t)e
κ
α̃
eα̃t + C3hγ̃ (x, t),

(56)

whereC3 = (‖f ‖∞ + f ′(0)+ κeα̃T̃ )e κα̃ eα̃T̃ .
Definew = u − uµ. Sincef ′(s) � f ′(0) for all s ∈ [0,1], the function|w|

satisfies
∂tw � �w + f ′(0)|w|, t ∈ R, x ∈ R

N.

For eachn large enough, it easily follows from (56) that

|w(x,−n)| = |u(x,−n)− uµ(x,−n)|
� (u(x,−n)+ uµ(x,−n))2κ

α̃
e−α̃n + C3hγ̃ (x,−n).

Choose anyx ∈ R
N and, say,t � 0. The maximum principle yields

|w(x, t)| � In + IIn,
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where

In = ef
′(0)(t+n)(S(t + n) · (2κ

α̃
e−α̃n(u(·,−n)+ uµ(·,−n))))(x)

IIn = ef
′(0)(t+n)(S(t + n) · (C3hγ̃ (·,−n)))(x)

for n large enough.
Let us first estimate the term In. By definition ofṽn andṼn,

In =
(
ef

′(0)(t+n)
∫
|y|�γ̃ n

1√
4π(t + n)N

e
− |y−x|2

4(t+n) (u(y,−n)+ uµ(y,−n)) dy
)

× 2
κ

α̃
e−α̃n + 2

κ

α̃
e−α̃n

(
ṽn(x, t)+ Ṽn(x, t)

)
.

Sinceγ̃ > c∗, Lemma 4.2 yields

ef
′(0)(t+n)

∫
|y|�γ̃ n

1√
4π(t + n)N

e
− |y−x|2

4(t+n) (u(y,−n)+ uµ(y,−n)) dy

→ 0 asn→+∞.

Sinceṽn(x, t) andṼn(x, t) are bounded, we finally conclude that In → 0 asn→
+∞.

On the other hand, because of the definition ofhγ̃ , the term IIn is equal to

IIn = C3e
f ′(0)(t+n)

×
(
S(t + n) ·

(∫ −n

−∞
ef

′(0)(−n−s)(S(−n− s) · 1|·|�γ̃ |s|)(y) ds
))

(x)

= C3

∫ −n

−∞
ef

′(0)(t−s)(S(t − s) · 1|·|�γ̃ |s|)(x) ds.

Since ∫ t

−∞
ef

′(0)(t−s)(S(t − s) · 1|·|�γ̃ |s|)(x) ds = hγ̃ (x, t)

converges (because of Lemma 3.8(b)), Lebesgue’s dominated convergence theorem
implies that IIn → 0 asn→+∞.

As a consequence,|w|(x, t) = 0 for eachx ∈ R
N andt � 0. The maximum

principle for |w| yieldsw(x, t) = 0 for each couple(x, t) ∈ R
N × R. In other

words,u = uµ and the proof of Lemma 4.9 is complete. !

In order to complete the proof of Theorem 1.4, we have only to show the
following

Lemma 4.10. The support of µ is included in SN−1 × [c∗ + ε,+∞[ ∪ {∞}.
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Proof. We already know that suppµ ⊂ SN−1×[c0,+∞[∪ {∞} for somec0 > c∗.
SetM̂ = µ(X̂). From the definition ofM̂ in (52), we haveM̂ > 0.

Choose any couple(ν, c) ∈ SN−1 × (c∗, c∗ + ε) and letB(ν,c) ⊂ SN−1 ×
(c∗,+∞) be an open neighborhood of(ν, c) such that

∀ (ν, c) ∈ B(ν,c), (c∗ + ε)(ν · ν)− c � 1

2
(c∗ + ε − c) =: δ > 0. (57)

From the lower bound in (30) applied to the point(x, t) = ((c∗ + ε)nν,−n), it is
found that∫

B(ν,c)

ϕc((c
∗ + ε)nν · ν − cn+ c ln M̂)

1

M̂
dµ̂ � u((c∗ + ε)nν,−n).

