
Formal Aspects of Computing (2000) 12: 278–297
c© 2000 BCS Formal Aspects

of Computing

Data Refinement of Remote Procedures

Kaisa Sere and Marina Waldén
Åbo Akademi University, Department of Computer Science

Turku Centre for Computer Science (TUCS), Finland.

Abstract. Recently the action systems formalism for parallel and distributed systems has been extended with
the procedure mechanism. This gives us a very general framework for describing different communication
paradigms for action systems, e.g. remote procedure calls. Action systems come with a design methodology
based on the refinement calculus. Data refinement is a powerful technique for refining action systems. In this
paper we will develop a theory and proof rules for the refinement of action systems that communicate via
remote procedures based on the data refinement approach. The proof rules we develop are compositional so
that modular refinement of action systems is supported. As an example we will especially study the atomicity
refinement of actions. This is an important refinement strategy, as it potentially increases the degree of
parallelism in an action system.

Keywords: Remote procedures; Atomicity refinement; Action systems

1. Introduction

Remote procedure calls provide a very general communication mechanism between interacting systems. Hence,
it is useful to have such a mechanism available when designing parallel and distributed systems. Remote
procedure calls is a concept found in many programming languages and operating systems especially in
client-server architectures [BMS96, Tan92]. However, there seems to exist very little work on the formal
derivation of systems with this communication mechanism in the literature [Udi95]. In this paper we give a
formal treatment of the remote procedure call mechanism and develop the needed proof rules for reasoning
about the correctness and refinement of programs with remote procedures. We base our theory on the action
systems framework. The reasoning is carried out relying on the refinement calculus of action systems.

An action system is a parallel or distributed program where parallel activity is described in terms of events,
so called actions. The actions are atomic: if an action is chosen for execution, it is executed to completion
without any interference from the other actions in the system. Several actions can be executed in parallel, as
long as the actions do not share any variables. Atomicity guarantees that a parallel execution of an action
system gives the same results as a sequential and nondeterministic execution.

The use of action systems permits the design of the logical behaviour of a system to be separated from
the issue of how the system is to be implemented. The decision whether the action system is to be executed
in a sequential or parallel fashion can be postponed to a later stage, when the logical behaviour of the action
system has been designed. The construction of the program is thus done within a single unifying framework.

Correspondence and offprint requests to: K. Sere and M. Waldén, Åbo Akademi University, Department of Computer Science, Turku
Centre for Computer Science (TUCS), FIN-20520 Turku, Finland. e-mail: {Kaisa.Sere,Marina.Walden}@abo.fi



Data Refinement of Remote Procedures 279

The action systems formalism was proposed by Back and Kurki-Suonio [BaK83]. Later similar event-
based formalisms have been put forward by several other researchers, see for example the work of Chandy
and Misra [ChM88], who describe their UNITY framework and Francez [Fra89], who develops his IP-
language. Recently, Back and Sere introduced the idea of remote procedures for action systems [BaS94].
It has also been shown how this mechanism is used in practical program development [BMS96, Wal98].
Furthermore, remote procedure calls in action systems have been studied using object-oriented modeling
formalisms [BKS98, Kur96].

The action systems approach supports the stepwise refinement paradigm for the construction of parallel
and distributed systems. The refinement calculus is a formalization of the stepwise refinement method of
program construction [Bac78, Mor88b, Mor87]. In recent years data refinement within the refinement calculus
has been a topic for extensive research [BaW89, BaW94]. Back and Sere [Bac90, BaS89] have extended
the refinement calculus to handle parallel algorithms as well as reactive programs. In both cases parallel and
concurrent activity is modelled within a purely sequential framework. We shall here concentrate on reactive
programs.

Procedures were added to the refinement calculus by Back [Bac87] and Morgan [Mor88a], with slightly
different ways of handling parameter passing. We follow the former approach and extend the data refinement
of reactive action systems [Bac90] to handle remote procedures by extending the work by Sere et al. [BaS94,
SeW97] on remote procedures. Back and Sere [BaS94] introduce the language construct, remote procedures,
to the action systems formalism and give a refinement treatment to the construct. The proposed approach
is based on the introduction of a new refinement notion, different from the usual notions of the refinement
calculus. The refinement relation of Back and Sere is based on the invariant method of Dijkstra [Dij76] for
proving loops, thus incorporating e.g. a variant function not present in the refinement notions usually studied
with the refinement calculus framework. In this paper we show that the refinement of remote procedures
can be carried out in the standard refinement calculus framework via the data refinement techniques without
the need of introducing new refinement relations. Even though we here base our work on Back and Sere
[BaS94], we generalise their results considerably by developing a more general rule for the refinement of
remote procedures together with a number of useful special cases of it. We pay special attention to the
compositionality of the developed refinement rules, thus, supporting a modular way of program development.
This aspect was aslo treated by Back and Sere, but again via a different refinement notion as the basis.

As an example of compositionality we develop proof rules for an important refinement strategy for
concurrent systems, namely the refinement of atomicity of atomic actions. This provides a convenient way to
increase the degree of parallelism in these systems. The rules to refine atomicity are also more general in tis
paper than in the Back and Sere approach. A preliminary version of this paper [SeW97] gives a refinement
treatment to remote procedures and their atomicity refinement along the lines proposed here. We have,
however, extended the preliminary results and generalised the work still by giving less syntactic rules for e.g.
the refinement of atomicity.

This paper is very much influenced by the work of Back and Sere [BaS94] who laid the foundations for
a formal approch to the remote procedure mechanism and its implementation issues. It became, however,
clear to us that the proposed rules are too retrictive in practice [Wal98] and hence, we set out to explore
ways to integrate the mechanisms more closely to the refinement calculus and especially data refinement. The
implementation issues studied by Back and Sere [BaS94] are out of the scope of the current paper.

Overview of the paper. We proceed as follows. In section 2, we describe the action systems formalism using
procedures. In section 3, we describe how action systems are composed into parallel systems and study the
enabledness conditions for remote procedures. Section 4 develops the proof rules for handling action systems
with remote procedures in a compositional manner within the refinement calculus. As an example on this we
develop proof rules for the refinement of atomicity of remote procedures in section 5. We end in section 6
with some concluding remarks.

2. Action systems

An action system (with procedures) is a set of actions operating on local and global variables:



280 K. Sere and M. Waldén

A :: |[ var y∗, x := y0, x0;
proc p∗

1 = P1; . . . ; p∗
n = Pn ;

q1 = Q1; . . . ; ql = Ql ;
do A1 [] . . . [] Am od

]|: z , r

The action system A describes a computation, in which the local variables x and the exported global variables
y , marked with an asterisk ∗, are first created and initialised. Then repeatedly any of the enabled actions
A1, . . . ,An is nondeterministically selected for execution. The computation terminates if no action is enabled
(to be defined later), otherwise it continues infinitely. Actions operating on disjoint sets of variables can be
executed in any order or in parallel.

The local variables x are only referenced locally in A, while the exported global variables, y , also can be
referenced by other action systems. The imported global variables, z , of A are mentioned in A1, . . . ,An , but
not declared locally. These variables are the state variables of the action system. The identifiers x , y and z
are assumed to be pairwise distinct lists of variables. Thus, no redeclaration of variables is permitted.

A procedure is declared as p = P with a procedure header p and a procedure body P . In the action system
A the procedures p are declared as exported procedures, marked with an asterisk ∗. They can also be called
from other action systems than A. The procedures q , on the other hand, are declared as local procedures and
are only called within A. The procedures imported into A are denoted as r . These are called from actions in
A, but are declared elsewhere. The names of the local and global procedures are assumed to be distinct.

An action is said to be local to an action system, if it only refers to local variables of the action system.
The procedures and actions are allowed to refer to all the state variables of an action system. Furthermore,
each procedure and action may have local variables of its own.

Actions are taken to be atomic, meaning that only their input-output behaviour is of interest. They can
be arbitrary sequential statements. Their behaviour can therefore be described by the weakest precondition
predicate transformer of Dijkstra [Dij76], where wp(A,Q) is the weakest predicate such that action A
terminates in a state satisfying predicate Q . As we are only interested in the input-output behaviour of
actions, we consider two actions to be equivalent if they always establish the same postcondition:

A = B iff ∀Q : wp(A,Q) = wp(B ,Q).

