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Abstract. Specifications and programs make much use of nondeterministic and/or
partial expressions, i.e. expressions which may yield several or no outcomes for
some values of their free variables. Traditional 2-valued logics do not comfortably
accommodate reasoning about undefined expressions, and do not cater at all for
nondeterministic expressions. We seek to rectify this with a 4-valued typed logic
E4 which classifies formulae as either “true”, “false”, “neither true nor false”, or
“possibly true, possibly false”. The logic is derived in part from the 2-valued logic
E and the 3-valued LPF, and preserves most of the theorems of E. Indeed, the
main result is that nondeterminacy can be added to a logic covering partiality at
little cost.

1. Introduction

The basic idea of a function as a rule which determines a unique outcome for any
given input (in a certain domain) is intuitively simple, and adequately describes
most of the functions we meet in everyday mathematics. Just occasionally we have
to stretch the point a little, as in the case of the integer division function, where
we have to either invent some outcome for division by zero, or introduce the
notion of partial functions. In mathematics these exceptions are for the most part
just an occasional irritation, but in reasoning about programs and specifications
of programs, they are the rule. For example, in computing we naturally define
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computation rules recursively, where the recursion need not describe any outcome
for inputs which do not interest the customer. Indeed, not only may rules fail to
specify any outcome, in program specifications we meet functions which admit
any of several outcomes for a given input. This arises when the customer tells
us that a range of behaviours is acceptable. For example, the customer might
be a university asking for a function that displays a list of its best students
in alphabetical order by surname, not caring how two students with the same
surname are ordered. We present a logic for reasoning uniformly about partial
and nondeterministic expressions.

Familiar two-valued logics do not comfortably admit reasoning about partial
or multi-valued functions. As an example of partiality consider

(∀x:Z • x > 0 ⇒ fac(x) > 0)

where fac =̂ fun x:Z • if x = 0 then 1 else x ∗ fac(x − 1) fi. For x < 0, the definition
of fac assigns no outcome to fac(x) (and indeed a computer evaluation of such
a fac(x) would fail to terminate), and so the consequent in x > 0 ⇒ fac(x) > 0
is undefined. Nevertheless, all reasonable people would interpret the statement as
valid, and we would like the formal logic we use to accord with this. Such a logic
will have to cope with formulae such as fac(x) > 0, which for some values of
their free variables are neither true nor false, but have the status of “neither true
nor false”.

To see how multi-valued expressions arise, consider for example the assertion

(2x:Z | x2 6 n < (|x| + 1)2) v f(|n|, 0)

where f =̂ fun n, x:Z • if n < (x + 1)2 then x else f(n, x + 1) fi. Here, the term on
the left hand side is a specification of the integer part of the square root of
n, where n stands for an integer. For 2 read “some”, for “: Z” read “of type
integer”, for “|” read “such that”, and for “|x|” read “the absolute value of x”.
It has no outcome if n is negative, and otherwise has two possible outcomes
(the positive and negative square roots). For “v” read here “is implemented
by”; roughly speaking, a function implements a specification if for every input
for which the specification defines at least one outcome, the function delivers
one of those outcomes. (“Input” in the preceding means a binding of free
variables.) The expression on the right-hand side of v is a function which yields
the positive square root of |n|, fraction dropped. It meets the requirements laid
down in the specification and so the assertion is true. We would like our logic
to accommodate such assertions. Clearly we will be faced with formulae, such as
(2x:Z • x2 6 10 < (x + 1)2) > 0, with the status “possibly true, possibly false”.

We conclude that formal reasoning about specifications and programs has
good use for a logic which classifies formulae as “true”, “false”, “neither true
nor false”, or “possibly true, possibly false”. It might seem at first sight that a
four-valued logic would prove hopelessly unwieldy in comparison with two-valued
logics, but we shall see that this is not necessarily so.

The logics that interest us is a family of equational logics that includes E,
E3, E2, and E4. E is an equational version of classical predicate logic, and is
described in [DiS90] and [GrS93]. E3 is a three-valued logic with values “true”,
“false”, and “neither true nor false” which preserves “most” of the theorems
of E. It is, in essence, a fusion of E and the three-valued typed LPF [JoM94],
and has been described in [MoB98]. In this paper we present E2 for handling
nondeterminacy, and E4 for handling partiality and nondeterminacy together,
and we show how all the logics in the family are closely related.
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2. E3: Partiality

We begin by briefly summarising E3 (see [MoB98] for more details). The language
of E3 is a collection of terms (also called expressions), each one associated with
a “type”. Types are denoted by type symbols. The letters E, F , G, and t (possibly
subscripted) stand for terms in general, and the letters T and U stand for
type symbols. We classify expressions as being either “defined” or “undefined”.
Informally, we use the symbol ⊥ to represent an undefined term.

For each type we are given an infinite supply of “variable symbols”. We use
the letters x and y to stand for variable symbols. Variable symbols are terms (of
the type with which they are associated). For each type we are also given a supply
of atomic terms, called “constants”.

We are given one type symbol B (pronounced “bool”). Terms of type B are
called “formulae”; we let P , Q, and R stand for formulae. True and False are
constants of type B and hence are formulae. Further formulae are composed in
the standard way using the “boolean connectives” ∧, ∨ , ⇒, ¬, ∆, ≡, 6≡, =, and
the quantifiers ∀ and ∃. Intuitively, the term ∆E means “E is defined”. The syntax
of quantifiers is (∀x:T • P ), (∀x:T | R • P ), (∃x:T • P ) and (∃x:T | R • P ); the
syntax of formulae is otherwise standard. Whenever we write a quantification
(∀x:T • P ) etc. we require that x be of type T , but we will not explicitly say so
on each occasion. Brackets may be omitted using the following precedence list
(highest first):

∆ ¬ ∧,∨ = 2 ⇒ v ≡, 6≡

(The list anticipates the introduction of symbols 2 and v later on.) Note that
∧ and ∨ have the same operator precedence, as have ≡ and 6≡. It turns out that
∧ and ∨ are associative, and we use this fact from the outset to omit brackets.
Prefix unary operators such as ¬ and ∆ bracket to the right.

The connectives =, ≡, 6≡, and ∆ are extended to all types. The boolean term
E = F (where E and F have the same type) is undefined if either argument is
undefined and otherwise behaves like equality. The boolean term E ≡ F (where
E and F have the same type) is true if both arguments are undefined, false if
precisely one argument is undefined, and otherwise behaves like equality. The
boolean term ∆E is true if E is defined, and otherwise it is false. One of the
motivations behind introducing ∆ is to aid the definition of partial operations in
arbitrary types. For example, a presentation of the integers may include among
the axioms for division:

∆(E ÷ F) ≡ ∆E ∧ ∆F ∧ F 6= 0

We are given a (possibly empty) supply of “operator symbols” which are
used to build up terms from simpler terms. We use the letter f to stand for an
arbitrary operator symbol, and write f (E0), f (E0, E1) etc. to stand for a term
composed using f and terms E0, E1 etc. Each operator symbol has a “class”
consisting of a finite sequence of type symbols of length at least 2. The “arity”
of an operator symbol f , denoted by arity(f ), is defined to be the length of its
class less 1. The i’th component of f ’s class, for i in the range 1 to arity(f )
inclusive, is called the i’th “argument type” of f . The final component is called
its “result type”. Operator symbol f is used to combine arity(f ) terms where
the i’th term, for each i in the range 1 to arity(f ), is of f ’s i’th argument type.
The resulting term has the result type of f . When setting up a theory based on
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the logic, class information is typically given in the form of a simple rule such
as

E:Z F:Z

E + F:Z

— this defines the class of operator + to be a sequence of three types each of
which is Z. Note that the symbol f does not range over the built-in boolean
connectives (∆, ¬, ∧, etc.).

