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Abstract

It was stated by M. Gromov [Gr2] that, for any hyperbolic group G,
the map from bounded cohomology Hn

b (G,R) to Hn(G,R) induced
by inclusion is surjective for n ≥ 2. We introduce a homological
analogue of straightening simplices, which works for any hyperbolic
group. This implies that the map Hn

b (G,V ) → Hn(G,V ) is surjective
for n ≥ 2 when V is any bounded QG-module and when V is any
finitely generated abelian group.

1 Introduction

The bounded cohomology of a group G, H∗
b (G,V ), is defined with the

bar-construction the same way as the usual cohomology except that only
bounded cochains are considered (see the precise definition in section 2).
The bounded cohomology of a topological space is defined using bounded
singular cochains.

M. Gromov showed in [Gr1] that, for a closed manifold M of negative
curvature and n ≥ 2, the map Hn

b (M,R) → Hn(M,R) is surjective. The
proof used the fact that each singular n-simplex in a simply connected
manifold of negative curvature can be deformed to a “straight n-simplex”,
and that the straight n-simplices have uniformly bounded volumes.

In [Gr2, 8.3.T] Gromov also claimed the same surjectivity result for
hyperbolic groups and gave a sketch of proof involving quasi-geodesic flows.
This surjectivity result was later used by A. Connes and H. Moscovici [CM]
for a proof of the Novikov conjecture for hyperbolic groups.

We use a different approach to prove the surjectivity result for any
coefficients, namely we show

Theorem 11. Let G be a hyperbolic group and V be a bounded QG-
module. Then the map Hn

b (G,V ) → Hn(G,V ) induced by inclusion is
surjective for each n ≥ 2.
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W.D. Neumann and L. Reeves [NR] showed that, when G is hyper-
bolic, the map H2

b (G,A) → H2(G,A) is surjective for any finitely gener-
ated abelian group A. Our Theorem 11 implies the same result for higher
dimensions:

Theorem 15. Let G be a hyperbolic group and A be a finitely generated
abelian group. Then the map Hn

b (G,A) → Hn(G,A) induced by inclusion
is surjective for each n ≥ 2.

The idea of the proof of Theorem 11 is the following. For the hyperbolic
group G we take X to be the universal covering of a K(G, 1)-complex with
finitely many cells in each dimension, and let Γ be the 1-skeleton of X. A
Q-bicombing q in Γ is a choice of a rational 1-chain q[a, b] for each pair of
vertices a, b such that ∂q[a, b] = b− a. The main step in the proof is

Theorem 10. Let G be a hyperbolic group and Γ be a connected graph
with a free cocompact G-action. Then there exists a Q-bicombing q in Γ
with the following properties:

(1) q is quasigeodesic;
(2) q is G-equivariant;
(3) q is anti-symmetric, i.e. q[a, b] = −q[b, a] for any a, b ∈ Γ(0);
(4) there exists a constant T such that, for any a, b, c ∈ Γ(0),∣∣q[a, b] + q[b, c] + q[c, a]

∣∣
1
≤ T .

Informally, one should think of q[a, b] as a singular 1-simplex spanning
a and b.

Hyperbolic groups satisfy linear isoperimetric inequalities for filling ra-
tional n-cycles (see [G] for n = 1 and [M3] for n > 1), hence, by Theo-
rem 10(4), each 1-cycle of form q[a, b] + q[b, c] + q[c, a] bounds a 2-chain of
bounded norm. We extend this inductively to higher dimensions, i.e. we
“span” each (n+ 1)-tuple of vertices in X by a cellular n-chain of bounded
�1-norm. One may view this construction as a homological analogue of
straightening. Then a formal homological argument is used to finish the
proof of Theorem 11.

The bicombing q[a, b] above may also be viewed as a generalization of
global canonical representatives considered by E. Rips and Z. Sela [RS].
The question of existence of such canonical representatives for an arbitrary
hyperbolic groups remains open.

Everywhere in the paper Q can be replaced by R with no change in the
proofs. In [M1] a converse of Theorem 11 is shown, giving a characterization
of hyperbolic groups by bounded cohomology.
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2 Definitions

2.1 Hyperbolic groups. If Γ is a graph, we always view it as a metric
space with the path metric d induced by assigning length 1 to each edge. A
geodesic path [a, b] in Γ is a shortest edge path connecting the two vertices a
and b. A finitely generated group G is called hyperbolic if, for any graph Γ
with a free cocompact G-action there exists a constant δ ≥ 0 such that all
the geodesic triangles in Γ are δ-fine in the following sense: if a, b, and c are
vertices in Γ(0), [a, b], [b, c], and [c, a] are geodesics from a to b, from b to c,
and from c to a, respectively, and points ā ∈ [b, c], v, c̄ ∈ [a, b], w, b̄ ∈ [a, c]
satisfy

d(b, c̄) = d(b, ā) , d(c, ā) = d(c, b̄) , d(a, v) = d(a,w) ≤ d(a, c̄) = d(a, b̄) ,

then d(v,w) ≤ δ. See [A&] for other equivalent definitions.
For the rest of the paper, let G be a hyperbolic group and X be a

contractible cellular complex equipped with a free cellular G-action which
is cocompact on the n-skeleton X(n) for each n. This means that the
quotient of X by the G-action is a K(G, 1)-complex with finitely many
cells in each dimension. Such a complex X exists for each hyperbolic (or,
more generally, combable) group (see [E&, Theorem 10.2.6] and [A]). When
G is torsion free, X is the familiar Rips complex and it is finite dimensional.

In what follows, Γ will always stand for the 1-skeleton of X. Choose δ
so that all geodesic triangles in Γ are δ-fine. Increase δ as needed to make
it a positive integer.

For vertices a, b, and c in Γ(0), the Gromov product is defined by

(b|c)a := 1
2

[
d(a, b) + d(a, c) − d(b, c)

]
.

Note that, by the triangle inequality, this product always satisfies

(b|c)a ≤ d(a, b), (b|c)a ≤ d(a, c), (b|c)a ≥ 0, d(a, b) = (b|c)a + (a|c)b,

and analogously for any permutation of letters a, b, and c.
The next lemma immediately follows from the definition of hyperbolic

groups.
Lemma 1 (Fine-triangles property). Let G and Γ be as above, and z, x,
y, x′, y′ be vertices in Γ(0) such that x′ (respectively, y′) lies on a geodesic
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connecting z to x (respectively, z to y). Suppose also that

d(z, x′) = d(z, y′) ≤ (x|y)z .

Then d(x′, y′) ≤ δ.
Given a vertex v in Γ(0) and a number r, a sphere S(v, r) in Γ is the set

of all vertices w in Γ(0) satisfying d(v,w) = r. A ball B(v, r) in Γ is the set
of all vertices w in Γ(0) satisfying d(v,w) ≤ r. If S is a subset of Γ, then
the r-neighborhood of S, N(S, r), is the set of all points x ∈ Γ such that
d(x, s) ≤ r for some s ∈ S.

The following obvious corollary of Lemma 1 will be used several times
throughout the paper.
Lemma 2. Let G and Γ be as above, and z, x, y, x′,y′ be vertices in Γ(0)

such that x′ (respectively, y′) lies on a geodesic connecting z to x (respec-
tively, z to y). Suppose also that m is an integer, x′, y′ ∈ S(z, 10δ(m− 1)),
x, y ∈ S(z, 10δm), and d(x, y) ≤ 5δ. Then d(x′, y′) ≤ δ.

2.2 Normed vector spaces. LetW be a vector space over Q. A norm
on W is a function | · | : W → R+ satisfying (1) w = 0 iff |w| = 0;
(2) |w + w′| ≤ |w| + |w′|; (3) |αw| = |α| · |w| for w,w′ ∈W , α ∈ Q.

Suppose now that a vector space W over Q has a preferred basis
{wi, i ∈ I}. The �1-norm on W with respect to this basis is given by∣∣∣ ∑

i∈I

αiwi

∣∣∣
1

:=
∑
i∈I

|αi| .

Let (W, | · |1) and (W ′, | · |) be normed vector spaces, where W is
equipped with the �1-norm | · |1. For a linear map ϕ : W → W ′, the �∞-
norm of ϕ, |ϕ|∞, is the operator norm of ϕ, i.e. |ϕ|∞ is the smallest number
K (possibly infinity) such that |ϕ(w)| ≤ K|w|1 for each w ∈W . One checks
that

|ϕ|∞ = sup
i∈I

|ϕ(wi)| ,

where {wi, i ∈ I} is the preferred basis of W .
The preferred basis on the space of cellular n-chains, Cn(X,Q), will

always be the set of n-cells in X and we always equip Cn(X,Q) with the
�1-norm.

2.3 Bounded modules. A bounded QG-module is a QG-module which
is normed, as a vector space over Q, and such that G acts on the module
by linear maps of uniformly bounded norms. Note that this definition is
more general than one may find in literature in that we do not require the
module to be a Banach space, and also it is a vector space over Q rather
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than over R. Of course, any normed vector space over Q may be viewed as
a bounded QG-module with the trivial G-action.

2.4 Bounded cohomology. There are various equivalent definitions
for the bounded cohomology of a group (see [I] and [N]). In the paper
we will use the homogeneous bar-construction definition. Namely, for any
bounded QG-module V , the bounded cohomology of G with coefficients
in V , H∗

b (G,V ), is the homology of the cochain complex

0 −→ C0
b (G,V ) δ0−→ C1

b (G,V ) δ1−→ C2
b (G,V ) δ2−→ · · · ,

where

Cn
b (G,V ) := {α : Gn+1 → V | α is a bounded G-map}

and the coboundary map is defined by

δnα
(
〈x0, . . . , xn+1〉

)
:=

n+1∑
i=0

(−1)iα
(
〈x0, . . . , x̂i, . . . , xn+1〉

)
.