In addition to the statements considered by Dijkstra, we allow assert statements {G}, where G is a
predicate, as well as nondeterministic choice, A [] B , between the actions A and B . The language of actions is
defined by the following grammar:

A ::= abort | skip | {G} | x := v | x := v ′.(v ′ ∈ T ) | p |
| g → A | A; A | A [] A | do A od,

where G ,T and g are predicates, x is a list of variables, v as well as v ′ are lists of values, and p is a procedure
header. The weakest precondition semantics of this language is:

wp(abort ,Q) = false wp(x := v ′.(v ′ ∈ T ),Q) =
wp(skip,Q) = Q (∃v ′.v ′ ∈ T ) ∧ (∀v ′. v ′ ∈ T .Q[x := v ′])
wp({G},Q) = G ∧ Q wp((A [] B ),Q) = wp(A,Q) ∧ wp(B ,Q)
wp(p,Q) = wp(P ,Q) wp((A; B ),Q) = wp(A,wp(B ,Q))
wp(g → A,Q) = g ⇒ wp(A,Q) wp(do A od,Q) = (∃k .k > 0.Hk (Q))
wp(x := v ,Q) = Q[x := v ]

where P is the procedure body of procedure p and the conditions Hk (Q) are given by

H0(Q) =̂ Q ∧ ¬gd (A)

and for k > 0:

Hk (Q) =̂ wp(A,Hk−1(Q)) ∨ H0(Q).

Other operators can also be defined. The restriction we impose is that all actions are (finitely) conjunctive,
hence excluding angelic nondeterminism [BaW94]:

wp(A,R ∧ Q) = wp(A,R) ∧ wp(A,Q)

All of the above operators are conjunctive or preserve conjunctivity. Conjunctivity implies monotonicity:

(R ⇒ Q) ⇒ (wp(A,R) ⇒ wp(A,Q))

Since the nondeterministic choice A [] B is included as an operator on actions, we can confine ourselves
to action systems with only a single action. Hence, an action system A is in general of the form:



Data Refinement of Remote Procedures 281

A :: |[ var y∗, x := y0, x0;
proc p∗

1 = P1; . . . ; p∗
n = Pn ;

q1 = Q1; . . . ; ql = Ql ;
do A od

]|: z , r

Definition of procedures. Procedure bodies and actions may contain procedure calls. The meaning of a call
on a parameterless procedure p = P in a statement S is determined by the substitution principle:

S = S [P/p],

i.e., the body P of procedure p is substituted for each call on this procedure in statement S . The semantics
of procedures without parameters is given above.

Procedures in action systems can pass parameters. Three different parameter passing mechanisms for
procedures are allowed, call-by-value, call-by-result and call-by-value-result. The parameter passing mechanism
call-by-value is denoted with p(val f ), call-by-result with p(res f ), and call-by-value-result with p(valres f ),
where f stands for the formal parameters. For simplicity, we will here assume that the procedures are not
recursive.

Procedures with parameters can be handled by substitution in a similar way as parameterless procedures.
Let p(val x , valres y , res z ) = P be a procedure declaration, where x denotes the formal call-by-value
parameters, y the formal call-by-value-result parameters and z the formal call-by-result parameters. Then a
call on p with the actual parameters a , b, c is removed by the substitution

S = S [P ′/p(a , b, c)],

where P ′ is the statement

|[ var x , y , z ; x := a; y := b; P ; b := y; c := z ]|.
If a procedure or action contains a call to a procedure that is not declared in the action system, then the

behavior of the action system will depend on the way in which the procedures are declared in some other
action system, which constitutes the environment of the action system as will be described later.

The definition of procedures is studied more carefully by Back [Bac87] and Morgan [Mor88a].

Enabledness of an action. The procedure bodies and actions contain arbitrary program statements. A statement
that establishes any postcondition is said to be miraculous. We take the view that a statement is only enabled
in those initial states in which it behaves nonmiraculously. The guard of a statement characterises those states
for which the statement is enabled:

gd (S ) =̂ ¬wp(S , false).

The statement S is said to be enabled in a given state, when the guard is true in that state. The statement
S is said to be always enabled, if wp(S , false) = false (i.e., gd (S ) = true), and always terminating, if
wp(S , true) = true.

Both procedure bodies and actions will in general be guarded commands, i.e., statements of the form

C = g → A,

where g is a boolean condition and A is an action. In this case, the guard of C is g ∧ ¬wp(A, false). Hence,
a guarded command g → A is only enabled when A is enabled and g holds. Moreover, the nondeterministic
choice A [] B is enabled when either A or B is enabled:

gd (A [] B ) = gd (A) ∨ gd (B )

If the body of each action and procedure of an arbitrary action system is always enabled, action systems
coincide with the language of guarded commands. The body bd (C ) of C is defined by

bd (C ) =̂ gd (C ) → C [] ¬gd (C ) → abort

We permit procedure bodies to have guards that are not identically true. Hence, it is possible that an
action which is enabled calls a procedure which then turns out not to be enabled in the state in which it
is called. This situation is then the same as if the action calling the procedure had not been enabled at all,
and had therefore never initiated the call. In other words, the enabledness of an action is determined by the
enabledness of the whole statement that is invoked when the action is executed, including enabledness of all
procedures that might be called.



282 K. Sere and M. Waldén

Example. Let us consider an example where p = (b → T ) is a procedure and g → S ; p an action that calls
on p. Then the enabledness of this action is determined by the value of the action guard

gd (g → S ; p) = g ∧ gd (S ; p)

where gd (S ; p) is calculated as follows:

gd (S ; p)
= gd (S ; (b → T ))
= ¬wp(S ; (b → T ), false)
= ¬wp(S ,wp((b → T ), false))
= ¬wp(S , b ⇒ wp(T , false))
= ¬wp(S , b ⇒ ¬gd (T ))
= {assuming T always enabled} (∗)

¬wp(S ,¬b)

The calling action and the procedure will be considered as a single action, hence, an atomic entity:

g ∧ ¬wp(S ,¬b) → S ; T .

We can note that for the last step marked by (∗) we could also have the weaker assumption b ⇒ gd (T ).

3. Composing action systems

Consider two action systems, A and B:
A :: |[ var v∗, x := v0, x0;

proc r∗
1 = R1; . . . ; r∗

m = Rm ;
p1 = P1; . . . ; pn = Pn ;

do A od
]|: z

B :: |[ var w∗, y := w0, y0;
proc s∗

1 = S1; . . . ; s∗
k = Sk ;

q1 = Q1; . . . ; ql = Ql ;
do B od

]|: u

where x ∩ y = ∅, v ∩ w = ∅, r ∩ s = ∅, and p ∩ q = ∅.
We define the parallel composition A ‖ B of A and B to be the action system C below

C :: |[ var b∗, x , y := b0, x0, y0;
proc r∗

1 = R1; . . . ; r∗
m = Rm ; s∗

1 = S1; . . . ; s∗
k = Sk ;

p1 = P1; . . . ; pn = Pn ; q1 = Q1; . . . ; ql = Ql ;
do A [] B od

]|: a

where a = z ∪ u − (v ∪ r ∪ w ∪ s), b = v ∪ w , r = (r1 ∪ . . . ∪ rm ), and s = (s1 ∪ . . . ∪ sk ).
Thus, parallel composition will combine the state spaces of the two constituent action systems, merging

the global variables and global procedures and keeping the local variables distinct. The imported identifiers
denote those global variables and/or procedures that are not declared in either A or B. The exported
identifiers are the variables and/or procedures declared global in A or B. The procedure declarations and the
actions in the parallel composition consists of the procedure declarations and actions in the original systems.

Parallel composition is a way of associating a meaning to procedures that are called in an action system,
but which are not declared there, i.e., the imported global procedures. The meaning can be given by a
procedure declared in another action system, provided the procedure has been declared global in that action
system.

Let A be an action system with exported and imported procedures. Let E be another action system. We
call E the full context of A if there is no other action system than E that imports the exported procedures of
A and if all the imported procedures of A are declared in E. Hence, the exported procedures of A and E can
be considered local in the parallel composition A ‖ E. Full context is an important concept when reasoning
about the behaviour of action systems with remote procedures as will become clear later.

The behaviour of a parallel composition of action systems is dependent on how the individual action
systems, the reactive components, interact with each other. We have for instance that a reactive component



Data Refinement of Remote Procedures 283

does not terminate by itself: termination is a global property of the composed action system. More on these
topics can be found elsewhere [Bac90].

Example. Consider a producer-consumer system

|[ var v ∗ ∈ integer , S ,R ∈ set of integer; Prod ‖ Snd ‖ Rec ‖ Cons ]|
with four action systems Prod ,Snd ,Rec, and Cons executing in parallel. The variable S denotes a set of
messages to be transmitted between the producer Prod and the consumer Cons . Similarly, the variable R
denotes the set of messages received by the consumer action system Cons . The producer uses the services of
the sender Snd for the actual communication. These two systems communicate through the variable S . The
consumer receives the messages via the receiver process Rec. The receiver and the consumer communicate
via the variable R. The variable v is some externally visible variable.

