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Summary. We present a simple neoclassical life-cycle model in continuous time,
in which the effects of endogenous labor supply, uncertain lifetime, and family
composition on consumption and income profiles are jointly analyzed. Due to
a parsimonious specification, analytical solutions for consumption growth are
available for constant intertemporal elasticity of substitution preferences. With-
out relying on borrowing constraints, the model can generate a hump in the con-
sumption profile, and a comovement of consumption and income during working
life.
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1 Introduction

The basic Modigliani and Brumberg (1954) life-cycle model implies a constant
growth rate of consumption over time. In a continuous time life-cycle model,
consumption growth can be easily computed as

ċ(t)
c(t)

= η(t) (r − ρ) ,

wherer andρ are interest rate and rate of time preference, respectively, andη(t) is
the elasticity of intertemporal substitution. Most empirical studies, however, have
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found strongly correlated, hump–shaped consumption and income paths over the
life-cycle. Consumption tracking income has been recognized as a robust em-
pirical fact since the analysis of Thurow (1969) and Ghez and Becker (1975,
chapter 2), who demonstrated that income and consumption expenditures both
peak around age 50. Carroll and Summers (1991) draw income and consumption
profiles for a number of educational and occupational subgroups of the popula-
tion, and take the strong correlation between consumption and expected income
growth as an indication for liquidity or borrowing constraints, which prevent
agents from achieving the efficient consumption path. Carroll (1997) attributes
the “consumption/income parallel” to buffer–stock savings of impatient agents
in the presence of income uncertainty. Gourinchas and Parker (1999), who esti-
mate a structural model of optimal life-cycle consumption under realistic income
uncertainty, find that precautionary savings by young household and life-cycle
savings of the middle-aged account for the correlation between consumption and
income.

The aim of this paper is to present a simple neoclassical life-cycle model
which is able to replicate the most important empirical regularities over the
life-cycle without relying on borrowing constraints and income uncertainty. The
framework blends elastic labor supply, uncertain lifetime, and a demographic
structure into a single model, for which elegant analytical solutions can be ob-
tained. It can therefore be useful as a (textbook) benchmark model, and as a
building block for larger macroeconomic models.

The paper pulls together results from many previous studies of life-cycle
consumption, following the seminal contributions of Yaari (1965) and Heckman
(1974). The importance of lifetime uncertainty on optimal intertemporal con-
sumption and saving decisions was first pointed out by Yaari (1965). Heckman
(1974) has shown that nonseparability of consumption and leisure can explain the
comovement of consumption and earnings. The consumption path depends on the
wage rate if the latter changes systematically over the life-cycle, as leisure can
be substituted for consumption. Heckman (1976) extends his earlier model by al-
lowing human capital (and consequently the wage rate) to evolve endogenously.
Demographic variables have played a somewhat smaller role in the formal anal-
ysis of consumption and income, although the relevance of family composition
for life-cycle choices has already been observed by the fathers of the life-cycle
model, as in Modigliani and Ando (1957) and Modigliani and Brumberg (1954).
Attanasio and Browning (1995) argue that the apparent “excess sensitivity” of
consumption to income changes disappears when one controls for age, demo-
graphic variables and labor supply patterns of both spouses.

The paper is organized as follows. The general setup and basic assump-
tions are outlined in Section 2. Section 3 presents the life-cycle model with a
time–dependent discount factor, followed by two applications: first, the impact
of lifetime uncertainty with and without annuities, and second, the inclusion of
a stylized demographic structure. Section 4 explores the consequences of en-
dogenous labor supply in view of a distinctive age–wage pattern. A modification
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which allows for the endogenous accumulation of human capital is also discussed.
The results are summarized in Section 5.

2 Model setup and assumptions

To keep the model tractable, a number of simplifying assumptions are imposed.
Time is continuous, and all time–dependent variables are assumed continuous
and differentiable. There is a fixed and known maximum ageTmax, to which
people can live. Households without bequest or gift motives maximize their
expected lifetime utility. Income opportunities are non–stochastic, and retirement
is voluntary, induced by the age–wage profile.

