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HYPERBOLIC KÄHLER MANIFOLDS AND PROPER
HOLOMORPHIC MAPPINGS TO RIEMANN

SURFACES

T. Napier and M. Ramachandran

0 Introduction

In [Gro2], Gromov proved that a connected noncompact complex manifold
which is a Galois covering of a compact Kähler manifold and which has
infinitely many ends admits a proper holomorphic mapping to a Riemann
surface. In fact, by [NaR1], any complete Kähler manifold which has at
least three ends and which has bounded geometry or is weakly 1-complete
admits such a mapping to a Riemann surface. This is also the case for a
bounded geometry or weakly 1-complete manifold which has two ends and
admits a nonconstant holomorphic function.

The main goal of this paper is the following:

Theorem 0.1. Let M be a connected noncompact complete Kähler man-
ifold which does not have exactly two ends and which admits a positive
Green’s function that vanishes at infinity. Then M admits a proper holo-
morphic mapping to a Riemann surface if and only if H1

c (M,O) 6= 0.

Depending on the context, by an end of a connected manifold X we will
mean either a connected component of X \ K with noncompact closure,
where K is some compact subset of X, or an element of

lim
←
π0(X \K) ,

where the limit is taken as K ranges over the compact subsets of X. In the
latter context, we will denote the number of ends by e(X).

A noncompact complex manifold M for which H1
c (M,O) = 0 is said

to have the Bochner–Hartogs property (see Hartogs [H], Bochner [Bo], and
Harvey and Lawson [HL]). Equivalently, for every C∞ compactly supported
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form α of type (0, 1) with ∂̄α = 0 on M , there is a C∞ compactly supported
function β on M such that ∂̄β = α. If M has the Bochner-Hartogs property,
then every holomorphic function on a neighborhood of infinity with no rel-
atively compact connected components extends to a holomorphic function
on M . For, cutting off away from infinity, one gets a C∞ function λ on M .
Taking α = ∂̄λ and forming β as above, the function λ−β will be the desired
extension. In particular, e(M) = 1. Thus, in a sense, the space H1

c (M,O)
is a function theoretic approximation of the set of (topological) ends of M .
An open Riemann surface X (as well as any complex manifold which ad-
mits a proper holomorphic mapping onto X) cannot have the Bochner-
Hartogs property, because X admits nonconstant meromorphic functions
with finitely many poles. Examples of manifolds of dimension n which have
the Bochner-Hartogs property include strongly (n − 1)-complete complex
manifolds (Andreotti and Vesentini [AV]) and strongly hyper-(n−1)-convex
Kähler manifolds (Grauert and Riemenschneider [GrR]).

We will also obtain the following as a consequence of Theorem 0.1:

Theorem 0.2. Let M be a compact Kähler manifold and let π : M̃ →M
be a connected infinite Galois covering manifold which does not have exactly
two ends. Then M̃ admits a proper holomorphic mapping to a Riemann
surface if and only if H1

c (M̃,O) 6= 0.

For a connected infinite Galois covering M̃ of a compact Kähler man-
ifold M , e(M̃) = 1, 2, or ∞ and e(M̃) = 2 if and only if the covering
group Γ = π1(M)/π1(M̃) contains an infinite cyclic subgroup of finite in-
dex (see Cohen [Co] or Scott and Wall [SW]). Cousin’s [Cou] example of
a Z-covering of an Abelian variety which has no nonconstant holomorphic
functions shows that Theorem 0.2 fails when e(M̃) = 2. By a result of
Arapura, Bressler, and the second author [ArBR], the universal covering
of a compact Kähler manifold has at most one end. In fact, as shown
in [NaR1], any complete noncompact connected Kähler manifold M which
satisfies H1(M,R) = 0 and which has bounded geometry or is weakly 1-
complete has exactly one end.

In [R], the second author proved Theorem 0.2 for M̃ the universal
covering, or a Galois covering with infinite covering group of more than
quadratic growth, assuming that M̃ admits a nonconstant holomorphic
function (one goal of this paper is to remove the rather strong hypothesis
that O(M̃) 6= C). In [NaR2], the conclusion of Theorem 0.1 was shown to
hold for M a connected noncompact weakly 1-complete Kähler manifold
with exactly one end. This too may be considered to be a consequence of
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Theorem 0.1, because one may apply (the proof of) Theorem 0.1 to the
sublevels of the exhaustion function. Finally, it should be remarked that
Theorem 0.2 may be relevant to the conjecture of Shafarevich that the uni-
versal covering of a smooth projective variety is holomorphically convex.
For any holomorphically convex complex manifold either has the Bochner-
Hartogs property or admits a proper holomorphic mapping to a Riemann
surface.