We study next the action systems Snd and Rec more carefully:
Snd :: |[ var x ∈ integer;

do S 6= ∅ → x := x ′.(x ′ ∈ S ); S := S − {x}; Trans(x ) od
]|: S ,Trans

Rec :: |[ proc Trans∗(val v ∈ integer) = (R := R ∪ {v}) ]| : R

The action system Snd communicates with the receiver Rec via the global procedure Trans , which is in the
import list of Snd and exported by Rec. The two action systems Snd and Rec are examples of reactive
components. Therefore for instance the action system Snd does not terminate locally when S becomes empty,
but rather it waits for new elements to appear in S .

The parallel composition of Snd and Rec, T = Snd ‖ Rec, is according to the rule above as follows:
T :: |[ var x ∈ integer;

proc Trans∗(val v ∈ integer) = (R := R ∪ {v});
do S 6= ∅ → x := x ′.(x ′ ∈ S ); S := S − {x}; Trans(x ) od

]|: S ,R

Let us assume that Snd is the full context of Rec. Hence, we can make the procedure Trans local, as it is
only called by the single action in Snd . This gives us the system T′:

T′ :: |[ var x ∈ integer;
proc Trans(val v ∈ integer) = (R := R ∪ {v});
do S 6= ∅ → x := x ′.(x ′ ∈ S ); S := S − {x}; Trans(x ) od

]|: S ,R

We can remove the procedure by substituting the procedure body in place of the procedure call and the
actual parameter for the formal parameter of the procedure. Substitution gives

T′′ :: |[ var x ∈ integer;
proc Trans(val v ∈ integer) = (R := R ∪ {v});
do S 6= ∅ →

x := x ′.(x ′ ∈ S ); S := S − {x};
|[ var v ∈ integer; v := x ; R := R ∪ {v} ]|

od
]|: S ,R

Finally, removing the redundant local variable v and procedure Trans that is not needed anywhere, gives
us the action system T′′′:

T′′′ :: |[ var x ∈ integer;
do S 6= ∅ → x := x ′.(x ′ ∈ S ); S := S − {x}; R := R ∪ {x} od

]|: S ,R

Because all these versions are equivalent in the producer-consumer system, we can rewrite the system as

|[ var v ∗ ∈ integer , S ,R ∈ set of integer; Prod ‖ T′′′ ‖ Cons ]|.
Enabledness. Since we permit procedure bodies of global as well as local procedures to have guards that are
not identically true, it is possible that an action with a guard that evaluates to true, calls a procedure in
another action system, which turns out not to be enabled in the state in which it is called. Then the action
calling the global procedure is not either enabled in that state. We observe that we have a similar situation
here as for the local procedure calls in section 2.

Let P be an exported procedure of some action system. We say that P is locally enabled, whenever the
calling action cannot enable or disable P . An action A cannot enable another action B whenever

¬gd (B ) ⇒ wp(A,¬gd (B ))



284 K. Sere and M. Waldén

and A is always terminating. Moreover, A cannot disable B whenever

gd (B ) ⇒ wp(A, gd (B ))

and A is always terminating. Hence, the enabledness of a locally enabled procedure can be determined
independently of the caller. This is important when considering the enabledness of a remote procedure.

Let A be an action of the form (g → S ; p) where p is a remote procedure with the body P and S is always
terminating. Furthermore, we assume that P is locally enabled. Then the guard of A, gd (A), is computed
as gd (A) = g ∧ gd (S ; p). Now we have that gd (S ; p) = ¬wp(S ,¬gd (P )) as seen previously. As P is locally
enabled we have that ¬wp(S ,¬gd (P )) = gd (P ) ∧ gd (S ) leaving us with gd (A) = g ∧ gd (P ). The following is
an example of this situation.

Example. Assume that the set R of the producer-consumer action system is bound from above by an integer
L. This is reflected in the action system Rec′ as follows:

Rec′ :: |[ proc Trans∗(val v ∈ integer) = (|R| < L → R := R ∪ {v}) ]| : R

We have that Trans is locally enabled, even though the enabledness of its guard depends on the global
variable R as we assume that Snd is the full context of Rec and R is not accessed by Snd .

Let C = x := x ′.(x ′ ∈ S ); S := S − {x}. We then have for the sending action in Snd that

S 6= ∅ → x := x ′.(x ′ ∈ S ); S := S − {x}; Trans(x )
= {definitions of C ,Trans}

S 6= ∅ → C ; |[ var v ; v := x ; (|R| < L → R := R ∪ {v}) ]|
= {removing local variable v}

S 6= ∅ → C ; (|R| < L → R := R ∪ {x})
= {definition of guard}

S 6= ∅ ∧ ¬wp(C , |R| > L) → C ; (|R| < L → R := R ∪ {x})
= {calculation, definition of C }

S 6= ∅ ∧ |R| < L → x := x ′.(x ′ ∈ S ); S := S − {x}; R := R ∪ {x}
Hence, the sending action is only enabled if its guard, S 6= ∅, and the guard of the procedure Trans , |R| < L,
both hold. The parallel composition of Snd and Rec′ is the action system T′′′′:

T′′′′ :: |[ var x ∈ integer;
do S 6= ∅ ∧ |R| < L →

x := x ′.(x ′ ∈ S ); S := S − {x}; R := R ∪ {x}
od

]|: S ,R

4. Refinement of action systems

As action systems are intended to be developed in a stepwise manner within the refinement calculus, this
must be extended to support the added features. The methods for refinement of action systems with parallel
composition [Bac90, BaW94] are here extended to the refinement of action systems with global procedures.
The methods are mainly based on data refinement of action systems. We will here extend data refinement of
action systems [Bac90] to data refinement of action systems with remote procedures by giving the necessary
proof rules for these. The main addition is that when we make a data refinement of an action system, the
procedure bodies of the action system have to be data refined as well, in addition to data refining the actions.

4.1. Data refinement

The refinement calculus for actions is based on the following definition. Action A is refined by action A′,
written A 6 A′, if, whenever A establishes a certain postcondition, so does A′:

A 6 A′ iff (∀Q .wp(A,Q) ⇒ wp(A′,Q))

Together with the monotonicity of wp this implies that for a certain precondition, A′ might establish a
stronger postcondition than A, i.e., reduce the nondeterminism of A. Furthermore, A′ might even establish
postcondition false, i.e., behave miraculously.



Data Refinement of Remote Procedures 285

Note that choice and sequential composition are both monotonic with respect to refinement in both
operands. Moreover, the refinement relation itself is reflexive and transitive.

Let now A be an action that refers to the variables x , z and A′ an action that refers to the variables x ′, z .
Furthermore, let R(x , x ′, z ) be an abstraction relation between the abstract local variables x , the concrete
local variables x ′ and the global variables z . Then action A is data refined by action A′ using the abstraction
relation R, denoted A 6R A′, if

(∀Q .R ∧ wp(A,Q) ⇒ wp(A′, (∃x .R ∧ Q))),

where Q is a predicate on the variables x , z and (∃x .R ∧ Q) is a predicate on x ′, z . Note that the global
variables z are not changed. From this definition it then follows that A 6R A′, if

(i) Refinement of guards: R ∧ gd (A′) ⇒ gd (A) and

(ii) Refinement of bodies:
(∀Q .R ∧ gd (A′) ∧ wp(bd (A),Q) ⇒ wp(bd (A′), (∃x .R ∧ Q))).

Example. Let us look at an example of an abstraction relation. Let A and A′ be the actions below:

A =̂ z < L → x := x ∪ {10}; z := z + 1

A′ =̂ z < L → x ′ := x ′ · 〈10〉; z := z + 1

Hence, the action A talks about a multiset x whereas A′ talks about a sequence x ′. The number of elements
in the set is kept in the variable z which is bounded from above by the constant L. We have that A 6R A′
using the abstraction relation

R(x , x ′, z ) =̂ x = mseq(x ′) ∧ z 6 L ∧ (10 ∈ x ⇒ 10 ∈ mseq(x ′)),

where mseq is a function that turns a sequence into a multiset.

Data refinement of procedures. Let us now extend the data refinement of actions to the data refinement of
procedures.

Let proc p(val x , res y) = P and let R(u , u ′, z , x , y) be an abstraction relation on the involved variables
such that

P 6R P ′,
where u and u ′ are the local variables of P and P ′, respectively, while z are the global variables of P and P ′.
We then have by the usual refinement rule above and the substitution principle for procedures that

|[ var x , y; x := a; P ; b := y ]| 6 |[ var x , y; x := a; P ′; b := y ]|,
i.e., the declaration of P , proc p(val x , res y) = P , is refined by the declaration of P ′, proc p(val x , res y) = P ′.

This result holds for all parameter passing mechanisms, call-by-value, call-by-result and call-by-value-result,
considered in this paper.