Because of (57) and because of Lebesgue’s dominated convergence theorem, the
left-hand side in the previous inequality approaches1

M̂
µ̂(B(ν,c)) asn→+∞. On

the other hand, the hypothesis made onu implies that the right-hand side approaches
0. As a consequence,

µ(B(ν,c)) = 0.

SinceSN−1 × (c∗, c∗ + ε) can be covered by a countable sets of the typeB(ν,c), it
follows that

µ(SN−1 × (c∗, c∗ + ε)) = 0.  !

The proof of Theorem 1.4 is now complete. !

Remark 4.11. Note that, under the assumption of Theorem 1.4,µ is not necessarily
concentrated onSN−1 × (c∗ + ε,+∞) ∪ {∞}, that is to say,µ(SN−1 × {c∗ + ε})
may not be 0.

Indeed, for anyc0 > c∗, we can prove that the measureµ = dν × δc0,
which is concentrated onSN−1 × {c0}, gives rise to a functionuµ satisfying
max|x|�c0|t | u(x, t) → 0 as t → −∞. The measureµ being radially symmet-
ric, each functionun(x,−n) defined as in (26) is radially symmetric with respect
to the origin, and, eventually, the functionuµ is itself radially symmetric with
respect to the origin (see more details in Section 5.2). Therefore,

max
|x|�c0|t |

u(x, t) = max
0�r�c0

u(r|t |,0, · · · ,0, t)

� eλc0c0 ln M̂

M̂

∫
SN−1

eλc0(−rν1+c0)t dν

by definition ofµ and from (30). The function

g(r) :=
∫
SN−1

eλc0(−rν1+c0)t dν
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is such that

g′(r) = −λc0
∫
SN−1

ν1e
λc0(−rν1+c0)t dν

= −λc0
∫
SN−1∩{ν1�0}

ν1(e
λc0(−rν1+c0)t − eλc0(rν1+c0)t ) dν

� 0.

Therefore,

max
|x|�c0|t |

u(x, t) � eλc0c0 ln M̂

M̂

∫
SN−1

eλc0(−c0ν1+c0)t dν → 0

ast →−∞ (from Lebesgue’s dominated convergence theorem).

4.3. Uniqueness in the class of the solutions bounded away from 1
(Proof of Theorem 1.5)

This section is devoted to the proof of Theorem 1.5. Letu(x, t) be an entire
solution of (1) and assume that there exists a timet0 such that supu(·, t0) < 1. Our
goal is to prove thatu(x, t) depends only ont .

Let us first prove the following

Lemma 4.12. Set M(t) = supu(·, t). Then M(t)→ 0 as t →−∞.

Proof. Assume otherwise. There exist then a realε > 0 and two sequencestn →
−∞ and xn ∈ R

N such thatu(xn, tn) � ε. By standard parabolic estimates,
∇xu(x, t) is uniformly bounded inRN × R. Hence, there exists a realr > 0 such
thatu(x, tn) � ε/2 if |x − xn| � r.

Let ρ(x) now be a continuous nonnegative function such that 0< ρ(x) � ε/2
if |x| < r andρ(x) = 0 otherwise. From the results ofAronson & Weinberger
[2], the functionv(x, t) solving the Cauchy problem

vt = �v + f (v), t > 0, v(x,0) = ρ(x),

goes to 1 ast →+∞, uniformly in any compact subset ofR
N .

From the maximum principle, it follows that

∀ t � tn, v(0, t − tn) � u(xn, t).

Taket = t0 and pass to the limittn → −∞ in this inequality. The left-hand side
goes to 1 whereasu(xn, t0) � supu(·, t0) < 1 by hypothesis. This is impossible.
 !