Our economy is equiped with a single asset which—under certainty—yields a
constant real interest rater .1 There is no wedge between borrowing and lending
rates, and agents can lend and borrow freely at an interest rateR(t), which may
depend the relevant market structure and on their age, but not on the size of their
actual asset holdings. Apart from the requirement that agents are not allowed
to die in debt at the very last periodTmax, there are no constraints on asset
holdingsa(t). Note that under lifetime uncertainty, lending without security to
a person with a mortality risk is equivalent to providing insurance, as already
argued in Yaari (1965). We therefore assume that agents face sufficiently low
income during the later periods of their lives, preventing them from going into
debt when very old.

Preferences are time separable. The instantaneous utility functionU [·] de-
pends on consumptionc(t) and leisurel (t) and satisfies the usual concavity
requirement. To get closed–form solutions for endogenous labor supply, the util-
ity function is specialized to the constant intertemporal elasticity of substitution
case,

U [c, l ] =

{
(cθ l1−θ)1−σ

1−σ for σ /= 1,
θ ln c + (1− θ) ln l for σ = 1.

(1)

1
σ is the elasticity of intertemporal substitution andθ describes the trade–off
between leisure and consumption.

3 Age–dependent discount factors

Let the discount factorΦ(t) be a continuous function of age, but independent of
the control variables. The optimization problem of an agent facing an exogenous
income streamm(t) can thus be expressed as maximizing lifetime utility

1 The real interest rater is usually assumed to be greater than the pure rate of time preference
ρ. Hurd (1989) points out that most estimates for the rate of time preference are upward biased as
mortality risks are not accounted for. If lifetime uncertainty is included, the rate of time preference
is estimated to be very low or even negative. In addition, Davies (1981) observes that non–credit–
constraint households consume at an increasing rate, which is only consistent with an interest rate
greater than the rate of time preference.
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U (0) =
∫ Tmax

0
U [c(t)]Φ(t) dt . (2)

subject to the constraints

ȧ(t) = a(t)R(t) + m(t) − c(t) (3)

a(0) = a0

a(Tmax) ≥ 0

Equations (2) and (3) form a standard problem in optimal control:

Proposition 1. The optimal consumption path resulting from the optimization
problem as stated in equations (2) and (3), can be expressed as

ċ(t)
c(t)

= η(t)

{
R(t) +

Φ̇(t)
Φ(t)

}
(4)

whereη(t) ≡ − Uc
cUcc

> 0 is the elasticity of intertemporal substitution.

Proof. See Appendix A.

Note that apart from concavity, no assumptions were made about the form of
the utility function. It is straightforward to prove that a potential non–separability
between consumption and leisure (as presented in the next section) does not
change the result, as long as the discount factor does not depend on the control
variables.

A constant rate of time preferenceρ forms a special case withΦ(t) =
exp(−ρt). We get Φ̇(t)

Φ(t) = −ρ, and the resulting consumption trajectory repre-

sents the standard life-cycle model withċ(t)
c(t) = η(t) (r − ρ).

3.1 Application I: Uncertain lifetime and annuity markets

We now consider individuals whose lifetimẽT is a random variable with survival
distributionΨ (t) and support [0, Tmax], 0 < Tmax < ∞. The hazard rate of death—
or mortality rate—h(t) is defined as2

h(t) ≡ − d
dt

ln Ψ (t) = − Ψ̇ (t)
Ψ (t)

(5)

Lifetime uncertainty can easily be accounted for by adjusting the relevant dis-
count factor. If the pure rate of time preference isρ, the inclusion of the survival
probability Ψ (t) yields an implicit discount factorΦ = {exp(−ρt)Ψ (t)}, which
decreases over the life-cycle. According to Proposition 1, the growth rate of
consumption is

2 Due to a finite maximum lifetime, the density function−dΨ (t)
dt might have a mass point atTmax,

andh(Tmax) = ∞. Typically hazard rates are very low until about age 60 whereafter they exhibit an
exponential increase.
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ċ(t)
c(t)

= η(t) {R(t) − ρ − h(t)} . (6)

If annuities are actuarially fair, consumers will hold their entire wealth in the
form of annuities. The applicable rate of return then equals the regular interest rate
r plus the instantaneous probability of death or hazard rateh(t), R(t) = r + h(t).
This leads again to a monotonic consumption path as in the basic life-cycle
model,

ċ(t)
c(t)

= η(t) {r − ρ} . (7)

In a world with perfect annuity markets, consumption with uncertain lifetime
grows at the same rate as under certainty, a result first derived by Barro and
Friedman (1977). The implicitly higher rate of time preference is exactly offset
by a corresponding discount in the budget constraint (equation (22), Appendix
A) for future income and consumption.