Example. Consider the following procedure bodies P and P ′ with the headers p(val e, res y):

P =̂ y < L → x := x ∪ {e}; y := y + 1

P ′ =̂ y < L → x ′ := x ′ · 〈e〉; y := y + 1

where x and x ′ stand for the multiset and sequence as above, and y keeps track of the number of elements
in the set. We then have with the call p(10, z ) that the declaration of the procedure P is refined by the
declaration of the procedure P ′:

|[ var e, y; e := 10; P ; z := y ]|
6
|[ var e, y; e := 10; P ′; z := y ]|

=
|[ var e, y; e := 10; (y < L → x := x ∪ {e}; y := y + 1); z := y ]|
6
|[ var e, y; e := 10; (y < L → x ′ := x ′ · 〈e〉; y := y + 1); z := y ]|



286 K. Sere and M. Waldén

when P 6R P ′ under the abstraction relation

R(x , x ′, e, y) =̂ x = mseq(x ′) ∧ y 6 L ∧ (e ∈ x ⇒ e ∈ mseq(x ′)).

The function mseq is as above. We note that we have effectively the same refinement as in the previous
example.

4.2. Data refinement of action systems

Let A and A′ be the two action systems
A :: |[ var z ∗, x := z0, x0;

proc p∗
1 = P1; . . . ; p∗

n = Pn ;
q1 = Q1; . . . ; ql = Ql ;

do A od
]|: u , r

A′ :: |[ var z ∗, x ′ := z0, x ′0;
proc p∗

1 = P ′
1; . . . ; p∗

n = P ′
n ;

q1 = Q ′
1; . . . ; ql = Q ′

l ;
do A′ [] H od

]|: u , r

Let R(x , x ′, z , u , f ) be an abstraction relation on the local variables x and x ′, the global variables z and
u , and the formal parameters f of the global procedures p and let every p be locally enabled. The action
system A is then data refined by A′ using R, denoted A 6R A′, if

(1) the abstraction relation is established by the initialisation for any initial values of u and f ,

(2) each global procedure body Pi is data refined by the corresponding procedure body P ′
i using R,

(3) if a global procedure Pi is enabled in action system A, so is P ′
i in A′ or else an action in A′ is enabled

whenever R holds,

(4) the action A is data refined by the action A′ using R,

(5) if the action A is enabled in A, then either A′ or H is enabled in A′ whenever R holds,

(6) the auxiliary action H is a stuttering action (see [AbL88, Bac90]) in the sense that it acts as a skip
statement on the global variables u , z , and

(7) the auxiliary action H will terminate when executed in isolation.

Note: (a) We assume that the formal parameters f1, . . . , fn of the procedures are all disjoint, and let f be the
list of all formal parameters, i.e., f = f1, . . . , fn . (b) We do not introduce any new procedures here. They can be
introduced into an action system as a separate step. (c) The refinement of the local procedures q is checked
via the refinement of the main actions where they are called.

The requirements (1)–(7) above are sufficient to guarantee correct data refinement between action systems
that are executed in isolation. When the action system A occurs in a parallel composition with other action
systems, we have to take this context into account and add one more condition on the data refinement.

(8) the context will preserve the abstraction relation R.

This condition allows us to refine the individual action systems in a parallel composition separately. The only
assumption we make about the components is that they all preserve the abstraction relation R.

The conditions (1)–(8) above are stated more formally in the following definition:

Definition 1. Let A and A′ be action systems as above and R(x , x ′, z , u , f ) some abstraction relation.
Furthermore, let every global procedure pi be locally enabled. Then A 6R A′, if

(1) Initialisation: R(x0, x ′0, z0, u , f ),

(2) Procedures: Pi 6R P ′
i ,

(3) Procedure guards: R ∧ gd (Pi ) ⇒ (gd (P ′
i ) ∨ gd (A′) ∨ gd (H )),

(4) Main actions: A 6R A′,
(5) Exit condition: R ∧ gd (A) ⇒ gd (A′) ∨ gd (H ),

(6) Auxiliary actions: skip 6R H , and



Data Refinement of Remote Procedures 287

(7) Termination of auxiliary computation: R ⇒ wp(do H od, true).

Furthermore, when A occurs in a parallel composition with another action system E, then A ‖ E 6R A′ ‖ E,
if for every action E in E:

(8) Non-interference: R ∧ wp(E , true) ⇒ wp(E ,R).

Relying on this definition we have the following theorem:

Theorem 1. Let A and A′ be as above and A 6R A′ for some R. Furthermore, let B be a full context of
A. Then

A ‖ B 6R A′ ‖ B.

Proof. The correctness of this theorem is shown as follows. We assume that the conditions (1) - (8) hold for
A and A′. With these assumptions we then show that A ‖ B 6R A′ ‖ B. Since B is a full context of A, we
can reduce data refinement with procedures to ordinary data refinement by expanding all the procedure calls
in A ‖ B. Hence, there will be no global procedures in A ‖ B and we can apply the corresponding proof rule
of Back [Bac90], which is the same as Definition 1, but without items (2) and (3) as Back considers action
systems without procedures.

Let B be the action of B. The main actions of the composed action system A ‖ B are the actions A and
B , while the action H is the auxiliary action. The conditions on the initialisation, the main action A and the
auxiliary action H for the composed action system A ‖ B 6R A′ ‖ B follow directly from the conditions (1),
(4), (6) and (7) for A 6R A′. The main action B where we substitute the calls on the procedures P and the
exit condition must, however, be explicitely studied for the composed action system.

The refinement B (Pi ) 6R B (P ′
i ) of the main action B with procedure Pi substituted for each call by the

action B with P ′
i substituted for each call is easily shown to be true by monotonicity of refinement. We have

that by (2) and (8) for A 6R A′ the procedure refinement Pi 6R P ′
i holds and the action B (P ′

i ) preserves the
invariant.

We check the exit condition (5) for A ‖ B 6R A′ ‖ B more carefully. We must show that

R ∧ (gd (A) ∨ gd (B (Pi ))) ⇒ gd (A′) ∨ gd (H ) ∨ gd (B (P ′
i ))

which is proved as follows:

R ∧ (gd (A) ∨ gd (B (Pi ))≡ {Pi locally enabled }
R ∧ (gd (A) ∨ (gd (B ) ∧ gd (Pi )))⇒ {(3)}
R ∧ (gd (A) ∨ (gd (B ) ∧ (gd (P ′

i ) ∨ gd (A′) ∨ gd (H ))))
⇒ { logic }

R ∧ (gd (A) ∨ (gd (B ) ∧ gd (P ′
i )) ∨ (gd (B ) ∧ (gd (A′) ∨ gd (H ))))

⇒ {(5) exit condition for A 6R A′}
R ∧ (gd (A′) ∨ gd (H ) ∨ (gd (B ) ∧ gd (P ′

i )) ∨ (gd (B ) ∧ (gd (A′) ∨ gd (H ))))
⇒ { conjunction elimination }

gd (A′) ∨ gd (H ) ∨ (gd (B ) ∧ gd (P ′
i )) ∨ (gd (A′) ∨ gd (H ))

⇒ { idempotence }
gd (A′) ∨ gd (H ) ∨ (gd (B ) ∧ gd (P ′

i ))≡ {P ′
i locally enabled }

gd (A′) ∨ gd (H ) ∨ gd (B (P ′
i ))

We have now shown that A ‖ B 6R A′ ‖ B is a correct data refinement in the sense of Back [Bac90] for an
arbitrary full context B of A. q

We observe that in case an action system A and its refinement A′ import a global procedure p which is
declared in action system B, it follows trivially by monotonicity that A 6R A′ holds, since action system B
containing the declaration of p is not changed in this refinement step.

The usefulness of data refinement for action systems comes from the fact that A 6 A′, if there exist an
abstraction relation R such that A 6R A′ [BaW94].



288 K. Sere and M. Waldén

Example. As an example of data refinement of action systems we consider a more realistic version of the
earlier sender-receiver system. Initially, we have three action systems, a sender Snd , a receiver Rec, and a
buffer Buf . The sender communicates with the buffer by making a (remote) call to the procedure Insert in
Buf . Similarly, the receiver extracts a messages from the buffer by making a call to the procedure Delete in
Buf .