The paper is organized as follows. Some known facts required for the
proof of Theorem 0.1 are collected in sect. 1. With the exception of a re-
quired technical lemma which is proved in sect. 3, the proof of Theorem 0.1
is contained in sect. 2. Theorem 0.2 is considered in sect. 4. Moreover, by
general principles, the mapping on the covering space M̃ in Theorem 0.2
determines a surjective holomorphic mapping of some finite covering of the
base manifold onto a compact Riemann surface. This observation and an
observation for the case in which e(M̃) = 2 are also considered in sect. 4.
In particular, we get the following:

Corollary 0.3. Let M be a connected compact Kähler manifold. Assume
that there exists a connected infinite Galois covering manifold π : M̃ →M
which satisfies one of the following:

(i) e(M̃) = 1 and H1
c (M,O) 6= 0,

(ii) e(M̃) = 2 and π1(M̃) is not finitely generated, or
(iii) e(M̃) =∞.

Then some finite covering of M admits a surjective holomorphic mapping
onto a Riemann surface.

Acknowledgement. We would like to thank Jiaping Wang for Lemma 1.3.

1 Preliminary Facts

The main known facts required for the proof of Theorem 0.1 are collected
in this section. We begin with some terminology and facts from potential
theory and pluripotential theory. The Levi form of a real-valued function
ϕ of class C2 on a complex manifold M is the Hermitian form

L(ϕ) =
∑
i,j

∂2ϕ
∂zi∂z̄j

dzi dz̄j .

The function ϕ is called plurisubharmonic (strictly plurisubharmonic, pluri-
harmonic) if L(ϕ) ≥ 0 (respectively, L(ϕ) > 0, L(ϕ) = 0). A complex-
valued function is called pluriharmonic if its real and imaginary parts are
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pluriharmonic. The complex manifold M is called weakly 1-complete if
there exists a continuous plurisubharmonic exhaustion function ϕ : M → R
(i.e. ϕ is locally the limit of a nonincreasing sequence of C∞ plurisubhar-
monic functions and the sublevel {x ∈M | ϕ(x) < a } is relatively compact
in M for each a ∈ R).

A connected noncompact Riemannian manifold N which admits a posi-
tive symmetric Green’s function G(x, y) is said to be hyperbolic; otherwise,
N is called parabolic. Equivalently, N is hyperbolic if, given a relatively
compact C∞ domain Ω for which no connected component of N \ Ω is
compact, there is a connected component E of N \ Ω and a (unique) C∞

function uE : E → [0, 1) such that uE is harmonic on E, uE = 0 on ∂E,
and lim supx→∞ uE(x) = 1. We will also say that the end E is hyperbolic.
An end E which is not hyperbolic is called parabolic and we set uE = 0. We
call the function u : N \Ω→ [0, 1) defined by u|E = uE, for each connected
component E of N \ Ω, the harmonic measure of the ideal boundary of N
with respect to N \ Ω. We normalize the Green’s function G so that, for
each point x0 ∈ N ,

∆distr.G(·, x0) = −δx0 ,

where δx0 is the Dirac function at x0 and ∆ = −(d∗d+dd∗) is the Laplacian.
We will use the same notation for the corresponding integral operator G
given by

(Gα)(x) =
∫
N
G(x, y)α(y) dV (y) ∀x ∈ N

for each suitable function α on N .
If α is a C∞ compactly supported function, then β ≡ −Gα is a C∞

bounded function with finite energy (i.e.
∫
N |∇β|2 dV < ∞) and ∆β =

α. Moreover, β(xν) → 0 if {xν} is a sequence in N with xν → ∞ and
G(·, xν)→ 0 (equivalently, u(xν)→ 1). Such a sequence {xν} always exists
(for N hyperbolic) and will be called a regular sequence.

As in [Gro3], [ArBR], [R], [NaR1], and [NaR2], a holomorphic map-
ping to P1 will be obtained as a quotient of holomorphic 1-forms (see
Lemma 1.4). The main tool for producing such holomorphic 1-forms from
a ∂̄-closed compactly supported form will be the following (as in [R] and
[NaR2]):
Lemma 1.1. Let (M,g) be a connected noncompact complete hyperbolic
Kähler manifold and let α be a C∞ compactly supported form of type (0, 1)
on M such that ∂̄α = 0. Then there exist an L2 harmonic form γ of type
(0, 1) which is closed and coclosed and a C∞ bounded function β : M → C
with finite energy such that γ = α − ∂̄β and β(xν) → 0 for every regular
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sequence {xν} in M .

Remark. In particular, γ̄ is a holomorphic 1-form on M and β is pluri-
harmonic on the complement of the support of α.

