ARTICLE

V. Hanuš · J. Vaněk · A. Špičák

Seismically active fracture zones and distribution of large accumulations of metals in the central part of Andean South America

Received: 6 November 1997 / Accepted: 20 April 1999

Abstract The analysis of the geometry of distribution of earthquake foci in the central part of Andean South America between 18° and 34°S made the delineation of several seismically active fracture zones in the continental wedge overlying the subducting Nazca plate possible. Correlation of their position with the distribution of hypogene accumulations of metals revealed that the majority of large mineral deposits and mining districts are situated in the outcrops of these fracture zones. We present geometrical documentation (map of epicentres, vertical and longitudinal cross sections) of the most important fracture zones and data on mineralogical composition, genetic type and available radiometric ages of mineral deposits. Sixteen mining districts in Chile, and 24 in Argentina, were attributed to the seismically active fracture zones. Major mining districts and individual large mineral deposits occur in six seismically active fracture zones roughly parallel to the axis of the Peru-Chile trench (Carachas-Portillo, Choquelimpie, Iquique, Domeyko, Río Blanco-Los Bayos and Farellones F.Z.), in six fracture zones roughly perpendicular to the trench (El Salvador, Maricunga, Jaroma, Ujina, Tumbaya and Incahuasi-León Muerto F.Z.) and in two fracture zones oriented at an angle of about 45° in relation to the direction of the presently active Andean subduction (Aconcagua and Sierra del Volcán F.Z.). The occurrences of large mineral deposits of different ages show that these fracture zones were also active in the geological past and represent sites of permanent reopening of paths allowing ore-bearing solutions and long-term accumulation of large amounts of metals to occur in relatively restricted domains of the Earth's crust. The mining districts with dated mineral deposits are arranged into four periods of hypogene mineralization: Upper Miocene-Pliocene, Upper Oligocene-Middle Miocene, Upper Eocene-Middle Oligocene, Lower Paleocene-Upper Eocene. These periods of metallogenic activity correlate well with four supposed Andean subduction cycles active in the Tertiary. The occurrence of mineral deposits of different ages in recently active fracture zones can be used as an important evidence in favour of long-term spatial permanence and activity of these zones and as a guide for the discovery of further mineral deposits hidden under young sedimentary and

Introduction

volcanic cover in the fracture zones.

The concept of plate tectonic theory has substantially influenced all branches of geoscience, bringing new views not only on deep structures and tectonic evolution but also on the metallogeny of convergent plate margins. After the advent of plate tectonics, several papers describing the spatial and genetic relations between the distribution of mineral deposits and active subduction zones were published (Sillitoe 1972, 1974, 1976; Mitchell 1973; Mitchell and Beckinsale 1982; Frutos 1982). It was shown that mineral deposits at convergent plate margins are genetically connected to processes accompanying the subduction of oceanic lithospheric plates. However, the conclusions are usually of general character, and do not include detailed information on the morphology of the subduction zone and on the tectonic pattern of the overlying continental wedge. Whereas the subduction zone seems to be the primary generator of metallogenic processes at convergent plate margins, the tectonic pattern of the continental wedge appears to channel orebearing fluids and to control the deposition of large accumulations of metals.

Over the last decades numerous studies concerning the genesis and age of formation of porphyry and other copper deposits (Sillitoe 1972, 1977, 1981, 1988, 1992; Francis et al. 1983; Ericksen et al. 1986; Skewes and Stern 1994; Gustafson and Quiroga 1995; Marschik

© Springer-Verlag 2000

V. Hanuš (⊠) · J. Vaněk · A. Špičák Laboratory of Global Tectonics and Metallogeny, European Centre Prague, c/o Geophysical Institute, Academy of Sciences of the Czech Republic, Boční II/1401, 141 31 Praha 4, Czech Republic e-mail: hanus@ig.cas.cz

et al. 1997), porphyry gold deposits (Sillitoe 1991, 1992, 1997; Sillitoe et al. 1991; Vila and Sillitoe 1991; Vila et al. 1991; McKee et al. 1994; Marschik et al. 1997), epithermal gold-silver-copper deposits (Jannas et al. 1990; Gröpper et al. 1991; Camus and Skewes 1991; Davidson and Mpodozis 1991) and epithermal polymetallic deposits (Ericksen et al. 1986; Fletcher et al. 1989) were carried out in Andean South America.

Detailed studies of the geometry of the distribution of earthquake foci at convergent plate margins reveal that the process of subduction is generally accompanied by a relatively high seismicity in the overlying continental wedge (Hanuš and Vaněk 1977–78, 1983, 1984, 1987, 1992, 1996). It appears that practically all these earthquakes are not distributed randomly but show a clear tendency to accumulate in seismically active fracture zones. These zones can be interpreted as systems of deep seismically active fractures induced or activated in the overlying plate by the process of subduction.

The system of such seismically active fracture zones in the central part of Andean South America was described in Hanuš et al. (1996) and Vaněk et al. (1999). The aim of the present study is to correlate the distribution of large hypogene mineral deposits in the northern and central part of Chile and in the northwestern part of Argentina with the mentioned system of seismically active fracture zones.

Sources of data

For the delineation and construction of the fracture zones in the central part of Andean South America, International Seismological Centre (ISC) data (Regional Catalogue of Earthquakes, 1964–93) were used as the basic material (for details see Hanuš et al. 1996, Vaněk et al. 1999).

The data for the distribution of mineral deposits were taken from Ulriksen (1990) for the northern and central part of Chile and from Mapa Minero (1966) for the northwestern part of Argentina. For the correlation with the seismic data the hypogene polymetallic, copper, gold, lead, silver, tungsten, molybdenum and bismuth deposits in the region between 18°S and 34°S were selected. The mineral deposits in Chilean territory are also classified according to their size. First of all, the mining districts containing mineral deposits classified as very large (muy grande) and large (grande) in Ulriksen (1990) were considered. A similar size classification system is not available for deposits in Argentina. Therefore, larger clusters of mineral occurrences and deposits, mainly referred to as operating in 1966, were used. These deposits were supplemented by occurrences where age estimations were available. Basic geological and tectonic information was obtained from Mapa Geológico de Chile (1982) and Mapa Geológico de la República Argentina (1982).

Morphology of the subduction zone and seismically active fracture zones

High seismic activity in the region bounded by latitudes 18°S and 34°S allowed us to construct a dense system of vertical cross sections (25 km wide individual sections) perpendicular to the axis of the Peru–Chile trench, which enabled us to distinguish between earthquakes occurring in the subsiding oceanic lithosphere and those

situated in the overlying continental plate. As examples, two sections B4 and B33 are shown in Fig. 1 where the Wadati-Benioff zone is delineated by solid parallel lines. Thus, geometric parameters (thickness, dip, depth of penetration) of the subduction zone could be estimated in the whole region investigated. The distribution of earthquakes within the subducted lithopheric plate points to the existence of a distinct aseismic gap, the depth of which varies laterally around 150 km (Hanuš and Vaněk 1976, 1978; Delouis et al. 1996). This gap spatially correlates with the position of active calc-alkaline volcanism. It may indicate possible partial melting of the descending oceanic lithosphere and represent the primary source of magma for active calc-alkaline volcanism. At the same time, the decreased viscosity due to the partial melting of the lithospheric material would exclude the accumulation of stress as the necessary condition of seismic activity (Hanuš and Vaněk 1985). The Andean active volcanic belt is interrupted in several areas where the slab does not reach a sufficient depth due to lateral variations of the depth of penetration of the oceanic plate; in these areas also no aseismic gap is observed in the Wadati-Benioff zone (Hanuš and Vaněk 1978). It seems that these lateral variations show a segmentation of the present subduction zone suggested by several authors (e.g. Sillitoe 1974; Dewey and Lamb 1992).

