
Economic Theory19, 223–242 (2002)

Research Articles

Equilibrium valuation of illiquid assets�

John Krainer1 and Stephen F. LeRoy2

1 Economic Research, Federal Reserve Bank of San Francisco, San Francisco, CA 94105, USA
(e-mail: john.krainer@sf.frb.org)

2 Economics Department, University of California at Santa Barbara, Santa Barbara, CA 93106, USA
(e-mail: sleroy@econ.ucsb.edu)

Received: June 25, 2000; revised version: October 24, 2000

Summary. We develop an equilibrium model of illiquid asset valuation based
on search and matching. We propose several measures of illiquidity and show
how these measures behave. We also show that the equilibrium amount of search
may be less than, equal to or greater than the amount of search that is socially
optimal. Finally, we show that excess returns on illiquid assets are fair games if
returns are defined to include the appropriate shadow prices.
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1 Introduction

Illiquid markets are characterized in informal discussion as markets in which
transactions can be completed only with a delay. By this it is meant that optimal
behavior by buyers and sellers is inconsistent with immediate completion of
transactions; immediate completion of transactions in illiquid markets either is
impossible or is attainable only on disadvantageous terms. Some markets – those
for Treasury bills – are highly liquid. Others – retail markets for real estate or
used cars – are fairly illiquid. Still others – collectibles – are very illiquid.

In the preceding paragraph we characterized markets as illiquid, not assets.
Many assets are traded both on illiquid and liquid markets. For example, real
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estate assets are illiquid when traded retail, liquid when traded as shares of
real-estate investment trusts. The assets of Ford Motor Company, consisting of
auto factories, are very illiquid, but Ford stock is liquid. The principal asset of
Microsoft is Bill Gates’ marketing ability, which cannot be directly traded at
all due to the constitutional prohibition of slavery but, again, Microsoft stock is
very liquid. Mortgages are of intermediate liquidity when traded directly, but are
much more liquid when combined into mortgage pools. The reason government
agencies insure these pools is to increase their liquidity. Thus assets themselves
cannot be characterized as to liquidity since they can be traded either directly on
illiquid markets or indirectly on liquid markets as securities, or both.

In this paper we present a model of equilibrium valuation of assets traded
in both illiquid and liquid markets. For the present purpose, illiquidity has four
components. First, the asset in question is heterogeneous. Heterogeneity by itself,
however, does not imply illiquidity: Ricardian land is heterogeneous, but not
illiquid. Second, asset quality can be determined only via costly search, resulting
in noncompetitive markets. Third, illiquidity implies an element of irreversibility:
acquisition of an illiquid asset involves a cost that cannot be recouped completely
if the asset is subsequently sold.1 Fourth, the assets traded on illiquid markets
are indivisible: one can buy a small house, but not half a house. The model to
be presented has all four components.

The term “liquidity” is often used with connotations different from those
listed in the preceding discussion or incorporated in the model to be presented.
In the market microstructure literature in finance the term “illiquidity” refers to
the bid-ask spread that a market-maker imposes in dealing with buyers and sell-
ers. Imposition of bid-ask spreads is how security specialists protect themselves
when trading with agents some of whom have superior information (Glosten
and Milgrom [3]). The presence of bid-ask spreads brings home the point that
elements of illiquidity remain even when assets are traded as securities. Since
the emphasis in this paper is on the heterogeneity of the assets being traded,
the model here does not apply, directly at least, to the analysis of liquidity in
securities markets.

In our model, agents consume two goods: housing services and a background
good. They are risk neutral in both goods. Agents have an infinite horizon, and
have a common rate of time preferenceβ. Consumption of the background good
can be either positive or negative. Agents’ endowments of the background good
are zero, so an agent’s consumption of the background good at any date equals the
negative of his net expenditure on housing at that date. Under this specification
there is no need to incorporate markets in financial claims on the background
good in the model: agents have no incentive either to shift consumption over
time or to transfer risk among themselves. Including financial markets in the
model would be possible – in fact, easy – precisely because doing so would not
materially alter the equilibrium.

1 The link between liquidity and flexibility was emphasized by Jones and Ostroy [4]. Wheaton
[11] and Williams [12] have models of real estate illiquidity that are related to ours.
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Agents can consume housing services only by buying a house. They can own
more than one house, but can consume housing services only from one house at
a time. An agent who lives in a house is said to have a “match”, and the quantity
of housing services provided per period,ε, is called the “fit”. An agent with a
match does not search for new housing; he consumes housing services from his
current home until the match fails, an event that occurs with probability 1− π
at each date.