Proof of Lemma 1.1. Let G denote the Green’s function on M as well as
the associated integral operator. Since ∂̄∗α is a C∞ function with compact
support on M , the function

β ≡ 2G(∂̄∗α)
is a C∞ bounded function with finite energy which vanishes at infinity along
any regular sequence and which satisfies ∂̄∗∂̄β = −1

2∆β = ∂̄∗α. The form
γ ≡ α− ∂̄β

is therefore L2 and harmonic, and the Gaffney theorem [G] implies that γ
is closed and coclosed. 2

The next lemma is a special case of [NaR1, Theorem 2.6] and is con-
tained implicitly in the work of Sario, Nakai, and their collaborators (see
also Li [L] and Li and Tam [LT]). It will be applied in the proof of Theo-
rem 0.1 in the same way it was applied in [NaR2] (i.e. to the case in which
the function β in Lemma 1.1 is real-valued).

Lemma 1.2. Let (M,g) be a connected noncompact complete hyperbolic
Kähler manifold with Green’s function G, let K be a compact subset of M ,
and let E be a connected component of M \K with noncompact closure.
Assume that G vanishes at infinity along the end E and that M \E contains
a hyperbolic end (in particular, e(M) > 1). Then there exists a real-
valued pluriharmonic function ρ on M such that ρ has finite energy, 0 <
ρ < 1 on M , limx→∞ ρ|E(x) = 1, and limν→∞ ρ(xν) = 0 for any regular
sequence {xν} in M \E.

Sketch of the proof. Clearly, we may assume that the end E is smooth
at its compact boundary ∂E. By choosing a C∞ nondecreasing convex
function χ : (0, 1) → (0, 1) which vanishes near 0, which is linear near 1,
and which approaches 1 at 1, and by forming the composition with the
harmonic measure of the ideal boundary of M with respect to E and ex-
tending by 0, one gets a C∞ subharmonic function η : M → [0, 1) which
vanishes on M \ E, which is harmonic on the end E outside a relatively
compact neighborhood of ∂E, and which approaches 1 at infinity along E.
The function ρ = η +G∆η is harmonic with finite energy, and is therefore
pluriharmonic by the Gaffney theorem [G]. Moreover, ρ has the required
limits at infinity because G∆η approaches zero along any regular sequence.
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We also have ρ ≥ η ≥ 0 and, by forming an exhaustion of M by C∞

relatively compact domains and writing G as the limit of the correspond-
ing sequence of Green’s function, one sees that ρ ≤ 1. Therefore, by the
maximum principle, we have 0 < ρ < 1. 2

The following useful observation is due to J. Wang (it will rule out the
case γ = 0 when Lemma 1.1 is applied in the proof of Theorem 0.1):

Lemma 1.3 (Wang). Let M be a connected noncompact Kähler manifold.
Suppose that, for some compact subset K of M , there exists a holomorphic
function f on the complement M \K which vanishes at infinity but is not
identically zero on any open subset. Then M is parabolic.

Proof. The function ϕ = − log |f |2 is superharmonic on M \K and ϕ(x)→
∞ as x → ∞ in M . In particular, we may assume that ϕ is positive. Fix
a C∞ relatively compact domain Ω in M such that K ⊂ Ω and such that
each connected component of M \Ω has noncompact closure. Let u be the
harmonic measure of the ideal boundary of M with respect to M \Ω. Given
ε > 0, we have εϕ > 0 = u on ∂Ω and εϕ > 1 > u on the complement of a
sufficiently large compact subset of M . Therefore 0 ≤ u < εϕ on M \Ω for
every ε > 0 and hence u ≡ 0. 2

The next lemma will be used for the production of a holomorphic map-
ping to P1 (as in [Gro3], [ArBR], [NaR1], and [NaR2]).

Lemma 1.4. If θ1 and θ2 are two linearly independent closed holomorphic
1-forms satisfying θ1 ∧ θ2 ≡ 0 on a connected complex manifold M , then
the meromorphic function f ≡ θ1/θ2 has no points of indeterminacy in M .
In other words, f is a holomorphic mapping of M into P1.

Remarks. 1. One can prove this by considering holomorphic equivalence
relations (for an elementary proof, see [NaR2, Lemma 2.2]).

2. Let Si ≡ {x ∈M | (θi)x = 0 } for i = 1, 2. Then f is locally constant
on the analytic set S1 ∪ S2 (see [NaR2]).

3. If f is nonconstant and A = S1 ∩ S2, then the levels of f |M\A are
precisely the (smooth) leaves of the holomorphic foliation determined by θ1
and θ2 on M \A. For, on a neighborhood U of a point at which θ2 6= 0, we
have local coordinates z = (z1, . . . , zn) in which θ2 = dz1 and f = f(z1).
Hence the levels of f |U are smooth coordinate slices which are leaves of
the foliation in U . A similar argument applies when θ1 6= 0 and the claim
follows. In particular, if L is a level of f which does not meet A (for
example, if L lies over a point not in the countable set f(A)), then L is
precisely a leaf of the foliation.
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4. If f is nowhere locally constant and, for i = 1, 2, θi = ∂ρi, where ρi
is a real-valued pluriharmonic function on M , then ρi is constant on each
level L of f . For ρi is clearly locally constant on the zero set of θi (since
dρi = 0 at each point in this set), and, outside this set, ρi is constant on the
leaves of the foliation described above and these leaves locally agree with
levels of f .