We denote by E[x := t] the term got by substituting each free occurrence of
x in E with t, where x and t are of the same type (with renaming as necessary
to avoid free variables in t becoming bound as a result of the substitution).
Substitution binds tightest of all.

The truth tables for the boolean connectives are given below:

∧ True False ⊥
True True False ⊥
False False False False

⊥ ⊥ False ⊥

∨ True False ⊥
True True True True
False True False ⊥

⊥ True ⊥ ⊥

¬
True False
False True

⊥ ⊥

∆

True True
False True

⊥ False

⇒ True False ⊥
True True False ⊥
False True True True

⊥ True True True

≡ True False ⊥
True True False False
False False True False

⊥ False False True

= True False ⊥
True True False ⊥
False False True ⊥

⊥ ⊥ ⊥ ⊥
(∀x:T • P ) is true if P is true for every x of type T ; it is false if P is false

for some x of type T , and otherwise it is undefined. (∀x:T | R • P ) is the same
as (∀x:T • R ⇒ P ). As far as existential quantification is concerned, (∃x:T • P )
is equivalent to ¬(∀x:T • ¬P ), and (∃x:T | R • P ) to ¬(∀x:T | R • ¬P ). Observe
that in quantifications, the range of the dummy excludes ⊥; formally, (∀x:T •∆x)
holds. In fact we can show that a term is defined iff it is equivalent to some value
in the type; formally, ∆E ≡ (∃x:T • E ≡ x) where x not free in E. One could
imagine making a different design in which the dummy ranges over ⊥ as well
as over the individuals of the type. We have explored this alternative, and feel
that in the end it comes down to choosing the one which leads to the simplest
formulae for the kind of applications the user has in mind.

The choice of implication is perhaps a bit surprising. It was chosen for the
simple empirical reason that it manages to carry over to three-valued logic just
about all the important properties of implication that hold in 2-valued logic.
It has a long history, dating back to [Mon67], and is discussed at length in
[Avr88, Avr91].

The axioms common to all logics in the family are given in Fig. 1. The
inference rules are Modus Ponens and Generalization:

P P ⇒ Q

Q

P

(∀x:T • P )

The deduction theorem holds. In practice, we do not use the inference rules
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Equivalence
≡-reflexivity: E ≡ E
≡-symmetry: (E ≡ F) ≡ (F ≡ E)
≡-truth: ((E ≡ F) ≡ True) ≡ (E ≡ F)

Negation
exchange: (¬P ≡ Q) ≡ (¬Q ≡ P )
False-definition: False ≡ ¬True
6≡-definition: (E 6≡F) ≡ ¬(E ≡ F)

Disjunction
∨-symmetry: P ∨ Q ≡ Q ∨ P
∨-associativity: P ∨ (Q ∨ R) ≡ (P ∨ Q) ∨ R
∨-idempotency: P ∨ P ≡ P
∨-zero: P ∨ True ≡ True
∨-truth: ((P ∨ Q) ≡ True) ≡ (P ≡ True) ∨ (Q ≡ True)

Conjunction
∧-definition: P ∧ Q ≡ ¬(¬P ∨ ¬Q)
∧/∨: P ∧ (Q ∨ R) ≡ (P ∧ Q) ∨ (P ∧ R)
consistency: (P ∧ Q ≡ P ) ≡ (P ∨ Q ≡ Q)
∧-truth: (P ∧ Q ≡ True) ≡ (P ≡ True) ∧ (Q ≡ True)

Implication
⇒-definition: P ⇒ Q ≡ (P 6≡True) ∨ Q
⇒/≡: P ⇒ (Q ≡ R) ≡ ((P ⇒ Q) ≡ (P ⇒ R))
≡-weakening: (P ≡ Q) ⇒ (P ⇒ Q))
Leibniz: (E ≡ F) ⇒ (G[x := E] ≡ G[x := F])

Boolean definedness
∆-definition: ∆P ≡ ((P ≡ True) ≡ P )

Universal quantification
∀/∧: (∀x:T • P ∧ Q) ≡ (∀x:T • P ) ∧ (∀x:T • Q)
∨/∀: (∀x:T • P ∨ Q) ≡ P ∨ (∀x:T • Q), where x not free in P
∀/≡: (∀x:T • P ≡ Q) ⇒ ((∀x:T • P ) ≡ (∀x:T • Q))
∀-truth: ((∀x:T • P ) ≡ True) ≡ (∀x:T • P ≡ True)
interchange: (∀x:T • (∀y:U • P )) ≡ (∀y:U • (∀x:T • P ))
renaming: (∀x:T • P ) ≡ (∀y:T • P [x := y]), where y is fresh
trading ∀: (∀x:T | R • P ) ≡ (∀x:T • R ⇒ P )

Existential quantification
∃-definition: (∃x:T • P ) ≡ ¬(∀x:T • ¬P )
∃|-definition: (∃x:T | R • P ) ≡ ¬(∀x:T | R • ¬P )
∃-truth: ((∃x:T • P ) ≡ True) ≡ (∃x:T • P ≡ True)

Term definedness
instantiation: (∀x:T • P ) ∧ ∆t ⇒ P [x := t]
constants proper: ∆c
variables proper: ∆x

Fig. 1. Basic axioms of E, E3, E2, and E4.
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definedness: ∆E
=-definition: E = F ≡ (E ≡ F)

Fig. 2. Additional axioms for E.

directly, but employ textual substitution mechanisms that reduce proving to an
algebraic style of replacing “equals with equals”; see [DiS90] and [GrS93].

We have constructed the rather long-winded axiomatisation of Figure 1 be-
cause it captures what is common to each member of the family. Using it we
can construct once-off a large body of theorems shared by all, and indeed it is
surprising how much of traditional two-valued logic is preserved. For example, it
can be shown that all theorems of E that employ only ∧, ∨, and ⇒ also follow
from the axioms of Fig. 1. (The proof relies on the fact that LPF preserves the
{∧,∨,⇒}-fragment of classical logic [Avr88], that LPF proofs can be translated
into E3 proofs [MoB98], and that the translation process uses only those E3
axioms contained in Fig. 1.) Some theorems will involve ∆, of course, such as
P ∨ ¬P ∨ ¬∆P , where the equivalent in E is ∆-free, here P ∨ ¬P , but in general
∆ has a low-key presence. To obtain E we merely add the axioms of Fig. 2.