Here Gn+1 is considered with the diagonal G-action, and “bounded” means
“has bounded image with respect to the norm on V ”.

Equivalently, Cn
b (G,V ) ⊆ HomQG(Cn(G,Q), V ) is the subspace of all

QG-morphisms Cn(G,Q) → V , which are bounded as linear maps, where
Cn(G,Q) is the space of all chains (= finite support functions) Gn+1 → Q

given the �1-norm with respect to the standard basis Gn+1. One should
think of an element of Gn+1 as an n-simplex. Such simplices form a sim-
plicial complex Y representing the bar-construction. For convenience, in
the text we will use the notation CY

n = Cn(Y,Q) instead of Cn(G,Q) and
Cn

Y = Cn(Y, V ) instead of Cn(G,V ).

3 Auxiliary Statements

In this section we first prove some auxiliary statements, and use them to
prove Theorem 10 mentioned in the introduction. The reader may want to
skip the technicalities and first go to section 4 where this result is used for
bounded cohomology.

All cellular chains inX will be assumed with Q-coefficients unless stated
otherwise.

A bicombing p in Γ is a function assigning to each ordered pair (a, b) of
vertices in Γ(0) an oriented edge-path p[a, b] from a to b. A bicombing p is
called geodesic if each path p[a, b] is geodesic, i.e. a shortest edge path. A
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bicombing p is G-equivariant if p[g ·a, g · b] = p · q[a, b] for each a, b ∈ Γ and
each g ∈ G.

For the rest of the paper, fix some G-equivariant geodesic bicombing p
in Γ. So each p[a, b] is an isometric embedding p[a, b] : [0, d(a, b)] → Γ with
p[a, b](0) = a and p[a, b](d(a, b)) = b, and p[a, b](r) stands for the image of
r ∈ [0, d(a, b)] via the map p[a, b]. Abusing the notation we will also view
the path p[a, b], as a 1-chain, with ∂p[a, b] = b− a.

A homological bicombing q in Γ is a function which assigns a 1-chain
q[a, b] to each ordered pair (a, b) of vertices in Γ(0), so that ∂q[a, b] = b− a.
A Q-bicombing is a homological bicombing with coefficients in Q. A homo-
logical bicombing is called quasigeodesic if

• there exists a constant r ≥ 0 and a geodesic bicombing p such that
supp q[a, b] ⊆ N(p[a, b], r) for each a, b ∈ Γ(0), and

• there exists a constant C ≥ 0 such that
∣∣q[a, b]∣∣

1
≤ C d(a, b) for each

a, b ∈ Γ(0).

A homological bicombing q is G-equivariant if q[g · a, g · b] = g · q[a, b] for
each a, b ∈ Γ(0) and each g ∈ G.

A convex combination is a (cellular) 0-chain with non-negative coeffi-
cients which sum up to 1. For v,w ∈ Γ(0), the flower at w with respect to
v is the set

Fl(v,w) := S
(
v, d(v,w)

)
∩B(w, δ) ⊆ Γ(0).

First we recall a version of the dandelion construction from [M3]. For
each vertex a in Γ(0), define the “one-level-lower projection toward a”
pra : Γ(0) → Γ(0) as follows.

• pra(a) := a, and
• if b �= a, pra(b) := p[a, b](r), where r is the largest (integral) multiple

of 10δ which is strictly less than d(a, b).

Now for each pair a, b ∈ Γ(0) we define a (cellular) 0-chain f(a, b) in Γ.
The definition is inductive on the distance d(a, b). For vertices a and b with
d(a, b) ≤ 10δ, put f(a, b) := b. If d(a, b) > 10δ and d(a, b) is not a multiple
of 10δ, let f(a, b) := f(a, pra(b)). If d(a, b) > 10δ and d(a, b) is a multiple
of 10δ, let

f(a, b) :=
1

#Fl(a, b)

∑
x∈F l(a,b)

f
(
a, pra(x)

)
.

Proposition 3 (Canceling convex combinations). The function f defined
above satisfies the following properties:

(1) f(a, b) is a convex combination.
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(2) If d(a, b) ≥ 10δ, then supp f(a, b) ⊆ Fl(a, p[a, b](10δ)).
(3) If d(a, b) ≤ 10δ, then f(a, b) = b.
(4) f is G-equivariant, i.e. f(g · a, g · b) = g · f(a, b) for any a, b ∈ Γ(0)

and g ∈ G.

(5) There exist constants L ≥ 0 and 0 ≤ λ < 1 such that, for any
a, b, c ∈ Γ(0), ∣∣f(a, b) − f(a, c)∣∣

1
≤ Lλ(b|c)a .

The proof of this and later statements may look a bit cumbersome, but
the main point should be clear: use the fine-triangles property whenever
possible. It is probably also worth mentioning that the number 10δ in the
statement can be replaced by any “sufficiently large” integer.

�a � b
p[a, b]

f(a, b)

�

pra(b)

Figure 1: Convex combination f(a, b).

Proof of Proposition 3. It is clear from the definition that f(a, b) is
a convex combination and it is G-equivariant because the definition uses
only metric properties of Γ(0), which are preserved under the G-action. So
properties (1) and (4) are satisfied. Property (3) follows directly from the
definition. To prove (2) we need the following lemma.

Lemma 4. Let a, b ∈ Γ(0) and letm be an integer satisfying 10δ ≤ 10δm ≤
d(a, b). Put v := p[a, b](10δm). Then

f(a, b) =
∑

x∈F l(a,v)

αxf(a, x) ,

for some non-negative coefficients αx with
∑

x∈F l(a,v) αx = 1.

Proof. This follows almost immediately from the definition of f . The
main tools here are the fine-triangles property and the fact that “a convex
combination of convex combinations is again a convex combination”. Fix
an arbitrary pair of vertices a and b in Γ(0). We prove the assertion by
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the inverse induction on m. Let mmax be the maximal integer among all
m satisfying 10δm ≤ d(a, b). Since 10δ ≤ d(a, b) by the hypotheses of the
lemma, then mmax ≥ 1.

m = mmax. If 10δmmax = d(a, b), then b = v and the 0-chain
f(a, b) = f(a, v) can be represented as the trivial linear combination∑

x∈F l(a,v) αxf(a, x), where αv = 1 and αx = 0 for all x �= v.
If 10δmmax < d(a, b), then, by the definition of f ,

f(a, b) = f
(
a, pra(b)

)
= f(a, v) ,

which is again the trivial linear combination.

m + 1 �→ m. If an integer m satisfies 1 ≤ m < mmax, then 10δ ≤
10δ(m+ 1) ≤ d(a, b), so, by induction hypotheses,

f(a, b) =
∑

x∈F l(a,v′)

αxf(a, x) ,

where v′ := p[a, b](10δ(m + 1)) and αx are some non-negative coefficients
satisfying

∑
x∈F l(a,v′) αx = 1. By definition, each f(a, x) in the last sum

has the form

f(a, x) =
1

#Fl(a, x)

∑
y∈F l(a,x)

f
(
a, pra(y)

)
,

therefore

f(a, b) =
∑

x∈F l(a,v′)

αx

[
1

#Fl(a, x)

∑
y∈F l(a,x)

f
(
a, pra(y)

)]

=
∑

x∈F l(a,v′)

∑
y∈F l(a,x)

αx

#Fl(a, x)
f
(
a, pra(y)

)
(1)

Now collect like terms in the last double sum. It amounts to grouping
the coefficients αx/#Fl(a, x). Their sum is 1:∑

x∈F l(a,v′)

∑
y∈F l(a,x)

αx

#Fl(a, x)
=

∑
x∈F l(a,v′)

[
αx

#Fl(a, x)

∑
y∈F l(a,x)

1
]

=
∑

x∈F l(a,v′)

αx = 1 ,

and after the grouping the coefficients will still sum up to 1. We have

d(v′, y) ≤ d(v′, x) + d(x, y) ≤ 2δ ,

hence, by Lemma 2, d(pra(y), p[a, b](10δm)) ≤ δ. This implies that all
the points pra(y) mentioned in formula (1) belong to Fl(a, p[a, b](10δm)).
Lemma 4 is proved. ✷
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Now part (2) in Proposition 3 is immediate: if d(a, b) ≥ 10δ, then, by
taking m := 1 in Lemma 4, we obtain v = p[a, b](10δ) and

f(a, b) =
∑

x∈F l(a,v)

αxf(a, x) =
∑

x∈F l(a,v)

αxx .

To finish the proof of Proposition 3 it only remains to show part (5).
Let

ω := max
{
#B(v, δ)

∣∣ v ∈ Γ(0)
}
.

Obviously, ω ≥ 1, and also ω < ∞ because, up to the G-action, there are
only finitely many balls of radius δ in Γ(0). Note that the cardinality of
each flower Fl(a, b) does not exceed ω.

Lemma 5. Suppose that vertices a, b, c in Γ(0) and an integer n satisfy
d(b, c) ≤ δ and d(a, b) = d(a, c) = 10δn. Then∣∣f(a, b) − f(a, c)∣∣

1
≤ 2

(
1 − 1
ω2

)n−1

.