After Lemma 1.4 gives a mapping of an open set to P1, the following
lemma, which is essentially contained in [NaR1], will yield a proper mapping
to a Riemann surface:

Lemma 1.5. Let (M,g) be a connected noncompact complete hyperbolic
Kähler manifold. Assume that the Green’s function vanishes at infinity
and that there exists an open subset U ⊂ M and a holomorphic mapping
f : U → P1 with at least one (nonempty) compact level. Then there exists
a proper holomorphic mapping of M onto a Riemann surface.

Sketch of the proof. By hypothesis, the set V of points which lie in a
compact level of f is nonempty. This set is open for point-set topological
reasons. Applying Stein factorization [St], one gets a Riemann surface X
and a proper surjective holomorphic mapping Φ : V → X whose fibers are
precisely the compact levels of f .

We now apply arguments from the proof of [NaR1, Theorem 4.6]. By
replacing X by a small coordinate neighborhood of some regular value of Φ,
we may assume that X is a region in the plane and Φ is a proper holomor-
phic submersion with connected fibers. Let D1 and D2 be two disks which
are relatively compact in X and which have disjoint closures. Then the
domain N ≡ M \ Φ−1(D1 ∪D2) has at least three ends. Moreover, N ad-
mits a complete Kähler metric for which there is a positive Green’s function
which vanishes at infinity in M and at ∂N = Φ−1(∂D1 ∪ ∂D2). Therefore,
by Lemma 1.2, there exists a pluriharmonic function ρ : N → (0, 1) which
approaches 1 at infinity in M and 0 at ∂N . Thus − log ρ − log(1 − ρ)
is a C∞ plurisubharmonic exhaustion function on N . The main result
of [NaR1] now implies that there exists a proper holomorphic mapping Ψ
of N onto a Riemann surface Y ; again, with connected fibers. The maps
Φ and Ψ determine a proper holomorphic mapping of M onto the Riemann
surface Z obtained by identifying each point x in X \ (D1 ∪D2) with the
point Ψ(Φ−1(x)) in Y . 2

Remarks. 1. The results of [NaR1] together with the above argu-
ments imply that the lemma also holds if, in place of the existence of a
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positive Green’s function which vanishes at infinity, one assumes that M
has bounded geometry or M is weakly 1-complete.

2. The weakly 1-complete case is a special case of a theorem of Nishino
[Ni] who proved it without the assumption that M is Kähler.

3. For the proof of the above, one may instead apply the theory of
Barlet spaces [B], because the graph over some 1-dimensional irreducible
component of the Barlet space of compact analytic (dimM − 1)-cycles will
map properly and surjectively onto M .

2 Proof of the Main Result

The proof of Theorem 0.1 will require the following two lemmas which may
be thought of as versions of Gromov’s cup product lemma [Gro3]:

Lemma 2.1. Suppose M is a connected noncompact complex manifold of
dimension n, ρ and τ are two real-valued pluriharmonic functions on M ,
and ρ has a compact fiber F . Then ∂ρ∧∂τ ≡ 0. In fact, if the differentials
dρ and dτ are linearly independent for some such pair of functions, then
there exists a surjective proper holomorphic mapping of some open subset
of M onto a Riemann surface.

Remark. Two real-valued pluriharmonic functions ρ and τ have lin-
early dependent differentials on a connected complex manifold M (i.e. the
functions 1, ρ, and τ are linearly dependent) if and only if dρ ∧ dτ ≡ 0.

Lemma 2.2. Let (M,g) be a connected noncompact complete hyperbolic
Kähler manifold of dimension n with exactly one end, let K ⊂ M be a
compact subset with connected complement E = M \K, and let ρ1 and ρ2
be real-valued pluriharmonic functions on E which vanish at infinity in M .
Then ∂ρ1 ∧ ∂ρ2 ≡ 0.

Remark. Lemma 2.2 also holds if M is weakly 1-complete or M has
bounded geometry.

The proof of Lemma 2.1 is given below. The proof of Lemma 2.2 is
slightly technical and will be postponed until the next section.

Proof of Lemma 2.1. Since the image of the nowhere dense complex
analytic set

{x ∈M | (dρ)x = 0 } = {x ∈M | (∂ρ)x = 0 }
under ρ is countable and since the restriction of ρ to the complement is
an open mapping, there exist points arbitrarily close to the compact fiber
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F which lie over regular values of ρ. Moreover, levels of ρ through such
points near F are compact. Thus ρ has a compact level N which lies over a
regular value. The restriction of τ to N assumes its maximum at some point
x0 ∈ N and, since ρ is real-valued, the leaf L of the foliation determined by
∂ρ through x0 is contained in N . Therefore τ |L attains its maximum at x0
and hence τ ≡ τ(x0) on L. Thus ∂ρ = ∂τ = 0 on T 1,0L and hence, since
dimL = n− 1, we have ∂ρ ∧ ∂τ = 0 at each point in L.