In E, there is no distinction between equality and equivalence, other than
operator precedence. Of course once we admit ∆E as an axiom, we can greatly
simply the axioms of Fig. 1, but that is beside the point. Our purpose is just to
offer reassurance that our many-valued logics behave as we should expect when
we are working in contexts in which we know that there is no possibility of
partiality or nondeterminacy.

To obtain E3 we supplement the axioms of Fig. 1 with those of Fig. 3.
Axiom one-⊥ asserts that there is at most one undefined value. Applying it to
the booleans, we can deduce that the logic has at most three values. If we want
to ensure at least one undefined value, and hence that the logic has precisely
three values, we can formally introduce ⊥B of type boolean by the axiom ¬∆⊥B.
Surprisingly few of the useful theorems that arise in reasoning about programs
rely on the axiom one-⊥. In fact, just about the only ones worth mentioning are
the symmetry of equality and

P = Q ≡ (P ∧ Q) ∨ (¬P ∧ ¬Q). (1)

To see that (1) relies on one-⊥, consider a model with two undefined boolean
values ⊥0 and ⊥1 with the booleans constituting a chain lattice such that ff <
⊥0 < ⊥1 < tt (where tt and ff are the denotations of True and False, respectively,
in the model). Let ∧ and ∨ be the lattice operations, let ⊥0 and ⊥1 be their
own complements, and let ⊥0 = ⊥1 yield ⊥1. Observe now that with P and Q
denoting the respective undefined values, the left hand side of (1) is ⊥1 while
the right hand side is ⊥0. This is a useful observation because it tells us that we
can introduce another strange value with relatively little impact on the existing
theorems and indeed we will shortly incorporate “possibly true, possibly false” in
this way.

3. E2: Nondeterministic Choice

As customers, we often leave open some details of our requirements, as when
in a café we ask for “coffee with either milk or cream”. The waiter in the café,
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one-⊥: ∆E ∨ ∆F ∨ (E ≡ F)
strictness: ∆f (..., E, ...) ⇒ ∆E
=-definedness: ∆(E = F) ≡ ∆E ∧ ∆F
=-definition: ∆(E = F) ≡ (E = F ≡ (E ≡ F))

Fig. 3. Additional axioms for E3.

whom we can view as the specifier, may feel entitled to write on his note pad one
of “coffee with cream” (say), or “coffee with milk or cream” — as customers we
would not object to either of these. On the other hand, when the waiter hands
the order to the chef, whom we can view as the implementor, the chef will have a
definite preference for “coffee with milk or cream” because if there is no cream in
the kitchen, he may still be able to fulfil the order. The moral is that specifications
should record the customer’s alternatives for the sake of the implementor.

We assume the availability of a choice operator 2: for E and F expressions of
the same type, E2F yields as outcome either the outcome of E or the outcome of
F , and we have no further information about which outcome is actually delivered.
We cannot even gather information by experiment, because if an evaluation of
2 2 3 delivers 2 one day, there is no guarantee that it will not deliver 3 on the
following day. This kind of nondeterminacy is important in deriving programs
from specifications: if we ask two different programmers to make a program that
involves displaying the names of persons in a database ordered alphabetically by
surname, we cannot expect them to produce identical lists when there are several
persons with the same surname.

The bad news is that nondeterministic expressions can create havoc with
familiar laws. Consider for example, 2 2 4 + 2 2 4 = 2 ∗ (2 2 4) — the left hand
side may yield 4, 6, or 8, whereas the right-hand side yields either 4 or 8. We
shall attach the logical status “possibly true, possibly false”, i.e. True 2 False, to
an equality such as the preceding. Of course the presence of 2 in a formula does
not exclude the possibility that the formula holds — for example, we shall give
2 2 4 < 6 the status True. The problem we face in admitting 2 into formulae is
not to complicate the logic unduly.

To begin, we introduce choice into traditional 2-valued logic without any
notion of partiality, i.e. for the moment we are building a 3-valued logic in which
the third value is True 2 False. We call it E2. The properties of 2 we expect are

E 2 F ≡ F 2 E

E 2 (F 2 G) ≡ (E 2 F) 2 G

E 2 E ≡ E.

We should also expect that ¬, ∧, ∨, and = distribute over 2 (we do not
postulate that ≡ distributes over 2). From these postulates it is a minor clerical
exercise to construct the truth tables for ¬, ∧, ∨, =, and ≡. If we continue to
interpret ∆P as “P is either True or False” we easily construct the truth table
for ∆. We then find — with hindsight, perhaps not surprisingly — that we get
precisely the same truth tables as above, i.e. with ⊥ replaced by True 2 False
throughout. However, replacing ⊥ with True2False in the truth table for ⇒ does
not result in the truth table we would expect from assuming that ⇒ (right-)dis-
tributes over 2 (for example, True 2 False ⇒ False is equivalent to True 2 False
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Choice
v-definition: E v F ≡ (E 2 F ≡ E)
≡−v: (E ≡ F) ≡ (∀x:T • E v x ≡ F v x),

where E, F have type T
2-definition: E 2 F v x ≡ E v x ∨ F v x

Refinement ordering
indiv-v: (∀x, y:T • x v y ≡ (x ≡ y))

Distributivity
2-distributivity: f (..., E 2 F, ...) ≡ f (..., E, ...) 2 f (..., F, ...)

Extremes
excluded 4th: ∆P ∨ ∆Q ∨ (P ≡ Q)
excluded miracle: (∃x:T • E v x), where E has type T

Equality
=−True: (E = F ≡ True) ≡ (∀x:T • E v x ≡ (E ≡ x)) ∧ (E ≡ F),

where E, F have type T
=−False: (E = F ≡ False) ≡ ¬(∃x:T • E v x ∧ F v x),

where E, F have type T

Fig. 4. Additional axioms for E2.

if we assume that ⇒ (right-) distributes over 2, whereas if we replace ⊥ with
True 2 False in the truth table for ⇒ we are lead to the outcome True). On the
balance of convenience, we elect to forego right-distribution of ⇒ over 2, with
the pleasing effect that the large body of theorems that follows from the axioms
of Fig. 1 continue to hold.

We now have to add axioms to govern the behaviour of 2. To do so, it
is convenient to introduce the “refinement relation” v on terms, defined by
E v F ≡ (E 2 F ≡ E). In the context of E2 we can think of E v F (read
“E is refined by F” or “F refines E”) as encoding “any outcome of F is a
possible outcome of E”. For the present, v provides no more than a convenient
shorthand for axiomatisation purposes, but it turns out to have a pivotal role in
deriving programs from specifications because it captures the idea of “customer
satisfaction”: If a customer gives us a term E which is a specification (meaning
that it makes use of constructs such as (2x:Z • x2 6 10 < (x+ 1)2) which are not
mechanically executable), and asks us as programmers to create an executable
derivative, he will have no grounds for complaint if we offer him a term F
employing only implementable components and satisfying E v F . The axioms for
E2 are those given in Figs 1 and 4.