Proof. Induction on n.

n ≤ 1. In this case∣∣f(a, b) − f(a, c)∣∣
1
≤

∣∣f(a, b)∣∣
1

+
∣∣f(a, c)∣∣

1
= 2 ≤ 2

(
1 − 1
ω2

)n−1

.

n − 1 �→ n. Suppose d(b, c) ≤ δ and d(a, b) = d(a, c) = 10δn, where
n ≥ 2. Then∣∣f(a, b) − f(a, c)∣∣

1

=
∣∣∣∣ 1
#Fl(a, b)

∑
x∈F l(a,b)

f
(
a, pra(x)

)
− 1

#Fl(a, c)

∑
y∈F l(a,c)

f
(
a, pra(y)

)∣∣∣∣
1

=
∣∣∣∣ 1
#Fl(a, b) · #Fl(a, c)

∑
x∈F l(a,b)

∑
y∈F l(a,c)

[
f(a, pra(x)) − f(a, pra(y))

]∣∣∣∣
1

≤ 1
#Fl(a, b) · #Fl(a, c)

∑
x∈F l(a,b)

∑
y∈F l(a,c)

∣∣f(a, pra(x)) − f(a, pra(y))
∣∣
1
.

(2)

By the hypotheses, d(b, c) ≤ δ, so b ∈ Fl(a, b)∩Fl(a, c), and therefore there
is a term in the last double sum corresponding to x := y := b. This term is
obviously zero. The remaining #Fl(a, b) ·#Fl(a, c)−1 terms in this double
sum can be bounded as follows. Since

d(x, y) ≤ d(x, b) + d(b, c) + d(c, y) ≤ δ + δ + δ = 3δ ,
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then, by Lemma 2, d(pra(x), pra(y)) ≤ δ. The induction hypotheses now
apply to the vertices a, pra(x), and pra(y) giving the bound

∣∣f(a, pra(x)) − f(a, pra(y))
∣∣
1
≤ 2

(
1 − 1
ω2

)(n−1)−1

= 2
(

1 − 1
ω2

)n−2

for each x ∈ Fl(a, b) and y ∈ Fl(a, c). So continuing inequality (2) we have∣∣f(a, b) − f(a, c)∣∣
1

≤ 1
#Fl(a, b) · #Fl(a, c)

(
#Fl(a, b) · #Fl(a, c) − 1

)
· 2

(
1 − 1
ω2

)n−2

=
(

1 − 1
#Fl(a, b) · #Fl(a, c)

)
· 2

(
1 − 1
ω2

)n−2

≤ 2
(

1 − 1
ω2

)n−1

.

Lemma 5 is proved. ✷

Now we finish the proof of Proposition 3(5). Pick any triple of vertices
a, b, c in Γ(0). Let

λ :=
(

1 − 1
ω2

)1/10δ

and L := 2
(

1 − 1
ω2

)−3

.

Recall that 1 ≤ ω <∞, hence L ≥ 0 and 0 ≤ λ < 1, as needed.
If (b|c)a ≤ 20δ, then∣∣f(a, b) − f(a, c)∣∣

1
≤

∣∣f(a, b)∣∣
1

+
∣∣f(a, c)∣∣

1
= 2

= 2
(

1 − 1
ω2

)−3

·
(

1 − 1
ω2

)3

= Lλ30δ ≤ Lλ20δ ≤ Lλ(b|c)a .

We can now assume (b|c)a > 20δ. Let m be the maximal integer among
those satisfying 10δm ≤ (b|c)a. It easily follows that

(b|c)a
10δ − 1 ≤ m (3)

and 20δ ≤ 10δm ≤ (b|c)a ≤ d(a, b), hence, by Lemma 4,

f(a, b) =
∑

x∈F l(a,v)

αxf(a, x) ,

where v := p[a, b](10δm) and αx are some non-negative coefficients sum-
ming up to 1. In the same way,

f(a, c) =
∑

y∈F l(a,w)

βyf(a, y) ,

where w := p[a, c](10δm) and βy are some non-negative coefficients sum-
ming up to 1 (see Fig. 2).
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�a

�
b

� c

�

v

�
w

�
x

�
x′

�y
�y′

�

�

�

�

�

S(a, 10δ)

S
(
a, 10δ(m− 1)

)

S(a, 10δm)

Figure 2: Proof of Proposition 3(5).

Then∣∣f(a, b) − f(a, c)∣∣
1

=
∣∣∣ ∑

x∈F l(a,v)

αxf(a, x) −
∑

y∈F l(a,w)

βyf(a, y)
∣∣∣
1

=
∣∣∣ ∑

x∈F l(a,v)

αxf(a, x) ·
∑

y∈F l(a,w)

βy −
∑

x∈F l(a,v)

αx ·
∑

y∈F l(a,w)

βyf(a, y)
∣∣∣
1

=
∣∣∣ ∑

x∈F l(a,v)

∑
y∈F l(a,w)

αxβy

[
f(a, x) − f(a, y)

]∣∣∣
1

≤
∑

x∈F l(a,v)

∑
y∈F l(a,w)

αxβy

∣∣f(a, x) − f(a, y)∣∣
1
,

(4)

whereas, by the definition of f ,∣∣f(a, x) − f(a, y)∣∣
1

=
∣∣∣∣ 1
#Fl(a, x)

∑
x′∈F l(a,x)

f
(
a, pra(x′)

)
− 1

#Fl(a, y)

∑
y′∈F l(a,y)

f
(
a, pra(y′)

)∣∣∣∣
1

≤ 1
#Fl(a, x) · #Fl(a, y)

∑
x′∈F l(a,x)

∑
y′∈F l(a,y)

∣∣f(a, pra(x′)) − f(a, pra(y′))
∣∣
1
.

(5)

By the choice of v, w, and m, d(a, v) = d(a,w) = 10δm ≤ (b|c)a, then the
fine-triangles property yields d(v,w) ≤ δ. Since x ∈ Fl(a, v), y ∈ Fl(a,w),



818 I. MINEYEV GAFA

x′ ∈ Fl(a, x), y′ ∈ Fl(a, y),
d(x′, y′) ≤ d(x′, x)+d(x, v)+d(v,w)+d(w, y)+d(y, y′) ≤ δ+δ+δ+δ+δ = 5δ ,

then, by Lemma 2, d(pra(x′), pra(y′)) ≤ δ, and by Lemma 5,

∣∣f(a, pra(x′)) − f(a, pra(y′))
∣∣
1
≤ 2

(
1 − 1
ω2

)(m−1)−1

= 2
(

1 − 1
ω2

)m−2

.

(6)

Combining inequalities (4), (5), (6) and (3),∣∣f(a, b) − f(a, c)∣∣
1

≤
∑

x∈F l(a,v)

∑
y∈F l(a,w)

αxβy

#Fl(a, x) · #Fl(a, y)
∑

x′∈F l(a,x)

∑
y′∈F l(a,y)

2
(

1− 1
ω2

)m−2

= 2
(

1 − 1
ω2

)m−2

≤ 2
(

1 − 1
ω2

)[
(b|c)a
10δ

−1
]
−2

= 2
(

1 − 1
ω2

)−3

·
(

1 − 1
ω2

) (b|c)a
10δ

= Lλ(b|c)a .

Proposition 3 is proved. ✷

Now we use the function f to construct another function f̄ with addi-
tional properties.

For each a ∈ Γ(0) we define a 0-chain star(a) by

star(a) :=
1

#B(a, 7δ)

∑
x∈B(a,7δ)

x .

In other words, star(a) is “the uniform spread” of a to all the vertices
that are 7δ-close to a. Also, star(a) can be defined for any 0-chain a, by
linearity:

star
( ∑

x∈Γ(0)

αxx
)

:=
∑

x∈Γ(0)

αxstar(x) .

Lemma 6. star satisfies the following properties:

• If a is a convex combination, then star(a) is a convex combination.
• supp star(a) lies in the 7δ-neighborhood of supp a, for any 0-chain a.
• star is a linear operator C0(Γ,Q) → C0(Γ,Q).
• This operator is of norm 1, i.e. |star(a)|1 ≤ |a|1 for any 0-chain a.
• star is G-equivariant, i.e. star(g · a) = g · star(a) for any 0-chain a

and any g ∈ G.

The proof is immediate.
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Now if f is the function from Proposition 3 and a, b ∈ Γ(0), define

f̄(a, b) := star
(
f(a, b)

)
.

Proposition 7. The function f̄ defined above satisfies the following
properties:

(1) f̄(a, b) is a convex combination.

(2) If d(a, b) ≥ 10δ, then supp f̄(a, b) ⊆ B(p[a, b](10δ), 8δ).
(3) If d(a, b) ≤ 10δ, then supp f̄(a, b) ⊆ B(b, 7δ).
(4) f̄ is G-equivariant, i.e. f̄(g · a, g · b) = g · f̄(a, b) for any a, b ∈ Γ(0)

and g ∈ G.

(5) There exist constants L ≥ 0 and 0 ≤ λ < 1 such that, for any
a, b, c ∈ Γ(0), ∣∣f̄(a, b) − f̄(a, c)∣∣

1
≤ Lλ(b|c)a .

(6) There exists a constant 0 ≤ λ′ < 1 such that if a, b, c ∈ Γ(0) satisfy
(a|b)c ≤ 10δ and (a|c)b ≤ 10δ, then∣∣f̄(b, a) − f̄(c, a)∣∣

1
≤ 2λ′ .

(7) Let a, b, c ∈ Γ(0), γ be a geodesic path from a to b, and let c ∈ N(γ, 9δ).
Then supp f̄(c, a) ⊆ N(γ, 9δ).

Proof. Lemma 6 and Proposition 3(1)–(5) imply Proposition 7(1)–(5). We
show Proposition 7(6) now.