Now if the analytic set A = {x ∈M | (∂ρ∧∂τ)x = 0 } is nowhere dense
in M , then L contains some connected open subset V of Areg (again, since
dimL = n− 1) and, therefore, the pluriharmonic function ρ is constant on
the irreducible component A1 containing V . Thus A1 ⊂ N and hence A1
is compact. On the other hand, ρ is constant on every compact irreducible
component of A, so we may choose the level N so as to avoid the compact
irreducible components of A. Thus we have arrived at a contradiction and
we may conclude that ∂ρ ∧ ∂τ ≡ 0 on M as claimed.

Suppose now that dρ and dτ are linearly independent. Then, by Lem-
ma 1.4, the quotient ∂ρ/∂τ determines a holomorphic mapping f : M → P1.
If f is nonconstant, then ρ is constant on the level of f through x0. It follows
that this level is compact and hence that the set of points which lie in a
compact level of f is a nonempty open subset of M which admits a proper
holomorphic mapping onto a Riemann surface. If f is constant, then ∂ρ
and ∂τ are linearly dependent and therefore, for some nonzero constant
a ∈ C, the function h ≡ ρ + aτ is holomorphic and nonconstant on M .
Since τ = (Im a)−1(Imh) and ρ = h − aτ are constant on the level of h
through x0, we again get the required proper holomorphic mapping to a
Riemann surface on some open set. 2

For the proof of Theorem 0.1, we will consider the set up γ = α− ∂̄β as
in Lemma 1.1. The case in which β is real-valued is contained in the next
lemma. This lemma was essentially proved in [NaR2, pp. 1361–1363], but,
for the convenience of the reader, the proof is reproduced here.

Lemma 2.3. Let (M,g) be a connected noncompact hyperbolic complete
Kähler manifold. Assume that the Green’s function G vanishes at infinity
and that there exist a compact subset K with connected complement E =
M \K, a nonzero closed harmonic form γ of type (0, 1) on M , and a real-
valued pluriharmonic function τ on E such that

γ|E = −∂̄τ and τ → 0 at infinity in M .

Then M admits a proper holomorphic mapping to a Riemann surface.



Vol. 11, 2001 HYPERBOLIC KÄHLER MANIFOLDS 391

Proof. Fix a point x0 ∈ E and let Γ be the image of π1(E,x0) in π1(M,x0).
Then Γ is a proper subgroup. For if Γ = π1(M,x0), then, since the C∞

closed real 1-form θ = −γ−γ̄ onM is equal to dτ on E, we get a well-defined
extension of τ to a C∞ function τ0 on M by setting

τ0(x) = τ(x0) +
∫ x

x0

θ ∀x ∈M .

Moreover, τ0 is pluriharmonic because dτ0 = θ and hence ∂∂̄τ0 = −∂γ = 0.
On the other hand, τ = τ0|E vanishes at infinity in M , so we must have
τ0 ≡ 0. Since γ is not everywhere 0, this is impossible. Thus Γ 6= π1(M,x0).

Now let π : M̃ →M be a connected covering space with π∗(π1(M̃, x1)) =
Γ for some point x1 ∈ π−1(x0). Clearly, we may assume that E is smooth
at its boundary and hence that π maps a neighborhood of the closure E1 of
the connected component E1 of Ẽ = π−1(E) containing x1 isomorphically
onto a neighborhood of E. In particular, E1 is a hyperbolic end of M̃ with
respect to the complete Kähler metric g̃ = π∗g and the Green’s function G̃
on M̃ vanishes at infinity along E1. Since Γ is a proper subgroup, M̃ \E1

is noncompact (i.e. e(M̃) > 1). Moreover, the lifting to M̃ of a negative
subharmonic function on M which vanishes at infinity must vanish at in-
finity along some sequence in M̃ \E1. So M̃ \E1 must contain a hyperbolic
end. Therefore, by Lemma 1.2, there exists a pluriharmonic function ρ̃
on M̃ such that 0 < ρ̃ < 1, ρ̃ has finite energy, limx→∞ ρ̃|E1

(x) = 1, and
limν→∞ ρ̃(xν) = 0 for any regular sequence {xν} in M̃ \ E1. Since π maps
E1 isomorphically onto E, the restriction ρ̃|E1 determines a pluriharmonic
function ρ on E such that 0 < ρ < 1 and ρ→ 1 at infinity.