Axiom indiv-v asserts that as far as the individuals of a type are concerned,
v is just equivalence. Actually we only require that the booleans be so ordered
but in practice all types will have this ordering and so we choose to build it in for
convenience. In future developments, we will introduce constructed types (such
as function types) for which the orderings will be more complex. The axiom of
the excluded miracle precludes the introduction of the empty term which yields
nothing, not even ⊥. Such a term is not without its mathematical uses — for
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example, it would be a unit of 2 — and in another context we might choose
to admit it. Note that some authors refer to P ∨ ¬P ∨ ¬∆P as “the excluded
fourth”. Given our collection of axioms, P ∨ ¬P ∨ ¬∆P does not suffice of itself
to exclude four truth values, and indeed we shall see that P ∨ ¬P ∨ ¬∆P holds in
the four-valued logic below. Of course, P ∨ ¬P ∨ ¬∆P is a theorem of both E3
and E2. One might have expected to see axioms governing the interaction of 2
with the quantifiers; for example, is (∀x:T • P ) 2 Q ≡ (∀x:T • P 2 Q) a theorem
if x is not free in Q? (It is.) It turns out that we can deduce the behaviour of the
quantifiers with respect to 2 from the given axioms, primarily because we can
resort if necessary to the brute force method of proof by truth cases:

Truth Cases
(P ≡ True) ≡ (Q ≡ True) (P ≡ False) ≡ (Q ≡ False)

P ≡ Q

This is a derived inference rule of both E3 and E2.
Whereas in E3, ∆ captures the idea of a term being defined or not, in E2 it

captures the idea of a term being determined or not. A term is “undetermined” if
it contains a choice which cannot be eliminated, and otherwise it is “determined”.
For example, True is determined, while True 2 False is undetermined.

The model theory for E2 is a simplified version of that for E4 which is
presented below, and so for brevity we omit it. All the properties of 2 postulated
above are derivable, as well as the following sample theorems:

v is a partial order

∆(E v F)

(E v F) ≡ (∀x:T • F v x ⇒ E v x)

E v F 2 G ≡ E v F ∧ E v G

∆(E 2 F) ≡ ∆E ∧ (E ≡ F)

(P 2 Q ≡ True) ≡ (P ≡ True) ∧ (Q ≡ True)

(P 2 Q ≡ False) ≡ (P ≡ False) ∧ (Q ≡ False)

True 6≡ True 2 False

False 6≡ True 2 False

P v Q ≡ ¬∆P ∨ (P ≡ Q)

P v True ≡ (P 6≡ False)

(∀x:T • P v Q) ⇒ ((∀x:T • P ) v (∀x:T • Q))

(∀x:T • P ) v True ≡ (∀x:T • P v True)

E = F ⇒ (E ≡ F)

= distributes over 2

The truth of ∆(E 2 F) ≡ ∆E ∧ (E ≡ F) relies on axiom indiv-v. Without this
axiom, we can prove the weaker ∆(E 2 F) ≡ (∆E ∧ E v F) ∨ (∆F ∧ F v E).

It follows from the axiom of the excluded fourth and the provable fact that
True 2 False differs from both True and False that the logic has precisely three
values.
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4. E4: Partiality and Nondeterminacy

We now merge E3 and E2 to yield a logic catering for both undefined and
undetermined terms; we call the resulting logic E4. We shall refer to terms which
are either undefined or undetermined as “improper”; the remaining terms are said
to be “proper”. We shall need an operator τ (on all types) to distinguish between
undetermined terms and undefined terms. Intuitively, τE (read “E is defined”)
holds iff E is a proper value or a choice among proper values, while ∆E (read
now “E is proper”) holds iff E denotes a value that is neither undefined nor a
choice among values. For the booleans:

τ ∆

True True True
False True True

True 2 False True False
⊥ False False

The behaviour of the boolean connectives is as for E3 and E2, with the
addition of the following to fix the way in which True 2 False and ⊥ behave in
combination:

∧ True 2 False ⊥
True 2 False True 2 False ⊥

⊥ ⊥ ⊥

∨ True 2 False ⊥
True 2 False True 2 False ⊥

⊥ ⊥ ⊥

⇒ True 2 False ⊥
True 2 False True True

⊥ True True

= True 2 False ⊥
True 2 False True 2 False ⊥

⊥ ⊥ ⊥

≡ True 2 False ⊥
True 2 False True False

⊥ False True

The axioms for E4 are those given in Figs 1 and 5. The axiom of 3-defined
asserts that True, False, and True 2 False account for all the defined booleans.
As in E3, it is provable that these values differ from one another. Together with
axiom one-⊥ we infer that there is at most one other truth value. If we want
to guarantee precisely four truth values we can formally introduce ⊥B of type
boolean by the axiom ¬τ⊥B.

It follows from the axioms that in quantifiers dummies range over proper
values, not over choices or ⊥. It also follows that E v F holds if E is ⊥ (or, as
before, if each outcome of F is a possible outcome of E). The theorems of E4
include those listed below (it includes some that have previously been presented
as theorems of E3):

2 is symmetric, associative, and idempotent

v is a partial order

∆(E v F)

∆τE

¬τE ⇒ E v F
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Choice
v-definition: E v F ≡ (E 2 F ≡ E)
≡ − v: (E ≡ F) ≡ (τE ≡ τF) ∧ (∀x:T • E v x ≡ F v x),

where E, F have type T
2-definition: E 2 F v x ≡ E v x ∨ F v x

Refinement ordering
indiv-v: (∀x, y:T • x v y ≡ (x ≡ y))

Constants and variables
constants defined: τc
variables defined: τx

Distributivity of connectives
¬/2: ¬(P 2 Q) ≡ ¬P 2 ¬Q
∨/2: P ∨ (Q2 R) ≡ (P ∨ Q) 2 (P ∨ R)
τ/2 : τ(E 2 F) ≡ τE ∧ τF
τ/∀: τ(∀x:T • P ) ≡ (∀x:T • τP ) ∨ (∃x:T • ¬P ∧ ∆P )

Distributivity of operator symbols
strictness: τf (..., E, ...) ⇒ τE
2-distributivity: f (..., E 2 F, ...) ≡ f (..., E, ...) 2 f (..., F, ...)

Extremes
3-defined: ¬τP ∨ ∆P ∨ (P ≡ True 2 False)
one-⊥: τE ∨ τF ∨ (E ≡ F)
excluded miracle: (∃x:T • E v x), where E has type T

Equality
= −True: (E = F ≡ True) ≡ (∀x:T • E v x ≡ (E ≡ x)) ∧ E ≡ F ,

where E, F have type T
= −False: (E = F ≡ False) ≡ ¬(∃x:T • E v x ∧ F v x),

where E, F have type T
τ/ =: τ(E = F) ≡ τE ∧ τF

Fig. 5. Additional axioms for E4.

τE ∨ (∀x:T • E v x)

(E v F) ≡ (τE ⇒ τF) ∧ (∀x:T • F v x ⇒ E v x)

E v F 2 G ≡ E v F ∧ E v G

∆(E 2 F) ≡ (∆E ∧ E ≡ F)

(∀x:T • P v Q) ⇒ ((∀x:T • P ) v (∀x:T • Q))

(E v F) ⇒ (f (..., E, ...) v f (..., F, ...))