We first show how the above system is described as the three action systems Snd ,Buf , and Rec:

Snd :: |[ var x ∈ integer;
do S 6= ∅ → x := x ′.(x ′ ∈ S ); S := S − {x}; Insert(x ) od

]|: S , Insert

Buf :: |[ var B ∈ bag of integer; l ∈ integer;
proc Insert∗(val v ∈ integer) = (B := B ∪ {v});
proc Delete∗(res v ∈ integer) =

(B 6= ∅ → v := v ′.(v ′ ∈ B ); B := B − {v});
B := ∅;
do B 6= ∅ → l := size(B ) od

]|:<>

Rec :: |[ var x ∈ integer;
do true → Delete(x ); R := R ∪ {x} od

]|: R,Delete

The action systems execute in parallel in the composed producer-consumer system Snd ‖ Buf ‖ Rec
communicating through the global procedures Insert and Delete. All the activity in this system is sequentialized
by the access to the shared resource B in the buffer process Buf . Recall that only independent actions, i.e.,
actions that do not share variables either directly or indirectly through procedure calls, can be executed in a
parallel fashion.

We next refine the buffer process Buf so that parallel activity becomes possible. The refinement Buf ′ is
shown below:

Buf ′ :: |[ var B1,B2 ∈ bag of integer; l ∈ integer;
proc Insert∗(val v ∈ integer) = (B1 := B1 ∪ {v});
proc Delete∗(res v ∈ integer) =

(B2 6= ∅ → v := v ′.(v ′ ∈ B2); B2 := B2 − {v});
B1,B2 := ∅, ∅;
do B1 6= ∅ ∨ B2 6= ∅ → l := size(B1 ∪ B2)
[] B1 6= ∅ → [H ]

|[ var x ∈ integer;
x := x ′.(x ′ ∈ B1); B1 := B1 − {x}; B2 := B2 ∪ {x}]|

od
]|:<>

Here the buffer B has been implemented by two buffers B1 and B2.
Let us now prove that the refinement Buf 6I Buf ′ is correct. We first have to choose an abstraction

relation I . We have replaced the set B with the two sets B1 and B2 as:

I (B ,B1,B2, Insert .v ,Delete.v ) =̂ B = B1 ∪ B2.

Following Definition 1 we have to show the following (we prefix the formal parameters with the corre-
sponding procedure names in order to keep them distinct):

(1) Initialisation: I (B0,B10,B20, Insert .v ,Delete.v ) evaluates to ∅ = ∅ ∪ ∅, which clearly holds.

(2) Procedures: There are two global procedures declared in Buf ′, Insert and Delete.
For Insert we have to show the condition

(B := B ∪ {Insert .v}) 6I (B1 := B1 ∪ {Insert .v}).
For Delete that is a guarded procedure we have to show both that

{B2 6= ∅}; (Delete.v := v ′.(v ′ ∈ B ); B := B − {Delete.v})
6I

(Delete.v := v ′.(v ′ ∈ B2); B2 := B2 − {Delete.v})
and

B = B1 ∪ B2 ∧ B2 6= ∅ ⇒ B 6= ∅
hold.



Data Refinement of Remote Procedures 289

(3) Procedure guards: For Insert we trivially have

(B = B1 ∪ B2) ∧ true ⇒ (true ∨ (B1 6= ∅ ∨ B2 6= ∅) ∨ (B1 6= ∅)),

while the condition for Delete evaluates to:

(B = B1 ∪ B2) ∧ (B 6= ∅) ⇒ ((B2 6= ∅) ∨ (B1 6= ∅ ∨ B2 6= ∅) ∨ (B1 6= ∅)).

(4) Main actions: There is one main action in Buf ′, which calculates the number of messages in the buffer.
The refinement of this action is shown with the following conditions:

{B1 6= ∅ ∨ B2 6= ∅}; (l := size(B )) 6I (l := size(B1 ∪ B2))

and

B = B1 ∪ B2 ∧ (B1 6= ∅ ∨ B2 6= ∅) ⇒ (B 6= ∅).

(5) Exit condition: The exit condition follows easily by substitution:

(B = B1 ∪ B2) ∧ (B 6= ∅) ⇒ (B1 6= ∅ ∨ B2 6= ∅) ∨ (B1 6= ∅)).

(6) Auxiliary actions: There is one auxiliary action in Buf ′, which transfers the messages from the buffer B1
to the buffer B2. The refinement of the auxiliary action H :

B1 6= ∅ → |[ var x ∈ integer;
x := x ′.(x ′ ∈ B1); B1 := B1 − {x}; B2 := B2 ∪ {x} ]|

is checked by substitution in skip 6I H . Since H refers only to local variables of Buf ′, condition (6) is
trivially true.

(7) Termination of auxiliary computation: The termination of auxiliary actions in Buf ′ is proved by sub-
stituting the auxiliary action H of Buf ′ into I ⇒ wp(do H od, true). To prove this, we use the variant
size(B1).

(8) Environment: As Buf occurs in a parallel composition with other action systems, we must check that
they preserve the abstraction relation I . This is immediately seen to be the case as I only mentions local
variables of Buf and Buf ′. The actions in Snd as well as Rec directly change the global variables S and
R and the local variables in the invariant only via its global procedures whose correctness was proved in
(2) above.

The conditions above for Buf are easily seen to be true and, thus, Buf 6I Buf ′ is a correct data
refinement. Due to this and since Snd ‖ Rec is a full context of Buf , it follows from Theorem 1 that

Snd ‖ Buf ‖ Rec 6I Snd ‖ Buf ′ ‖ Rec.

4.3. Special cases of data refinement

Theorem 1 gives a very general rule for refining action systems with exported procedures. In this section
we study two possible special cases of the theorem w.r.t. the conditions on procedures. It follows from the
theorem that in the refined system A′ it may be the case that the procedure P ′

i is never enabled even though
the corresponding procedure Pi in A is enabled (see condition (3) of Definition 1). This has to do with the
fact that nondeterminism is decreased by refinement steps.

If we want to assure that the procedure P ′
i eventually will be enabled in A′ in case Pi is enabled in A,

we need a stronger condition to replace the condition (3). The following corollary of Definition 1 gives such
a condition:

Corollary 1. Let A and A′ be action systems and R(x , x ′, u , z , f ) some abstraction relation as in Definition 1.
Then A 6R A′ under the conditions of Definition 1, if the condition (3) is replaced with the condition

R ∧ gd (Pi ) ⇒ (gd (P ′
i ) ∨ wp(do ¬gd (P ′

i ) → (A′ [] H ) od, true)).

Proof. We need to prove that the condition in Corollary 1 implies condition (3) in Definition 1:

(gd (P ′
i ) ∨ wp(do ¬gd (P ′

i ) → (A′ [] H ) od, true)) ⇒ (gd (P ′
i ) ∨ gd (A′) ∨ gd (H ))

Let us assume that the left hand side of the implication holds. Then either gd (P ′
i ) holds or P ′

i will eventually be



290 K. Sere and M. Waldén

enabled by A′ [] H as indicated by the wp-clause. In case gd (P ′
i ) holds then the right hand side of the implication

trivially follows. On the other hand, if ¬gd (P ′
i ) holds, the loop do ¬gd (P ′

i ) → (A′ [] H ) od eventually terminates
in a state where gd (P ′

i ) holds. Hence, ¬gd (P ′
i ) ⇒ gd (A′ [] H ), where gd (A′ [] H ) = gd (A′) ∨ gd (H ). We have

that the wp-expression on the left hand side implies ¬gd (P ′) ∧ (gd (A′) ∨ gd (H )), which in turn implies the
right hand side. q

An example of using this rule is given by Waldén [Wal98] when deriving a distributed load balancing
algorithm.

Since the global procedures in an action system are called from other action systems, it is sometimes
preferred that the guards of the procedures before and after the refinement are equivalent under the abstraction
relation R. The following corollary captures this:

Corollary 2. Let A and A′ be action systems and R(x , x ′, u , z , f ) some abstraction relation as in Definition 1.
Then A 6R A′ under the conditions of Definition 1, if the condition (3) is replaced with the condition

R ∧ gd (Pi ) ⇒ gd (P ′
i ).

Proof. The above condition trivially implies the condition in Corollary 1. This condition together with
condition (2) implies that the guards are equivalent under R. q

Observe that the above corollary corresponds to the refinement rule originally studied by Back and Sere
[BaS94] in their Definition 4.1. A closer look at their rule reveals that the guards of a procedure and its
refinement need to be equivalent. Thus, the main result of [BaS94] corresponds to a special case, Corollary 4,
of the refinement rule in this paper.

Example. By refining the action system Buf in a slightly different manner than in the previous subsection,
we need not strengthen the guard of the procedure Delete. We can, thus, use the condition (3) of Corollary 2
when proving that this new action system Buf ′′ is a refinement of the old specification Buf according to
Definition 1.