Let us now turn to the

Proof of Theorem 1.5. Takeu as above (there existst0 ∈ R such that supu(·, t0) <
1). From Lemma 4.12 andTheorem 1.4, there exists a measureµ ∈ Msuch thatu =
uµ. Furthermore, from Lemma 4.10,µ is concentrated onSN−1×[c,+∞) ∪ {∞}
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for eachc > c∗. Therefore,µ = µ(∞)δ∞. As a consequence, the functionsun
defined in (26) do not depend onx. Neither doesuµ. In other words,u = uµ only
depends on timet . Actually, if µ = µ(∞)δ∞, thenM̂ = µ(∞) and the formula
(37) implies thatuµ(t) ∼ ef

′(0) lnµ(∞)ef
′(0)t ast →−∞. Therefore, it eventually

follows that the set of such solutionsuµ, whereµ = µ(∞)δ∞ andµ(∞) describes
(0,+∞), is equal to the one-dimensional family of solutions{t → ξ(t + h), h ∈
R}.

As a consequence, if a solutionuµ of (1) is such thatµ is not concentrated on
{∞}, thenu cannot depend ont only, whence supx∈RN uµ(x, t) = 1 for all t ∈ R.
That completes the proof of Theorem 1.5. !

5. Nonplanar travelling waves and radial solutions

In this section, we apply the general results stated in Theorems 1.2 and 1.4, and
we deal with special solutions of (1), namely, travelling waves and radial solutions.

5.1. Nonplanar travelling waves

This subsection is devoted to the

Proof of Theorem 1.7. (i) Let u(x, t) be a travelling wave for (1), satisfying (17)
for some(ν0, c0) ∈ SN−1 × [0,+∞[ and letv be defined by (18).

(i-a) Assume thatc0 < c∗. From (18),v(0) = u(−c0tν0, t) for all t ∈ R. Since
0 � c0 < c∗, Lemma 4.1 yields limt→+∞ u(−c0tν0, t) → 1, whencev(0) = 1.
This is impossible since 0< v(y) < 1 for all y.

Before proving the monotonicity properties satisfied by each travelling wave
for (1) in a cone of directions (Theorem 1.7 (i-b), let us state the following

Lemma 5.1. Let u(x, t) be an entire solution of (1) such that the fields ut/u and
∇xu/u are globally bounded. Then, for each vector ρ ∈ R

N such that |ρ| =√
ρ · ρ < c∗ = 2

√
f ′(0), we have ut + ρ · ∇xu > 0 in R

N × R.

Proof. To this end, it is enough to prove that∂tu(x, t)+ ρ · ∇xu(x, t) � 0 for all
(x, t) ∈ R

N ×R. Indeed, suppose the latter is true. The functionU = ∂tu+ρ ·∇xu
satisfies the linear parabolic equation

∂tU = �U + f ′(u)U.
From the strong parabolic maximum principle,U is then either identically equal
to 0 orU(x, t) > 0 for all (x, t) ∈ R

N × R. The first case would imply that
the functionw(t) = u(ρt, t) is constant, but, since|ρ| < c∗, that would be in
contradiction with Lemma 4.1. Hence,U = ∂tu+ ρ · ∇xu > 0 and the conclusion
of Lemma 5.1 will follow.

Let us now denote byv(x, t) the function

v(x, t) = ∂tu(x, t)+ ρ · ∇xu(x, t)
u(x, t)

.
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By assumption, this functionv is globally bounded and we then only have to prove
that infRN×R v � 0.

Suppose for contradiction that infRN×R v = −ε < 0. There exists a sequence
(xn, tn) ∈ R

N × R such thatv(xn, tn) → −ε asn → +∞. Up to extraction of
some subsequence, two and only two cases may occur:

Case 1. u(xn, tn)→ α ∈ (0,1] asn→+∞,

Case 2. u(xn, tn)→ 0 asn→+∞.
Let us first deal with Case 1. After a straightforward calculation, it is found that

the functionv satisfies

vt = �v + 2
∇xu
u

· ∇xv +
(
f ′(u)− f (u)

u

)
v in R

N × R.