(P 2 Q ≡ True) ≡ (P ≡ True) ∧ (P ≡ True)

P v Q ≡ ¬∆P ∨ (P ≡ Q)

(∀x:T • P ) v True ≡ (∀x:T • P v True)

τP ∨ τQ ∨ ¬τ(P ∨ Q)

τP ≡ (P ≡ True) ∨ (P ≡ False) ∨ (P ≡ True 2 False)

(P ≡ Q) ≡ (τP ≡ τQ) ∧ (∆P ≡ ∆Q) ∧ (∆P ∧ ∆Q ⇒ P ≡ Q)
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E = F ⇒ (E ≡ F)

= distributes over 2

Note that theorems of E3 or E2 are not necessarily theorems of E4. For
example, (∀x:T • P )2Q ≡ (∀x:T • P 2Q) where x is not free in Q, is a theorem
of E2 but not of E4.

When constructing theories using E4 we introduce data type axioms in the
usual way, except that we use τ to capture partiality. For example, an axiomati-
sation of the integers might include τ(E ÷ F) ≡ τE ∧ ¬(F v 0).

True, False, True 2 False, and ⊥ are precisely the truth values we need for a
total correctness calculus. However, we can imagine other programming calculi in
which ⊥2False and ⊥2True are distinct from ⊥, and indeed from ⊥2True2False.
We surmise that such multi-valued logics can be accommodated within our
framework, and in particular that the meaning of the boolean connectives can be
extended in a reasonable way such that the theorems following from the axioms
of Fig. 1 continues to hold.

5. Model Theory for E4

The proof system of E4 is based on an interpretation of types and terms with
respect to a given set D containing at least two elements. Such a set is called the
“domain of interpretation”, or simply the “domain”. We use PD to denote the
set of non-empty subsets of D. We use P⊥D to denote the set PD ∪ {⊥} where
⊥ is a distinguished element that is not a member of D.

Each type symbol T is interpreted as an element [T ] of PD. [B] is required to
be a two-element set whose members we will denote by tt and ff. We write PT to
denote the set of non-empty subsets of [T ], and P⊥T to denote PT ∪ {⊥}. For
example, P⊥B is {⊥, {tt,ff}, {tt}, {ff}}. Each expression E of type T is interpreted
as an element [E] of P⊥T . Interpretations of constants (of type T , say) are
constrained to be singleton subsets of [T ]. We denote this set by VT ; for
example VB is {{tt}, {ff}}. True is interpreted as {tt}, and False as {ff}.

Binary choice is interpreted as the 2-place function on P⊥D that yields the
“strict union” of its arguments. The strict union of a non-empty subset of P⊥D
is ⊥ if the subset contains ⊥, and otherwise it is just normal set union.

The interpretations of the ∧, ∨, and ⇒ are 2-place functions on P⊥D that are
in agreement with the truth tables given earlier when both their arguments are
elements of P⊥B. Similarly, ¬ is a 1-place function in agreement with its truth
tables. We denote such interpreting functions by [∧], [∨], etc. Observe that [∧]
behaves as a minimisation on P⊥B with respect to the total order <∧ defined:

{ff} <∧ ⊥ <∧ {tt,ff} <∧ {tt}.
Similarly, [∨] behaves as a minimisation with respect to the total order <∨

defined:

{tt} <∨ ⊥ <∨ {tt,ff} <∨ {ff}
The interpretation of (∀x:T•P ) is the minimum of [P ] with respect to <∧ when

the interpretation of x ranges over VT . To interpret existential quantification,
the order <∨ is used. Similarly, the interpretation of (∀x:T |R•P ) is the minimum
of [P ] with respect to <∧ when the interpretation of x ranges over those elements
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of VT for which [R] is {tt}. The interpretation of (∃x:T |R •P ) is similar except
the order <∨ is used instead of <∧.

Equality (=) is interpreted by the 2-place function on P⊥D that yields ⊥ if
one of its arguments is itself ⊥, and otherwise, when its arguments are the sets
S and T , it yields the (non-empty) set {x ∈ S, y ∈ T • if x = y then tt else ff}.
Here we re-use the symbol “=” to stand for primitive equality in the domain.
The interpretation of ≡ is the 2-place function on P⊥D that yields {tt} if its
arguments are identical, and {ff} otherwise. The interpretation of v is the 2-place
function on P⊥D which yields {tt} if either the first argument is ⊥, or else neither
argument is ⊥ and the second is a subset of the first; in all other cases it yields
{ff}. Both τ and ∆ are interpreted as one-place functions on P⊥D — τ maps ⊥
to {ff} and all other arguments to {tt}; ∆ maps singletons to {tt} and everything
else to {ff}.

Every operator symbol f is interpreted by a “matching” function [f ] on P⊥D.
By “matching” we mean that [f ] takes arity(f ) arguments, and that if each i’th
argument of [f ] is an element of P⊥T where T is f ’s i’th argument type, for i
in the range 1 to arity(f ) inclusive, the result is an element of P⊥U where U
is f ’s result type. We require firstly that [f ] be ⊥-strict in every argument, i.e.
[f ](...,⊥, ...) = ⊥, and secondly that it be strictly additive in every argument, i.e.
[f ](..., S , ..) is equivalent to the strict union of {x ∈ S • [f ](..., {x}, ...)}.

Terms are interpreted by induction on their structure.
A “valid interpretation” is a domain D and a mapping from types to ele-

ments of PD, and from expressions without free variables to P⊥D that respects
the requirements set out above. A valid interpretation extends naturally to ex-
pressions with free variables by giving each variable symbol an interpretation.
Interpretations of variables (of type T , say), are constrained to be elements of
VT . A mapping from the set of variable symbols to their respective interpre-
tations that meets this requirement is called an “environment”, and we refer to
the interpretation of expressions “in” that environment. It follows that for every
valid interpretation and in every environment, every expression (possibly with
free variables) has an interpretation.

We want E4 to classify each formula as a theorem if and only if every valid
interpretation of it is {tt} in every environment. A logic which satisfies the “if”
part of the preceding statement is said to be “sound”, and one that satisfies the
“only if” part it is said to be “complete”. It is relatively routine to show soundness,
by checking that each axiom is interpreted as {tt} for every valid interpretation
and in every environment, and that this is preserved by the inference rules. We
do not offer a completeness proof. Although desirable, completeness proofs are
not as important in programming logics as in traditional logical studies. Other
matters take precedence, such as discovering a set of theorems that are useful
in programming practice, and learning how best to apply them. Indeed, many
investigators are content to live with incompleteness if the practical utility of
the logic is established. For example, the creators of the Raise specification
language (RSL) devote a large volume to the formal underpinnings of their
language [Mil90], and yet “The RSL proof rules are intended to be sound, but
not necessarily complete with respect to the semantics of RSL.” [Rai95, p.267].
This attitude is echoed in a NASA study of the use of formal methods in the space
program [NAS97, page 80]: “In general, completeness has theoretical importance
for logicians, but less importance for those working in formal methods. It is
quite difficult to establish completeness for systems of any complexity, and many
interesting and even important formal systems are provably incomplete”. That
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said, we do not undervalue the attraction of a completeness proof. We have
already shown the completeness of E3 in [MoB98].