The earthquake foci above the subduction zone (see Fig. 1) are situated in the South American plate and give evidence of the existence of seismically active fracture

Fig. 1 Vertical sections B4 and B33 with foci of all earthquakes showing the delineation of the Wadati-Benioff zone (*solid parallel lines*) from the continental wedge, m indicates ISC earthquake magnitude

Fig. 2 Pattern of seismically active fracture zones in the continental wedge between 18° S and 34° S and position of sections *B4*, *B33* given in Fig. 1

zones in the continental wedge. Between 18°S and 34°S 24 seismically active fracture zones were delineated. The traces of these fracture zones are shown in Fig. 2. The mineralization directly connected with the process of subduction is probably concentrated in the upper part of the overlying plate between the trench and the position of the aseismic gap. This region is situated between 68°W and 71°W for the presently active subduction zone and only 18 fracture zones from the whole set could participate in the process of formation of mineral deposits caused by the Andean subduction (fracture zones Z1, Z2a, Z2b, Z2c, Z4a, Z4b, Z6, Z10a, Z10b, Y3, Y4, Y5, Y6, Y9, Y10, Y11, Y12, Y13). This does not mean that the mineral deposits considered later were necessarily formed during the present subduction. The question of possible preservation of fracture zones activated in the continental lithosphere during several cycles of subduction is discussed later.

Correlation of mineral deposits with seismically active fracture zones

The locations of the hypogene polymetallic, copper, gold, silver, tungsten, molybdenum and bismuth deposits and the system of seismically active fracture zones in the area $18^{\circ}S-34^{\circ}S$ and $65^{\circ}W-71^{\circ}W$ are shown in Fig. 3. The numbered quadrangles represent individual mining districts listed in Table 1. It appears that the mineral deposits occur in the outcrops of the following fracture zones: Carachas-Portillo F.Z. (Z1), Choqu-

Fig. 3 Distribution of Andean mining districts, denoted by *full rectangles*, in the framework of seismically active fracture zones (for details and names of fracture zones and mining districts see Table 1 and text)

elimpie F.Z. (Z2a), Iquique F.Z. (Z2b), Domeyko F.Z. (Z2c), Río Blanco-Los Bayos F.Z. (Z4a), Farellones F.Z. (Z6), Aconcagua F.Z. (Y3), Sierra del Volcán F.Z. (Y4), El Salvador F.Z. (Y5), Maricunga F.Z. (Y6), Jaroma F.Z. (Y9), Ujina F.Z. (Y10), Tumbaya F.Z. (Y11), Incahuasi-León Muerto F.Z. (Y12). These fracture zones can be divided into the following three groups: (1) fracture zones roughly parallel to the trench (Z1, Z2a, Z2b, Z2c, Z4a, Z6), (2) fracture zones roughly perpendicular to the trench (Y5, Y6, Y9, Y10, Y11, Y12), (3) fracture zones oblique to the trench, which are oriented at an angle of about 45° in relation to the direction of the recent Andean subduction (Y3, Y4).

In the following, the main parameters (azimuth, dip, maximum depth) of individual fracture zones are given: Carachas-Portillo F.Z. (Z1), 0°, 65° to E, 80 km, Choquelimpie F.Z. (Z2a), 150°, 60° to NE, 100 km, Iquique F.Z. (Z2b), 165°, 45° to NE, 100 km, Domeyko F.Z. (Z2c), 170°, 50° to NE, 120 km, Río Blanco-Los Bayos F.Z. (Z4a), 0°, 85° to E, 100 km, Farellones F.Z. (Z6), 0°, 60° to E, 40 km, Aconcagua F.Z. (Y3), 45°, 50° to NW, 100 km, Sierra del Volcán F.Z. (Y4), 140°, 65° to NE, 70 km, El Salvador F.Z. (Y5), 100°, vertical, 200 km, Maricunga F.Z. (Y6), 100°, vertical, 190 km, Jaroma F.Z. (Y9), 60°, 50° to SE, 100 km, Ujina F.Z. (Y10), 100°, 60° to N, 100 km, Tumbaya F.Z. (Y11), 80°, 70° to NNW, 140 km, Incahuasi-León Muerto F.Z. (Y12), 90°, 65° to S, 100 km. It should be noted that the reliability of the geometric parameters of the fracture zones (especially of the dip and depth) is limited by the accuracy of the ISC parameter determinations used in this study; however, it is evident that the fracture zones pass through the whole continental lithosphere.

The most important fracture zones Z2a, Z2b, Z2c, Z1, Z6, Z4a, Y11 are shown in Figs. 4–10. For every fracture zone its trace in the map (a), the vertical section across (b) and along (c) the fracture zone with associated earthquakes are given. In the outcrops of the

fracture zones the individual faults recorded in the geologic and tectonic maps are shown with the position of the individual mining districts. The faults observed on the surface roughly follow the azimuth of the respective fracture zone. In the following, tabular summary of the position and mineralization of the mining districts in the system of seismically active fracture zones and the available ages and genetic type of individual deposits are given:

CH1	Belen-Choquelimpie	Two groups of polymetallic deposits situated on the crossing of Choquelimpie F.Z. (Z2a) and Jaroma F.Z. (Y9). The Choquelimpie epithermal Ag-Au-Pb-Zn deposit is represented by hydrothermal breccias hosted in a subalkalic stratovolcano of late Miocene age of 6.6 Ma (Gröpper et al. 1991)
CH2	Iquique	Group of polymetallic deposits situated near the western boundary of the central part of Iquique F.Z. (Z2b)
CH3	Ujina	Group of polymetallic deposits, the large Copaquire Mo deposit and the large Quebrada Blanca Cu, Mo deposit situated on the crossing of Domeyko F.Z. (Z2c) and Ujina F.Z. (Y10). The age of the Quebrada Blanca porphyry copper deposit is 38–36 Ma (Davidson and Mpodozis 1991; Sillitoe 1991) and of the Copaquire Mo deposit 37–34 Ma (Davidson and Mpodozis 1991)
CH4	San José del Abra	Group of polymetallic, Au and Cu deposits, the large Guanchaca Ag, Pb deposit and the large El Abra Cu, Mo, Au deposit situated near the eastern boundary of Domeyko F.Z. (Z2c). The age of the El Abra high sulfidation porphyry copper deposit, accompanied by veins striking SE from the porphyry body, is given as 38–37 Ma (Sillitoe 1991), 36–34 Ma (Sillitoe and McKee 1996), 34–33 Ma (Davidson and Mpodozis 1991)
CH5	Chuquicamata	Group of polymetallic, Au and Cu deposits, the large Chuqui Norte Cu deposit and the large Chuquicamata Cu, Mo, Ag deposit situated in the central part of Domeyko F.Z. (Z2c). The age of the Chuquicamata porphyry copper deposit is given at 36–31 Ma (Sillitoe and McKee 1996) and 35–28 Ma (Davidson and Mpodozis 1991), the age of supergene oxidation and enrichment of this deposit is 19–15 Ma (Sillitoe and McKee 1996)
CH6	Caracoles	Group of Ag and Cu deposits, the large Gran Corrida Ag deposit and the large Centinela Cu deposit situated in the central part of Domeyko F.Z. (Z2c). The age of the Centinela porphyry copper deposit is 44 Ma (Davidson and Mpodozis 1991)
CH7	La Escondida	Group of Ag and Cu deposits and the large La Escondida Cu, Mo deposit situated in the southern part of Domeyko F.Z. (Z2c). The age of the La Escondida porphyry copper deposit with related high-sulfidation Cu, Au (Sillitoe 1991) is given as 35–31 Ma (Sillitoe and McKee 1996), 34–31 Ma (Davidson and Mpodozis 1991)
CH8	El Salvador-Potrerillos	Group of polymetallic, Cu and Au deposits with the large El Salvador Cu, Mo deposit, the large Potrerillos Cu, Mo, Pb, Au deposit and the large El Hueso Au deposit situated in the western part of the outcrop of El Salvador F.Z. (Y5). The age of the El Salvador porphyry copper deposit, accompanied by an intense vein mineralization of five stages (Gustafson and Quiroga 1995), is 43–31 Ma (Sillitoe and McKee 1996), 42–39 Ma (Davidson and Mpodozis 1991), the age of supergene oxidation and enrichment of this deposit is 23 Ma (Sillitoe and McKee 1996). The Potrerillos porphyry copper deposit is hosted by sedimentary rocks which contain the El Hueso epithermal gold deposit generated at the same time as the porphyry intrusion and associated copper mineralization (Davidson and Mpodozis 1991). The age of the Potrerillos deposit is 35 Ma (Sillitoe and McKee 1996), 38–34 Ma (Davidson and Mpodozis 1991) and the age of the El Hueso deposit is 38–37 Ma (Davidson and Mpodozis 1991)
CH9	Marte	Group of Au deposits with the large Marte and Refugio Au deposits situated in the western part of the outcrop of Maricunga F.Z. (Y6). The deposits of this group belong to the Maricunga metallogenic belt. The age of the Marte Au deposit, bound to the quarts – (specularite -magnetite) porphyry stockwork (Vila and Sillitoe 1991, Vila et al. 1991), is 14–13 Ma (Sillitoe 1991), 12 Ma (Davidson and Mpodozis 1991), and of the Lobo Au deposit, bound to the quartz-(specularite-magnetite) porphyry stockwork (Vila and Sillitoe 1991), is 13 Ma (Vila and Sillitoe 1991). The age of the La Pepa Au deposit, bound to the quartz-magnetite porphyry stockwork (Vila and Sillitoe 1991), is given at 23–22 Ma (Sillitoe 1991; Vila and Sillitoe 1991) and of the Refugio Au deposit, bound to the quartz-magnetite-(specularite) porphyry stockwork (Vila and Sillitoe 1991), is given at 23 Ma (Sillitoe 1991; Vila and Sillitoe 1991), 22 Ma (Davidson and Mpodozis 1991)
CH10	Farellones	Group of polymetallic deposits with the large Bronces del Río Blanco Cu, Mo deposit and the large La Fortuna Ag, Pb deposit situated in Farellones F.Z. (Z6). The age of the Bronces del Río Blanco porphyry copper deposit is 5–4 Ma (Sillitoe 1991)
CH11	Los Pelambres	Group of Cu, Ag deposits with the large Los Pelambres Cu, Mo deposit situated in the northern prolongation of Farellones F.Z. (Z6) and in the southwestern prolongation of Aconcagua F.Z. (Y3). The age of the Los Pelambres porphyry copper deposit based on hydrothermal biotite in diorite porphyry is 9.8 Ma (Sillitoe 1977)
CH12	Sierra Gorda	Group of Cu, Au, Ag deposits situated near the western boundary of Domeyko F.Z. (Z2c). The age of the Faride low sulfidation epithermal silver-gold vein deposit (Camus and Skewes 1991) is 64–60 Ma (Sillitoe 1991), 64 Ma (Davidson and Mpodozis 1991). The age of the Catalina Cu, Mo deposit is given at 64–63 Ma and the age of supergene oxidation and enrichment of this deposit at 14 Ma (Sillitoe and McKee 1996)