The assumption that agents must forego the opportunity to search upon buying
a house is our (admittedly ad hoc) way of capturing the element of irreversibility
that, on our definition, is inherent in the idea of illiquidity. We choose this spec-
ification instead of other possible specifications because under the alternatives
the analysis would be considerably more difficult.

The interpretation of the match failing is that the agent now needs a house
with different characteristics – location, size or amenities, for example. In the
model, when the match fails the house no longer furnishes any housing services.
Therefore the agent begins searching for a new house. Agents without a match
visit exactly one house that is for sale per period. Having inspected the house,
the prospective buyer knows the fit. After comparing the fit with the sale price,
the buyer decides whether or not to buy the house.

The fit is not observed by the seller and cannot be credibly communicated
to him. The seller posts a take-it-or-leave-it price for the house, with no subse-
quent bargaining. If the prospective buyer buys the house his consumption of the
background good equals the negative of the purchase price of the house, and he
consumes housing services until the new match fails. At that time he offers the
house for sale and again begins a search for housing. If he declines the house,
he consumes no housing services in that period and continues the search for a
house in the next period.

As soon as a match fails, the house in question becomes a financial asset to be
disposed of optimally. There is no rental market, so the agent will immediately
offer the house for sale, and will keep the house on the market until it is sold.
It is assumed that the number of agents equals the number of houses, and that
each house that is for sale is visited by exactly one prospective buyer per period.
It is possible for an owner to have no houses, one house or several houses on
the market, depending on his luck at finding buyers and at maintaining his own
match.

The agent’s problem as a buyer consists in formulating a decision rule that
governs whether he buys the house he inspected. As a seller he must decide how
much to charge for a house (or houses) that he is selling. These rules, of course,
apply only when the agent does not have a match in the first case, and only when
the agent has a positive inventory of houses in the second case.

It turns out that linear utility has the agreeable implication that these problems
are decoupled: the optimal buy rule is independent of how many houses the agent
is selling, and the optimal sale price does not depend on whether the agent has
a match or on the number of houses that he has for sale.
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We seek a stationary symmetric Nash equilibrium: an equilibrium in which
each agent’s decision rules are best responses to the same decision rules when
adopted by other agents, and in which equilibrium variables are constant over
time.

Note that market clearing is not involved in the notion of equilibrium relevant
for the valuation of assets traded on illiquid markets: at the end of a typical
period many would-be buyers have not bought, and many would-be sellers have
not sold. This implies that an argument that is available in analyzing valuation
on liquid markets – prices are as they are because otherwise markets could not
clear – is not available in analyzing asset valuation on illiquid markets. If the
seller overprices the house he is selling, prospective buyers who at a lower price
might have bought the house will pass on it. Therefore the seller will wait too
long before selling the house, on average. There is no sense in which markets fail
to clear here. If assets have the wrong prices, the interpretation is that some or
all market participants are acting suboptimally in their responses to each other.

The optimal decision rules are easy to characterize informally. With regard to
the buy rule, an agent can compute the value of owning a house by capitalizing
the expected housing services the house provides. In this calculation the agent
makes appropriate allowance for the possibility that the match will fail, implying
that the house will then be offered for sale. Under the optimal buy rule the agent
buys the house under consideration only if the estimated value exceeds the price
by an amount which equals the discounted value of the opportunity to continue
to search for housing.

With regard to the sell rule, the seller weighs the benefit of a high price
– higher revenue if the house sells – against a lower probability of the house
selling. If the house does not sell the seller must hold it without receiving revenue
until the next period, which is costly because of the time value of money. The
optimal price is high enough to afford an adequate capital gain, but not so high as
to reduce prohibitively the probability of sale. A “motivated seller”, in realtors’
parlance, could sell a house quickly by setting a low sale price, but optimization
entails setting a higher price and waiting for a buyer who is willing to pay it.

Note that in illiquid markets, the sale of a house is a positive net-present-value
event for both the buyer and the seller, in contrast to the case in liquid markets.
The buyer has a wealth increase equal to the capitalized value of the consumer
surplus. Similarly, the seller receives a capital gain upon sale: precisely because
of the possibility that the house will not sell immediately, its value unsold is
strictly less than the sale price. These features of our model correspond to real-
world housing markets, where signing a sale contract is good news for both buyer
and seller (and their agents).