Although private annuity markets do exist, participation is generally limited,
as shown by Friedman and Warshawsky (1990). If individuals are restricted
from writing debt contracts with payoffs contingent on survival, all agents face
the same interest rate, and thereforeR(t) = r , irrespective of age.3 The growth
rate of consumption is then

ċ(t)
c(t)

= η(t) {r − ρ − h(t)} . (8)

Thus, the consumption profile depends not only on the difference between interest
rate and rate of time preference, but also on the mortality hazardh(t). Consump-
tion reaches its lifetime maximum whenh(t) = r − ρ, and declines thereafter.
Lifetime uncertainty alone can partly account for a decrease in consumption for
the elderly. However, consumption in this simple setup peaks much later in life
than both consumption observed in the data and a typical income pattern.

3.2 Application II: A model with a family structure

As many authors have pointed out, lifetime consumption also depends on the
size of the family.4 For ease of exposition, we follow an approach mainly used
in development economics which maximizes utility in consumption per “adult
equivalent”, a term coined by Modigliani and Ando (1957) and recently used by
Attanasio (1995). Consumption per family member is therefore not prespecified,
but follows from an optimizing strategy of the household head.

Let the number of adult equivalentsn(t) be a continuous and differentiable
function. If the relevant consumption for utility maximization is consumption per

3 A number of imperfect annuity contracts can be easily integrated into our framework. The
offered rate of return can, for example, be a fractionγ of the perfect insurance,R[r , h(t)] =
max{r , γ(r + h(t))}, or the insurance company can charge a feef, R[r , h(t)] = max{r , r + h(t) − f}.

4 See Browning (1992) for an excellent review of determinants of consumption in models with a
family structure.
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“adult equivalent”, the dependency of the utility on the size of the family can be
captured by the following utility function

U [c(t)] =

(
c(t)
n(t)

)1−σ

1 − σ
= n(t)−(1−σ) c(t)1−σ

1 − σ
(9)

The expressionn(t)(σ−1) acts like an additional time–dependent discount factor.
A time–varying family size changes the marginal utility of consumption, and
adds an additionaladditive term to the growth rate of consumption,

ċ(t)
c(t)

=
1
σ

{
(R(t) − ρ − h(t)) + (σ − 1)

ṅ(t)
n(t)

}
. (10)

In fact, any other household characteristics that yields a multiplicatively separable
utility specification can be dealt with in a similar way.

4 Endogenous labor supply

If consumption goods and leisure are substitutes (i.e. 0< θ < 1 in the CIES case),
agents can be expected to adjust their labor supply according to the changing
price of labor, working more when wages are high and enjoying more leisure
and consuming less when wages are low. In order to arrive at a well defined
wage determination, it is postulated that the wage rate is proportional to an age–
dependent labor productivitye(t). An individual who supplies (1− l (t)) units of
labor thus gets a labor income ofm(t) = (1 − l (t))e(t)w. We retain longevity
uncertainty from the previous section, and assume closed annuity markets (R(t) ≡
r).

As usual, individuals maximize their lifetime utility

U (0) =
∫ Tmax

0
U [c(t), l (t)] exp(−ρt) Ψ (t) dt , (11)

subject to the constraints

ȧ(t) = a(t)r + we(t)(1 − l (t)) − c(t) (12)

l (t) ≤ 1 (13)

a(0) = a0

a(Tmax) ≥ 0

Again, equations (11) and (12)–(13) form a standard problem in optimal control,
which can be solved accordingly.

Proposition 2. The optimal consumption trajectory resulting from optimization
problem (11)–(13) is

ċ(t)
c(t)

=




1
σ

(
(r − ρ − h(t)) + (σ − 1)(1− θ) ė(t)

e(t)

)
if l (t) < 1

1
θ(σ−1)+1

(
r − ρ − h(t)

)
if l (t) = 1

(14)
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Proof. See Appendix B.