Let us set

un(x, t) = u(x + xn, t + tn) and vn(x, t) = v(x + xn, t + tn).
From standard parabolic estimates, the functionsun converge inC1

loc(Rt ) and
C2

loc(R
N
x ) to a functionu∞ (up to extraction of some subsequence). The function

u∞ is such that 0� u∞ � 1 and it solves

∂tu∞ = �u∞ + f (u∞) in R
N × R.

Furthermore, sinceu(xn, tn) → α ∈ (0,1] asn → +∞, we haveu∞(0,0) =
α > 0. Therefore, the functionu∞(x, t) is positive everywhere (because of the
strong parabolic maximum principle) and the globally bounded sequences of func-
tions∇xun/un, f ′(un) andf (un)/un converge to the globally bounded functions
∇xu∞/u∞, f ′(u∞) andf (u∞)/u∞, respectively.

Similarly, the globally bounded functionsvn converge locally in the sense of the
topologyT (up to extraction of some subsequence) to a globally bounded function
v∞, which is equal to

v∞ = ∂tu∞ + ρ · ∇xu∞
u∞

.

The functionv∞ is such thatv∞(x, t) � −ε for all (x, t) ∈ R
N×R andv∞(0,0) =

−ε. Furthermore,v∞ satisfies

∂tv∞ = �v∞ + 2
∇xu∞
u∞

· ∇xv∞ +
(
f ′(u∞)− f (u∞)

u∞

)
v∞ in R

N × R.

The point(0,0) is a global minimum for the functionv∞ andv∞(0,0) = −ε < 0.
On the other hand,u∞(0,0) = α ∈ (0,1] andf ′(α) − f (α)/α � 0 since the
functionf is concave on[0,1] andf (0) = 0. From the strong parabolic maximum
principle for the functionv∞, it follows then thatv∞ ≡ −ε in R

N × R
−. In other

words,
∂tu∞ + ρ · ∇xu∞

u∞
≡ −ε < 0

in R
N × R

−. Sinceu∞ is positive,

∂tu∞ + ρ · ∇xu∞ < 0 in R
N × R

−. (58)
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But, sinceu∞ is a solution of∂tu∞ = �u∞ + f (u∞) such thatu∞ � 1, we have
eitheru∞ ≡ 1 oru∞ < 1. The caseu∞ ≡ 1 is in contradiction with (58). The case
u∞ < 1 means that the functionu∞ is a solution of (1), such that 0< u∞ < 1.
Since|ρ| < c∗, Lemma 4.1 implies in particular thatw(t) = u∞(ρt, t) → 0 as
t → −∞. But this positive functionw is decreasing fort � 0 by (58). We have
then reached a contradiction. As a conclusion, Case 1 is ruled out.

Let us now deal with Case 2. Up to extraction of some subsequence,

u(xn, tn)→ 0 asn→+∞.

Let us set

wn(x, t) = u(x + ρt + xn, t + tn)
u(xn, tn)

e
1
2ρ·x, (x, t) ∈ R

N × R.

Since the fieldsut/u and∇xu/u are globally bounded, there exists a constantC

such thatwn(x, t) � eC(|t |+|x|) for all (x, t) ∈ R
N × R and all n. In particular,

the sequence(wn) is locally bounded and the functions(x, t) → u(x + xn, t + tn)
approach 0 locally inRN × R. On the other hand, each functionwn satisfies

(wn)t = �wn +
(
f (u(x + ρt + xn, t + tn))
u(x + ρt + xn, t + tn) − 1

4
|ρ|2

)
wn, (x, t) ∈ R

N × R.

From standard parabolic estimates, the functionswn converge locally in the sense
of the topologyT (up to extraction of some subsequence), to a nonnegative and
locally bounded functionw∞. The functionw∞ solves

∂tw∞ = �w∞ + (f ′(0)− 1

4
|ρ|2) w∞ in R

N × R (59)

and it satisfies

∀ t ∈ R, ∀ x ∈ R
N, w∞(x, t) � eC(|t |+|x|). (60)

Due to the definition ofwn and to the choice of(xn, tn), we have

∂twn(0,0) = ∂tu(xn, tn)+ ρ · ∇xu(xn, tn)
u(xn, tn)

= v(xn, tn)→−ε asn→+∞.