Because ρ has a compact fiber, Lemma 2.1 and Lemma 1.5 imply that
it suffices to show that the differentials dρ and dτ are linearly independent.
If this is not the case, then there exist real constants r and s such that
τ = rρ+s on E. The lifting γ̃ = π∗γ of γ is then a closed form of type (0, 1)
on M̃ which is equal to the form −∂̄(rρ̃+ s) on the nonempty open set E1

and hence on the entire manifold M̃ . Therefore, on the nonempty open set
Ẽ \E1, we have

−∂̄(τ ◦ π) = γ̃ = −∂̄(rρ̃+ s) .
Hence the restriction of the function (τ ◦π)−(rρ̃+s) to Ẽ\E1 is real-valued
and holomorphic and is therefore locally constant. Thus if E2 is a connected
component of Ẽ which is not equal to E1, then, for some real constant s′, we
have τ ◦ π = rρ̃+ s′ on E2. Now since π(E1) = π(E2) = E, we may choose
a sequence {xν} in E with xν → ∞ in M and sequences {yν} and {zν}
in E1 and E2, respectively, such that π(yν) = π(zν) = xν for each ν. The
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sequences {yν} and {zν} are then regular sequences in M̃ , because the
lifting v of the function −G(x0, ·) to M̃ is a negative subharmonic function
and v(yν), v(zν)→ 0. Therefore ρ̃(yν)→ 1 and ρ̃(zν)→ 0. Since τ vanishes
at infinity, we get

0 = lim τ(xν) = lim
(
rρ̃(yν) + s

)
= r + s

and 0 = lim τ(xν) = lim
(
rρ̃(zν) + s′

)
= s′ .

Therefore, for each point x ∈ E and each pair of points y ∈ E1∩π−1(x) and
z ∈ E2∩π−1(x), we have ρ̃(y)−1 = r−1τ(x) = ρ̃(z). But this is impossible
because 0 < ρ̃ < 1 on M̃ . Thus dρ and dτ are linearly independent and the
lemma follows. 2

Proof of Theorem 0.1. If e(M) ≥ 3, then we may proceed as in the proof
of Lemma 1.5. More precisely, there exists a smooth relatively compact
domain Ω in M such that each of the (finitely many) connected compo-
nents E1, . . . , Em of M \ Ω has noncompact closure and such that m ≥ 3.
By Lemma 1.2, there exists a pluriharmonic function ξ : M → (0, 1) which
approaches 1 at infinity along E1 and 0 at infinity along E2, . . . , Em. There-
fore, the function − log(1− ξ)− log ξ is a C∞ plurisubharmonic exhaustion
function on M and hence, by the main result of [NaR1], M admits a proper
holomorphic mapping onto a Riemann surface.

Assume now that e(M) = 1 and H1
c (M,O) 6= 0. Then there is a C∞

compactly supported form α of type (0, 1) on M such that ∂̄α = 0 and such
that α 6∈ ∂̄C∞c (M). We may fix a connected compact set K such that the
complement E = M \K is connected and such that α ≡ 0 on E. Applying
Lemma 1.1, we get a (closed and coclosed) L2 harmonic form γ of type
(0, 1) on M and a C∞ bounded function β : M → C with finite energy
such that

γ = α− ∂̄β and β → 0 at infinity .

In particular, γ̄ is a holomorphic 1-form on M and β is pluriharmonic on
the end E. Observe also that γ is not identically zero on M . For if this were
the case, then β would be holomorphic on E and therefore, since e(M) = 1
and M is hyperbolic, Lemma 1.3 would imply that β has compact support;
which contradicts the choice of α.

We have β|E = ρ1 + iρ2, where ρ1 and ρ2 are real-valued pluriharmonic
functions on the connected set E which vanish at infinity in M . We may
assume that ρ1 and ρ2 are linearly independent (i.e. that dρ1 and dρ2 are
linearly independent). For if this is not the case, then a suitable nonzero
complex multiple of β|E is real-valued and Lemma 2.3 applies.
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By Lemma 2.2, we have ∂ρ1 ∧ ∂ρ2 ≡ 0 on E. Therefore (for ρ1 and
ρ2 linearly independent), Lemma 1.4 implies that the quotient ∂ρ1/∂ρ2
determines a holomorphic mapping

f : E → P1 .

This mapping is nonconstant. For if f were equal to a constant a ∈ C\{0},
then the function ρ1 − āρ2 would be a nonconstant holomorphic function
on E which vanishes at infinity (in M). Since M is hyperbolic, this would
contradict Lemma 1.3.