In addition to being dependent on the mortality hazard, consumption growth
is now also a linear function of productivity growth as long as the agent choses
to work. Note that the growth rate of consumption can be discontinuous at the
transition age between work and retirement. For standard parametrization of the
utility function, the constraintl (t) < 1 usually does not bind for ages under 65
(see also Figure 1).

The factor (σ − 1)(1− θ)/σ being less than one forσ > 1, implies that the
consumption profile is flatter than the productivity profile. Assuming continuity
of both labor productivity and its first derivative, it is clear from the mean value
theorem that the growth rate of consumption will be zero at an age that lies in
between the time of maximal labor productivity5 ( ė

e = 0) and the peak in con-
sumption due to uncertain lifetime alone (r − ρ = h(t)). Labor income attains its
maximum even before productivity peaks. Using the linear relationship between
consumption and leisure (see Appendix B),l (t) = c(t) 1−θ

θe(t)w , labor incomem(t)
can be written as

m(t) = (1− l (t))e(t)w = e(t)w − c(t)
1 − θ

θ
.

Assumingṁ(0) > 0, the mean value theorem states that the time derivative of
income has a root betweent = 0 and the time where ˙e(t) = 0.

In the data, however, total income and consumption peak at about the same
age. Two factors mitigate the discrepancy: First, from basic life-cycle consid-
erations one can deduce that total income peaks later than labor income, as
agents save during the more productive periods in life. Second, if family size is
accounted for, as in the previous section, consumption evolves as

ċ(t)
c(t)

=




1
σ

(
(r − ρ − h(t)) + (σ − 1)(1− θ) ė(t)

e(t) + (σ − 1)θ ṅ(t)
n(t)

)
if l (t) < 1

1
θ(σ−1)+1

(
(r − ρ − h(t)) + (σ − 1)θ ṅ(t)

n(t)

)
if l (t) = 1

(15)
For σ > 1 the profile has a more pronounced hump, and it is not possible to rank
the peaks in consumption and labor income in time anymore. As an illustration,
Figure 1 draws optimal trajectories for endogenous labor supply with and without
a family structure.

4.1 Extension: Endogenous human capital and the value of leisure

Labor productivitye(t) can also be viewed as human capital resulting from an
optimal investment strategy. Higher human capital, moreover, might increase the
utility from a given amount of leisure. Following Heckman (1976), our model is
supplemented by a dynamic human capital accumulation equation.

5 The “typical productivity pattern”e(t) can be described as follows: Labor productivity typically
grows until it reaches a maximum level at the age of±50. The sharpest decline is assumed to be
around retirement age, whereafter there is a slowdown in productivity loss.
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Figure 1. Optimal consumption, labor supply and income profiles over the life-cycle for models
without and with a family structure (parameters used for simulation:σ = 4, θ = .33, ρ = 0, r = 0.03,
artificial productivity and family profiles, Swiss mortality data)

ė(t) = F [e(t), i (t)] − ξe(t). (16)

where the “production function” of human capitalF [·, ·] is strictly concave and
it is required thatF [e(t), 0] ≡ 0. i (t) denotes the fraction of time devoted to
learning, andξ is the depreciation rate of human capital.6 Taking into account
the proposed human capital accumulation formation, the new budget constraint
becomes

ȧ(t) = a(t)r + we(t)(1 − l (t) − i (t)) − c(t) (17)

and the time constraints are

0 ≤ i (t) + l (t) ≤ 1, i (t)l (t) ≥ 0. (18)

In order to explore the role of human capital for the valuation of leisure in ex-
plaining the optimal consumption trajectory more carefully, let the utility function
be of the following form

U = U [c(t), e(t)αl (t)]. (19)

The parameterα describes the extent to which productivity yields non–market
benefits, ande(t)αl (t) is productivity adjusted leisure. In a first polar case, human
capital does not enter the utility function in terms of adjusted leisure (α = 0).
In Heckman (1976), on the other hand, human capital’s non–market benefits are
captured by formulating preferences concerning leisure in efficiency unitse(t)l (t)
(α = 1).7

6 As an additional simplification and unlike Heckman (1976), no consumption goods are needed
to acquire human capital. This latter assumption does not influence the analysis.