Hence,

∂tw∞(0,0) = −ε. (61)

Choose now any point(x, t) ∈ R
N × R. Because of (59) and (60),w∞(x, t)

can be written as

w∞(x, t) = e(f
′(0)− 1

4 |ρ|2)(t+k)
∫

RN

p(x − y, t + k)w∞(y,−k) dy
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for all k > |t |, wherep(z, τ ) = (4πτ)−N/2e−
|z|2
4τ for anyτ > 0 andz ∈ R

N . As a
consequence,

∂tw∞(x, t) = e(f
′(0)− 1

4 |ρ|2)(t+k)
∫

RN

∂tp(x − y, t + k) w∞(y,−k) dy

+ (f ′(0)− 1

4
|ρ|2) w∞(x, t).

Notice that∂τp(z, τ ) � − N
2τ p(z, τ ) for all τ > 0 andz ∈ R

N . Sincew∞ is
nonnegative, it follows that

∂tw∞(x, t) �
(
f ′(0)− 1

4
|ρ|2 − N

2(t + k)
)
w∞(x, t).

Passing to the limitk→+∞ in the above formula leads to

∂tw∞(x, t) � (f ′(0)− 1

4
|ρ|2) w∞(x, t).

Since|ρ| < c∗ = 2
√
f ′(0) andw∞ � 0, we get∂tw∞(x, t) � 0 for all (x, t) ∈

R
N × R. That is in contradiction with (61). Therefore, Case 2 is ruled out too and

the proof of Lemma 5.1 is complete. !
Let us now return to the proof of Theorem 1.7.

(i-b) Let ν ∈ SN−1 be such thatν · ν0 > cos(arcsin( c
∗
c0
)). Let ρ be the vector

defined byρ = c0(ν0 · ν)ν − c0ν0. We have

|ρ|2 = c2
0 − c2

0(ν0 · ν)2 < c2
0 − c2

0 cos2(arcsin(
c∗

c0
)) = (c∗)2.

Let us now check that the functionu satisfies the assumption of Lemma 5.1,
that is to say thatut/u and∇xu/u are globally bounded. Indeed, sinceu is writ-
ten asu(x, t) = v(x + c0tν0), we haveut/u = c0∂ν0v/v and∇xu/u = ∇v/v.
Therefore, we only have to check that∇v/v is bounded. But sincev is a positive
solution of�v − c0∂ν0v + f (v) = 0 in R

N , Schauder interior estimates imply
that|∇v(y)| � C1 max|z−y|�1 v(z) and Harnack-type inequalities [14] imply that
max|z−y|�1 v(z) � C2 min|z−y|�1 v(z) � C2v(y) for some constantsC1 andC2

independent ofy. Therefore,|∇v(y)| � C1C2v(y) for all y ∈ R
N , which was the

desired result.
As a consequence, Lemma 5.1 can be applied and yields∂tu + ρ · ∇xu > 0

in R
N × R. Due to the definition ofv, it follows thatc0ν0 · ∇v + ρ · ∇v > 0 in

R
N , i.e., c0(ν0 · ν)ν · ∇v > 0. Sinceν0 · ν > 0 andc0 > 0, we getν · ∇v > 0

in R
N . Let ν be as above and choosea ∈ R

N . We havev(a + c0(ν · ν0)sν) =
u(a + c0(ν · ν0)sν − c0sν0, s). From the calculation above,

lim sup
s→+∞

|a + c0(ν · ν0)sν − c0sν0|
|s| < c∗.

From Lemma 4.1, lims→−∞ v(a + c0(ν · ν0)sν) = 0 and lims→+∞ v(a + c0
(ν · ν0)sν) = 1. Lastly, sincec0(ν · ν0) > 0, the conclusion in (i-b) follows.