CH13	Guanaco	Group of Au, Ag, Cu deposits situated in the western prolongation of Tumbaya F.Z. (Y11). The age of the El Guanaco high sulfidation epithermal gold-copper-silver vein deposit is 49 Ma (Sillitoe 1991). The age of the Cachinal del la Sierra epithermal silver – (gold) deposit is given at 59–56 Ma (Davidson and Mpodozis 1991)
CH14	Indio	Group of Au, Cu, Ag deposits with the large El Indio Au, Cu deposit situated west of Carachas-Portillo F.Z. (Z1) in the northern prolongation of Farellones F.Z. (Z6). The age of the El Indio high sulfidation epithermal gold-silver-copper vein deposit (Jannas et al. 1990; Sillitoe 1991) is 13–8 Ma (Sillitoe 1991), 11–9 Ma (Davidson and Mpodozis 1991)
CH15	Lomas Bayas	Group of Cu and Ag, Pb, Cu deposits situated west of Domeyko F.Z. (Z2c). The age of the Lomas Bayas porphyry copper deposit is 61 Ma (Davidson and Mpodozis 1991) and the age of the Fortuna porphyry copper deposit with polymetallic veins is given at 64 Ma (Davidson and Mpodozis 1991)
CH16	Cerro Colorado	Group of Cu, Au, Mo and polymetallic deposits situated at the eastern boundary of Iquique F.Z. (Z2b). The age of the Cerro Colorado porphyry copper deposit is 58 Ma (Sillitoe 1991)
A1	Cordillera de Carachas	Group of polymetallic deposits situated near the western boundary of Carachas-Portillo F.Z. (Z1)
A2	Valle del Cura	Group of polymetallic deposits situated near the western boundary of Carachas-Portillo F.Z. (Z1)
A3	Cordillera Nevada de Colangüil	Group of Cu, Ag, W deposits situated near the western boundary of Carachas-Portillo F.Z. (Z1)
A4	Sierra del Volcán	Group of Au vein deposits situated at the crossing of Carachas-Portillo F.Z. (Z1) and Sierra del Volcán F.Z. (Y4)
A5	Cordillera de Conconta	Group of W, Cu, Mo and polymetallic deposits situated near the western boundary of Carachas-Portillo F.Z. (Z1).
A6	Cordillera de Olivares	Group of W, Mo, Au and polymetallic deposits situated near the western boundary of Carachas-Portillo F.Z. (Z1). The age of the Chita W-bearing porphyry copper deposit based on biotite from andesite porphyric stock is 11.7 Ma (Sillitoe 1977, 1981)
A7	Rio Castaňo	Group of Cu, Au, Bi and polymetallic deposits with the operated Cuatro Amigos polymetallic deposit and Castaňo Nuevo Au deposit situated near the northern crossing of Carachas-Portillo F.Z. (Z1) and Aconcagua F.Z. (Y3)
A8	Cordillera del Tigre	Group of Cu deposits with the operated Cantera el Angelito, Cantera el Rincón and Don León deposits situated at the southern crossing of Carachas-Portillo F.Z. (Z1) and Aconcagua F.Z. (Y3)
A9	Cordillera Cortaderas	Group of Au, Cu and polymetallic deposits with the operated Mantos de Cobre Cu deposit and Paramillos de Uspallata polymetallic deposit situated near the eastern boundary of Carachas-Portillo F.Z. (Z1). The age of the Paramillos Norte porphyry copper deposit based on hydrothermal muscovite in sericitized latite porphyry is given as 16 Ma (Sillitoe 1977, 1981)
A10	Guido	Group of Cu and polymetallic deposits with the operated San Lorenzo Cu deposit and Los Mantos Preciosos polymetallic deposit situated near the eastern boundary of Carachas-Portillo F.Z. (Z1)
A11	Cordón Portillo	Group of many Cu, Au, W, Mo and polymetallic deposits with the operated Salamanca Cu deposit situated near the western boundary of Carachas-Portillo F.Z. (Z1)
A12	Aconcagua	Group of Cu deposits situated at the crossing of Farellones F.Z. (Z6) and prolongated Aconcagua F.Z. (Y3). The age of one porphyry copper deposit in the Rio de las Vacas complex based on hydrothermal biotite in potassium silicate altered granodiorite porphyry is 8.5 Ma (Sillitoe 1977, 1981)
A13	Taca Taca	Group of Cu deposits situated in the central part of Tumbaya F.Z. (Y11)
A14	San Antonia de los Cobres	Group of polymetallic and Cu deposits with the operated Elvira polymetallic deposit situated in the central part of Tumbaya F.Z. (Y11)
A15	Meseta	Group of polymetallic and Cu deposits with the operated Diana polymetallic deposit situated near the southern boundary of Tumbaya F.Z. (Y11)
A16	Sierra de Chaňi	Group of polymetallic, Au and Cu deposits situated in Tumbaya F.Z. (Y11)
A17	Tumbaya	Group of polymetallic and Cu deposits with the operated Chorrillos and María Remedios Cu deposits situated in the central part of Tumbaya F.Z. (Y11). The age of the Pancho Arías porphyry copper deposit based on hydrothermal biotite in potassium silicate altered dacite porphyry is given as 15.4 Ma (Sillitoe 1977, 1981)
A18	Capillitas	Group of Au, Ag and Cu deposits with the operated Carmelitas Cu deposit situated at the northern boundary of Maricunga F.Z. (Y6). The age of four different porphyry copper deposits (Bajo del Durazno, Bajo de Pampitas, Bajo de San Lucas, Mi Vida) based on biotite in potassium silicate altered andesite and monzonite porphyry is 7.9–6.8 Ma (Sillitoe 1977, 1981)