Let the action system Buf ′′ be as follows:

Buf ′′ :: |[ var B1,B2 ∈ bag of integer;
proc Insert∗(val v ∈ integer) = (B1 := B1 ∪ {v});
proc Delete∗(res v ∈ integer) =

(B1 6= ∅ ∨ B2 6= ∅ →
do B16= ∅ →

|[ var x ∈ integer;
x := x ′.(x ′ ∈ B1); B1 := B1 − {x};
B2 := B2 ∪ {x}

]|
od;

(B2 6= ∅ → v := v ′.(v ′ ∈ B2); B2 := B2 − {v})
);

B1,B2 := ∅, ∅;
do B1 6= ∅ ∨ B2 6= ∅ → l := size(B1 ∪ B2) od

]|:<>

The buffer B in Buf has been implemented by the two buffers B1 and B2 in Buf ′′ and the abstraction
relation I (B ,B1,B2, Insert .v ,Delete.v ) is B = B1 ∪ B2. We now prove that the refinement Buf 6I Buf ′′ is
correct.

The conditions (1)–(4) of Definition 1 for the initialisation, the procedure Insert and the main action were
already shown for Buf 6I Buf ′ in the example of the previous subsection, since these constructs are the
same in Buf ′′ as in Buf ′. Also the environment Snd ‖ Rec considered here is the same as in the previous
subsection and, hence, also condition (8) has been proven. Since there are no auxiliary actions in Buf ′′, the
conditions (6) and (7) are trivial. This leaves condition (2) and (3) for procedure Delete, as well as condition
(5) to be shown.

(2) Procedures: For Delete we show that

(B 6= ∅ → Delete.v := v ′.(v ′ ∈ B ); B := B − {Delete.v})
is data refined by



Data Refinement of Remote Procedures 291

(B16= ∅ ∨ B2 6= ∅ →
do B16= ∅ →

|[ var x ∈ integer;
x := x ′.(x ′ ∈ B1); B1 := B1 − {x}; B2 := B2 ∪ {x} ]|

od;
(B2 6= ∅ → v := v ′.(v ′ ∈ B2); B2 := B2 − {v})

)

using I . It is clear that the statement part is correctly data refined, as relying on R if an element is removed
from B , it is the same as removing an element from B1 ∪ B2. As B1 6= ∅ ∨ B2 6= ∅ holds, we may have that
B1 contains a number of elements. These are then in an arbitrary order moved to B2 making B1 empty. The
loop holds B1 ∪ B2 invariant and it terminates, as size(B1) decreases at each iteration with one. Thereafter,
B2 6= ∅ necesserily holds, and an element can be removed from B2. We also have to show that

(B = B1 ∪ B2) ∧ (B1 6= ∅ ∨ B2 6= ∅) ⇒ B 6= ∅,
which as well is trivially true, since the guards of the procedures Delete in Buf and Buf ′′ are even equivalent
under the abstraction relation I .

(3) Procedure guards: For the guards of Delete we further show that

(B = B1 ∪ B2) ∧ B 6= ∅ ⇒ B1 6= ∅ ∨ B2 6= ∅.
This is trivially true, due to the equivalence between these guards under I .

(5) Exit condition: The exit condition is proved by

(B = B1 ∪ B2) ∧ B 6= ∅ ⇒ B1 6= ∅ ∨ B2 6= ∅,
since the main actions are the only actions in Buf and Buf ′′. The condition is trivially true, because the
guards of the main actions in Buf and Buf ′′ are equivalent under I .

Due to the above reasoning and since Snd ‖ Rec is a full context of Buf , it follows from Theorem 1 that

Snd ‖ Buf ‖ Rec 6I Snd ‖ Buf ′′ ‖ Rec.

Superposition refinement. In the so called superposition refinement new functionality is added to a system
while preserving the old functionality. Theorem 1 can be used for proving the correctness of superposition
refinement of action systems with procedures by restricting the way old variables are replaced by new ones.
The variables x ′ in A′ are defined as x ′ = x ∪ y , where x are the variables of A and y are some auxiliary
variables added to the refined action system. The superposition method with procedures is studied and used
to derive and analyse distributed algorithms in various ways by Waldén [Wal98].

5. Atomicity refinement of global procedures

An important refinement rule for action systems is the atomicity refinement. This possibly leads to an
increased degree of parallelism in the system, because concurrency within action systems is modelled by
allowing independent actions to be executed in parallel. In the presence of procedures, we can increase the
number of such actions by splitting a procedure body into a number of actions and allowing the return from
a procedure call to take place before the completion of the procedure body. The rest of the procedure body
then constitutes an action of its own. In the action systems framework this amounts to refining the atomicity
of an action.

In this section we consider two typical cases of atomicity refinement as an example on the general data
refinement rule for action systems with global procedures. In the work of Back and Sere [BaS94] only the
first case of transformation is considered. Moreover, in the previous work [BaS94, SeW97] there are more
restrictions on the syntactical structure of the actions within the transformations, which are relaxed here. The
proofs are given here in a somewhat informal manner, but they can be fully formalized and hints for that are
given in connection to the proofs.

Transformation 1. Consider an action system
A :: |[ var v∗, x := v0, x0;

proc p∗ = (gd (T ) ∨ gd (B ) → do T [] B od);
do A od

]|: z



292 K. Sere and M. Waldén

where the global procedure p is of the given form. Note that a call on p and the calling action together form
an atomic action as usual. Moreover, p is required to be locally enabled.

We want to refine A to
A′ :: |[ var v∗, x := v0, x0;

proc p∗ = T ;
do A [] B od

]|: z

The effect of the above transformation becomes clear when we look at the action systems in a full contextE,

E :: |[ var w∗, y := w0, y0;
do C [] D od

]|: u , p

where action C calls p and D is some other action not calling p. We have that

A ‖ E :: |[ var v∗,w∗, x , y := v0,w0, x0, y0;
proc p = (gd (T ) ∨ gd (B ) → do T [] B od);
do A [] C [] D od

]|: z , u

Hence, action B is only executed as part of calling p in a single atomic action C in A ‖ E, while B is executed
interleaved with actions A,C ,D in the composed action system A′ ‖ E:

A′ ‖ E :: |[ var v∗,w∗, x , y := v0,w0, x0, y0;
proc p = T ;
do A [] B [] C [] D od

]|: z , u

Observe that we consider a full context E that makes p local to A ‖ E and A′ ‖ E.

Correctness. We need to show under which conditions the system A is correctly data refined by A′. These
conditions are given by the following lemma:

Lemma 1. Let A and A′ be as above. Furthermore, let R be the trivial abstraction relation that does not
change the global variables (v = v ′) of A and let p as well as B be locally enabled in A. Then A 6R A′, if
we have that

(i) R ⇒ wp(T ,¬gd (T ) ∧ ¬gd (B )),

(ii) R ∧ (gd (T ) ∨ gd (B )) ⇒ wp(do ¬gd (T ) → B od, true),

(iii) skip 6R B , and

(iv) R ⇒ wp(do B od, true).

Furthermore, when A occurs in a parallel composition with another action system F then A ‖ F 6R A′ ‖ F,
if for every action F in F

R ∧ wp(F , true) ⇒ wp(F ,R).

The effect of the above transformation is that of refining the atomicity of the procedure body of p. Let us
see what the conditions of the lemma tell us. The procedure p is given in a general form in the action system
A. In order to be able to refine the procedure p to T in A′, the actions T and B of procedure p in A have
to fulfill the following restrictions. Firstly, the action T has to disable itself, condition (i), since it should be
executed only once at a call on p, because this is the effect of p in the refined system A′. Secondly, the action
B should eventually enable T , so that T is executed at least once. Since B enables T , condition (ii), T has to
disable the action B , condition (i), to prohibit the action T to be enabled more than once within the loop in
A.

For the proof we will need the following property of actions A and B . We say that A commutes with B , if
A; B 6 B ; A. This again holds, if

(a) B cannot enable A,

(b) A cannot disable B , and

(c) {gd (A) ∧ gd (B )}; bd (A); bd (B ) 6 bd (B ); bd (A).

This and other similar properties for actions have been studied elsewhere [BaS89].



Data Refinement of Remote Procedures 293

Proof. The above lemma is a special case of Theorem 1. Hence, we need to show the correctness of conditions
(1)–(8) of Definition 1.

Since the initialisation and the action A are the same in A and A′, and due to the nature of the guard of
procedure p, the conditions (1), (3), (4) and (5) hold trivially. Furthermore, since the conditions (iii) and (iv)
as well as the environment condition in the above lemma hold, also conditions (6)–(8) hold trivially. Hence,
the refinement of the procedure p, condition (2), is the only non-trivial condition to prove:

(gd (T ) ∨ gd (B ) → do T [] B od) 6R T .

We proceed by considering the three different cases when the procedure p in A is enabled.

- In case gd (T ) ∧ gd (B ) holds, either T or B can be executed. If T is executed first then the loop terminates
due to condition (i) which states that T disables itself and B . On the other hand, if B is executed first,
eventually gd (T ) will hold due to condition (ii) and the actions B will not be executed forever due to
condition (iv).