158 François Hamel & Nikolaı̈ Nadirashvili

(i-c) Suppose thatc0 = c∗. From (i-b) and by continuity, the functionv is then
nondecreasing in any directionν such thatν · ν0 � 0. It is then both nondecreasing
and nonincreasing in any directionν such thatν · ν0 = 0. Therefore,v is planar
and can be written asv(y) = w(ν0 · y). The functionw satisfies 0< w < 1
on R andw′′ − c∗w′ + f (w) = 0 in R with w(−∞) = 0, w(+∞) = 1 (from
(i-b)). As a consequence,w(s) = ϕc∗(s + h) for someh ∈ R. In other words,
u(x, t) = ϕc∗(x · ν0 + c∗t + h) is a planar travelling wave propagating with the
speedc∗.
(ii-a) From Theorem 1.2, the only thing we have to prove is that, when

µ =
k∑
i=1

miδ(νi ,c∗) + µ̂ ∈ M

is concentrated onS(ν0,c0) for some(ν0, c0), thenuµ is a travelling wave for (1)
satisfying (17) and the functionvµ defined by (18) is the smallest solution of (19)
such that (20) holds.

Letµ be as above. Sinceµ is concentrated onS(ν0,c0), we haveµ(∞) = 0. By
definition,uµ(x, t) is the limit ofun(x, t) whereun is the solution of the Cauchy
problem

(un)t = �un + f (un), t > −n, x ∈ R
N

un(x,−n) = max

(
max

1�i�k
(ϕc∗(x · νi − c∗n+ c∗ lnmi)),∫

SN−1×(c∗,+∞)

ϕc(x · ν − cn+ c ln M̂)
1

M̂
dµ̃

)
.

(62)

Choose any(x, t) ∈ R
N × R andτ ∈ R. We shall prove thatuµ(x, t + τ) =

uµ(x + c0τν0, t). The proof is quite similar to that given in Section 3.6 to prove
property (iii) of Theorem 1.2. Observe thatuµ(x, t + τ) = limn→+∞ un(x, t + τ)
and thatun(x, t + τ) can be written asun(x, t + τ) = Un(x, t) whereUn is the
solution of the Cauchy problem

(Un)t = �Un + f (Un), t > −n− τ, x ∈ R
N,

Un(x,−n− τ) = un(x,−n).
Sincec0ν0 · ν = c for each(ν, c) ∈ S(ν0,c0) andµ is concentrated onS(ν0,c0), the
functionUn(x,−n− τ) can be rewritten as

Un(x,−n− τ)
= max

(
max

1�i�k
(ϕc∗((x + c0ν0τ) · νi − c∗(n+ τ)+ c∗ lnmi)),∫

SN−1×(c∗,+∞)

ϕc((x + c0ν0τ) · ν − c(n+ τ)+ c ln M̂)
1

M̂
dµ̃

)
.

In other words,Un(x,−n− τ) = un+τ (x+ c0ν0τ,−n− τ), whereun+τ is defined
as in (62) by replacingn with n + τ . By uniqueness of the Cauchy problem,
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it follows thatUn(x, t) = un+τ (x + c0ν0τ, t) for eachn. On the other hand, as
already observed in Section 3, the functionsun(x, t) are nondecreasing with respect
to n � 0 (n may not necessarily be an integer). As a consequence,un+τ (x +
c0ν0τ, t)→ uµ(x + c0ν0τ, t) asn→ +∞. Remember now thatuµ(x, t + τ) =
limn→+∞ Un(x, t) by definition ofUn. Eventually, (17) follows.

From the first inequality in (30) and using the definition ofvµ(y) = uµ(y,0),
we immediately get (20). On the other hand, letw(y) be a solution of (19) such
thatw satisfies (20) (withw instead ofv). The functionU(x, t) = w(x + c0tν0) is
a solution of (1) such that

U(x,−n) = w(x − c0nν0)

� max

(
max

1�i�k
(ϕc∗((x − c0nν0) · νi + c∗ lnmi)),∫

SN−1×(c∗,+∞)

ϕc((x − c0nν0) · ν + c ln M̂)
1

M̂
dµ̃

)
= un(x,−n)

sinceµ is concentrated onS(ν0,c0) and c0ν0 · ν = c for each(ν, c) ∈ S(ν0,c0).
Therefore,U(x, t) � un(x, t) for eachn and passing to the limitn→ +∞ leads
to U(x, t) � uµ(x, t) for all (x, t) ∈ R

N × R. In particular,w(y) = U(y,0) �
uµ(y,0) = vµ(y), which gives the desired result.