A19	Belen	Group of W deposits at the southern boundary of Maricunga F.Z. (Y6)
A20	Incahuasi	Group of Au deposits situated at the northern boundary of Incahuasi-León Muerto F.Z. (Y12). The age of the Inca Viejo porphyry gold deposit based on magmatic biotite in dacite porphyry is given at 15 Ma (Sillitoe 1977, 1981)
A21	Cafayate	Group of Cu deposits situated at the southern boundary of Incahuasi-León Muerto F.Z. (Y12)
A22	León Muerto	Group of Cu deposits with the operated El Zorrito, Margarita and Zorriquín deposits situated at the southern boundary of Incahuasi-León Muerto F.Z. (Y12)
A23	Los Bayos-El Tigre	Group of Cu, Au and polymetallic deposits with the operated San Sebastian Cu deposit situated at the crossing of Río Blanco-Los Bayos F.Z. (Z4a) and Aconcagua F.Z. (Y3). The age of the Los Bayos porphyry copper deposit based on biotite from pre-mineral quartz diorite intrusive is 5.7 Ma (Sillitoe 1981)
A24	Mogote Río Blanco	Group of Cu, Au and polymetallic deposits with the operated Monte Verde and Santa María Cu, Au deposits situated at the western boundary of Río Blanco-Los Bayos F.Z. (Z4a). The age of porphyry copper-gold deposits with associated polymetallic mineralization in this district is given as 8 Ma (Sillitoe 1997)

Table 1 contains the list of individual mineral occurrences; the numbering of Chilean occurrences in mining districts CH1–CH16 was taken from Ulriksen (1990), numbering of Argentinean occurrences for mining districts A1–A7 from Mapa Minero of San Juan, A8–A12 from Mapa Minero of Mendoza, A13–A17 and A21– A22 from Mapa Minero of Salta y Jujuy, A18–A20 from Mapa Minero of Catamarca y Tucuman and A23–A24 fr om Mapa Minero of La Rioja. The mining districts mentioned represent practically all important accumulations of metals given in the above maps for the region studied. The newly discovered porphyry Cerro Mercedario copper deposit, denoted in Fig. 3 as A25, is situated in the northern prolongation of Farellones F.Z (Z6) and in the southwestern prolongation of Aconcagua F.Z. (Y3); its age, based on hydrothermal biotite in quartz monzonite porphyry, is 13 Ma (Sillitoe 1977, 1981). The age of the large E1 Teniente porphyry copper deposit, situated several kilometres south of 34° S in the central part of Farellones F.Z (Z6), is given at 5.6–4.3 Ma (Sillitoe 1981). The Cretaceous Andacollo, Los Mantos de Punitaqui and E1 Bronce deposits (Sillitoe 1991) were not considered because they do not belong to manifestations of the last system of subduction cycles (Soler and Bonhomme 1988).

7

Fig. 4a-c Location of the Choquelimpie fracture zone Z2a with associated earthquakes a, transverse section b across and longitudinal section c along the fracture zone; faults observed on the surface are denoted by *lines* and numbered mining districts by *shaded rectangles* (for details see Table 1). *Symbols* of earthquakes as in Fig. 1

District	Area	Occurrences	Type of mineralization	
	s w			
СНІ	Belen-Choquelimpie 18.3, 69.55; 18.7, 69.55; 18.3, 69.3; 18.7, 69.3	 27 Choquelimpie N. 28 Choquelimpie S. 32 Patiňo 37 Campanani 40 Santa Rosa 42 Churicala Norte 43 Chulpa 44 Capitana 45 Ociel 	Ag, Au, Pb, Zn Ag, Pb, Zn Ag, Pb, Zn, Cu Ag, Pb, Zn Ag, Pb, Zn Cu, Ag Ag, Pb, Zn Ag Ag, Sb	
CH2	Iquique 20.15, 70.15; 20.45, 70.15; 20.15, 69.9; 20.45, 69.9	10 Juana 11 Pajonales 12 Westfalia 27 Huantajaya 28 Socavón 29 Rosa Amelia 30 NN4 32 Consuelo 33 Rosario 34 Gran Veta 35 El Godo 37 Atahualpa	Au, Ag, Pb Ag, Cu, Pb Cu Ag, Cu, Pb, Zn Ag, Pb, Cu Ag, Pb, Cu Ag, Pb Cu, Au Cu, Ag, Pb Ag, Pb, Cu Ag, Pb Ag, Pb	
CH3	Ujina 20.8, 69.15; 21.15, 69.15; 20.8, 68.7; 21.15, 68.7	60 Copaquire (large) 61 Flor de Tarapacá 62 Malta 63 Colcol 72 Catigna 73 Las Porfiadas 74 Yamincha 4 Quebrada Blanca (large) 5 Yareta 6 Jovita 7 Trinidad 8 Montezuma 11 Anita 12 Quilahueňa 13 Pirula 14 Capona 15 Olga	Mo Ag, Pb, Cu Mo Ag, Pb, Cu Cu Cu Cu, Mo Ag, Au, Mn Cu Ag, Mn Au, Cu, Mn Cu, Au Cu, Au Cu, Au Ag, Pb Au, Ag, Cu Cu, Au	
CH4	San José del Abra 21.7, 68.95; 22.0, 68.95; 21.7, 68.65; 22.0, 68.65	31 Arco 32 Vizcachilla 33 Mal Paso 34 Aguadita 35 Guanchaca (large) 46 Sajasa 47 Sin Nombre 48 El Abra (large) 49 Gral. Baquedano 55 Colpa	Pb Cu Au Ag, Pb, Zn Ag, Pb Au Cu Cu Cu, Mo, Au Cu, Ag Cu, Au, Ag	
CH5	Chuquicamata 22.15, 69.1; 22.45, 69.1; 22.15, 68.75; 22.45, 68.75	 18 Irene (large) 19 Mujer 20 Andina 21 Tomasol 22 Tres Cerros 23 Jarosita 24 Chuqui Norte (large) 29 Andacollo 30 Chuquicamata (large) 36 Sta. Genoveva 40 San Salvador 41 Tres Compadres 	Ag, Au, Cu Au Cu Cu Ag, Pb Ag, Pb Cu Au, Ag, Cu Cu, Mo, Ag Ag, Pb Ag, Pb Cu	
CH6	Caracoles 22.95, 69.2; 23.25, 69.2; 22.95, 68.8; 23.25, 68.8	3 Deseada-Filomena (large) 4 Descubridora 5 San Luis	Ag Ag Ag	

Table 1 List of Andean mining districts between 18°S and 34°S situated in the outcrops of seismically active fracture zones

Table 1 Contd.	·			
District	Area	Occurrences	Type of mineralization	
	S W			
		6 Cerro Pedregal 7 Gran Corrida de Caracoles 8 Luisa 9 La Isla 16 Centinela (large) 17 Los Amigos 18 San José	Ag Ag Ag Ag Cu Pb, Ag Cu	
CH7	La Escondida 24.1, 69.2; 24.3, 69.2; 24.1, 68.8; 24.3, 68.8	 18 Sin Nombre 19 Alicia 20 Rincones 21 Sin Nombre 22 Marisol 23 La Escondida (large) 24 La Casualidad 	Ag Ag Ag, Pb Ag Cu, Ag Cu, Mo Cu	
CH8	El Salvador-Potrerillos 26.2, 69.6; 26.55, 69.6; 26.2, 69.3; 26.55, 69.3	11 Arenal 17 Quebrada de las Salinas 18 El Salvador (large) 51 Potrerillos (large) 129 El Hueso (large)	Cu Cu, Ag, Au Cu, Mo Cu, Mo, Pb, Au Au	
CH9	Marte 27.15, 69.3; 27.45, 69.3; 27.15, 69.05; 27.45, 69.05	 169 Marte (large) 170 Soledad 171 Pepa 172 Lobo 173 Escondida 174 Refugio (large) 73 Pantanillo 	Au Au Au Au Au Au Au	
CH10	Farellones 33.1, 70.45; 33.35, 70.45; 33.1, 70.2; 33.35, 70.2	 Bronces del Río Blanco et al. (large) Lomas Bayas La Fortuna (large) Los Sulfatos Victoria et al. Morena 	Cu, Mo Ag Ag, Pb Cu, Ag Pb, Cu, Ag Cu	
CH11	Los Pelambres 31.7, 70.5; 32.0, 70.5; 31.7, 70.35; 32.0, 70.35	121 Los Pelambres (large) 154 Primavera-Resguardo 169 El Totoral 170 El Manzano	Cu, Mo Cu Cu, Ag Cu, Ag	
CH12	Sierra Gorda 22.75, 69.4; 22.95, 69.4; 22.75, 69.3; 22.95, 69.3	85 Pampa Lina 86 Millonaria 87 Faride et al. 88 Catalina et al. 89 La Vendida et al. 90 Copucha 91 Bello Cambio 92 La Compaňia	Cu Cu, Au, Ag Cu, Mo Cu, Au, Ag Cu Cu Cu Cu, Au, Ag	
CH13	Guanaco 24.85, 69.55; 25.15, 69.55; 24.85, 69.4; 25.15, 69.4	12 Inesperada 13 El Guanaco et al. 61 El Soldado 62 Cachinal de la Sierra	Au, Ag Au, Cu, Ag Ag, Pb Ag	
CH14	Indio 29.75, 70.1; 30.2, 70.1; 29.75, 69.95; 30.2, 69.95	66 El Indio (large) 98 Las Hediondas 11 Carmen 164 San Antonio	Au, Cu Au Au, Ag Cu, Ag, Au	
CH15	Lomas Bayas 23.4, 69.65; 23.5, 69.65; 23.4, 69.5; 23.5, 69.5	48 Chicago 49 La Paloma 50 San Manuel 51 Lomas Bayas 52 Fortuna	Cu Cu Cu Cu Ag, Pb, Cu	
CH16	Cerro Colorado 19.75, 69.4; 20.2, 69.4; 19.75, 69.0; 20.2, 69.0	21 Paguanta 22 Limacsiňa 23 Sta. Rita, San Antonio 24 Beatriz et al.	Ag, Pb, Cu Ag Ag, Pb, Zn Cu, Au	