- In case gd (T ) ∧ ¬gd (B ) holds, the action T can be executed and the loop terminates immediately due to
condition (i).

- In case ¬gd (T ) ∧ gd (B ) hold, the action B is executed first enabling the action T at some point due to
condition (ii) as in the first case above.

Thus, T will be executed once and T is a refinement of the original procedure body in all the possible cases.

To formally prove the above cases we need the fact that the action calling T commutes with the action B .
These commute, due to condition (iii) which states that B only assigns to local variables, i.e., it is a refinement
of skip, and the fact that p is locally enabled. Hence, the calling action cannot enable or disable B . q

We observe that this lemma corresponds to Lemma 1 by Back and Sere [BaS94].

Example. Let us now give an example of the atomicity refinement. We again consider a buffer system as in
the previous sections. The buffer system Buf1 is as follows:

Buf1 :: |[ var B1,B2 ∈ bag of integer; trans ∈ boolean;
proc Insert∗(val v ∈ integer) = (B1 := B1 ∪ {v});
proc Delete∗(res v ∈ integer) =

((B1 6= ∅ ∨ B2 6= ∅) ∧ ¬trans →
do B16= ∅ ∧ ¬trans →

|[ var x ∈ integer;
x := x ′.(x ′ ∈ B1); B1 := B1 − {x};
B2 := B2 ∪ {x} ]|

[] B2 6= ∅ ∧ ¬trans →
v := v ′.(v ′ ∈ B2); B2 := B2 − {v}; trans := true

od
);

B1,B2 := ∅, ∅; trans := false;
do trans → trans := false od

]|:<>

As in the examples in the previous section the procedure Insert adds elements to the buffer B1. The procedure
Delete contains a loop that either transfers an element from the buffer B1 to the buffer B2 or removes an
element from B2. When an element is removed from B2, the buffer system Buf1 assigns true to the boolean
variable trans . In this way it states that an element has been removed from B2 as the result of calling the
Delete-procedure and the loop within Delete terminates. In the worst case, if the loop chooses to empty the
buffer B1, the action calling Delete will have to wait for the element from the buffer B2 to be removed. An
action in Buf1 takes care of assigning false to the variable trans again, in order to allow another element to
be removed from B2.

We refine the atomicity of Buf1 according to Lemma 1 and thereby get the action system Buf ′
1 below.



294 K. Sere and M. Waldén

Buf ′
1 :: |[ var B1,B2 ∈ bag of integer; trans ∈ boolean;

proc Insert∗(val v ∈ integer) = (B1 := B1 ∪ {v});
proc Delete∗(res v ∈ integer) =

(B2 6= ∅ ∧ ¬trans →
v := v ′.(v ′ ∈ B2); B2 := B2 − {v}; trans := true);

B1,B2 := ∅, ∅; trans := false;
do trans → trans := false
[] B1 6= ∅ ∧ ¬ trans → [H ]

|[ var x ∈ integer;
x := x ′.(x ′ ∈ B1); B1 := B1 − {x}; B2 := B2 ∪ {x} ]|

od
]|:<>

In Buf ′
1 the procedure Delete is reduced to deleting an element from B2 and an auxiliary action, marked H ,

transferring data from B1 to B2 is introduced. Thus, Buf ′
1 is more atomic than Buf1 in the sense that the

action calling the procedure Delete does not have to wait for the transferring of data from B1 to B2 in Buf ′
1 .

The transferring is taking place in action H in parallel with the rest of the actions. The variables are not
changed in this refinement step, so the abstraction relation R is the trivial predicate true, since there are no
global variables.

Since the difference between the action systems Buf1 and Buf ′
1 lies in the way the elements are transferred

from B1 to B2, it is reasonable to have an abstraction relation that states that the total length of these buffers
are unchanged

size(B1) + size(B2) = size(B1′) + size(B2′).
The unprimed variables refer to variables in Buf1 and the primed to variables in Buf ′

1 .
We can now verify that the data refinement Buf1 6R Buf ′

1 is correct by showing that the conditions in
Lemma 1 hold.

(i) First we prove that the procedure Delete in Buf ′
1 will disable itself and the auxiliary procedure:

R ∧ B2 6= ∅ ⇒ wp((v := v ′.(v ′ ∈ B2); B2 := B2 − {v}; trans := true),
¬(B1 6= ∅ ∨ B2 6= ∅) ∨ trans).

Since trans is assigned true, condition (i) holds trivially.

(ii) The auxiliary action H will establish the guard of the procedure Delete in Buf ′
1 . This can be shown by

substitution as follows:

R ∧ (B1 6= ∅ ∨ B2 6= ∅) ∧ ¬ trans ⇒
wp(do (B2 = ∅ ∨ trans) → H od, true)

We consider two cases for the proof. In the first case we consider B2 not to be empty and ¬trans to
hold, then Delete is immediately enabled and the loop do (B2 = ∅ ∨ trans) → H od terminates. In the
other case where B2 is empty and ¬trans holds, B1 is not empty according to the lefthand side of the
implication. The auxiliary action H is then enabled and executed. It thereby transfers an element to B2,
enables Delete and terminates the loop. Hence, condition (ii) holds.

(iii) The auxiliary action H refines skip, since it only refers to local variables of Buf ′
1 and, thus, condition

(iii) holds.

(iv) By taking size(B1) as a variant for the loop do H od, we can easily see that the last condition for
atomicity refinement holds:

R ⇒ wp(do H od, true).

Each time H is executed, the number of elements in B1 will be decreased by one. Since there is a finite
number of elements in B1 at the beginning of the loop execution, the loop will eventually terminate and,
hence, condition (iv) holds.

Hence, Buf ′
1 is a correct atomicity refinement of Buf1 using R.

Transformation 2. The condition (i) in Lemma 1 states that the procedure body T needs to be of a certain
restricted form. The restrictions on T are not needed if we instead consider the procedure body p of the
action system A to be:

gd (T ) ∨ gd (B ) → (do B od; T ).

The correctness of A 6R A′ is then stated in the following corollary of Lemma 1.



Data Refinement of Remote Procedures 295

Corollary 3. Let the procedure p be gd (T ) ∨ gd (B ) → (do B od; T ) in A above. For the rest let A,A′ and
R be as above. Then A 6R A′, if we have that

(i) R ∧ (gd (T ) ∨ gd (B )) ⇒ wp(do B od, gd (T )),

(ii) skip 6R B , and

(iii) R ⇒ wp(do B od, true).

Furthermore, when A occurs in a parallel composition with another action system F then A ‖ F 6R A′ ‖ F,
if for every action F in F

R ∧ wp(F , true) ⇒ wp(F ,R).

Here we require that the action B when executed in isolation will terminate, condition (iii), and at termination
gd (T ) will hold, condition (i), whenever R holds.

This transformation would be slightly more general, if p would be of the form gd (T ) → (S ; T ), where
S is an always enabled and terminating statement, and the conditions (i) and (ii) with proper substitutions
would hold. However, we want to preserve the syntactic structure.

Proof. We again proceed proving the refinement of the procedure p:

(gd (T ) ∨ gd (B ) → (do B od; T )) 6R T

as the only non-trivial condition from Definition 1.
We consider the same cases as for Lemma 1 when procedure p in A is enabled.

- In case gd (T )∧gd (B ) holds, the action B is executed a number of times. It will terminate due to condition
(iii) and gd (T ) will hold at termination due to condition (i). After that T is executed.

- In case gd (T ) ∧ ¬gd (B ) holds, the loop with B actions will terminate immediately and the action T is
executed, because gd (T ) holds.

- In case ¬gd (T ) ∧ gd (B ) holds, the behaviour is as in the first case, where T is enabled upon termination
of the loop due to condition (i) and executed.

Thus, T will be executed once and it is a refinement of the original procedure body in all the possible cases.
For the formal proof, the same facts are needed as above in the proof of the previous lemma. q

Example. We now give an example of this kind of atomicity refinement. Again we consider a variant of the
buffer system, Buf2:

Buf2 :: |[ var B1,B2 ∈ bag of integer;
proc Insert∗(val v ∈ integer) = (B1 := B1 ∪ {v});
proc Delete∗(res v ∈ integer) =

(B1 6= ∅ ∨ B2 6= ∅ →
do B16= ∅ →

|[ var x ∈ integer;
x := x ′.(x ′ ∈ B1); B1 := B1 − {x};
B2 := B2 ∪ {x} ]|

od;
(B2 6= ∅ → v := v ′.(v ′ ∈ B2); B2 := B2 − {v})

);
B1,B2 := ∅, ∅;

]|:<>

The procedure Insert is the same as in the previous examples. However, the procedure Delete now transfers
the elements in the buffer B1 to the buffer B2 and then removes an element from B2.