(ii-b) Takec0 > c∗ andν0 ∈ SN−1 and defineM(ν0,c0) as the set

M(ν0,c0) = {µ ∈ M, µ is concentrated onS(ν0,c0)}.
The applicationµ → vµ(·) (= uµ(·,0)) is one-to-one onM(ν0,c0) ∩ M̂. Indeed,
if vµ1 = vµ2, then it is immediately found thatuµ1 = uµ2, whenceµ1 = µ2
from Theorem 1.2. Furthermore, ifµn (∈ M(ν0,c0))⇀ µ (∈ M(ν0,c0)) in the sense
described in Section 1.1, thenuµn → uµ in the sense ofT , whencevµn → vµ
in C2

loc(R
N). Therefore, in dimensionN � 2, there exists an infinite-dimensional

manifold of solutionsv of (19) such that 0< v < 1.

(ii-c) Let u be an entire solution of (1) of the typeuµ and assume thatu is a
travelling wave satisfying (17). We have to prove that the measureµ is concentrated
onS(ν0,c0). Let vµ be the function defined as in (18) byuµ(x, t) = vµ(x + c0tν0).
From the lower bound in (30), it follows that

vµ(y) = uµ(y − c0tν0, t)

� max

(
max

1�i�k
(ϕc∗((c

∗ − c0ν0 · νi)t + y · νi + c∗ lnmi)),∫
X̂

ϕc((c − c0ν0 · ν)t + y · ν + c ln M̂)
1

M̂
dµ̂

)

� max

(
max

1�i�k, c0ν0·νi>c∗
(ϕc∗((c

∗ − c0ν0 · νi)t + y · νi + c∗ lnmi)),∫
X̂∩{c0ν0·ν>c}

ϕc((c − c0ν0 · ν)t + y · ν + c ln M̂)
1

M̂
dµ̂

)
.
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If there exists an integeri ∈ {1, · · · , k} such thatc0ν0 · νi > c∗, then the right
hand side of the above inequality goes to 1, for eachy ∈ R

N , ast goes to−∞.
That would imply thatvµ is identically equal to 1, which is impossible. Similarly,
if β := µ(X̂ ∩ {c0ν0 · ν > c}) is positive, thenM̂ is itself positive and, passing to
the limit t →−∞ in the above inequality leads to, through Lebesgue’s dominated
convergence theorem,vµ(y) � β 1

M̂
for all y ∈ R

N . Therefore,uµ(x, t) � β 1
M̂

for

all (x, t) ∈ R
N ×R. Sinceβ 1

M̂
is a positive real number, that contradicts property

(16). Eventually, the measure of the setX ∩ {c0ν0 · ν > c} is zero.
Similarly, by studying the limit ast → +∞, it follows thatµ(X ∩ {c0ν0 · ν

> c}) = 0. As a consequence, the measureµ is concentrated on the setS(ν0,c0).

(iii-a), (iii-b) Property (iii-a) immediately follows from (16) and from the definition
of v in (18). Property (iii-b) follows from Theorem 1.4 and from property (ii-c) in
Theorem 1.7.

That completes the proof of Theorem 1.7. !