District	Area	Occurrences	Type of mineralization	
	S W			
	s w	 25 María Inés, Pascuala 26 San Juan de Mocha 27 Enrique et al. 28 Subercagua 29 Sta. Fe 30 Colpa 31 Mosquito de Oro 32 Chana, Sta. Rosa 39 Violeta 3 Cerro Colorado 4 Amilca 5 San Marcos 6 Flor del Desierto et al. 7 San Andrés 8 Gualchagua 9 Columtucsa 13 Molibdeno Cerro Colorado 14 Sagasca 15 Mollaca 16 Río Tinto N 17 Luisa de Canulpa 18 Zoila Rosa et al. 19 Aguada et al. 20 Sofia, Infiernillo 21 Labraza, Santiago 22 La Planada et al. 23 Sofia 24 Jauja 25 Río Tinto S 	Cu, Au Cu, Au Cu, Au, Ag Ag, Pb, Zn Cu Cu Au Au, Cu Ag, Pb Cu, Mo Cu, Au Cu, Ag, Pb, Cu, Ag, Pb, Zn Cu Cu Cu Cu Cu Cu Cu Cu Cu Cu Cu Cu Cu	
A1	Cordillera de Carachas 28.7, 69.45; 28.8, 69.45; 28.7, 69.55; 28.8, 69.55	26 Sitilca 1 La Negra 2 La Argentina 3 La Azul 4 Iosefina	Cu, Au Pb, Ag, Zn Pb, Ag, Zn Pb, Ag, Zn Pb, Ag, Zn	
A2	Valle del Cura 29.35, 69.4; 29.5, 69.4; 29.35, 69.5; 29.5, 69.5	6 La Primera 7 La Segunda 8 Sarmiento 9 Fierro Alto	Pb, Ag, Zn Pb, Ag, Zn Pb, Ag, Zn Pb, Ag, Zn Pb, Ag, Zn	
A3	Cordillera Nevada de Colangüil 29.65, 69.3; 29.75, 69.3; 29.65, 69.5; 29.75, 69.5	12 Judas Tadeo 13 El Salado 15 San José 16 San Joaquín	Cu Ag Cu W	
A4	Sierra del Volcán 29.8, 69.05; 29.95, 69.05; 29.8, 68.9; 29.95, 68.9	17 La Punilla 18 Despreciada 82 Los Caballos 83 Guachi	Au Au Au Au	
A5	Cordillera de Conconta 30.15, 69.45; 30.25, 69.45; 30.15, 69.7; 30.25, 69.7	 24 La Ernestina 25 Don Esteban 26 Conconta 31 San Antonio 32 La Unión 33 Rincón Seco 34 Don Roberto 36 Las Cruces 37 Don Marcos 	W W W Cu W Pb, Zn, Ag W W W	
A6	Cordillera de Olivares 30.4, 69.5; 30.5, 69.5; 30.4, 69.65; 30.5, 69.65	 41 Cerro del Bronce, Chita 42 La Majadita 43 Catalina 44 Arqueros 45 San Pablo 	W W Pb, Ag, Zn Mo Au	
A7	Río Castaňo 30.65, 69.45; 31.0, 69.45; 30.65, 69.65; 31.0, 69.65	47 Dos Amigos 48 Flor de los Andes 50 Don Arturo	Cu Bi Cu	

Table 1 Contd.

District	Area	Occurrences	Type of mineralization	
	S W			
		51 Reyes Magos 53 Amancay 54 San Francisco de los Andes 55 Castaño Viejo 56 Cuatro Amigos (active) 57 Castaño Nuevo (active)	Cu Bi Cu Pb, Ag, Zn Pb, Ag, Zn Au	
A8	Cordillera del Tigre 32.1, 69.4; 32.25, 69.4; 32.1, 69.55; 32.25, 69.55	105 La Deheza 106 Cantera el Angelito (active) 107 Cantera el Rincón (active) 110 Don León (active)	Cu Cu Cu Cu	
A9	Cordillera Cortaderas 32.3, 69.05; 32.45, 69.05; 32.3, 69.2; 32.45, 69.2	79 Boquí 83 Al Fin Hallada 85 Mantos de Cobre (active) 89 Andacollo 91 La Carolina 92 Brillante 420 Delirio 430 Paramillos de Uspallata (active)	Au Au Cu Cu Au Au Cu Ag, Pb, Zn	
A10	Guido 32.85, 69.0; 33.1, 69.0; 32.85, 69.2; 33.1, 69.2	1 San Pedro Nolasco 2 San Lorenzo (active) 3 La Esperanza 13 Atlas 25 Doňa Ida 42 Los Mantos Preciosos (active) 45 Juanita	Pb, Ag, Zn Cu Cu Cu Cu Cu Cu Pb, Ag, Zn	
A11	Cordón Portillo 33.15, 69.3; 33.6, 69.3; 33.15, 69.5; 33.6, 69.5	 138 La Sarita 139 Clarita 140 Amelia 144 Dora Mercedes 145 El Cóndor 146 San Juan 147 Benita 153 Barrera 154 Salamanca (active) 155 La Serena 166 La Lola 167 Blanquita 169 La Toma 173 Alborada 174 30 de Agosto 	Cu Cu Cu Au Au Au Cu Cu Cu Cu Cu Au Au W W W W W Do Pb, Ag, Zn	
A12	Aconcagua 32.6, 70.15; 32.85, 70.15; 32.6, 69.95; 32.85, 69.95	127 Germinal 128 El Sol 129 Catalina 130 Irica 131 San José 426 San Sebastián	Cu Cu Cu Cu Cu Cu	
A13	Taca Taca 24.55, 67.9; 24.65, 67.8; 24.2, 67.45; 24.3, 67.35	230 Ana 240 Taca Taca 243 Flamarion 468 Marcelo 470 Arizaro	Cu Cu Cu Cu Cu	
A14	San Antonio de los Cobres 24.4, 66.95; 24.55, 66.8; 24.05, 66.45; 24.2, 66.3	48 Soncaimán 287 Vicuňa 288 Emilia 290 Concordia 298 Armonía 303 Portezuelo 306 Elvira (active) 307 California 488 La Purísima 489 La Olvidada 554 Andrómaca	Pb, Zn, Ag Pb, Zn, Ag Cu Cu Pb, Zn, Ag Pb, Zn, Ag	

1	2
- 1	1
-	_

Table 1 Contd.