Let ω7 := max{#B(v, 7δ) | v ∈ Γ(0)}, and λ′ := 1 − 1
ω2

7
. We have

1 ≤ ω7 <∞, and hence 0 ≤ λ′ < 1. Let us assume that a, b, c ∈ Γ(0) satisfy
the hypotheses

(a|b)c ≤ 10δ and (a|c)b ≤ 10δ .

This implies that

d(b, c) = (a|b)c + (a|c)b ≤ 20δ . (7)

Without loss of generality, d(a, b) ≤ d(a, c) (interchange b and c otherwise).
Additionally we assume for the moment that

d(a, b) ≥ 10δ .

Let v := p[b, a](10δ) and w := p[c, a](10δ). By Proposition 3(1,2),

f(b, a) =
∑

x∈F l(b,v)

αxx and f(c, a) =
∑

y∈F l(b,w)

βyy ,

where αx ≥ 0,
∑

x∈F l(b,v) αx = 1, βy ≥ 0,
∑

y∈F l(b,w) βy = 1 (see Fig. 3).
Then
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Figure 3: Proof of Proposition 7(6).

∣∣f̄(b, a) − f̄(c, a)∣∣
1

=
∣∣star(f(b, a)) − star(f(c, a))∣∣

1

=
∣∣∣star( ∑

x∈F l(b,v)

αxx
)
− star

( ∑
y∈F l(c,w)

βyy
)∣∣∣

1

=
∣∣∣ ∑

x∈F l(b,v)

αxstar(x) −
∑

y∈F l(c,w)

βystar(y)
∣∣∣
1

≤
∑

x∈F l(b,v)

∑
y∈F l(c,w)

αxβy

∣∣star(x) − star(y)∣∣
1
.

(8)

Let w′ be the vertex on the geodesic p[c, a] satisfying d(a,w′) = d(a, v). We
have

d(a,w′) = d(a, v) = d(a, b)−d(b, v) = d(a, b)−10δ ≤ d(a, c)−10δ = d(a,w) ,

hence, using inequality (7),

d(a,w′) = d(a, v) ≤ 1
2

[
(d(a, b) − 10δ

)
+

(
d(a, c) − 10δ)

]
= 1

2

[
d(a, b)+d(a, c)−20δ

]
≤ 1

2

[
d(a, b)+d(a, c)−d(b, c)

]
= (b|c)a ,

therefore, by the fine-triangles property, d(v,w′) ≤ δ. Also

d(w′, w) = d(a, c) − d(c, w) − d(a,w′) = d(a, c) − 10δ − d(a, v)
= d(a, c) − d(a, b) =

[
(a|b)c + (b|c)a

]
−

[
(a|c)b + (b|c)a

]
= (a|b)c − (a|c)b ≤ (a|b)c ≤ 10δ .

So we have

d(v,w) ≤ d(v,w′) + d(w′, w) ≤ δ + 10δ = 11δ .
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If x ∈ Fl(b, v) and y ∈ Fl(c, w), then using the last formula we get
d(x, y) ≤ d(x, v) + d(v,w) + d(w, y) ≤ δ + 11δ + δ = 13δ .

This implies that, for each such a pair of vertices x and y, there is a vertex
s ∈ B(x, 7δ) ∩ B(y, 7δ). (Take s to be a vertex on a geodesic edge path
between x and y nearest to the midpoint.) Then∣∣star(x) − star(y)∣∣

1

=
∣∣∣ 1
#B(x, 7δ)

∑
x′∈B(x,7δ)

x′ − 1
#B(y, 7δ)

∑
y′∈B(y,7δ)

y′
∣∣∣
1

≤ 1
#B(x, 7δ) · #B(y, 7δ)

∑
x′∈B(x,7δ)

∑
y′∈B(y,7δ)

|x′ − y′|1 (9)

≤ 1
#B(x, 7δ) · #B(y, 7δ)

· 2
(
#B(x, 7δ) · #B(y, 7δ) − 1

)
= 2

(
1 − 1

#B(x, 7δ) · #B(y, 7δ)

)
≤ 2

(
1 − 1
ω27

)
= 2λ′ .

Combining inequalities (8) and (9),∣∣f̄(b, a) − f̄(c, a)∣∣
1
≤

∑
x∈F l(b,v)

∑
y∈F l(c,w)

αxβy · 2λ′ = 2λ′ .

This was proved assuming that d(a, b) ≥ 10δ. Also recall that d(a, b) ≤
d(a, c) holds.

If d(a, b) ≤ d(a, c) ≤ 10δ, then take v := w := a. If d(a, b) ≤ 10δ ≤
d(a, c), then take v := a and w := p[c, a](10δ). In the latter case we have

d(v,w) = d(a,w) = d(a, c) − d(c, w) = d(a, c) − 10δ
≤ d(a, c) − (a|b)c = (b|c)a ≤ 10δ .

Therefore d(v,w) ≤ 10δ in either case, hence, for any x ∈ Fl(b, v) and any
y ∈ Fl(c, w),

d(y, x) ≤ 10δ + 2δ = 12δ ,

so the same argument using formulas (8) and (9) works. Part (6) is proved.
Part (7) of Proposition 7 is almost immediate. If d(a, c) ≤ 10δ, then

supp f̄(c, a) ⊆ B(a, 7δ) ⊆ N(γ, 9δ) by Proposition 7(3). Suppose now
d(a, c) > 10δ. Let b′ be a vertex on γ with d(b′, c) ≤ 9δ (see Fig. 4).
Let also v := p[c, a](10δ) and w be the vertex on γ with d(a,w) = d(a, v).
Such a vertex w always exists because

d(a, b′) ≥ d(a, c) − d(c, b′) ≥ d(a, c) − 9δ ≥ d(a, c) − 10δ = d(a, v) .
Then
d(a,w) = d(a, v) = d(a, c) − 10δ = 1

2

[
d(a, c) + d(a, c) − 20δ

]
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Figure 4: Proof of Proposition 7(7).

≤ 1
2

[
d(a, c)+d(a, b′)+d(b′, c)−20δ

]
≤ 1

2

[
d(a, c)+d(a, b′)−d(b′, c)

]
= (b|c)a ,

and, by the fine-triangles property, d(v,w) ≤ δ. Since supp f̄(c, a) ⊆
B(v, 8δ), then

supp f̄(c, a) ⊆ B(w, 9δ) ⊆ B(γ, 9δ) .

Proposition 7 is proved. ✷

First we will construct a homological bicombing q′ in Γ with certain
properties. Recall that p was a choice of a geodesic bicombing in Γ. The
notation p[a, b] makes sense not only when a and b are vertices in Γ(0), but
it also can be defined when a is any 0-chain, by linearity:

p
[ ∑

x∈Γ(0)

αxx, b
]

:=
∑

x∈Γ(0)

αxp[x, b] .

One easily checks that ∂p[a, b] = b− a if a is a convex combination.
The 1-chain q′[a, b] is defined inductively on d(a, b). If d(a, b) ≤ 10δ,

put q′[a, b] := p[a, b]. Assume now that d(a, b) > 10δ. By Proposition 7(2),

supp f̄(b, a) ⊆ B
(
p[b, a](10δ), 8δ

)
,

hence, for each vertex x ∈ supp f̄(b, a),
d(a, x) ≤ d

(
a, p[b, a](10δ)

)
+d

(
p[b, a](10δ), x

)
≤

[
d(a, b)−10δ

]
+8δ < d(a, b) ,

so q′[a, x] is defined by the induction hypotheses. Now we define q′[a, f̄(b, a)]
by linearity over the second variable, and put

q′[a, b] := q′
[
a, f̄(b, a)

]
+ p

[
f̄(b, a), b

]
.

One easily checks that ∂q′[a, b] := b − a, so q′ is a homological bicombing
in Γ.
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Proposition 8. The Q-bicombing q′ constructed above satisfies the
following conditions.

(1) q′ is G-equivariant.
(2) q′ is quasigeodesic.
(3) There exist constantsM ≥ 0 andN ≥ 0 such that, for all a, b, c ∈ Γ(0),∣∣q′[a, b] − q′[a, c]∣∣

1
≤M d(b, c) +N .

Proof. (1) is obvious because the definition of q′ used p and f̄ , and they
are G-equivariant.

(2) First we define a sequence of sets of vertices Vi(a, b) for each pair
a, b ∈ Γ(0). Put V0(a, b) := {b} and

Vi+1(a, b) := Vi(a, b) ∪
⋃

c∈Vi(a,b)

supp f̄(c, a) .

This sequence is increasing and stabilizes at a certain vertex set which we
denote by V (a, b). Tracing the definitions of q′[a, b] and V (a, b) we see
that q′[a, b] is a linear combination of geodesic paths of length at most 18δ
whose endpoints lie in V (a, b). Hence, to show that q′ is quasigeodesic, it
is enough to show that V (a, b) lies uniformly close to p[a, b].

We prove that Vi(a, b) ⊆ N(p[a, b], 9δ) inductively on i. Firstly, V0(a, b)
= {b} ⊆ N(p[a, b], 9δ). Secondly, if Vi(a, b) ⊆ N(p[a, b], 9δ), then, by Propo-
sition 7(7),

Vi+1(a, b) = Vi(a, b) ∪
⋃

c∈Vi(a,b)

supp f̄(c, a) ⊆ N
(
p[a, b], 9δ

)
.