The model just described captures the essential features of illiquidity as char-
acterized above. It is described more formally in the next section.

In Section 3 we go on to present a general discussion of liquidity in the
context of our model. Specifically, we consider the suitability of several possible
measures of liquidity.



Equilibrium valuation of illiquid assets 227

In Section 4 the welfare implications of our model are considered. Since
participants in illiquid markets are not price takers, there is no reason to expect
that equilibrium will be Pareto optimal, and (generically) it is not. It turns out
that there may be either too much or too little search, depending on parameters.

In Section 5 we address the question of whether equilibrium excess returns
on assets traded on illiquid markets are fair games. This depends on how prices,
payoffs and returns are defined. We believe that the most useful definitions are
those that incorporate certain shadow prices that reflect the illiquidity of the
underlying assets. Under these definitions the equilibrium conditions directly
imply that excess returns are fair games.

2 The model

Figure 1A displays the timing conventions governing the agent as buyer; Figure
1B does the same for the agent in his role as seller. Definitions of variables refer
to the boxed entries in these figures (for example, to understand the determination
of s, refer to the box in the lower left corner of Figure 1A).

As noted in the introduction, an agent without a match evaluates for possible
purchase one and only one house at each date. The fitε of any house for any
prospective buyer is a random variable distributed uniformly on [0,1], IID. This
distribution is common knowledge. Upon evaluating the house the buyer learns
the fit, but the seller does not. As noted above, there is assumed to be no credible
way for the buyer to communicate the fit, nor can the seller induce or compel
him to reveal it. Thus the seller must calculate the probability that the house will
sell from the distribution ofε and the equilibrium buy rule, whereas the buyer
makes his decision based on the realization ofε. The seller will set the sale price
accordingly.

Since the seller does not know the prospective buyer’s fit, he must ask the
same price regardless of the fit. Therefore the prospective buyer who decides to
buy will realize a consumer’s surplus the magnitude of which depends on the fit,
but is always nonnegative.

If the agent buys the house, he receives housing services at rateε beginning
in the next period and continuing until the match is broken. By convention the
housing services on a newly bought house, like those on a house bought at some
time in the past, occur in the next period (so that housing is priced ex-housing
services, corresponding to the convention usually adopted in finance that stocks
and bonds are priced ex-dividend and ex-coupon). If the buyer elects not to buy
the house he consumes no housing services, and will continue the search next
period.

At the end of the period agents who entered the period with a match and
those who entered the period unmatched but bought a house during the period
draw random variables which determine whether their matches continue into the
next period or are broken. If an agent’s match persists he continues to consume
housing services at the rateε; if the match is broken the agent will go into the
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A

B

Figure 1. A Timeline for agent as buyer.B Timeline for agent as seller

next period without a match, and will then search for a house. As noted, we
seek a stationary symmetric Nash equilibrium: each agent’s decision rules are
a best response to other agents’ behavior when other agents act according to
the same decision rules. Further, the equilibrium values of decision variables
(and all variables that depend on them, such as prices) are constant over time.
It is assumed that buyers and sellers are anonymous, so they have no repeated
interaction.

We consider the problem of an agent without a match who has one house for
sale. This specification involves no material loss of generality: when the agent
has a match, or when he has no houses in inventory, then he has no role as a
buyer or seller; when he has more than one house for sale he asks the same price
for each house as he does when he has one house for sale, as is easily verified.
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It is also readily verified that the assumptions made on preferences imply that
the agent’s buying problem is decoupled from his selling problem. Therefore we
may consider the two separately. Consider first the agent in his role as buyer.
The buyer’s strategy set is assumed to consist of a linear function that expresses
his reservation fitε as a function of current price:

ε − ε∗ = δ(p − p∗), (1)

so the decision variables areδ andp∗. Here we express reservation fit and price
as deviations from their respective equilibrium values; (throughout we will use∗

to denote the equilibrium values of variables); this is an arbitrary normalization.
The parameterδ, then, measures the effects of deviations from the equilibrium
price on the reservation fit that is optimal for the buyer.