According to Lemma 1.5, it suffices to show that f has at least one
compact level. As a first step, we will show that f has a compact level or
f has a fiber which is relatively compact in M . This will be obtained as a
consequence of the following observation: the image under f of the set

Z = {x ∈ E | ρ1(x) = ρ2(x) = 0 } = β−1(0) \K
is a set of measure 0 in P1. For the proof of this observation, note that,
by the remarks following Lemma 1.4, ρ1 and ρ2 (and hence β) are constant
on the levels of f . If x is a point in Z at which dρ1 6= 0, then there is a
neighborhood U of x in which the set N ≡ ρ−1

1 (0) ∩ U is a real-analytic
submanifold of real dimension 2n−1 and the levels of f |N (which are open
sets in levels of f) are complex analytic sets of real dimension 2n−2. Hence
the set f(N), which contains f(Z ∩ U), is a set of measure 0 in the real 2-
dimensional manifold P1 (by Sard’s theorem). The same argument applies
near any point at which dρ2 6= 0. On the other hand, f is locally constant
on the (complex) analytic set
A ≡ {x ∈ E | (dρ1)x = (dρ2)x = 0 } = {x ∈ E | (∂ρ1)x = (∂ρ2)x = 0 } ,

so f(A) is countable. Thus f(Z) is a set of measure 0 in P1. In particular,
since f is an open mapping, the set E \ f−1(f(Z)) is dense in E. If ζ ∈
f(E) \ (f(Z) ∪ {∞}) and L is a level of f over ζ, then L lies in some fiber
of the mapping (ρ1, ρ2) over a point in R2 \ {(0, 0)} and therefore, since
ρ1, ρ2 → 0 at infinity, we get L b M . Hence, if L is noncompact, then
L ∩ K 6= ∅. Fixing an open set Ω with K ⊂ Ω b M , we see that only
finitely many noncompact connected components L1, . . . , Lm of f−1(ζ) can
meet M \Ω, because all such connected components must meet ∂Ω and the
collection of all connected components is locally finite in E. Therefore, if
f has no compact level over ζ, then

f−1(ζ) ⊂ Ω ∪ L1 ∪ · · · ∪ Lm bM .

In particular, by replacing K by a larger compact set if necessary (contain-
ing Ω∪L1∪· · ·∪Lm for some ζ as above), we may assume that there exists
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a point
ζ0 ∈ P1 \

(
f(E) ∪ {∞}

)
.

Hence the function
h ≡ (f − ζ0)−1 : E → C

is a nonconstant holomorphic function on E.
Fix a C∞ function λ : M → C and a connected compact subset K ′ such

that K ⊂
◦
K ′, the set E′ ≡M \K ′ is connected, and λ|E′ = h|E′ . Then the

form
α′ ≡ ∂̄λ

is a C∞ compactly supported form of type (0, 1) on M satisfying ∂̄α′ = 0.
Thus we may apply Lemma 1.1 to get an L2 harmonic form γ′ and a C∞

function β′ (with finite energy) such that

γ′ = α′ − ∂̄β′ = ∂̄(λ− β′) and β′ → 0 at infinity .

The function τ ≡ λ−β′ : M → C is pluriharmonic. Moreover, τ is noncon-
stant because β′ vanishes at infinity and, by Lemma 1.3, the nonconstant
holomorphic function h|E′ = λ|E′ cannot approach a constant at infinity.

If τ1 ≡ Re τ is nonconstant, then the maximum principle implies that
we may choose a point x0 ∈ E′ ⊂ E at which

τ1(x0) > max
K′

τ1 .

Furthermore, we may choose x0 to lie in the dense subset E′ \ f−1(f(Z)).
The level L of f through x0 is then relatively compact in M . Hence K ′∪L
is a compact set and the restriction of τ1 to this set attains its maximum
at some point x1 ∈ K ′ ∪ L. But then

τ1(x1) = max
K′∪L

τ1 ≥ τ1(x0) > max
K′

τ1 .

Thus τ1(x1) = maxL τ1 and hence τ1 is constant on L. Therefore

L ⊂ {x ∈M | τ1(x) ≥ τ1(x0) } .

But the set on the right-hand side is a (closed) subset of E′, the closed
subset L of E is relatively compact in M , and E′ ⊂ E, so L must be a
compact level of f . If τ1 is constant, then the imaginary part τ2 ≡ Im τ is
nonconstant and the same argument applied to τ2 again yields a compact
level of f . Therefore, by Lemma 1.5, M admits a proper holomorphic
mapping onto a Riemann surface. 2
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3 Hyper q-convexity and the Proof of the Technical
Lemma

As in [NaR2], we will say that a real-valued C2 function ϕ on a Kähler
manifold (M,g) is q-plurisubharmonic (strictly q-plurisubharmonic) if, for
each point x0 ∈ M , the trace of the restriction of the Levi form L(ϕ) to
any complex subspace of T 1,0

x0 M of dimension q is nonnegative (respectively,
positive). The Kähler manifold (M,g) is said to be hyper-q-complete if M
admits a C∞ strictly q-plurisubharmonic exhaustion function. If there
exists a C∞ exhaustion function which is strictly q-plurisubharmonic on
the complement of some compact subset of M , then (M,g) is said to be
strongly hyper-q-convex. The following fact is contained implicitly in the
work of Richberg [Ri], Greene and Wu [GreW], Ohsawa [O], Colţoiu [Col],
and Demailly [D2] (see [NaR2]):

Proposition 3.1 (Richberg, Greene-Wu, Ohsawa, Colţoiu, Demailly).
Suppose M is a Kähler manifold of dimension n and X is a nowhere dense
analytic subset with no compact irreducible components. Then there exists
a C∞ strictly (n− 1)-plurisubharmonic function ϕ on a neighborhood V of
X such that ϕ exhausts X.