This implies V (a, b) ⊆ N(p[a, b], 9δ).
The inequality |q′[a, b]|1 ≤ 18δ d(a, b) follows by induction on d(a, b),

using the definition of q′, so part (2) is proved.
(3) Up to the G-action, there are only finitely many triples of vertices

a, b, c, satisfying d(a, b)+d(a, c) ≤ 60δ, hence there exists a uniform bound
N ′ for the norms ∣∣q′[a, b] − q′[a, c]∣∣

1

for such vertices a, b, and c. Let λ′ be the constant from Proposition 7(6),

M := 18δ and N := max
{
N ′,
λ′ · 56δM + 36δ

1 − λ′

}
.

We prove the statement by induction on d(a, b) + d(a, c).
If d(a, b) + d(a, c) ≤ 60δ, then∣∣q′[a, b] − q′[a, c]∣∣

1
≤ N ′ ≤ N ≤M d(b, c) +N

just by the choice of N ′ and N . We assume now that d(a, b)+d(a, c) > 60δ.
Consider the following two cases.
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Case 1. (a|c)b > 10δ or (a|b)c > 10δ.
Assume, for example, that (a|c)b > 10δ (see Fig. 5). Then, in particular,

�a

� b

� c

p[b, a]

γ

�

�

�

�v′
�

v

�x

Figure 5: Case 1.

d(a, b) > 10δ, hence, by definition,

q′[a, b] = q′i
[
a, f̄(b, a)

]
+ p

[
f̄(b, a), b

]
and supp f̄(b, a) ⊆ B(v, 8δ), where v := p[b, a](10δ). Also, d(b, c) ≥ (a|c)b

> 10δ, so there exists a geodesic γ between b and c, and a vertex v′ on γ
with d(b, v′) = d(b, v) = 10δ. By the fine-triangles property, d(v, v′) ≤ δ. If
x ∈ supp f̄(b, a), then

d(x, b) ≤ d(x, v) + d(v, b) ≤ 8δ + 10δ = 18δ , (10)
d(x, c) ≤ d(x, v) + d(v, v′) + d(v′, c) ≤ 8δ + δ +

[
d(b, c)−10δ

]
≤ d(b, c) − 1 ,

and

d(a, x) ≤ d(a, v) + d(v, x) ≤
[
d(a, b) − 10δ

]
+ 8δ < d(a, b) ,

therefore d(a, x) + d(a, c) < d(a, b) + d(a, c), so the induction hypotheses
apply to the vertices a, x, and c, giving∣∣q′[a, x] − q′[a, c]∣∣

1
≤M d(x, c) +N ≤M

(
d(b, c) − 1

)
+N

=M d(b, c) −M +N .
(11)

For some non-negative coefficients αx summing up to 1,

f̄(b, a) =
∑

x∈B(v,8δ)

αxx .

Then, by the definition of q′[a, b] and M and inequalities (10) and (11),∣∣q′[a, b] − q′[a, c]∣∣
1

=
∣∣q′[a, f̄(b, a)] + p[f̄(b, a), b] − q′[a, c]

∣∣
1
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=
∣∣∣ ∑

x∈B(v,8δ)

αxq
′[a, x] +

∑
x∈B(v,8δ)

αxp[x, b] − q′[a, c]
∣∣∣
1

≤
∣∣∣ ∑

x∈B(v,8δ)

αx

(
q′[a, x] − q′[a, c]

)∣∣∣
1

+
∣∣∣ ∑

x∈B(v,8δ)

αxp[x, b]
∣∣∣
1

≤
∑

x∈B(v,8δ)

αx

∣∣q′[a, x] − q′[a, c]∣∣
1

+
∑

x∈B(v,8δ)

αx

∣∣p[x, b]∣∣
1

≤
∑

x∈B(v,8δ)

αx ·
(
M d(b, c) −M +N

)
+

∑
x∈B(v,8δ)

αx d(x, b)

≤M d(b, c) −M +N + 18δ =M d(b, c) +N .

Case 2. (a|c)b ≤ 10δ and (a|b)c ≤ 10δ.
In this case Proposition 7(6) applies. Since d(a, b) + d(a, c) > 60δ and
d(b, c) = (a|c)b + (a|b)c ≤ 20δ, then d(a, b) > 10δ and d(a, c) > 10δ. Then,
by the definition of q′[a, b] and q′[a, c],∣∣q′[a, b] − q′[a, c]∣∣

1
=

∣∣q′[a, f̄(b, a)]+p[f̄(b, a), b]−q′[a, f̄(c, a)]−p[f̄(c, a), c]∣∣
1

≤
∣∣q′[a, f̄(b, a)] − q′[a, f̄(c, a)]∣∣

1
+

∣∣p[f̄(b, a), b]∣∣
1

+
∣∣p[f̄(c, a), c]∣∣

1

=
∣∣q′[a, f̄(b, a) − f̄(c, a)]∣∣

1
+

∣∣p[f̄(b, a), b]∣∣
1

+
∣∣p[f̄(c, a), c]∣∣

1
. (12)

The 0-chain f̄(b, a) − f̄(c, a) (as any other) can be represented in the form
f+ − f−, where f+ and f− are 0-chains with non-negative coefficients and
disjoint supports. By Proposition 7(6),

|f+|1 + |f−|1 = |f+ − f−|1 =
∣∣f̄(b, a) − f̄(c, a)∣∣

1
≤ 2λ′ .

The coefficients of the 0-chain f+ − f− = f̄(b, a) − f̄(c, a) sum up to 0,
because f̄(b, a) and f̄(c, a) are convex combinations. It follows that

|f+|1 = |f−|1 ≤ λ′ . (13)

Also,
supp f+ ⊆ supp f̄(b, a) ⊆ B

(
p[b, a](10δ), 8δ

)
and

supp f− ⊆ supp f̄(c, a) ⊆ B
(
p[c, a](10δ), 8δ

)
,

hence, for each x ∈ supp f+ and y ∈ supp f−, we have (by the hypotheses
of Case 2)

d(x, y) ≤ d(x, b) + d(b, c) + d(c, y) ≤ 18δ + 20δ + 18δ = 56δ .

Also d(a, x)+d(a, y) < d(a, b)+d(a, c), so, by the induction hypotheses for
the vertices a, x, and y,∣∣q′[a, x] − q′[a, y]∣∣

1
≤M d(x, y) +N ≤ 56δM +N (14)
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for each x ∈ supp f+ and y ∈ supp f−. Then we continue inequality (12)
using inequalities (13) and (14) and the definition of N :∣∣q′[a, b] − q′[a, c]∣∣

1
≤

∣∣q′[a, f̄(b, a)−f̄(c, a)]∣∣
1
+

∣∣p[f̄(b, a), b]∣∣
1
+

∣∣p[f̄(c, a), c]∣∣
1

=
∣∣q′[a, f+] − q′[a, f−]

∣∣
1

+
∣∣p[f̄(b, a), b]∣∣

1
+

∣∣p[f̄(c, a), c]∣∣
1

≤ λ′ · [56δM +N ] + 18δ + 18δ ≤ N ≤M d(b, c) +N .

Proposition 8 is proved. ✷

Given a triple of vertices a, b, c in Γ(0), a vertex z is called a center of
the triple {a, b, c} if there exist geodesics [a, b], [b, c], [c, a], points ā ∈ [b, c],
b̄ ∈ [c, a], and c̄ ∈ [a, b] satisfying

d(b, c̄) = d(b, ā) , d(c, ā) = d(c, b̄) , d(a, c̄) = d(a, b̄) ,

and such that d(z, ā) ≤ δ, d(z, b̄) ≤ δ, and d(z, c̄) ≤ δ. Since geodesic
triangles in Γ are δ-fine, such a center always exists.
Lemma 9. For the bicombing q′ constructed above, there exist constants
K ≥ 0 and 0 ≤ λ < 1 with the following property. If a′, a, b, c ∈ Γ(0), z ∈ Γ
is a center of the triple {a, b, c}, and a′ ∈ N(p[z, a], 10δ), then∣∣q′[b, a′] − q′[c, a′] − q′[b, z] + q′[c, z]

∣∣
1
≤ K(1 + λ+ λ2 + ...+ λd(z,a′))

(see Fig. 6).
The expression on the right can be bounded by a universal constant,

and this will be used later in Theorem 10. We present the lemma in this
form to enable the inductive proof.
Proof of Lemma 9. Let λ and L be the constants from Proposition 7(5)
and M and N be the constants from Proposition 8(3). We take K to be
sufficiently large, namely

K := max
{
44δM + 2N, Lλ−4δ(26δM +N + 18δ)

}
.

Note that all these constants are universal, i.e. they depend only on the
choice of Γ.

We prove the lemma by induction on d(z, a′). If d(z, a′) ≤ 22δ, then,
by Proposition 8(3),∣∣q′[b, a′] − q′[c, a′] − q′[b, z] + q′[c, z]

∣∣
1

≤
∣∣q′[b, a′] − q′[b, z]∣∣

1
+

∣∣q′[c, a′] − q′[c, z]∣∣
1

≤
[
M d(z, a′) +N

]
+

[
M d(z, a′) +N

]
≤ 44δM + 2N ≤ K ≤ K(1 + ...+ λd(z,a′)) .

We now assume that d(z, a′) ≥ 22δ. Since z is a center of {a, b, c}, there
exist a geodesic γ from b to a and a point c̄ ∈ γ with d(a, c̄) = (b|c)a and
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Figure 6: Lemma 9.

d(z, c̄) ≤ δ (see Fig. 7). Denote v := p[a′, b](10δ) and pick an arbitrary
x ∈ B(v, 8δ). We want to use the induction hypotheses for the vertex x, so
our first goal is to show that d(z, x) < d(z, a′) and x ∈ N(p[z, a], 10δ). This
will be possible to do because d(z, a′) is large enough. By the hypotheses
of the lemma there is a vertex u on p[z, a] with d(a′, u) ≤ 10δ. Then

d(z, u) ≥ d(z, a′) − d(a′, u) ≥ 22δ − 10δ ≥ δ ≥ d(z, c̄) ≥ (a|c̄)z ,

hence

d(a, u) = d(a, z) − d(z, u) =
[
(z|c̄)a + (a|c̄)z

]
− d(z, u) ≤ (z|c̄)a .