Being unmatched, the agent owns an asset that consists of the right to search
for a house. Define the value of this right ass. Thens is given by

s = µ

(
v

(
ε + 1

2

)
− p∗

)
+ β(1 − µ)s∗. (2)

Hereµ is the probability of sale,β is the agent’s discount factor andv(ε) is the
value of a house with fitε. In turn, v(ε) is given by

v(ε) ≡ βε + βπv(ε) + β(1 − π)(q + s). (3)

In (3) π is the probability of preserving the match, andq is the value of a house
to the owner after he has lost his match. The argument ofv in (2) equals the
expectation ofε conditional onε ≥ ε, so v

(
ε+1
2

) − p∗ equals the expectation of
the buyer’s surplus conditional on having a fit that exceeds the reservation fitε.
Solving for v(ε), (3) becomes

v(ε) ≡ βε + β(1 − π)(q + s)
1 − βπ

. (4)

The buyer’s decision problem is to find the value ofε that maximizess in
(2), for anyp. Under symmetric Nash equilibrium the buyer takes the value ofs
on the right-hand side of (2) as given. This specification reflects the assumption
that the buyer will set future values ofε at the equilibrium level in deciding
whether to buy now, and also that the future values ofp that the buyer will face
will equal the equilibrium value. The buyer evaluatesµ from

µ = 1− ε, (5)

which follows from the fact thatε is uniformly distributed on the unit interval.
Substituting (5) in (2) and using (4), the first-order condition for a maximum

of s with respect toε is

β(1 − ε)
2(1− βπ)

− v

(
ε + 1

2

)
+ p∗ + βs∗ = 0. (6)
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This condition can be put in a form that is more readily interpreted. Using

v

(
ε + 1

2

)
= v(ε) +

β(1 − ε)
2(1− βπ)

, (7)

which in turn follows from (4), (6) simplifies to

v(ε) = p∗ + βs∗. (8)

This equation states that at the reservation fit, the expected utility of owning the
house equals its price plus the discounted value of search, reflecting the fact that
the buyer gives up the right to search if he elects to buy the house. The value of
ε that solves (8) is the equilibrium valueε∗:

v(ε∗) = p∗ + βs∗. (9)

To derive the value ofδ in (1) it is necessary to relax the assumption that
the current value ofp in (9) equals its equilibrium value. The optimal value of
ε for arbitraryp satisfies

v(ε) = p + βs∗. (10)

Subtracting (9) from (10) and using (4) to solve forε − ε∗, there results

ε − ε∗ = (β−1 − π)(p − p∗), (11)

so we have

δ∗ = (β−1 − π). (12)

We now turn to the seller’s problem. The seller owns an asset, an unsold
house, with valueq . His problem is to choose the optimal pricep. The wholesale
price q and retail pricep satisfy

q = µp + β(1 − µ)q∗ (13)

or, using (5),

q = (1− ε)p + βεq∗. (14)

The first-order condition associated with maximizingq in (14) with respect top
is

(1 − ε) +
dε

dp
(βq∗ − p) = µ +

dε

dp
(βq∗ − p) = 0; (15)

here the term that includesdε/dp reflects the seller’s recognition that his choice
of p affects the buyer’s reservation fit. From (11) we have



Equilibrium valuation of illiquid assets 231

dε

dp
= β−1 − π, (16)

so the first-order condition becomes

µ + (β−1 − π)(βq∗ − p) = 0. (17)

The values ofµ andp that solve the first-order condition are equilibrium values:

µ∗ + (β−1 − π)(βq∗ − p∗) = 0. (18)

The model has five equations. The first three,

s∗ = µ∗
(

v

(
ε∗ + 1

2

)
− p∗

)
+ β(1 − µ∗)s∗, (19)

q∗ = µ∗p∗ + β(1 − µ∗)q∗, (20)

and
µ∗ = 1− ε∗, (21)

are the equilibrium counterparts of (2), (13) and (5), respectively. The others are
the equilibrium versions of the first-order conditions (9) and (18). There are five
unknowns:q∗, p∗, µ∗, ε∗ and s∗. A solution to this system of equations is a
stationary symmetric Nash equilibrium. These equations, although nonlinear, are
easily solved numerically.

The model has a minor loose end. We have not specified the number of
agents. If there exists a finite number of agents, then a single agent could con-
ceivably own all the houses in the economy at some date. In that case there
arises the question of what house he inspects if his match fails. We ignore such
events since over any finite time interval they occur with low probability if the
number of agents and houses is large. The problem can be avoided altogether if
it assumed that the number of agents is infinite, but that would entail analytical
complications.2

To determine existence of a solution to the model, begin by using (21) to
eliminateε∗ in (9) and (19). If we fixµ∗, the remaining equations are affine (and,
as is easily checked, linearly independent). Thereforep∗, q∗ ands∗ are uniquely
determined as functions ofµ∗. Thus the equations of the model define a map –
call it Ψ – from the unit interval to itself. SinceΨ is continuous, the Schauder
fixed-point theorem (Stokey and Lucas, with Prescott [10]) implies existence of
a solution (see also Krainer [5]).