District	Area		Occurrences	Type of mineralization	
	S W				
A15	Meseta 24.4, 66.3; 24.6 24.3, 65.95; 24.	5, 66.25; 5, 65.9	 314 Leonor 315 Elsa 317 Encrucijada 393 Isa 394 Aries 395 Gloria 466 Saturno 469 Virgen del Carmen 499 San Antonio Abad 501 Diana (active) 	Cu Cu Pb, Ag, Zn Cu Pb, Ag, Zn Cu Cu Pb, Ag, Zn Pb, Ag, Zn	
A16	Sierra de Chaňi 23.9, 65.9; 24.3 23.9, 65.65; 24.	5, 65.9; 35, 65.65	126 Achacanal 128 Stella 129 Palomar 130 Antigua 131 El Porvenir 386 Ciénaga Redonda 387 Chaňi 388 San José de Chaňi 491 San Pedro	Pb, Ag, Zn Pb, Ag, Zn Cu Pb, Ag, Zn Pb, Ag, Zn Pb, Ag, Zn Au Cu Pb, Ag, Zn	
A17	Tumbaya 23.85, 65.55; 24 23.85, 65.1; 24.	4.1, 65.55; 1, 65.1	 159 Santa María 161 Oclayas 163 Yolanda 164 Gral. Güemes 166 Chorrillos (active) 167 Elsa 168 La Italiana 635 Alicia 637 León 638 Cerro Bola 640 María Remedios (active) 	Pb, Ag, Zn Pb, Ag, Zn Pb, Ag, Zn Pb, Ag, Zn Cu Pb, Ag, Zn Pb, Ag, Zn Cu Pb, Ag, Zn Pb, Ag, Zn Pb, Ag, Zn Pb, Ag, Zn Pb, Ag, Zn	
A18	Capillítas 27.3, 66.7; 27.4 27.3, 66.25; 27.	, 66.7; 4, 66.25	44 Abel Peirano (Farellón Negro) 46 Los Angeles 47 Virgen del Valle 48 Carmelitas (active) 49 Agua Rica	Au, Ag Au Cu Cu Cu	
A19	Belen 27.55, 67.2; 27. 27.55, 66.85; 27	65, 67.2; 7.65, 66.85	9 Del Valle 10 El Chincal 51 Luna Aguada	W W W	
A20	Incahuasi 25.3, 67.3; 25.5 25.3, 67.2; 25.5	, 67.3; , 67.2	3 Incahuasi et al. 4 Esperanza et al.	Au Au	
A21	Cafayate 26.0, 66.4; 26.1 26.0, 65.95; 26.	, 66.4; 1, 65.95	512 Juan Esteban 517 Los Cardones 518 San Francisco 519 Casualidad III 539 Don Juan	Cu Cu Cu Cu Cu	
A22	León Muerto 25.65, 65.8; 26. 25.65, 65.65; 26	0, 65.8; 6.0, 65.65	 414 Deshechos 415 San Antonio 420 El Zorrito et al. (active) 421 Margarita (active) and Zorriquín (active) 513 Constelación et al. 514 Abundancia et al. 540 Tehuelche 	Cu Cu Cu Cu Cu Cu	
A23	Los Bayos – El T 28.85, 67.95; 29 28.85, 67.55; 29	Figre 9.3, 67.95; 9.3, 67.55	80 Imma 81 La Vegulta 82 Malaquita et al. 83 La Encrucijada 84 Los Bayitos 87 Las Pircas 89 Clorinda	Cu Pb, Ag, Zn Cu Cu Au Cu Cu	

Table 1 Contd.

District	Area		Occurrences	Type of mineralization	
	S	W			
			90 Ampallado 91 El Pararrayo 92 Italia 93 San Pedro et al. 94 La Aragonesa 95 La Cobriza 96 Los Bayos 98 El Tigre 103 El Oro 106 San Sebastian (active)	Cu Cu Cu Pb, Ag, Zn Cu Cu Pb, Ag, Zn Au Cu	
A24	Mogote R 28.15, 6 28.15, 6	ío Blanco 7.95; 28.7, 67.95; 7.65; 28.7, 67.65	62 Las Amolanas 63 La Alumbrera 64 El Cerquito 65 Nuestra Sra. de Andacollo 66 Mal Paso 70 Sotrán 71 Monte Verde et al. (active) 72 Santa María (active)	Pb, Ag, Zn Pb, Ag, Zn Pb, Ag, Zn Pb, Ag, Zn Au Cu Cu, Au Cu, Au Cu, Au	

Fig. 5a-c Location of the Iquique fracture zone *Z2b* with associated earthquakes **a**, transverse section **b** across and longitudinal section **c** along the fracture zone. For key see Fig. 4

Discussion

The description and figures indicate that the most important mining districts in the Andean segment between 18°S and 34°S are situated in the outcrops of the seismically active fracture zones related to the present subduction of the Nazca plate. However, the distribution of mineral deposits is not strictly uniform in type, mineral contents and age.

The majority of mineral deposits of porphyry copper type are situated in the Domeyko F.Z. (Z2c), Río Blanco-Los Bayos F.Z. (Z4a), Farellones F.Z. (Z6), and in the east-west trending E1 Salvador F.Z. (Y5) and Maricunga F.Z. (Y6). Polymetallic deposits occur mainly in the Choquelimpie F.Z. (Z2a) Iquique F.Z. (Z2b) and Incahuasi-León Muerto F.Z. (Y12). Polymetallic vein deposits and Cu veins prevail in the Carachas-Portillo F.Z. (Z1).

The available ages of Tertiary magmatic rocks hosting mineral deposits described can be arranged into four periods: A: Upper Miocene-Pliocene, B: Upper Oligocene-Middle Miocene, C:Upper Eocene-Middle Oligocene, D:Lower Paleocene-Upper Eocene (compare

Sillitoe 1981; Davidson and Mpodozis 1991). It appears that individual seismically active fracture zones are characterized by the occurrence of mineral deposits of different age. In Table 2 the fracture zones are arranged from north to south according to these time periods.

The distribution of dated mineral deposits and sketches of metallogenic belts of different ages are plotted in the framework of the seismically active fracture zones between 18°S and 34°S in Fig. 11. It should be noted that this picture depends on the availability and accuracy of age determinations. Figure 11 shows that all young manifestations of hypogene metallogeny of period A are situated within the outcrops of the present fracture zones (Z2a, Y6, Z4a, Z1, Z6). This young mineralization is concentrated north of 19°S and south of 27°S and does not occur in the central part of the region between 20°S and 26°S where the metallogenic belts of period C and D are developed mainly in the outcrop and vicinity of Domeyko F.Z. (Z2c). It appears

that the deposits of period B are located south of 24°S and do not tend to form clearly defined metallogenic belts. In every case, the considered mineral deposits of all periods are accumulated in the present system of seismically active fracture zones. This distribution of mineral deposits points to the spatial permanency of this system of fracture zones activated by the process of subduction in relation to the western margin of the South American continent since the Lower Paleocene. However, small alterations to this system probably occurred during this time due to specific pecularities of individual subduction cycles.

The hypothesis that the subduction runs in cycles connected with the formation of a system of successive subsiding slabs shifted several tens of kilometres towards or against the direction of the corresponding ocean floor spreading (Hanuš and Vaněk 1991, 1996) seems to have fundamental importance for the formation of large accumulations of metals at convergent plate margins. The continental lithosphere, moving against the direction of Fig. 7a–d Location of the Carachas-Portillo fracture zone Z1 with associated earthquakes a, faults observed on the surface b, transverse section c across and longitudinal section d along the fracture zone. For key see Fig. 4

the ocean floor spreading, meets subduction zones of different age generated by subsequent cycles of subduction. It appears that the fracturing of the continental lithosphere near the convergent plate boundary, which is shown by the described seismically active fracture zones, remains preserved in time, being re-activated under favourable stress conditions by the sequence of subduction cycles of different age.

In Andean South America, deep earthquakes observed at depths between 500 and 600 km do not geometrically fit the linear prolongation of the present Wadati-Benioff zone (see Fig. 1 and Hanuš and Vaněk 1978, 1991) and we explain their occurrence as a product of an activation of paleoslabs buried in the upper mantle. According to this hypothesis, we suppose that these paleoslabs represent relics of foregoing cycles of subduction activated at the present time. They are not connected to the presently active subduction zone represented by shallow and intermediate earthquakes divided from the belt of deep earthquakes by a broad aseismic region at depths between 300 and 500 km (Hanuš and Vaněk 1976, 1991).