The last inequality implies that there is a vertex u′ on γ with d(a, u′)
= d(a, u) and, by the fine-triangles property, d(u, u′) ≤ δ. This implies
that

d(a′, u′) ≤ d(a′, u) + d(u, u′) ≤ 10δ + δ = 11δ ,
d(a, c̄) ≥ d(a, z) − d(z, c̄) ≥

[
d(a, u) + d(u, z)

]
− δ

≥ d(a, u) +
[
d(z, a′) − d(a′, u)

]
− δ

≥ d(a, u) + 22δ − 10δ − δ = d(a, u) + 11δ = d(a, u′) + 11δ .
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Figure 7: Proof of Lemma 9.

This means that c̄ lies between b and u′ on the geodesic γ and
d(u′, c̄) = d(a, c̄) − d(a, u′) ≥ 11δ .

Further,
d(b, c̄) = d(b, u′) − d(u′, c̄) ≤ d(b, u′) − 11δ

≤ d(b, u′) − d(a′, u′) ≤ d(b, u′) − (a′|b)u′ = (a′|u′)b .

Therefore there exists a point r on p[a′, b] with d(b, r) = d(b, c̄) and, by the
fine-triangles property, d(r, c̄) ≤ δ, so

d(z, r) ≤ d(z, c̄) + d(c̄, r) ≤ δ + δ = 2δ . (15)
Recall that v was defined as p[a′, b](10δ), then we have
d(a′, v) = 10δ ≤ 22δ − 2δ ≤ d(a′, z) − d(z, r) ≤ d(a′, z) − (a′|r)z = (z|r)a′ ,

so there exists a vertex v′ on p[z, a′] with d(a′, v′) = d(a′, v) = 10δ and, by
the fine-triangles property, d(v, v′) ≤ δ.

(z|u)a′ = 1
2

[
d(z, a′) + d(a′, u) − d(z, u)

]
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≤ 1
2

[
d(z, a′) + d(a′, u) − d(z, a′) + d(a′, u)

]
= d(a′, u) ≤ 10δ = d(a′, v′) ,

then

d(z, v′) = d(z, a′) − d(a′, v′) ≤ d(z, a′) − (z|u)a′ = (a′|u)z ,

hence there exists a vertex v′′ ∈ p[z, a] with d(z, v′′) = d(z, v′), and, by the
fine-triangles property, d(v′, v′′) ≤ δ.

For any vertex x ∈ B(v, 8δ),

d(v′′, x) ≤ d(v′′, v′) + d(v′, v) + d(v, x) ≤ δ + δ + 8δ = 10δ ,

so
x ∈ N

(
p[z, a], 10δ

)
and

d(z, x) ≤ d(z, v′) + d(v′, x) =
[
d(z, a′) − 10δ

]
+ d(v′, x)

≤
[
d(z, a′) − 10δ

]
+ 9δ ≤ d(z, a′) − 1 .

The last two formulas say that each vertex x ∈ B(v, 8δ) satisfies the induc-
tion hypotheses, hence∣∣q′[b, x] − q′[c, x] − q′[b, z] + q′[c, z]

∣∣
1
≤ K(1 + λ+ λ2 + · · · + λd(z,x))

≤ K(1 + λ+ λ2 + · · · + λd(z,a′)−1) . (16)

The convex combinations f̄(a′, b) and f̄(a′, c) have the form

f̄(a′, b) =
∑

x∈Γ(0)

α′xx and f̄(a′, c) =
∑

x∈Γ(0)

α′′xx

for some coefficients α′x and α′′x. Define a 0-chain f0 by

f0 :=
∑

x∈Γ(0)

αxx ,

where αx := min{α′x, α′′x}. Put

f+ := f̄(a′, b) − f0 and f− := f̄(a′, c) − f0 .
Then we have

supp f0 = supp f̄(a′, b) ∩ supp f̄(a′, c) ,
and f+ and f− are with non-negative coefficients and disjoint supports.
Also

f̄(a′, b) − f̄(a′, c) = f+ − f− ,
hence the coefficients of f+ − f− sum up to 0, so |f+|1 = |f−|1. By Propo-
sition 7(5),

|f+|1 + |f−|1 = |f+ − f−|1 =
∣∣f̄(a′, b) − f̄(a′, c)∣∣

1
≤ Lλ(b|c)a′ .
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We recently proved the existence of a vertex r ∈ p[a′, b] which is 2δ-close
to z (see inequality (15)). The same argument with c in place of b shows
that there exists a vertex s ∈ p[a′, c] which is 2δ-close to z. It follows that

(b|c)a′ = 1
2

[
d(a′, b) + d(a′, c) − d(b, c)

]
≥ 1

2

[
d(a′, b) + d(a′, c) − (d(b, r) + d(r, z) + d(z, s) + d(s, c))

]
= 1

2

[
(d(a′, b)−d(b, r))+(d(a′, c)−d(c, s))−d(r, z)−d(z, s)

]
(17)

= 1
2

[
d(a′, r) + d(a′, s) − d(r, z) − d(z, s)

]
≥ 1

2

[
(d(a′, z) − d(z, r)) + (d(a′, z) − d(z, s)) − d(r, z) − d(z, s)

]
≥ 1

2

[
d(a′, z) − 2δ + d(a′, z) − 2δ − 2δ − 2δ

]
= d(a′, z) − 4δ .

Thus,

|f+|1 = |f−|1 ≤ 1
2Lλ

(b|c)a′ ≤ 1
2Lλ

d(z,a′)−4δ . (18)

Since d(z, a′) is large enough, then d(a′, b) > 10δ and d(a′, c) > 10δ, so, by
the definition of q′, we have∣∣q′[b, a′] − q′[c, a′] − q′[b, z] + q′[c, z]

∣∣
1

=
∣∣(q′[b, f̄(a′, b)] + p[f̄(a′, b), a′]) − (q′[c, f̄(a′, c)]

+ p[f̄(a′, c), a′]) − q′[b, z] + q′[c, z]
∣∣
1

≤
∣∣q′[b, f̄(a′, b)] − q′[c, f̄(a′, c)] − q′[b, z] + q′[c, z]

∣∣
1

+
∣∣p[f̄(a′, b), a′] − p[f̄(a′, c), a′]∣∣

1

=
∣∣q′[b, f0 + f+] − q′[c, f0 + f−] − q′[b, z] + q′[c, z]

∣∣
1

+
∣∣p[f+ − f−, a′]

∣∣
1

≤
∣∣q′[b, f0] − q′[c, f0] − |f0|1 · q′[b, z] + |f0|1 · q′[c, z]

∣∣
1

+
∣∣q′[b, f+] − q′[c, f−] − (1 − |f0|1) · q′[b, z] + (1 − |f0|1) · q′[c, z]

∣∣
1

+
∣∣p[f+ − f−, a′]

∣∣
1
.

We are going to bound each of the three terms in the last sum, let us call
them A1, A2, and A3, respectively.

Bound for A1. The 0-chain f0 is supported in the ball B(v, 8δ), so,
for some αx,

f0 =
∑

x∈B(v,8δ)

αxx ,

and for each x ∈ B(v, 8δ), inequality (16) holds, hence

A1 =
∣∣∣q′[b, ∑

x∈B(v,8δ)

αxx
]
−q′

[
c,

∑
x∈B(v,8δ)

αxx
]
−|f0|1 · q′[b, z]+|f0|1 · q′[c, z]

∣∣∣
1
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=
∣∣∣ ∑

x∈B(v,8δ)

αx

(
q′[b, x] − q′[c, x] − q′[b, z] + q′[c, z]

)∣∣∣
1

≤
∑

x∈B(v,8δ)

αx ·K(1 + λ+ λ2 + · · · + λd(z,a′)−1)

= |f0|1 ·K(1 + λ+ λ2 + · · · + λd(z,a′)−1) .

Bound for A2. Pick any x0 ∈ B(v, 8δ), so inequality (16) holds for
x0 as well:∣∣q′[b, x0] − q′[c, x0] − q′[b, z] + q′[c, z]

∣∣
1
≤ K(1 + λ+ λ2 + ...+ λd(z,a′)−1) .

(19)

Informally speaking, we are going to move both f+ and f− to x0, and this
move will not change the picture much. As before, v = p[a′, b](10δ), and
we denote w := p[a′, c](10δ). The 0-chains f+ and f− have forms

f+ =
∑

x∈B(v,8δ)

β′xx and f− =
∑

y∈B(w,8δ)

β′′yy .

Note that ∑
x∈B(v,8δ)

β′x =
∑

y∈B(w,8δ)

β′′y = |f+|1 = |f−|1 = 1 − |f0|1 .

Also, for each x ∈ B(v, 8δ),

d(x, x0) ≤ d(x, v) + d(v, x0) ≤ 8δ + 8δ = 16δ ,

and, for each y ∈ B(w, 8δ),

d(y, x0) ≤ d(y,w)+d(w, a′)+d(a′, v)+d(v, x0) ≤ 8δ+10δ+10δ+8δ = 36δ .