There is a parallel between this argument and the derivation of equilibrium
in Lucas’s [7] study of asset prices. Recall that Lucas used two contraction
arguments: in the first, equilibrium policy functions and value functions were

2 This difficulty occurs frequently in economics and finance. For example, in discussing the ar-
bitrage pricing theory it is customary to discuss diversified portfolios in a setting where only finite
portfolios, which cannot be completely diversified, are explicitly modeled. This practice is acceptable
because it is known that if infinite portfolios are specified, then diversified portfolios can be explicitly
modeled, and omitting doing so does not distort the results.
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derived via a contraction, taking asset prices as given. Second, a map taking the
space of asset prices into itself was found that was also a contraction. Here the
first stage of the derivation – solution forε∗, p andµ as functions ofq ands – is
similar to Lucas’s derivation of equilibrium policy rules and value functions; in
the present case the contraction argument can be dispensed with since the relevant
functions are linear. Determining equilibrium values of the state variablesq and
s is similar to Lucas’s second-stage contraction. Here the second stage involves
continuation values of state variables rather than asset prices; this difference
reflects the fact that the solution concept here is symmetric Nash equilibrium
rather than competitive equilibrium as in Lucas [7].

3 Measures of liquidity

The model just presented suggests several possible measures of liquidity. One
is the expected time to sale, (1− µ∗)/µ∗, with low values of this measure cor-
responding to high liquidity. This measure is appropriate for both buyer and
seller.

A second measure of liquidity, appropriate for the seller, is the ratio of the
retail price of a housep∗ to its wholesale priceq∗; the difference betweenp∗

and q∗ measures the capital gain a seller experiences when a house sells. This
variable equals 1 for liquid assets (the value of a liquid asset to its owner just
prior to sale equals its value when sold). The lower the value ofp∗/q∗, the
higher the level of liquidity.

To investigate whether the interpretation of these variables is correct, we
conducted a comparative statics experiment designed to vary liquidity. In our
model houses are illiquid because buyers can evaluate only one house per period.
The easiest way to vary liquidity is therefore to alter parameter values so as to
change the effective length of the period. The expectation is that when the period
is short, so that buyers search frequently, the housing market behaves much like
a liquid market: the average fit is high, the average time to sale is short and the
wholesale price of a house is almost equal to its retail price.

We first computed a benchmark equilibrium based onπ = 0.9 andβ = .95
(corresponding to an average occupancy duration of nine years and a real interest
rate of five per cent per year). Then we assumed that there aren periods per
year, for various values ofn. For each run we definedβn ≡ β1/n andπn ≡ π1/n .
Also, we assumed that housing services are distributed uniformly on [0, 1/n]
instead of [0, 1], so as to preserve the scale of housing prices. The ratiop∗/q∗

does not require rescaling, but the expected time to sale is redefined to equal
(1 − µ∗)/nµ∗ so as to measure in years rather than periods.

Figure 2 shows the equilibrium values ofp∗, q∗ ands∗ as functions ofn, for
selected values ofn. Figure 3 shows the measures of liquidityµ∗, (1−µ∗)/nµ∗

andp∗/q∗ as functions ofn. Whenn is high the probability of sale during any
period,µ∗, is low since the prospective buyer will buy the house only if the fit
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Figure 2. Prices and search option value as a function of buyer arrival raten

is very high. The buyer is willing to pass on the house currently being evaluated
unless the fit is very high, since he does without housing services for only a
short interval before searching again. Correspondingly, whenn is high the seller
charges a high price for the house since he knows that if the current prospective
buyer does not buy, another prospective buyer will be along shortly, and the cost
of holding the house vacant for a short time is low. The wholesale price of a
house also rises withn since for highn rapid sale is very likely. The value of
searchs∗ also rises withn.

Figure 3 shows that the measures of liquidity behave as expected. Even
though the probability of sale during any period is low whenn is high, the
expected time to sale is low (since (1− µ∗)/µ∗ increases more slowly thann).
Whenn is high, bothp∗ andq∗ are high, but the spread between them is small.
Thereforep∗/q∗ is only slightly higher than 1.