7 Heckman (1976) views the productivity adjusted leisure as key in his analysis, but acknowledges
the inability of his model to explain non–monotonous consumption profiles.
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Although the model is too complicated to be solved analytically even for
simple forms of the functionsU [·, ·] and F [·, ·], Proposition 3 shows that the
problem is separable.

Proposition 3. Given the path of human capitale(t), the optimal path of con-
sumptionc(t , e(t)) conditional one(t) can be computed. The resulting rate of
consumption growth is

ċ(t , e(t))
c(t , e(t))

(20)

=




1
σ

(
(r − ρ − h(t)) + (1− α)(σ − 1)(1− θ) ė(t)

e(t)

)
if l (t) + i (t) < 1

1
θ(σ−1)+1

(
r − ρ − h(t)

)
if l (t) + i (t) = 1

With c(t , e(t)) and the remaining first order conditions, we get a solution fori (t),
which in turn can be used to computee(t).

Proof. See Appendix C.

Although we have not explored the human capital accumulation processper
se, it can be concluded that changes in productivity affect consumption in an
analogous way, independent of whether productivity is exogenous or evolves
endogenously by an optimal human capital accumulation process. Consumption
trajectories, however, hinge on the extent to which human capital yields non–
market benefits. The more productivity increases the valuation of leisure, the
flatter the consumption profile and the later in life consumption peaks.

5 Summary

This paper has presented several important determinants of the consumption pro-
file and its correlation with income which can be derived from a very simple
neoclassical model without borrowing constraints, income uncertainty or my-
opia. The basic life-cycle model has been supplemented by uncertain lifetime,
endogenous labor supply with age–dependent wage–pattern, and changing fam-
ily composition. The considered CIES–specification of preferences allows for
analytical solutions of the problem.

The main findings can be summarized by the following equation

ċ(t)
c(t)

= γ1 {r − ρ − h(t)} + γ2
ė(t)
e(t)

+ γ3
ṅ(t)
n(t)

,

where the coefficientsγi depend on preference parameters as well as on as-
sumptions about longevity uncertainty and the valuation of leisure in the utility
function. They also depend on whether the individual choses to work or not.
Note that the different influences actadditively on the growth rate of consump-
tion. The inclusion of any additional factor does not change the coefficient of the
previous ones.
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Lifetime uncertainty leads to a reduction in consumption expenditures as
agents age. The availability of annuities lessens the decline to a certain ex-
tent, with the extreme outcome of fair annuities leading to essentially the same
consumption path as under certainty. If consumption and leisure in the utility
function are nonseparable, there is indeed a relationship between consumption
changes and changes in (labor) income. The two profiles however do not fully
coincide: The peak in labor income (but not necessarily total income) precedes
the peak in consumption, and the consumption profile is flatter than the income
profile. Changing family composition reinforces the effects of endogenous labor,
as family size often moves with productivity and thus with labor income. Con-
sumption profiles become more pronouncedly hump–shaped and the correlation
with income increases.

The paper has shown that consumption tracking income cannotper se be taken
as evidence against the hypothesis of optimal allocation of consumption over the
life-cycle. Nevertheless, the analysis does not preclude alternative explanations
for the observed patterns of consumption and labor supply.

Appendix

A: Proof of Proposition 1

The Hamiltonian to the optimization problem stated in (2) and (3) is given by

H = U [c(t)]Φ(t) + λ(t) {a(t)R(t) + m(t) − c(t)}
whereλ(t) is the multiplier for the state equation (3). LetUc denote the partial
derivative of the utility function with respect toc. The necessary first order
conditions are then given by

∂H

∂c(t)
= Φ(t)Uc [c(t)] − λ(t) = 0 (21)

λ̇(t) = − ∂H

∂a(t)
= −λ(t)R(t) (22)

ȧ(t) =
∂H

∂λ(t)
= a(t)R(t) + m(t) − c(t)

To solve the problem, rearrange (21) to get an expression for the marginal utility
of consumption

Uc =
λ(t)
Ψ (t)

.

Taking the natural logarithm on both sides, and computing time derivatives yields

ċ(t)
Ucc

Uc
=

λ̇(t)
λ(t)

− Φ̇(t)
Φ(t)

.