If we try to apply this hypothesis of cyclic development of subduction to the region of Andean South America between 18° S and 34° S, we arrive at the following model of the subduction history: The observed shape of the present Wadati-Benioff zone shows that in this region the maximum depth of penetration of the oceanic lithophere beneath the South American continent laterally varies up to 250-300 km (Cahill and Isacks 1992), which corresponds to a length of 600-700 km at the observed dip of the present subduction zone. Considering the rate of 6 cm/y for the subduction of the present subduction would be 10-12 Ma. Because a completed cycle of subduction, given by the maximum and the maximum of the maximum of the maximum for the maximum of the maximum for the

Fig. 8a–c Location of the Farellones fracture zone *Z6* with associated earth-quakes **a**, transverse section **b** across and longitudinal section **c** along the fracture zone. For key see Fig. 4

Fig. 9a-c Location of the Río Blanco-Los Bayos fracture zone *Z4a* with associated earthquakes **a**, transverse section **b** across and longitudinal section **c** along the fracture zone. For key see Fig. 4

Table 2 Co-ordination of dated deposits to individual fracture zones in periods A-D

Period	Fracture zone	Deposit					
		District	Name	Туре	Age [Ma]	Reference	
A 13–4 Ma	Choquelimpie Z2a	CH1	Choquelimpie	Epithermal Ag-Au-Pb-Zn	6.6	G91	
	Maricunga Y6 eastern part	A18	Bajo del Durazno Bajo de Pampitas Bajo de San Lucas Mi Vida	Porphyry copper	7.9–6.8	S77, S81	
	Río Blanco – Los Bayos	A23	Los Bayos	Porphyry copper	5.7	S81	
	Z4a southern part Carachas-Portillo Z1	A24 A6	Several deposits Chita	Porphyry copper – gold W-bearing porphyry	8 11.7	S97 S77, S81	
	Farellones Z6	CH11 A25 A12	Los Pelambres Cerro Mercedario Río de las Vacas	Porphyry copper Porphyry copper Porphyry copper	9.8 13 8.5	S77 S77, S81 S77, S81	
	South of 24°S	CHIU	Bronses del Kio Blanco	Porphyry copper	5-4 5-6-4-2	S91	
	Northern prolongation	CH14	El Indio	Au-Ag-Cu veins	5.0–4.5 13–8 11–9	S91 DM91	
B 23–12 Ma	Tumbaya Y11	A17	Pancho Arías	Porphyry copper	15.4	S77, S81	
	Incahuasi- León Muerto Y12	A20	Inea Viejo	Porphyry copper	15	S77, S81	
	Maricunga Y6 western part	CH9	Marte	Porphyry gold	14–13 12	V91, VS91 DM91	
			Lobo	Porphyry gold	13	VS91	
			La Pepa	Porphyry gold	23-22	S91, VS91	
			Relugio	Porphyry gold	23	DM91	
	Carachas-Portillo Z1 southern part	A9	Paramillos Norte	Porphyry copper	16	S77, S81	
C 44–28 Ma	Domeyko Z2c	CH3	Quebrada Blanca	Porphyry copper	38–36	DM91, S91	
		OT L	Copaquire	Mo	37-34	DM91	
		CH4	El Abra	Porphyry copper	38-37 36-34 34 22	S91 SM96 DM01	
		CH5	Chuquicamata	Porphyry copper	34–33 36–31 35–28	SM96 DM91	
		CH6	Centinela	Porphyry copper	44	DM91	
		CH7	La Escondida	Porphyry copper	35–31 34–31	SM96 DM91	
	El Salvador Y5	CH8	El Salvador	Porphyry copper	43–31 42–39	SM96 DM91	
			Potrerillos	Porphyry copper	35 38–34	SM96 DM91	
			El Hueso	Epithermal gold	38-37	DM91	
D 64–49 Ma	Iquique Z2b Domeyko Z2c westwards	CH16 CH12	Cerro Colorado Faride	Porphyry copper Epithermal Ag-Au	58 64–60 64	S91 S91 DM91	
	westwards		Catalina	Cu. Mo	64-63	SM96	
		CH15	Lomas Bayas	Porphyry copper	61	DM91	
			Fortuna	Porphyry copper	64	DM91	
	Tumbaya Y11 western prolongation	CH13	El Guanaco Cachinal de la Sierra	Epithermal Au-Cu-Ag Epithermal Ag-Au	49 59–56	S91 DM91	

DM91: Davidson and Mpodozis 1991; G91: Gröpper et al. 1991; S77: Sillitoe 1977; S81: Silitoe 1981; S91: Sillitoe 1991; S97: Sillitoe 1997; SM96: Sillitoe and McKee 1996; V91: Vila et al. 1991; VS91: Vila and Sillitoe 1991

mum depth of earthquakes of 600-650 km, corresponds to a length of about 1000 km for the subduction zone, the duration of one completed subduction cycle would be about 17 Ma at the subduction rate of 6 cm/y. On the basis of these suppositions, the following model of the history of

subduction cycles in the region considered may be constructed: subduction cycle (a): 12–0 Ma, subduction cycle (b): 29–12 Ma, subduction cycle (c): 46–29 Ma, subduction cycle (d): 63–46 Ma.

If we compare the history of subduction (a–d) with the periods (A–D) of hypogene metallogeny, we see that

Fig. 10a–c Location of the Tumbaya fracture zone *Y11* with associated earthquakes **a**, transverse section **b** across and longitudinal section **c** along the fracture zone. For key see Fig. 4

this very simplified scheme agrees surprisingly well with the cyclic metallogenic development of the region based on radiometric dating. It should be noted that this model of the history of subduction of the Pacific floor beneath the South American plate is subject to a number of unprovable suppositions as, e.g., length of paleosubduction zones, time of the South Farallon plate break-up and subduction rates due to Cenozoic plate motions (Minster and Jordan 1978, Gordon and Jurdy 1986).

It seems that the active fracture zones, penetrating the whole thickness of the continental lithosphere, effect a channelling of ore-bearing solutions. The repeated seismic activity also seems to assure the long-term permanent re-opening of the import paths for ore-bearing solutions and thus makes it possible to accumulate enormous amounts of metals in relatively restricted domains of the Earth's crust.

A similar structural control of the distribution of calc-alkaline volcanism due to the existence of seismically active fracture zones was observed in several convergent plate margins (Hanuš and Vaněk 1984, 1985, 1987). The preferential intrusion of volcanic bodies into the framework of the fracture zones in the continental wedges, which are permanently activated and tectonically fractured by the cyclic process of subduction, may be presumed to represent one of the most important factors facilitating the formation of deposits of porphyry copper type. The ability of intrusive bodies to undergo

Fig. 11 Distribution of metallogenic belts and mineral deposits of different age in the framework of the seismically active fracture zones. Ages in Ma are given at individual mining districts in *brackets*; A: Upper Miocene-Pliocene, B: Upper Oligocene-Middle Miocene, C: Upper Eocene-Middle Oligocene, D: Lower Paleocene-Upper Eocene

brittle fracturing leads to the permanent production of open spaces for the penetration of hydrothermal solutions and for long-term successive deposition of ore minerals.

This model suggests the first approach to the problem of the formation of large accumulations of metals at convergent plate margins in relation to the active tectonic pattern of the continental wedges above subduction zones shown by the seismically active fracture zones in the continental lithophere. However, it must be stated that the problem is more complex because the formation of mineral deposits now exposed at the earth's surface in the continental wedge need not be directly related to the recent process of subduction because these deposits could be created by earlier cycles of subduction. The uplifting of the continental wedge, accompanying the initial stage of each subduction cycle, seems to be an essential factor for the emplacement of subductionrelated mineral deposits into the mineable levels of the Earth's crust. The occurrence of mineral deposits in recently active fracture zones also seems to indicate that these fracture zones displayed activity during the earliercycles of subduction, prior to the uplifting of their mineralized levels into the recent near-surface position.

Acknowledgements The present work has been performed within the framework of IGCP projects 345 "Andean Lithospheric Evolution" and 354 "Economic Super-accumulations of Metals in the Lithosphere". Financial support by the Grant Agency of the Czech Republic under Grant 205/95/0264 and by the Grant Agency of the Academy of Sciences of the Czech Republic under Grant A 3012805 is acknowledged. The manuscript was substantially modified and improved after the reviews of Mineralium Deposita referees (John Grocott and one anonymous referee) and valuable suggestions of the editor David Rickard and associate editor Lluis Fonboté. The authors wish to thank Jan Kutina for his assistence in obtaining map materials and for many stimulating discussions. One of the authors (V.H.) is indebted to the staff of the Departamento de Geología de la Universidad de Chile in Santiago for the possibility of visiting several Chilean mineral deposits during his OAS mission in Chile.