4 Welfare

As with most models involving search and matching, equilibrium here is not
Pareto optimal. This is to be expected: the choice the seller faces between high
price and high probability of sale is formally identical to the choice the mo-
nopolist faces between high price and high quantity sold. With non-price-taking
behavior, the first welfare theorem does not apply. However, in contrast to the
case of the static monopolist, here the equilibrium reservation fitε∗ can be either
higher or lower (or, in a borderline case, equal to) the optimal reservation fit,
depending onβ andπ.

The planning problem that corresponds to the equilibrium analyzed here con-
sists of determining a reservation match ˆε such that agents stop searching and
move into a given house whenε ≥ ε̂. The planner chooses ˆε to maximize aggre-
gate expected utility.
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Figure 3. Liquidity measures as functions of buyer arrival raten

Aggregate expected utility is a weighted average of discounted average hous-
ing consumption of matched and unmatched agents, where the weights are the
respective fractions of each in the population. Formally, the planner maximizes
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W =
∑

t

βt [Pr(matched)t (avg. housing consumption)t

+ Pr(unmatched)t (avg. housing consumption)t .] (22)

At eacht , average housing consumption by matched agents is (ˆε + 1)/2, where
ε̂ is the reservation match.3 Housing consumption by unmatched agents equals
zero. In a steady state, the probability of being matched is constant over time,
so maximizingW is equivalent to maximizing

Pr(matched)

(
ε̂ + 1

2

)
. (23)

The (invariant) probability that an agent is matched for a given reservation
fit ε̂ is easily calculated from the conditional probabilities that an agent remains
in his current state (see Figure 1A). The transition matrix is

T =

[
π 1 − π

π(1 − ε̂) ε̂ + (1− π)(1 − ε̂)

]
. (24)

Here the elementT22 is the probability that an unmatched agent in the beginning
of the period will be unmatched at the beginning of the next period. This event
can occur in two ways (see Figure 1A, where the states at each date are enclosed
in boxes). First, the search fails with probabilitŷε. Second, with probability
(1−π)(1− ε̂) the agent buys a house but loses the match in the next period. The
other elements ofT are self-explanatory.

It follows that the unconditional probability that an agent has a match is
(π(1 − ε̂))/(1 − πε̂). The optimal value of ˆε is therefore that which maximizes(

π(1 − ε̂)
1 − πε̂

) (
ε̂ + 1

2

)
. (25)

Denote this ˜ε. We obtain

ε̃ = arg max
ε̂

(
π(1 − ε̂)
1 − πε̂

) (
ε̂ + 1

2

)
=

1 − √
1 − π2

π
. (26)

Note that ˜ε, in contrast toε∗, does not depend onβ.
Figure 4 displays ˜ε and ε∗ againstπ for β = 0.95, and Figure 5 displays ˜ε

and ε∗againstβ for π = 0.9. Figure 6 shows the values ofπ and β for which
the optimal reservation fit is greater than (equal to, less than) the equilibrium
reservation fit.

Figure 4 shows that ˜ε < ε∗ for low values ofπ. This makes sense: asπ → 0
the expected duration of stay in a house converges to one period. A planner
charged with maximizing expected consumption of the housing good will raise
the homeownership rate in this environment because the returns to searching for a
good match are low. This leads to ˜ε → 0. In the equilibrium model, however, the

3 Consumption of the background good can be deleted from eq. (22) because the negative con-
sumption of the background good by buyers of houses cancels the positive consumption of sellers.
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Figure 4. Equilibrium and social planner reservation fits (β = 0.95)
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Figure 5. Equilibrium and social planner reservation fits (π = 0.9)
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seller will maximize expected revenue by asking a price such that the reservation
fit is 0.5.

In contrast, we have ε̃ > ε∗ for low values of β (when π is sufficiently high).
To understand this, recall that β does not figure in the planner’ s choice of ε̂.
However, β does affect ε∗: when β � 1 the seller will set a low price so as to
avoid the long vacancy period that will occur if he fails to sell. In response to
this low price, and also to avoid a long period of homelessness, the buyer will
set a low reservation fit ε∗.

5 Are returns fair games?

Under simplifying assumptions – principally risk neutrality – excess returns on
liquid assets are fair games: the conditional expected return on any asset less the
interest rate is zero. The fair-game model plays a central role in settings where
one is willing to assume stationarity and to abstract away from the effects of
risk aversion on asset prices. For example, the market efficiency tests reported
in Fama [2] are, for the most part, tests of the fair game model.