6. Conclusion

Our concern has been with expressions whose outcomes are not confined to
simple values, but which may have no defined outcome, or which may yield
any of several outcomes. These are the sort of expressions we meet when we
derive programs from formal specifications, or when we prove the correctness of
programs with respect to formal specifications. Reasoning about such expressions
requires a logic in which formulae may have the status “true”, “false”, “neither
true nor false”, or “possibly true, possibly false”; we have presented such a logic.
The logic preserves most of the useful theorems of classical 2-valued predicate
calculus, while allowing us to reason equationally in the style of [DiS90] and
[GrS93].

With respect to deriving programs from formal specifications, many authors
have appreciated the value of nondeterminacy on the one hand, and refinement
at the level of expressions on the other. Unfortunately, a satisfactory combination
of both features has proved elusive. For various approaches see [Par90], [NoH93],
[LaH96], [Rai92], [Rai95], [WaM95], and [War94].

The language of the CIP development method, CIP-L [Par90], has constructs
similar to our choice, equivalence (called “strong equality”), refinement (“descen-
dancy”), τ and ∆. However, its nondeterminacy is erratic (⊥ is not a zero of
choice) rather than demonic, which is arguably less useful for the kind of under-
specification encountered in specifications. All of strong equality, descendancy, τ,
and ∆ are part of the meta-language used to reason about programs, whereas in
our calculus there is only one language level. We shall argue the advantage of our
approach below. The logical combinators within the language (e.g. conjunction
and universal quantification) are strict, and so are less than adequate for writing
and reasoning about specifications (see [Bli88]).

Norvell and Hehner [NoH93] present a refinement calculus for expressions
in which they seek to accommodate partiality and nondeterminacy. Their propo-
sitions are boolean expressions, but only deterministic ones are “acceptable” in
the logic. The authors are aware of this shortcoming and list as future work
“allowing nondeterministic predicates without complicating the laws”. This paper
presents just such a logic.

Larsen and Hansen [LaH96] present a denotational semantics for a functional
language with what they call “under-determinism”. The type language includes
comprehension-types of the form {x:T | P • E}, and the expression language is
extended by choice T , which under-deterministically selects an element of the type
T . The proof system is based on generalised type inference, with propositions of
the form E:T , where E is an expression and T a type, asserting that the possible
outcomes of E are included in T . They do not supply a formal logic by which one
reasons about such assertions, but presume the availability of logical connectives
that have a few simple properties. Unfortunately the properties they postulate
include strictness, an approach that we don’t consider appropriate for program
refinement. On the contrary, we surmise that the logic presented in this paper is
the kind of logic that might better underpin their work.

In the program development methodology RAISE [Rai92, Rai95] the central
concept is that of a “class”, which is a collection of declarations of names and
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axioms about them. Each class generates a theory, and implementation is treated
as theory extension. Refinement is at the level of classes and the logic is two-
valued. The RAISE language also contains nondeterministic expressions, but
most of the proof rules given in [Rai95] do not apply to them. In contrast, our
work provides the logical basis for nondeterminacy at the level of expressions,
and potentially could be used as the logic underlying RAISE.

Walicki and Meldal’s work [WaM95] treats nondeterministic operators in the
context of algebraic specifications. It gives completeness results with respect to
a set-based semantics and a computational semantics, in which specifications of
nondeterministic functions are transformed to under-specifications of determin-
istic functions. In contrast, our work treats nondeterminacy and partiality at
the level of expressions in the logic (in [WaM95] these are always determined).
Their relations ≺ and � roughly correspond to our refinement and equivalence,
respectively, and their E

.
= F and E#F correspond to our E = F ≡ True, and

E = F ≡ False, respectively.
Ward’s thesis [War94] presents a specification and programming language

based on functions, including demonic and angelic nondeterminacy (i.e., where
⊥ is a unit of choice). However, the language is not accompanied by a proof
theory. Ward makes no claim that the given refinement laws are sufficient in
practice. When a new refinement law is needed, the user must rely on the given
semantics to confirm its validity. As far as the booleans are concerned, Ward
restricts boolean expressions to be so-called “value-expressions” which in effect
bans nondeterministic propositions, but still allows undefined ones arising from
recursion. However, no logical axioms governing such propositions are presented.

When authors admit nondeterminacy at the level of expressions, they of-
ten have to resort to unnatural devices to keep the nondeterminacy at bay,
usually with the consequence that programmers are forced to be unnecessarily
conscious of whether expressions are nondeterministic or not, and indeed with
the consequence that they are obliged to prove many side conditions concerning
determinacy. Typically no formal logic is provided which supports reasoning in
the presence of nondeterminacy, with the consequence that the programmer is
forced to reason at the level of semantics. Limiting the domain of nondeterminacy
seems almost impossible: once we let it out of the bottle, it is inevitably going to
spill into the logical assertions with which we reason about programs. The best
way forward is to accept it, and modify our formal logic to accommodate it.

The logic we have presented paves the way to constructing a genuinely
deductive calculus of programming which fully embraces nondeterminacy. In this
calculus, there seems little need to distinguish between the language in which we
express properties of specifications, and the language of specifications themselves.
A statement about programs, even one as exotic as E v F , is itself a term, and
not a meta-statement. This uniformity should facilitate the smooth transition
of specifications to programs, because propositions can migrate effortlessly into
specifications/programs, as they often want to when we formally extract programs
from specifications. For example, suppose we wish to implement a specification
E, and we succeed in proving that the refinement E v F is valid provided some
assumption P (a proposition) holds. (The proof will be carried out in E4, not in
some “meta-logic”.) Suppose we also succeed in proving that E v G is valid if
¬P holds. By the deduction theorem we will have established

P ⇒ (E v F)

¬P ⇒ (E v G)
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In our refinement calculus we will then be able to conclude immediately that

E v if P then F else G

— P has become a boolean expression. We can then proceed to attack P to
reduce it to an executable equivalent.