References

- Cahill T, Isacks BL (1992) Seismicity and shape of the subducted Nazca plate. J Geophys Res 97: 17503–17529
- Camus F, Skewes MA (1991) The Faride epithermal silver-gold deposit, Antofagasta region. Chile. Econ Geol 86: 1222– 1237
- Corvalan J (ed) (1981) Plate-tectonic Map of the Circum-Pacific Region, southeast quadrant. Am Assoc Pet Geol
- Davidson J, Mpodozis C (1991) Regional geological setting of epithermal gold deposits. Chile. Econ Geol 86: 1174– 1186
- Delouis B, Cisternas A, Dorbath L, Rivera L, Kausel E (1996) The Andean subduction one between 22 and 25°S (northern Chile): precise geometry and state of stress. Tectonophysics 59: 81–100
- Dewey JF, Lamb SH (1992) Active tectonics of the Andes. Tectonophysics 205: 79–95
- Ericksen GE, Eyzaguirre VR, Urquidi BF, Salas OR (1986) Neogene-Quaternary volcanism and mineralization in the Central Andes. Trans Fourth Circum-Pacific Energy and Mineral Resources Conf. Singapore, pp 537–550
- Fletcher CJN, Hawkins MP, Tejada R (1989) Structural control and genesis of polymetallic deposits in the Altiplano and Western Cordillera of southern Peru. J South Am Earth Sci 2: 61–71
- Francis PW, Halls C, Baker MCW (1983) Relationships between mineralization and silicic volcanism in the Central Andes. J Volcanol Geothermal Res 18: 165–190
- Frutos J (1982) Andean metallogeny related to the tectonic and petrologic evolution of the Cordillera. Some remarkable points. In: Amstutz GC, et al. (eds) Ore genesis, The state of the art. Springer. Berlin Heidelberg New York, pp 493–507
- Gordon RG, Jurdy DM (1986) Cenozoic global plate motions. J Geophys Res 91: 12389–12406
- Gröpper H, Calvo M, Crespo H, Bisso CR, Cuadra WA, Dunkerley PM, Aguirre E (1991) The epithermal gold-silver deposit of Choquelimpie, Northern Chile. Econ Geol 86: 1206–1221
- Gustafson LB, Quiroga GJ (1995) Patterns of mineralization and alteration below the porphyry copper orebody at El Salvador, Chile. Econ Geol 90: 2–16
- Hanuš V, Vaněk J (1976) Intermediate aseismicity of the Andean subduction zone and recent andesitic volcanism. J Geophys 42: 219–223
- Hanuš V, Vaněk J (1977–78) Subduction of the Cocos plate and deep fracture zones of Mexico. Geofís Int 17: 14–53
- Hanuš V, Vaněk J (1978) Morphology of the Andean Wadati-Benioff zone, andesitic volcanism, and tectonic features of the Nazca plate. Tectonophysics 44: 65–77
- Hanuš V, Vaněk J (1983) Deep structure of the Vanuatu (New Hebrides) island arc: intermediate depth collision of subducted lithospheric plates. NZJ Geol Geophys 26: 133–154

- Hanuš V, Vaněk J (1984) Earthquake distribution and volcanism in Kamchatka, Kurile Islands, and Hokkaido. Studia Geophys Geod 28: 36–55, 129–148, 248–271
- Hanuš V, Vaněk J (1985) Structure of Wadati-Benioff zones and volcanism produced by the process of subduction. Tectonophysics 112: 51–67
- Hanuš V, Vaněk J (1987) Deep seismically active fracture zones in Ecuador and northern Peru. Studia Geophys Geod 31: 8–25, 156–175
- Hanuš V, Vaněk J (1991) Paleoplates buried in the upper mantle and the cyclic character of subduction. J Geodynamics 13: 29–45
- Hanuš V, Vaněk J (1992) Seismotectonics of continental wedges overlying circum-Pacific subduction zones. Cas Min Geol (Prague) 37: 277–287
- Hanuš V, Vaněk J (1996) Cyclic evolution of convergent plate margins indicated by time sequence of volcanism and subduction. Global Tectonics and Metallogeny 5: 103–108
- Hanuš V, Vaněk J, Špičák A (1996) Seismically active fracture zones in the continental wedge of the central part of Andean South America. Géodynamique andine, ORSTOM editions, Colloques et séminaires, Paris, pp 187–190
- Jannas RR, Beane RE, Ahler BA, Brosnahan DR (1990) Gold and copper mineralization at the E1 Indio deposit, Chile. J Geochem Exploration 36: 233–266
- Mapa Geológico de Chile (1:1 000 000), 1982. Servicio Nacional de Geologia y Minería, Santiago
- Mapa Geológico de la República Argentina (1:2 500 000), 1982. Servicio Geológico Nacional, Buenos Aires
- Mapa Minero (1:750 000). Provincias de San Juan, Mendoza, Salta y Jujuy, 1966. Instituto Nacional de Geología y Minería, Buenos Aires
- Marschik R, Singer BS, Munizaga F, Tassinari C, Moritz R, Fontboté L (1997) Age of Cu (-Fe) – Au mineralization and thermal evolution of the Punta del Cobre district, Chile. Miner Deposita 32: 531–546
- Mc Kee EH, Robinson AC, Rybuta JJ, Cuitinno L, Moscoso RD (1994) Age and Sr isotopic composition of volcanic rocks in the Maricunga Belt, Chile: implications for magma sources. J South Am Earth Sci 7: 167–177
- Minster JB, Jordan TH (1978) Present-day plate motions. J Geophys Res 83: 5331–5354
- Mitchell AHG (1973) Metallogenic belts and angle of dip of Benioff zones. Nature 245: 49–52
- Mitchell AHG, Beckinsale RD (1982) Mineral deposits associated with calc-alkaline rocks. In: Thorpe RS (ed). Andesites. Wiley, New York, pp 677–695
- Regional Catalogue of Earthquakes (1964–1993) International Seismological Centre, Edinburgh and Newbury
- Sillitoe RH (1972) A plate tectonic model for the origin of porphyry copper deposits. Econ Geol 67: 184–197
- Sillitoe RH (1974) Tectonic segmentation of the Andes: implications for magmatism and metallogeny. Nature 250: 542–545
- Sillitoe RH (1976) Andean mineralization: a model for the metallogeny of convergent plate margins. In: Strong DF (ed) Metallogeny and plate tectonics. Geol Assoc Can Spec Pap 14: 59–100
- Sillitoe RH (1977) Perino-Carboniferous, Upper Cretaceous, and Miocene porphyry copper-type mineralization in the Argentinian Andes. Econ Geol 72: 99–103
- Sillitoe RH (1981) Regional aspects of the Andean porphyry copper belt in Chile and Argentina. Transactions, Institution of Mining and Metallurgy, Section B 90: B15–B36
- Sillitoe RH (1988) Epochs of intrusion-related copper mineralization in the Andes. J South Am Earth Sci 1: 89–107
- Sillitoe RH (1991) Gold metallogeny of Chile an introduction. Econ Geol 86: 1187–1205
- Sillitoe RH (1992) Gold and copper metallogeny of the Central Andes – past, present, and future exploration objectives. Econ Geol 87: 2205–2216

- Sillitoe RH (1997) Characteristics and controls of the largest porphyry copper-gold and epithermal gold deposits in the circum-Pacific region. Australian J Earth Sci 44: 373–388
- Sillitoe RH, McKee EH (1996) Age of supergene oxidation and enrichment in the Chilean porphyry copper province. Econ Geol 91: 164–179
- Sillitoe RH, McKee EH, Vila T (1991) Reconnaissance K-Ar geochronology of the Maricunga gold-silver belt, Northern Chile. Econ Geol 86: 1261–1270
- Skewes MA, Stern CR (1994) Tectonic trigger for the formation of late Miocene Curich breccia pipes in the Andes of central Chile. Geology 22: 551–554
- Soler P, Bonhomme MG (1988) New K-Ar age determinations of intrusive rocks from the Cordillera Occidental and Altiplano

of central Peru: Identification of magmatic pulses and episodes of mineralization. J South Am Earth Sci 1: 169–177

- Ulriksen G (1990) Mapa Metalogénico de Chile entre los 18° and 34°S (1:1 000 000) Servicio Nacional de Geologia y Minas – Chile. Santiago. Boletín No. 42: 1–112
- Vaněk J, Hanuš V, Slancová A, Špičák A (1999) Seismically active fracture zones in the continental wedge above the subduction zone in the Arica Elbow region. Studia Geophys Geod 43 (in press)
- Vila T, Sillitoe RH (1991) Gold-rich porphyry systems in the Maricunga belt, Northern Chile. Econ Geol 86: 1238–1260
- Vila T, Sillitoe RH, Betzhold J, Viteri E (1991) The porphyry gold deposit at Marte, Northern Chile. Econ Geol 86: 1271– 1286