It is generally supposed that the fair game model describes returns only
in markets that are perfectly liquid. The basis for this presumption is that the
simplest justification for the fair game model does in fact require market liquidity.
This justification consists of the observation that if there existed some asset
with an expected return that differed from the interest rate, then a single (well-
financed, risk-neutral, price-taking) investor could generate an expected utility
gain by borrowing and buying the mispriced asset, or the reverse. This investor,
being risk neutral, would continue to trade until fair game asset prices were
reestablished.

However, in the case of illiquid assets, transaction costs generally prevent
the investor from bidding away the return differentials. Therefore, the argument
concludes, one would not expect to end up with a fair game. It would seem that
autocorrelated returns to real estate, for example, could coexist with a constant
interest rate because the illiquid nature of real estate prevents any investor from
conducting the trades that in liquid markets would restore fair games.

This argument is unsatisfactory. It confuses necessity and sufficiency. It is
correct that if markets are liquid, then one can justify the fair game model by
appealing to the behavior of a single risk-neutral investor. It is also correct
that this argument fails if markets are illiquid. It does not follow from these
facts that perfect liquidity is necessary for the fair game model (as, in fact,
Fama was careful to point out). Asset returns in liquid markets behave as they
do, not because otherwise a single agent could conduct profitable trades, but
because otherwise the optimal trading rules of agents collectively are mutually
incompatible.

So far, it appears, we have no argument either way about whether returns on
illiquid assets are fair games. The question has not been investigated, no doubt
due to the fact that we have little experience building models of equilibrium
valuation of illiquid assets.
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In this section the properties of the equilibrium distributions of returns are
analyzed. Here the (gross) return on an asset has the usual definition as the value
of its payoff (dividend or service flow plus next-period asset value) divided by
current asset value.

In the model of this paper there are three sources of wealth. First, any agent,
matched or not, may own one or more houses that he no longer lives in. All
unoccupied houses are always offered for sale at price p∗. Prior to sale they
have value q∗ per house. Second, a matched agent with fit ε owns an asset with
value v(ε). Third, an unmatched agent owns the search option, which has value
s∗. We consider the returns on each asset in turn.

First, the equilibrium distribution of the return on a house offered for sale is

r∗ =

{
p∗/βq∗ with probability µ∗

1 with probability 1 − µ∗ . (27)

To see this, observe that if the house sells its payoff is p∗. However, under our
convention on notation the proceeds of the sale are paid to the seller in the current
period, not the next period. The next-period value of the payoff if the house sells
is therefore β−1p∗. If the house does not sell, its next-period value is q∗. Since
the current value of the house is q∗, the return distribution is as shown in eq.
(27). The expected return is given by

E (r∗) = µ∗p∗/βq∗ + (1 − µ∗). (28)

Using eq. (20), eq. (28) simplifies to

E (r∗) = β−1. (29)

Thus the expected return equals investors’ time preference.
Second, the return distribution on an owner-occupied house is

r∗ =

{
ε/v(ε) + 1 with probability π
(ε + q∗ + s∗)/v(ε) with probability 1-π

. (30)

Eq. (30) is based on the fact that the value of an owner-occupied house to its
owner is v(ε), not p∗ or p∗ +βs∗. The next-period payoff on the house is ε+v(ε)
if the match is not broken, and ε + q∗ + s∗ if the match is broken. Taking the
expectation and using eq. (4), it follows that the expected rate of return on an
owner-occupied house is also given by eq. (29).

Third, an agent without a match owns the search option, the current value of
which is s∗. The expected return on the search option conditional on buying or
not buying is

r∗ =

{ (
ε∗+1

2 + πv
(

ε∗+1
2

)
+ (1 − π)(q∗ + s∗) − p∗

β

)
/s∗ with probability µ∗

1 with probability 1 − µ∗ .
(31)
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Note that p∗ is multiplied by the interest rate because returns are defined as next
period payoffs divided by current period value. From Eqs. (3) and (19), (29)
results.

In all three cases the excess returns r −β−1 just characterized are seen to be
fair games: the expected excess returns conditional on the values of any or all
of an agent’ s state variables are zero.

A large quantity of empirical evidence (for example, Case and Shiller [1],
Meese and Wallace [8]) supports the conclusion that returns on housing are
positively autocorrelated. However, in empirical work returns are defined as price
changes, whereas we have seen that the appropriate definition implies not only
that implicit rent should be included in the payoff of housing, but also that
the capitalized consumer surplus and the value of the search option should be
included in the value of housing. All these variables are unobservable, and it is
not easy to think of proxies. Thus testing the fair game proposition as it applies
to illiquid assets is not straightforward.