Using these observations, Proposition 8(3), and formulas (18) and (19), we
obtain a bound for the second term:

A2 =
∣∣q′[b, f+] − q′[c, f−] − |f+|1 · q′[b, z] + |f−|1 · q′[c, z]

∣∣
1

≤
∣∣q′[b, f+] − q′[c, f−] − (|f+|1 · q′[b, x0] + |f−|1 · q′[c, x0])

∣∣
1

+
∣∣(|f+|1 · q′[b, x0] − |f−|1 · q′[c, x0]) − |f+|1 · q′[b, z] + |f−|1 · q′[c, z]

∣∣
1

=
∣∣∣ ∑

x∈B(v,8δ)

β′x
(
q′[b, x] − q′[b, x0]

)
−

∑
y∈B(w,8δ)

β′′y
(
q′[c, y] − q′[c, x0]

)∣∣∣
1

+ |f+|1 ·
∣∣q′[b, x0] − q′[c, x0] − q′[b, z] − q′[c, z]∣∣1

≤
∑

x∈B(v,8δ)

β′x
∣∣q′[b, x] − q′[b, x0]∣∣1 +

∑
y∈B(w,8δ)

β′′y
∣∣q′[c, y] − q′[c, x0]∣∣1

+ |f+|1 ·
∣∣q′[b, x0] − q′[c, x0] − q′[b, z] + q′[c, z]

∣∣
1
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≤
∑

x∈B(v,8δ)

β′x ·
(
M · 16δ +N

)
+

∑
y∈B(w,8δ)

β′′y ·
(
M · 36δ +N

)
+ |f+|1 ·K(1 + λ+ λ2 + · · · + λd(z,a′)−1)

= |f+|1(M · 52δ + 2N) + |f+|1 ·K(1 + λ+ λ2 + · · · + λd(z,a′)−1)

≤ 1
2Lλ

d(z,a′)−4δ · (M · 52δ + 2N)

+ |f+|1 ·K(1 + λ+ λ2 + · · · + λd(z,a′)−1)

= Lλd(z,a′)−4δ · (26δM+N) + |f+|1 ·K(1+λ+λ2+ . . .+λd(z,a′)−1) .

Bound for A3. For each vertex x ∈ supp f+ ∪ supp f−,∣∣p[a′, x]∣∣
1

= d(a′, x) ≤ 18δ ,
then, using formula (18),

A3 =
∣∣p[f+ − f−, a′]

∣∣
1
≤

∣∣f+ − f−
∣∣
1
· 18δ

=
(
|f+|1 + |f−|1

)
· 18δ ≤ Lλd(z,a′)−4δ · 18δ .

Combining the three bounds above and the definition of K, we obtain∣∣q′[b, a′] − q′[c, a′] − q′[b, z] + q′[c, z]
∣∣
1
≤ A1 +A2 +A3

≤ |f0|1 ·K(1 + λ+ λ2 + · · · + λd(z,a′)−1) + Lλd(z,a′)−4δ · (26δM +N)

+ |f+|1 ·K(1 + λ+ λ2 + · · · + λd(z,a′)−1) + Lλd(z,a′)−4δ · 18δ

= K(1 + λ+ λ2 + · · · + lad(z,a′)−1) + Lλ−4δ(26δM +N + 18δ) · λd(z,a′)

≤ K(1 + λ+ λ2 + · · · + λd(z,a′)−1) +Kλd(z,a′)

= K(1 + λ+ λ2 + · · · + λd(z,a′)) .
Lemma 9 is proved. ✷

Theorem 10. Let G be a hyperbolic group and Γ be a connected graph
with a free cocompact G-action. Then there exists a Q-bicombing q in Γ
with the following properties:

(1) q is quasigeodesic.
(2) q is G-equivariant.
(3) q is anti-symmetric, i.e. q[a, b] = −q[b, a] for any a, b ∈ Γ.
(4) There exists a constant T such that, for any a, b, c ∈ Γ,∣∣q[a, b] + q[b, c] + q[c, a]

∣∣
1
≤ T .

Proof. Define q by “anti-symmetrizing” q′, namely,
q[a, b] := 1

2

(
q′[a, b] − q′[b, a]

)
.

The first three properties follow directly from the definition of q and the
fact that q′ is quasigeodesic and G-equivariant. Now we prove property (4).
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Let a, b, and c be arbitrary vertices in Γ(0), and z be a center of the
triple {a, b, c}. Then, by Lemma 9, taking a′ := a,∣∣q′[b, a] − q′[c, a] − q′[b, z] + q′[c, z]

∣∣
1
≤ K(1 + λ+ λ2 + · · · + λd(z,a))

≤ K
∞∑
i=0

λi =
K

1 − λ .

The same argument for cyclic permutations of the vertices a, b, and c yields∣∣q′[c, b] − q′[a, b] − q′[c, z] + q′[a, z]
∣∣
1
≤ K

1 − λ
and ∣∣q′[a, c] − q′[b, c] − q′[a, z] + q′[b, z]

∣∣
1
≤ K

1 − λ .

The three inequalities above provide just what is needed:∣∣q[a, b] + q[b, c] + q[c, a]
∣∣
1

= 1
2

∣∣(q′[a, b] − q′[b, a]) + (q′[b, c] − q′[c, b]) + (q′[c, a] − q′[a, c])
∣∣
1

= 1
2

∣∣ − (q′[b, a] − q′[c, a] − q′[b, z] + q′[c, z])
− (q′[c, b] − q′[a, b] − q′[c, z] + q′[a, z])
− (q′[a, c] − q′[b, c] − q′[a, z] + q′[b, z])

∣∣
1

≤ 1
2

(
|q′[b, a] − q′[c, a] − q′[b, z] + q′[c, z]|1

+ |q′[c, b] − q′[a, b] − q′[c, z] + q′[a, z]|1

+ |q′[a, c] − q′[b, c] − q′[a, z] + q′[b, z]|1
)
≤ 1

2
· 3 K

1 − λ ,

so we put T := 3K
2(1−λ) . Theorem 10 is proved. ✷

4 Bounded Cohomology

In this section we prove

Theorem 11. Let G be a hyperbolic group and V be a bounded QG-
module. Then the map Hn

b (G,V ) → Hn(G,V ) induced by inclusion is
surjective for each n ≥ 2.

Let X be as in section 2 and Y be the geometric realization of the
homogeneous bar-construction for G. This means that Y is the simplicial
complex whose n-simplices are labeled by ordered (n+1)-tuples (x0, . . . , xn)
of elements of the group G, and the i-th face of (x0, . . . , xn) is identified
with the simplex labeled (x0, . . . , x̂i, . . . , xn) in the obvious way. The action
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of G on Y is diagonal:

g · (x0, . . . , xn) := (g · x0, . . . , g · xn) .

Let CX and CY be the augmented chain complexes of cellular Q-chains in
X and Y , respectively, i.e. CX is

...
∂3−→ C2(X,Q) ∂2−→ C1(X,Q) ∂1−→ C0(X,Q) ε−→ Q −→ 0

and CY is

...
∂3−→ C2(Y,Q) ∂2−→ C1(Y,Q) ∂1−→ C0(Y,Q) ε−→ Q −→ 0 ,

where ε is the augmentation map taking each 0-chain to the sum of its
coefficients. Both X and Y are contractible, hence CX and CY are acyclic.
Both CX and CY have free QG-modules in each non-negative dimension
(and those of CX are finitely generated). Once again, CX

n and CY
n are

normed vector spaces with the �1-norm.

Proposition 12. Given a hyperbolic group G and chain complexes CX

and CY as above, there exist G-equivariant chain maps ϕ∗ : CY → CX and
ψ∗ : CX → CY such that

(1) ϕ∗ and ψ∗ are identities in each negative dimension, and

(2) ϕ∗ is bounded in each dimension at least 2.

Remark. The existence of ϕ∗ and ψ∗ satisfying condition (1) follows from
standard arguments for any group G (see below). Since each CX

n is finitely
generated, it follows automatically that ψ∗ is bounded in each dimension.
Property (2) is what requires a new argument, and hyperbolicity of G is
essential here. We give a formal homological proof, but the main idea is
that, when G is hyperbolic, it is possible to represent n-simplices of the
bar-construction, n ≥ 2, as n-chains in X of bounded �1-norm.

Recall the following standard fact from homological algebra (see [B,
Lemma I.7.4] for the proof).

Lemma 13. Suppose that (C, ∂) is a chain complex having free modules in
dimensions n ≥ 0, (C′, ∂′) is an acyclic chain complex, and homomorphisms
ψn : Cn → C′n are defined for n ≤ −1 such that ∂′n ◦ ψn = ψn−1 ◦ ∂n for
each n ≤ −1. Then the maps ψn extend to a chain map ψ∗ : C → C′. This
extension is unique up to a chain homotopy.

Of course, by a “module” here we mean a QG-module. The following
theorem was proved in [M3] using [M2, Theorem 5.4].

Theorem 14. Hyperbolic groups satisfy linear isoperimetric inequalities
in each positive dimension (over Q and over R). More precisely, if G is
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a hyperbolic group, X is the universal cover of a K(G, 1) complex with
finitely many cells in each dimension, and i is a positive integer, then there
exists a constant Si such that, for any cellular i-cycle b in X, there exists
an (i+ 1)-chain a with ∂a = b and |a|1 ≤ Si|b|1.

It was shown by S. Gersten [G] that, for finitely presented groups, lin-
earity of the isoperimetric inequalities for 1-cycles is equivalent to hyper-
bolicity.
Proof of Proposition 12. Define ϕn and ψn to be the identity maps in
all dimensions n ≤ −1. Let ψ∗ be an arbitrary extension of the maps ψn

guaranteed by Lemma 13.
The chain map ϕ∗ is constructed inductively on dimension as follows.