We refine the atomicity of the action system Buf2 following Corollary 3 into the action system Buf ′
2:

Buf ′
2 :: |[ var B1,B2 ∈ bag of integer;

proc Insert∗(val v ∈ integer) = (B1 := B1 ∪ {v});
proc Delete∗(res v ∈ integer) =

(B2 6= ∅ → v := v ′.(v ′ ∈ B2); B2 := B2 − {v});
B1,B2 := ∅, ∅;
do B16= ∅ → [H ]

|[ var x ∈ integer;
x := x ′.(x ′ ∈ B1); B1 := B1 − {x}; B2 := B2 ∪ {x} ]|

od
]|:<>



296 K. Sere and M. Waldén

As in the previous example on atomicity refinement Delete is reduced to remove elements from buffer B2,
while the auxiliary action, H , transfers the elements from B1 to B2. The abstraction relation R is again true
stating that the variables are not changed and that there are no global variables.

We can now show that the atomicity refinement Buf2 6R Buf ′
2 is correct by proving the three conditions

of Corollary 3.
In condition (i) the auxiliary action H enables the procedure Delete as follows:

R ∧ (B1 6= ∅ ∨ B2 6= ∅) ⇒ wp(do H od,B2 6= ∅).

We assume that either B1 or B2 is not empty. In case B1 would be empty, B2 is not empty and the loop
immediately terminates in (B2 6= ∅). On the other hand, if B1 is not empty, then the auxiliary action H will
be enabled and elements moved to B2 which then not will be empty upon termination of the loop. Hence,
condition (i) holds.

Conditions (ii) and (iii) for the auxiliary action H hold due to a similar reasoning as in the previous
example on atomicity refinement.

Hence, Buf ′
2 is a correct atomicity refinement of Buf2 using R according to Corollary 3.

6. Concluding remarks

The methods for handling procedure calls and action systems developed within the refinement calculus were
extended in order for them to be applicable to the action systems framework with remote procedures. We
developed a general data refinement rule together with some realistic rules that have stronger assumptions. In
practice, the stronger rules might be preferable, as for example the rules for atomicity refinement that allows
us to increase the potential concurrency.

The main requirement we impose on procedures is that they are locally enabled. This implies that the
guards of the remote procedures are not required to refer to local variables only, but are allowed to refer
also to global variables. This is good for our purposes in this paper, because we want to have compositional
proof rules which allow modular reasoning. Compared to Back and Sere [BaS94] this is different, since they
require the guards of a procedure and its refinement to be equivalent.

The work of Udink [Udi95] is related to ours in the sense that Udink extends the UNITY framework
with remote procedure calls and develops the needed proof rules. His procedures are, however, of a more
restricted format, as he does not allow guarded procedures. Thus, in our formalism his procedures are always
enabled. Furthermore, Udink does not develop special rules for atomicity refinement as we do here.

The general mechanism for communication, remote procedures with guards, gives rise to some inter-
esting implementation issues, where efficiency of implementation has to be traded against generality of the
mechanism. More on this is discussed by Back and Sere [BaS94]. For interesting applications on designing
distributed algorithms and their communication structures, as well as on the connection of action systems
with remote procedures and the B Method [Abr96], the reader is referred to Waldén [Wal98].

Acknowledgements

The work reported here was carried out within the Cocos-project supported by the Academy of Finland.
The authors would like to thank Ralph Back and Michael Butler for comments on the topics treated here.
Interesting and fruitful discussions with Jean-Raymond Abrial, Marcello Bonsangue and Emil Sekerinski
have also been of help when prepearing this paper.

References

[AbL88] Abadi, M. and Lamport, L.: The existence of refinement mappings. In Proc. of the 3rd Annual IEEE Symp. on Logic In
Computer Science, Edinburgh, pp. 165–175, 1988.

[Abr96] Abrial, J.-R.: The B-Book: Assigning Programs to Meanings. Cambridge University Press, 1996.
[Bac78] Back, R. J. R.: On the Correctness of Refinement Steps in Program Development. PhD thesis, Department of Computer

Science, University of Helsinki, Helsinki, Finland, 1978. Report A–1978–4.
[Bac87] Back, R. J. R.: Procedural abstraction in the refinement calculus. Department of Computer Science, Åbo Akademi University,

Turku, Finland, 1987. Report A–55.



Data Refinement of Remote Procedures 297

[Bac90] Back, R. J. R.: Refinement calculus, part II: Parallel and reactive programs. In J. W. de Bakker, W.-P. de Roever, and
G. Rozenberg, editors, Stepwise Refinement of Distributed Systems: Models, Formalisms, Correctness. Proceedings. 1989,
volume 430 of Lecture Notes in Computer Science, pp. 67–93. Springer-Verlag, 1990.

[BaK83] Back, R. J. R. and Kurki-Suonio, R.: Decentralization of process nets with centralized control. In Proc. of the 2nd ACM
SIGACT–SIGOPS Symp. on Principles of Distributed Computing, pp. 131–142, 1983.

[BMS96] Back, R. J. R., Martin, A. J. and Sere, K.: Specifying the Caltech asynchronous microprocessor. Science of Computer
Programming 26(1996), pp. 79–97, Elsevier.

[BaS89] Back, R. J. R. and Sere, K.: Stepwise refinement of parallel algorithms. Science of Computer Programming 13, 133–180,
1989.

[BaS94] Back, R. J. R. and Sere, K.: Action systems with synchronous communication. In E.-R. Olderog, editor, Programming
Concepts, Methods and Calculi (PROCOMET’94), IFIP Transactions A–56, pp. 107–126, North–Holland 1994.

[BaW89] Back, R. J. R. and Wright, J. von: Refinement calculus, part I: Sequential nondeterministic programs. In J. W. de Bakker,
W.-P. de Roever, and G. Rozenberg, editors, Stepwise Refinement of Distributed Systems: Models, Formalisms, Correctness.
Proceedings. 1989, volume 430 of Lecture Notes in Computer Science, pp. 42–66. Springer-Verlag, 1990.

[BaW94] Back, R. J. R. and Wright, J. von: Trace refinement of action systems. In Proc. of CONCUR’94. volume 836 of Lecture
Notes in Computer Science, pages 367–384, Uppsala, Sweden, August 1994. Springer-Verlag.

[BKS98] Bonsangue, M. M., Kok, J. N. and Sere, K.: An Approach to Object-Orientation in Action Systems. In Proc. of Mathematics
of Program Construction (MPC’98), volume 1422 of Lecture Notes in Computer Science, Marstrand, Sweden, June 1998.
Springer-Verlag.

[BMS96] Broy, M., Merz, S. and Spies, K. editors: Formal Systems Specification: The RPC-Memory Specification Case Study. Pro-
ceedings, volume 1169 of Lecture Notes in Computer Science. Springer-Verlag, 1996.

[ChM88] Chandy, K. and Misra, J.: Parallel Program Design: A Foundation. Addison-Wesley, 1988.
[Dij76] Dijkstra, E. W.: A Discipline of Programming. Prentice-Hall International, 1976.
[Fra89] Francez, N.: Cooperating proofs for distributed programs with multiparty interactions. Information Processing Letters,

32:235–242, 1989.
[Kur96] Kurki-Suonio, R.: Incremental specification with joint actions: The RPC-memory specification problem. In [BMS96].
[Mor88a] Morgan, C. C.: Procedures, parameters, and abstraction: Separate concerns. Science of Computer Programming, 11(1):17–28,

1988.
[Mor88b] Morgan, C. C.: The specification statement. ACM Transactions on Programming Languages and Systems, 10(3):403–419,

July 1988.
[Mor87] Morris, J. M.: A theoretical basis for stepwise refinement and the programming calculus. Science of Computer Programming,

9:287–306, 1987.
[SeW97] Sere, K. and Waldén, M.: Data Refinement of Remote Procedures. In Proc. of International Symposium on Theoretical

Aspects of Computer Software (TACS’97), volume 1281 of Lecture Notes in Computer Science, Sendai, Japan, September
1997. Springer-Verlag.

[Tan92] Tanenbaum, A. S.: Modern Operating Systems. Prentice-Hall International, 1992.
[Udi95] Udink, R.: Program Refinement in UNITY–like Environments. Ph.D. thesis, Department of Computer Science, University of

Utrecht, Utrecht, The Netherlands, 1995.
[Wal98] Waldén, M.: Formal Reasoning About Distributed Algorithms. Ph.D. thesis, Department of Computer Science, Åbo Akademi

University, Finland, 1998.

Received February 1999

Accepted in revised form July 2000 by C B Jones and D J Cooke