We leave it to forthcoming papers to show how E4 combines with pro-
gramming and specification elements such as unbounded choice, conditional
expressions, function definition, function application, recursion, recursive types,
state and state-changing commands, etc.
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A. Appendix: Some theorems which follow from the axioms of
Fig. 1

Equivalence and negation

≡-reflexivity: E ≡ E
≡-symmetry: (E ≡ F) ≡ (F ≡ E)
≡-trans: (P ≡ Q) ∧ (Q ≡ R) ⇒ (P ≡ R)
exchange: (¬P ≡ Q) ≡ (¬Q ≡ P )
¬-exch: (¬P ≡ Q) ≡ (P ≡ ¬Q)
¬-invol: ¬¬P ≡ P
≡-mirror: (P ≡ Q) ≡ (¬P ≡ ¬Q)
6≡-definition: (E 6≡ F) ≡ ¬(E ≡ F)
strong ≡: (E ≡ F) ∨ (E 6≡ F)

Disjunction and conjunction

∨-symmetry: P ∨ Q ≡ Q ∨ P
∨-associativity: P ∨ (Q ∨ R) ≡ (P ∨ Q) ∨ R
∨-idempotency: P ∨ P ≡ P
∧-definition: P ∧ Q ≡ ¬(¬P ∨ ¬Q)
consistency: (P ∧ Q ≡ P ) ≡ (P ∨ Q ≡ Q)
de Morgan: ¬(P ∧ Q) ≡ (¬P ∨ ¬Q)
de Morgan: ¬(P ∨ Q) ≡ (¬P ∧ ¬Q)
∧-symm: (P ∧ Q) ≡ (Q ∧ P )
∧-assoc: P ∧ (Q ∧ R) ≡ (P ∧ Q) ∧ R
∧-idem: (P ∧ P ) ≡ P
∧/∨: P ∧ (Q ∨ R) ≡ (P ∧ Q) ∨ (P ∧ R)
∨/∧: P ∨ (Q ∧ R) ≡ (P ∨ Q) ∧ (P ∨ R)
absorption: P ∧ (P ∨ Q) ≡ P
absorption: P ∨ (P ∧ Q) ≡ P

Substitution

⇒-subst: (E ≡ F) ⇒ P [x := E] ≡ (E ≡ F) ⇒ P [x := F]
∧-subst: (E ≡ F) ∧ P [x := E] ≡ (E ≡ F) ∧ P [x := F]
cond ⇒-subst: (P ⇒ (E ≡ F)) ⇒ (P ⇒ Q[x := E] ≡ P ⇒ Q[x := F])
cond ∧-subst: (P ⇒ (E ≡ F)) ⇒

((P ≡ True) ∧ Q[x := E] ≡ (P ≡ True) ∧ Q[x := F])
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True and False

true: True
∨-zero: P ∨ True ≡ True
∧-zero: P ∧ False ≡ False
∨-unit: P ∨ False ≡ P
∧-unit: P ∧ True ≡ P
∨-truth: ((P ∨ Q) ≡ True) ≡ (P ≡ True) ∨ (Q ≡ True)
∧-truth: (P ∧ Q ≡ True) ≡ (P ≡ True) ∧ (Q ≡ True)
∨-falsity: (P ∨ Q ≡ False) ≡ (P ≡ False) ∧ (Q ≡ False)
∧-falsity: (P ∧ Q ≡ False) ≡ (P ≡ False) ∨ (Q ≡ False)
≡-truth: ((E ≡ F) ≡ True) ≡ (E ≡ F)
≡-Falsity: ((E ≡ F) ≡ False) ≡ (E 6≡ F)
False-definition: False ≡ ¬True
two values: False 6≡ True
excl false: (P ∨ ¬P ) 6≡ False

Implication

⇒-definition: P ⇒ Q ≡ (P 6≡ True) ∨ Q
Leibniz: (E ≡ F) ⇒ (G[x := E] ≡ G[x := F])
⇒-reflex: P ⇒ P
⇒-conn: (P ⇒ Q) ∨ (Q ⇒ P )
⇒-left-unit: (True ⇒ P ) ≡ P
⇒-right-zero: (P ⇒ True) ≡ True
⇒/∨: P ⇒ Q ∨ R ≡ (P ⇒ Q) ∨ (P ⇒ R)
⇒/∧: P ⇒ Q ∧ R ≡ (P ⇒ Q) ∧ (P ⇒ R)
⇒/⇒: P ⇒ (Q ⇒ R) ≡ (P ⇒ Q) ⇒ (P ⇒ R)
⇒/≡: P ⇒ (Q ≡ R) ≡ ((P ⇒ Q) ≡ (P ⇒ R))
∨-lub: P ∨ Q ⇒ R ≡ (P ⇒ R) ∧ (Q ⇒ R)
⇒/≡/∧: P ⇒ (Q ≡ R) ≡ (((P ≡ True) ∧ Q) ≡ ((P ≡ True) ∧ R))
≡-weakening: (P ≡ Q) ⇒ (P ⇒ Q))
weakening: P ⇒ P ∨ Q
weakening: P ∧ Q ⇒ P
shunting: P ∧ Q ⇒ R ≡ P ⇒ (Q ⇒ R)
⇒-trans: (P ⇒ Q) ∧ (Q ⇒ R) ⇒ (P ⇒ R)
≡/⇒-trans: (P ≡ Q) ∧ (Q ⇒ R) ⇒ (P ⇒ R)
≡/⇒-trans: (P ⇒ Q) ∧ (Q ≡ R) ⇒ (P ⇒ R)
modus ponens: P ∧ (P ⇒ Q) ⇒ Q
True-⇒: (P ≡ True) ⇒ Q ≡ P ⇒ Q
⇒-truth: ((P ⇒ Q) ≡ True) ≡ P ⇒ (Q ≡ True)

Monotonicity

⇒-right-mono: (P ⇒ Q) ⇒ ((R ⇒ P ) ⇒ (R ⇒ Q))
⇒-left-anti-mono: (P ⇒ Q) ⇒ ((Q ⇒ R) ⇒ (P ⇒ R))
⇒-comb-∧: (P ⇒ Q) ∧ (R ⇒ S) ⇒ (P ∧ R ⇒ Q ∧ S)
⇒-comb-∨: (P ⇒ Q) ∧ (R ⇒ S) ⇒ (P ∨ R ⇒ Q ∨ S)
∧-mono: (P ⇒ Q) ⇒ ((P ∧ R) ⇒ (Q ∧ R))
∨-mono: (P ⇒ Q) ⇒ ((P ∨ R) ⇒ (Q ∨ R))
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Theorems requiring defined terms

∨/≡: (P ∨ (Q ≡ R)) ≡ ((P ∨ Q) ≡ (P ∨ R)), if ∆P
absorption: P ∧ (¬P ∨ Q) ≡ P ∧ Q, if ∆P
absorption: P ∨ (¬P ∧ Q) ≡ P ∨ Q, if ∆P
absorption: P ∧ (P ⇒ Q) ≡ (P ∧ Q), if ∆P
Shannon: Q[x := P ] ≡ (P ∧ Q[x := True]) ∨ (¬P ∧ Q[x := False]),

if ∆P
⇒-∨: P ⇒ Q ≡ (P ∧ Q ≡ P ), if ∆P , ∆Q
⇒-∧: P ⇒ Q ≡ (P ∨ Q ≡ Q), if ∆P , ∆Q
bi-impli: (P ⇒ Q) ∧ (Q ⇒ P ) ≡ (P ≡ Q), if ∆P , ∆Q
¬-imp/exp: ¬(P ≡ Q) ≡ (¬P ≡ Q), if ∆P , ∆Q
contrapos: (P ⇒ Q) ≡ (¬Q ⇒ ¬P ), if ∆P , ∆Q
absorption: P ∧ (P ≡ Q) ≡ P ∧ Q, if ∆P , ∆Q
≡-assoc: ((P ≡ Q) ≡ R) ≡ (P ≡ (Q ≡ R)), if ∆P , ∆Q, ∆R