5.2. Radial solutions

This subsection is devoted to the

Proof of Theorem 1.8. (i-a). Take any couple(µ, a) ∈ MR × R
N and define

uµ,a(x, t) = uµ(x − a, t). Proving thatuµ,a is radially symmetric with respect to
a, it is equivalent to proving thatuµ is radially symmetric with respect to the origin.
By definition, we haveuµ(x, t) = limn→+∞ un(x, t), whereun is the solution of
the Cauchy problem (26) with initial condition

un(x,−n) =
∫
X̂

ϕc(x · ν − cn+ c ln M̂)
1

M̂
dµ̂

(remember thatµ∗ = 0 for µ ∈ MR, whenceM̂ = µ(X) > 0). For any rotation
ρ ∈ SO(N), we haveun(ρ(x),−n) = un(x,−n), becauseµ is itself rotationally
invariant. By uniqueness of the Cauchy problem, it follows thatun(ρ(x), t) =
un(x, t) for all t � −n andx ∈ R

N . The passage to the limitn → +∞ leads to
uµ(ρ(x), t) = uµ(x, t) for all (x, t) ∈ R

N × R. In other words, the functionuµ
is radially symmetric with respect to the origin, that is to say, the functionuµ,a is
radially symmetric with respect to the pointa.

The functionv defined byuµ,a(x, t) = v(|x − a|, t) clearly satisfies (21). Fur-
thermore, ifµ is not concentrated on the single point{∞}, then supx∈RN uµ,a(x, t)

= 1 for all t ∈ R. Sinceuµ,a(x, t) < 1 for allx andt , we conclude thatv(r, t)→ 1
asr →+∞, for all t ∈ R.

Consider now a sequence(µn, an) ∈ MR ×R
N such thatµn ⇀ µ ∈ MR (in

the sense of Section 1.1) andan → a ∈ R
N . From Theorem 1.2, the functionsuµn

converge to the functionuµ in the sense of the topologyT . Since these functions
(uµn) are locally bounded, say, up to their first-order (or second-order) derivatives
in t (resp.,x), we conclude that the functionsuµn,an converge to the functionuµ,a
in T .
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Lastly, choose two measuresµ1 andµ2 in MR, such thatµ1 andµ2 are not
concentrated on{∞}. Let a1 anda2 be two points inRN . Suppose thatuµ1,a1 =
uµ2,a2. We have

uµ1,a1(a1,0) = uµ2,a2(a1,0) = uµ2,a2(2a2 − a1,0)

sinceuµ2,a2 is radially symmetric with respect to the pointa2. Similarly, it is found
that

uµ2,a2(2a2 − a1,0) = uµ1,a1(2a2 − a1,0) = uµ1,a1(3a1 − 2a2,0)

sinceuµ1,a1 is radially symmetric with respect to the pointa1. Going one step
further, we getuµ1,a1(3a1−2a2,0) = uµ2,a2(3a1−2a2,0) = uµ2,a2(4a2−3a1,0).
By induction, it is then found that

uµ1,a1(a1,0) = u2(2k(a2 − a1)+ a1,0)

for each integerk ∈ N. Sinceµ2 is not concentrated on the single point{∞},
we haveuµ2,a2(x,0) → 1 as|x| → +∞. On the other hand,uµ1,a1(a1,0) < 1.
Therefore, by passing to the limitk → +∞, it follows thata2 − a1 = 0. As a
consequence, since we had assumed thatuµ1,a1 = uµ2,a2, we getuµ1 = uµ2 and
Lemma 3.5 yieldsµ1 = µ2. Hence,(µ1, a1) = (µ2, a2). In other words, the map
(µ, a)→ uµ,a is one-to-one ifµ is in the set of measuresµ ∈ MR which are not
concentrated on the single point{∞}.
(i-b) Fix a = 0. The mapµ ∈ MR → vµ such thatvµ(|x|, t) = uµ(x, t) ranges
in the set of solutionsv(r, t) of (21). Furthermore, with the same arguments which
were used in the proof of (i-a), it follows that this map is one-to-one on the set of
measuresµ which are not concentrated on{∞}. On the other hand, this map is
continuous in the sense that ifµn ⇀ µ, thenvµn → vµ in C1

loc with respect tot
and inC2

loc with respect tor.

(ii) Property (2) immediately follows from (16) and from Theorem 1.4.
That completes the proof of Theorem 1.8. !
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