A more promising research strategy is to test the model by determining its
predictions for return and price variables that one can measure, rather than by try-
ing to construct a proxy for the theoretically correct return measure. The present
version of the model is not well suited to this task, since it predicts that there
are no price changes. However, the model can be modified to include aggregate
shocks to housing services. If this is done then the empirical association between
returns and the various liquidity measures can be investigated. Preliminary results
along these lines are reported in Krainer [5].

6 Conclusion

Asset illiquidity in this paper is generated by asymmetric information between
buyers and sellers and by a restriction that agents search sequentially for trading
partners. As the time between potential transactions shrinks, expected time to
sale decreases. In this model, as in many models of search, equilibrium is not
efficient: two matched agents could exchange houses to mutual advantage. More
important, however, equilibrium asset liquidity will most likely not be socially
optimal.

The analysis of this paper depends critically on the assumption that agents are
risk neutral. Excess returns on assets traded in illiquid markets, like those traded
in liquid markets, will not be fair games (with respect to the natural probabilities)
if agents are risk averse.

The analysis of the preceding section makes clear that the principles of valu-
ing illiquid assets are essentially the same as those that apply to liquid assets,
and also that these principles will carry over from the case of risk neutrality an-
alyzed in this paper to the general case of risk aversion. Specifically, risk premia
on assets traded on illiquid markets will be governed by the covariance of their
payoffs with the marginal utility of consumption, just as with liquid assets. Thus
the theory of consumption-based asset pricing applies just as much to illiquid
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assets as to liquid assets. The problem posed by illiquid assets is not that there
is any ambiguity about the relevant theory, but that the definitions of the rele-
vant returns include shadow prices (in our model, q∗ and s∗) that are difficult to
measure.

There is a presumption that assets traded in illiquid markets have positive
risk premia. This is so because, as seen in the present paper, the sale of an
asset traded in illiquid markets creates wealth for the seller, since the sale price
exceeds the value of the asset being offered for sale that has not yet been sold.
This effect induces a negative covariance between the payoff of an asset being
offered for sale and the marginal utility of consumption. Of course, this negative
covariance can be offset by other factors, depending on other aspects of the
model. This qualification aside, the conclusion is that illiquidity by itself gives
rise to positive risk premia.

We pointed out above that agents are indifferent between selling houses as
illiquid assets on the retail market at price p∗ (but probably with a delay) or
immediately as liquid assets on the wholesale market at price q∗. Thus there is
no room in the present model for fire sale prices. Distress sales reflect capital
market imperfections, which we ruled out. A logical next step in the analysis of
illiquid asset valuation would be to incorporate capital market imperfections in
the analysis of illiquidity (see Stein [9]).

References

1. Case, K. E., Shiller, R. J.: Forecasting prices and excess returns in the housing market. AREUEA
Journal 18(3), 253–273 (1990)

2. Fama, E. F.: Efficient capital markets: A review of theory and empirical work. Journal of Finance
25, 283–417 (1970)

3. Glosten, L. R, Milgrom, P. R.: Bid, ask, and transaction prices in a specialist model with
heterogeneously informed traders. Journal of Financial Economics 14, 71–100 (1985)

4. Jones, R. A., Ostroy, J. M.: Flexibility and uncertainty. Review of Economic Studies LI, 13–32
(1984)

5. Krainer, J. : Pricing illiquid assets with a matching model. Reproduced, University of Minnesota
(1997)

6. Lippman, S. A., McCall, J. J.: An operational measure of liquidity. American Economic Review
76, 43–55 (1986)

7. Lucas, R. E.: Asset prices in an exchange economy. Econometrica 46, 1429–1445 (1978)
8. Meese, R., Wallace, N.: Testing the present value relation for housing prices: should I leave my

house in San Francisco? Journal of Urban Economics 35, 245–266 (1994)
9. Stein, J. C.: Prices and trading volume in the housing market: a model with downpayment effects.

Quarterly Journal of Economics 110, 379–406 (1995)
10. Stokey, N. Lucas, R. E., Prescott, E. C.: Recursive Methods in Economic Dynamics. Cambridge,

MA: Harvard University Press 1989
11. Wheaton, W. C.: Vacancy, search, and prices in a housing market matching model. Journal of

Political Economy 61, 1270–1292 (1990)
12. Williams, J. T.: Pricing real assets with costly search. Review of Financial Studies 8, 55–90

(1995)