C0(Y,Q) is isomorphic to QG, so we can define ϕ0 : C0(Y,Q) → C0(X,Q)
by mapping the unit element of G to some vertex in X and extending by
G-equivariance and by linearity over Q. Define ϕ1 : C1(Y,Q) → C1(X,Q)
on the 1-simplices (x0, x1) by

ϕ1(x0, x1) := q
[
ϕ0(x0), ϕ0(x1)

]
,

and extending to C1(Y,Q) by linearity over Q. In other words, each 1-
simplex in Y maps to an element of the homological bicombing q from
Theorem 10. Since q and ϕ0 are G-equivariant, then ϕ1 is a QG-module
morphism. For each 2-simplex (x0, x1, x2) of Y ,

ϕ1
(
∂(x0, x1, x2)

)
= ϕ1

(
(x1, x2) − (x0, x2) + (x0, x1)

)
= q

[
ϕ0(x1), ϕ0(x2)

]
− q

[
ϕ0(x0), ϕ0(x2)

]
+ q

[
ϕ0(x0), ϕ0(x1)

]
= q

[
ϕ0(x1), ϕ0(x2)

]
+ q

[
ϕ0(x2), ϕ0(x0)

]
+ q

[
ϕ0(x0), ϕ0(x1)

]
,

because q is antisymmetric, hence, by Theorem 10(4),∣∣ϕ1(∂(x0, x1, x2))∣∣1
≤

∣∣q[ϕ0(x1), ϕ0(x2)] + q[ϕ0(x2), ϕ0(x0)] + q[ϕ0(x0), ϕ0(x1)]
∣∣
1
≤ T ,

where the constant T is independent of the choice of the triple (x0, x1, x2).
Since ϕ1(∂(x0, x1, x2)) is a 1-cycle, then, by Theorem 14, there exists a
2-chain c = c(x0, x1, x2) in X with ∂c = ϕ1(∂(x0, x1, x2)) and

|c|1 ≤ S1
∣∣ϕ1(∂(x0, x1, x2))∣∣1 ≤ S1 · T .

Since G acts freely on Y , this 2-chain c(x0, x1, x2) can be chosen G-equivari-
antly so that the map ϕ2 : C2(Y,Q) → C2(X,Q) defined by

ϕ2(x0, x1, x2) := c(x0, x1, x2)

is a homomorphism of QG-modules and it is bounded, by the inequality
above.
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The further inductive steps are similar. If a QG-module morphism

ϕn : Cn(Y,Q) → Cn(X,Q)

is constructed for some n ≥ 2 and has norm bounded by some constant Rn,
then we define ϕn+1(x0, . . . , xn+1) to be an equivariant choice of a filling
for the n-cycle ϕn(∂(x0, . . . , xn+1)). Since

∣∣ϕn(∂(x0, . . . , xn+1))
∣∣
1

=
∣∣∣∣

n+1∑
i=0

(−1)iϕn(x0, . . . , x̂i, . . . , xn+1)
∣∣∣∣
1

≤
n+1∑
i=0

∣∣ϕn(x0, . . . , x̂i, . . . , xn+1)
∣∣
1
≤ (n+ 2)Rn ,

then, by Theorem 14, the filling can be chosen to satisfy∣∣ϕn+1(x0, . . . , xn+1)
∣∣
1
≤ Sn

∣∣ϕn(∂(x0, . . . , xn+1))
∣∣
1
≤ Sn(n+ 2)Rn ,

i.e. the norm of the map ϕn+1 : Cn+1(Y,Q) → Cn+1(X,Q) is bounded by

Rn+1 := Sn(n+ 2)Rn .

One easily checks that the maps ϕn constructed this way form a chain map
ϕ∗ : CY → CX . Proposition 12 is proved. ✷

Proof of Theorem 11. Apply functor HomQG(·, V ) to the chain maps ψ∗
and ϕ∗ from Proposition 12. With the notation

CX := HomQG(CX , V ) , CY := HomQG(CY , V ) ,
ϕ∗ := HomQG(ϕ∗, V ) , ψ∗ := HomQG(ψ∗, V ) ,

we have two cochain complexes, CX and CY , and two cochain maps, ϕ∗ :
CX → CY and ψ∗ : CY → CX . In the positive dimensions, the homology
of the cochain complexes CX and CY is equal to the cohomology of G,
H∗(G,V ), and in these dimensions both ϕ∗ and ψ∗ induce endomorphisms
of H∗(G,V ).

By the definition of ψ∗ and ϕ∗, the chain map ψ∗ ◦ ϕ∗ : CY → CY and
the identity chain map id∗ : CY → CY coincide in each negative dimension,
hence, by Lemma 13, they are chain homotopic. Hence their duals ϕ∗ ◦ψ∗ :
CY → CY and id∗ : CY → CY are chain homotopic, so the map ϕ∗ ◦ ψ∗
induces the identity map on H∗(G,V ) in each positive dimension.

Let n ≥ 2. Given any element of Hn(G,V ), we represent it by an
n-cocycle α ∈ Cn

Y . Then the cocycle

(ϕn ◦ ψn)(α) = ϕn(ψn(α)) ∈ Cn
Y

represents the same element ofHn(G,V ). It remains to show that ϕn(ψn(α))
is bounded (with respect to the �∞-norm on Cn

Y , or, equivalently, as a linear
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map CY
n → V ).

ψn(α) ∈ Cn
X = HomQG(CX

n , V ) = HomQG

(
Cn(X,Q), V

)
,

i.e. ψn(α) is a QG-module morphism Cn(X,Q) → V . Since V is a bounded
QG-module, each G-orbit of n-cells in X is mapped by this morphism to
a bounded set in V . There are only finitely many such orbits in X, hence
|ψn(α)|∞ <∞. Also, by Lemma 12(2), |ϕn|∞ <∞, hence∣∣ϕn(ψn(α))

∣∣
∞ =

∣∣ψn(α) ◦ ϕn

∣∣
∞ ≤ |ψn(α)|∞ · |ϕn|∞ <∞ .

This shows that each element of Hn(G,V ), n ≥ 2, is represented by a
bounded cocycle in the bar-construction. Theorem 11 is proved. ✷

It was not needed for the proof, but (using the explicit cone-off proce-
dure from [M2]) it is possible to refine the argument above so that each
k-simplex σ in the bar-construction maps to a “quasi-straight” k-chain
in X, in the sense that the support of this k-chain lies uniformly close to
a union of geodesics connecting the images of the vertices of σ. This is a
combinatorial analogue of the fact that straight simplices in Hn lie close to
their 1-skeleta.

5 Abelian Groups as Coefficients

In this section we deduce surjectivity for finitely generated abelian coeffi-
cients. The argument is similar in spirit to the one by W.D. Neumann and
L. Reeves [NR].

For an arbitrary abelian group A, it is not clear what the definition of
the bounded cohomology, H∗

b (G,A), should be. One may use a “norm” | · |
on A to make sense of boundedness for cochains (in the bar-construction).
In this case either one calls a function | · | : A→ R ∪ {∞} a norm if

• |a| = 0 iff a = 0, and
• |a+ b| ≤ |a| + |b| for all a, b ∈ A,

or one requires an additional condition that
• |na| = |n| · |a| for all n ∈ Z and a ∈ A.

There is a third possible definition. Given an arbitrary abelian group A,
one may call an n-cochain (in the bar-construction) with coefficients in A
bounded if it takes only finitely many values on n-simplices. Then the set of
bounded cochains has a ZG-module structure and it defines the bounded
cohomology of G with coefficients in A. (Unfortunately, this makes the
notation H∗

b (G,V ) ambiguous, because one needs to say whether V is a
vector space or it is only viewed as an abelian group.)
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Whatever definition we accept, the surjectivity statement always holds
for finitely generated coefficients:

Theorem 15. Let G be a hyperbolic group and A be a finitely generated
abelian group. Then the map Hn

b (G,A) → Hn(G,A) induced by inclusion
is surjective for each n ≥ 2.

Proof. Let n ≥ 2. First we prove the theorem in the special case A = Z.
Pick any element of Hn(G,Z) and represent it by a(n integer-valued G-
invariant) cocycle α in the bar-construction. This cocycle can be viewed as
a real-valued cocycle, so, taking V := R in Theorem 11,

α = δβ + α′,

where δβ is the coboundary of a real-valued (n− 1)-cochain β, and α′ is a
bounded real-valued n-cocycle. Both β and α′ are G-invariant. Let int(β)
be the (n − 1)-cochain whose value on a simplex σ is the integer part of
β(σ). Then int(β) is G-invariant. We have

α− δ
(
int(β)

)
= δ

(
β − int(β)

)
+ α′.

The left-hand side of this equality is integer-valued and the right-hand
side is bounded (with respect to the usual norm on R), hence the cochain
α− δ

(
int(β)

)
is a bounded integer-valued cocycle (i.e. it takes only finitely

many values in Z). Obviously, it represents the same cohomology class in
Hn(G,Z) as α.

Now assume that A is any finitely generated abelian group. In this
case A = A0 ⊕ Zm, where A0 is a finite abelian group. According to this
decomposition each cocycle α ∈ Cn(Y,A) decomposes as a sum of integer-
valued cocycles α = α0 + α1 + ...+ αm. Obviously, α0 takes only finitely
many values. By case A = Z, each component αk, k ≥ 1, can be replaced
by a cohomologous cocycle α′k which takes only finitely many values. Then
the cocycle α0 + α′1 + ...+ α′m is cohomologous to α and it takes finitely
many values, therefore it is bounded (in any sense). ✷
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