∆

∆-definition: ∆P ≡ ((P ≡ True) ≡ P )
≡-truth: ∆(E ≡ F)
true defined: ∆True
∆∆: ∆∆E
estab: (P ≡ True) ≡ ∆P ∧ P
incl middle: ¬∆P ∨ ¬P ∨ P
∆-intro: P ∨ ¬P ⇒ ∆P
∆-bool: ∆P ≡ (P ≡ True) ∨ (P ≡ False)
∆-bool: ∆P ≡ ¬(P ⇒ ¬P ) ∨ ¬(¬P ⇒ P ))
∆¬: ∆(¬P ) ≡ ∆P
⇒-defn: (P ⇒ Q) ≡ ¬∆P ∨ ¬P ∨ Q

Monotonicity of quantifications

∀/≡: (∀x:T | R • P ≡ Q) ⇒ ((∀x:T | R • P ) ≡ (∀x:T | R • Q))
∃/≡: (∀x:T | R • P ≡ Q) ⇒ ((∃x:T | R • P ) ≡ (∃x:T | R • Q))
∀/⇒: (∀x:T | R • P ⇒ Q) ⇒ ((∀x:T | R • P ) ⇒ (∀x:T | R • Q))
∃/⇒: (∀x:T | R • P ⇒ Q) ⇒ ((∃x:T | R • P ) ⇒ (∃x:T | R • Q))
∀ range anti-mono: (∀x:T • R ⇒ S) ⇒ ((∀x:T | S • P ) ⇒ (∀x:T | R • P ))
∃ range mono: (∀x:T • S ⇒ R) ⇒ ((∃x:T | S • P ) ⇒ (∃x:T | R • P ))

Range manipulation

trading ∀: (∀x:T | R • P ) ≡ (∀x:T • R ⇒ P )
trading ∃: (∃x:T | R • P ) ≡ (∃x:T • (R ≡ True) ∧ P ))
range split ∀: (∀x:T | R ∨ S • P ) ≡ (∀x:T | R • P ) ∧ (∀x:T | S • P )
range split ∃: (∃x:T | R ∨ S • P ) ≡ (∃x:T | R • P ) ∨ (∃x:T | S • P )
interchange: (∀x:T • (∀y:U • P )) ≡ (∀y:U • (∀x:T • P ))
renaming: (∀x:T • P ) ≡ (∀y:T • P [x := y]), where y is fresh
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Truth and falsity

∀-truth: ((∀x:T | R • P ) ≡ True) ≡ (∀x:T | R • P ≡ True)
∃-truth: ((∃x:T | R • P ) ≡ True) ≡ (∃x:T | R • P ≡ True)
∀-falsity: ((∀x:T | R • P ) ≡ False) ≡ (∃x:T | R • P ≡ False)
∃-falsity: ((∃x:T | R • P ) ≡ False) ≡ (∀x:T | R • P ≡ False)
∀-non-truth: ((∀x:T | R • P ) 6≡ True) ≡ (∃x:T | R • P 6≡ True)
∃-non-truth: ((∃x:T | R • P ) 6≡ True) ≡ (∀x:T | R • P 6≡ True)

Constants

∀-constant: (∀x:T | R • P ) ≡ P ∨ (∀x:T • R 6≡True), if x not free in P
∃-constant: (∃x:T | R • P ) ≡ P ∧ (∃x:T • R ≡ True), if x not free in P
habitation: (∃x:T • True)
empty range ∀: (∀x:T | False • P )

Distribution

∀/≡: (∀x:T • P ≡ Q) ⇒ ((∀x:T • P ) ≡ (∀x:T • Q))
∀/∧: (∀x:T | R • P ∧ Q) ≡ (∀x:T | R • P ) ∧ (∀x:T | R • Q)
∃/∨: (∃x:T | R • P ∨ Q) ≡ (∃x:T | R • P ) ∨ (∃x:T | R • Q)
∨/∀: (∀x:T | R • P ∨ Q) ≡ P ∨ (∀x:T | R • Q), if x not free in P
∧/∃: (∃x:T | R • P ∧ Q) ≡ P ∧ (∃x:T | R • Q), if x not free in P
∀/∨: (∀x:T | R • P ) ∨ (∀x:T | R • Q) ⇒ (∀x:T | R • P ∨ Q)
∃/∧: (∃x:T | R • P ∧ Q) ⇒ (∃x:T | R • P ) ∧ (∃x:T | R • Q)
⇒/∀: (∀x:T | R • P ⇒ Q) ≡ P ⇒ (∀x:T | R • Q), if x not free in P
∧/∀: (∀x:T | R • P ∧ Q) ≡ P ∧ (∀x:T | R • Q),

if x not free in P , (∃x:T • R ≡ True)
∨/∃: (∃x:T | R • P ∨ Q) ≡ P ∨ (∃x:T | R • Q),

if x not free in P , (∃x:T • R ≡ True)
⇒/∃: (∃x:T | R • P ⇒ Q) ≡ P ⇒ (∃x:T | R • Q),

if x not free in P , (∃x:T • R ≡ True)

Instantiation

instantiation: (∀x:T • P ) ∧ ∆t ⇒ P [x := t]
instantiation: (∀x:T • P ) ∧ P [x := t] ≡ (∀x:T • P ), if ∆t
instantiation: (∃x:T • P ) ∨ P [x := t] ≡ (∃x:T • P ), if ∆t
instantiation: (∀x:T • P ) ∨ P [x := t] ≡ P [x := t], if ∆t
instantiation: (∃x:T • P ) ∧ P [x := t] ≡ P [x := t], if ∆t

∀-∃

de Morgan: ¬(∃x:T | R • P ) ≡ (∀x:T | R • ¬P )
de Morgan: ¬(∀x:T | R • P ) ≡ (∃x:T | R • ¬P )
∃/∀: (∃x:T | R • (∀y:U | S • P )) ⇒ (∀y:U | S • (∃x:T | R • P )),

if x not free in S , y not free in R.
∀-∧-∃: (∀x:T | R • P ) ∧ (∃x:T | R • Q) ⇒ (∃x:T | R • P ∧ Q)
∀-∃: (∀x:T | R • P ) ⇒ (∃x:T | R • P ) ≡ (∃x:T • R ≡ True)
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One point and shifting

1-point ∀: (∀x:T | x ≡ t • P ) ≡ P [x := t] ∨ ¬∆t,
where x not free in t.

1-point ∃: (∃x:T | x ≡ t • P ) ≡ P [x := t] ∧ ∆t, where x not in t.
shifting ∀: (∀x:T | R • P ) ≡ (∀x:T | R[x := t] • P [x := t]),

if (∀y:U • (∃x:T • y ≡ t)) and (∀x:T • ∆t)
shifting ∃: (∃x:T | R • P ) ≡ (∃x:T | R[x := t] • P [x := t]),

if (∀y:U • (∃x:T • y ≡ t)) and (∀x:T • ∆t)

End
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