Using the costate equation (22) and solving for ˙c yields

ċ(t) =
Uc

Ucc

{
−R(t) +

Φ̇(t)
Φ(t)

}
. (23)
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B: Proof of Proposition 2

Abstracting from corner solutions (i.e.l (t) < 1), the Hamiltonian is given by

H = U [c(t), l (t)] exp(−ρt)Ψ (t) + λ(t) {a(t)r + we(t)(1 − l (t)) − c(t)} ,

whereλ(t) is the multiplier for the state equation (12). The necessary first order
conditions are

∂H

∂c(t)
= Ψ (t) exp(−ρt)Uc [c(t), l (t)] − λ(t) = 0 (24)

∂H

∂l (t)
= Ψ (t) exp(−ρt)Ul [c(t), l (t)] − λ(t)e(t)w = 0 (25)

λ̇(t) = − ∂H

∂a(t)
= −λ(t)r (26)

ȧ(t) =
∂H

∂λ(t)
= a(t)r + we(t)(1 − l (t)) − c(t)

Equations (24) and (25) can be rewritten for the CIES utility as

θ
[
c(t)θl (t)1−θ

]−σ
c(t)θ−1l (t)1−θ = λ(t) exp(ρt)Ψ (t)−1 (27)

(1 − θ)
[
c(t)θl (t)1−θ

]−σ
c(t)θl (t)−θ = λ(t) exp(ρt)Ψ (t)−1we(t) (28)

Dividing (28) by (27) one arrives at a relationship between consumption and
leisure

c(t)
l (t)

=
θ

1 − θ
e(t)w,

which can be substituted into (27) to eliminate leisure,

θc(t)−σ

[
θ

1 − θ
e(t)w

]−(1−σ)(1−θ)

= λ(t) exp(ρt)Ψ (t)−1.

Taking the natural logarithm on both sides yields

−σ log(c(t)) − (1 − σ)(1 − θ) log(e(t)) + log

(
θ

[
θ

1 − θ
w

]−(1−σ)(1−θ)
)

= log(λ(t)) + ρt − log(Ψ (t))

Taking the time derivative, and using equations (5) and (26), one gets an expres-
sion for the growth rate of consumption forl (t) < 1,

ċ(t)
c(t)

=
1
σ

{
(r − ρ − h(t)) + (σ − 1)(1− θ)

ė(t)
e(t)

}
.

In an analogous way, the growth rate of consumption can be derived for periods
wherel (t) = 1. We get

ċ(t)
c(t)

=
1

θ(σ − 1) + 1

(
r − ρ − h(t)

)
. (29)
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C: Proof of Proposition 3

Assuming interior solutions (l (t) + i (t) < 1), the Hamiltonian can be written as

H = U [c(t), e(t)αl (t)] exp(−ρt)Ψ (t)

+λ(t) {a(t)r + we(t)(1 − l (t) − i (t)) − c(t)}
+µ(t) {F [e(t), i (t)] − ξe(t)}

whereλ(t) andµ(t) are the multipliers for the state equations in asset holdings
(17) and human capital (16). LetL denote productivity adjusted leisure,L(t) ≡
e(t)αl (t). The necessary first order conditions are then given by

∂H

∂c(t)
= Ψ (t) exp(−ρt)Uc [c(t), e(t)αl (t)] − λ(t) = 0 (30)

∂H

∂l (t)
= Ψ (t) exp(−ρt)e(t)αUL[c(t), e(t)αl (t)] − λ(t)e(t)w = 0(31)

∂H

∂i (t)
= −λ(t)we(t) + µ(t)Fi [e(t), i (t)] = 0 (32)

λ̇(t) = − ∂H

∂a(t)
= −λ(t)r (33)

µ̇(t) = − ∂H

∂e(t)
= µ(t) {ξ − Fe(e(t), i (t))} − λ(t)(1 − l (t) − i (t))w (34)

ȧ(t) =
∂H

∂λ(t)
= a(t)r + we(t)(1 − l (t) − i (t)) − c(t) (35)

ė(t) =
∂H

∂µ(t)
= F [e(t), i (t)] − ξe(t) (36)

An inspection of the first order conditions above reveals that the problem is
separable. Conditional one(t), equations (30), (31), and (33) can be used to
get an expression for consumption growthċ(t,e(t))

c(t,e(t)) . Its derivation is completely
analogous to the derivation in Appendix B.
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