The following lemma is a consequence of the work of Grauert and
Riemenschneider [GrR] (for a relatively compact domain E), of Gromov
[Gro3] and of Li [L] (for E = M), and of Siu [Si] (for a harmonic mapping
of a relatively compact domain into a manifold satisfying certain curvature
conditions).

Lemma 3.2 (Grauert–Riemenschneider, Gromov, Li, Siu). Let (M,g) be a
connected complete Hermitian manifold of dimension n, let E be a (not nec-
essarily relatively compact) domain with smooth compact (possibly empty)
boundary in M , let ϕ be C∞ real-valued function on M such that dϕ 6= 0
at every point in ∂E and such that E = {x ∈ M | ϕ(x) < 0 }, and, for
each point x ∈ ∂E, let

τ(x) = tr
(
L(ϕ)|

T 1,0
x (∂E)

)
.

Assume that g is Kähler on E and that τ ≥ 0 on ∂E. Then we have the
following:

(a) If β is a C∞ function on E such that β is harmonic on E, β satisfies
the tangential Cauchy-Riemann equation ∂̄bβ = 0 on ∂E, and there
is a sequence of positive real numbers Rm → ∞ and a point p ∈ M
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such that
‖∇β‖2L2(Bp(Rm)∩E) =

∫
Bp(Rm)∩E

|∇β|2 dV = o(R2
m) as m→∞ ,

then β is pluriharmonic on E.
(b) If E is a hyperbolic end of M , then τ ≡ 0 on ∂E.

Remark. If ϕ′ is another smooth defining function for E, then
L(ϕ′)|T 1,0(∂E) = (ϕ′/ϕ)|∂E · L(ϕ)|T 1,0(∂E) .

So the conditions τ ≥ 0 and τ = 0 are independent of the choice of the
defining function.

Sketch of the proof. For part (a), let γ = ∂̄β and let η = ∗γ, where ∗
denotes the Hodge star operator. Then η may be thought of as a C∞ form
of type (n, n−1) or as a form of type (0, n−1) with values in the canonical
bundle KM on E. A computation in normal coordinates implies that it
suffices to show that ∇η = 0 (see [Si, Proof of Lemma 5.6(d)]). Applying
the Gaffney construction [G], one gets a sequence of C∞ functions {λm}
on M such that, for each m, λm ≡ 0 on M \Bp(Rm), λm ≡ 1 on Bp(Rm/2),
and |dλm| ≤ 3/Rm on M . Since ∂E is compact, we may also assume that
∂E ⊂ Bp(Rm/2). A straightforward computation in normal coordinates
then shows that, because λ2

mη = η = ∗∂̄β on a neighborhood of ∂E and
λ2
mη has compact support in E, the form λ2

mη lies in the domain of the
adjoint operator ∂̄∗. The Bochner-Kodaira formula is then (see [GrR] or
[Si, formula 2.1.4])∥∥∇(λ2

mη)
∥∥2
L2(E)

=
∥∥∂̄(λ2

mη)
∥∥2
L2(E) +

∥∥∂̄∗(λ2
mη)

∥∥2
L2(E) −

∫
∂E
|γ|2 · |∇ϕ|−1 · τ dσ , (3.1)

where dσ is the volume element on ∂E.
Remark. Here, the curvature terms drop out because η is of type (n, n−1)
and we have used the fact that ∂̄β ∧ ∂̄ϕ vanishes at each point in ∂E. The
authors mistakenly left out the normalizing factor |∇ϕ|−1 in the proof of
the analogous version [NaR2, Theorem 1.6].

If K is a compact subset of E, then, for m sufficiently large, we have
‖∇η‖2L2(K) =

∥∥∇(λ2
mη)

∥∥2
L2(K) ≤

∥∥∇(λ2
mη)

∥∥2
L2(E) .

Therefore, since τ ≥ 0, it suffices to show that∥∥∂̄(λ2
mη)

∥∥2
L2(E) +

∥∥∂̄∗(λ2
mη)

∥∥2
L2(E) → 0 as m→∞ .

Since β is harmonic and g is Kähler on E, we have ∂̄η = 0 and ∂̄∗η = 0.
We also have |η| ≤ |∇β|. Therefore, for some positive constant C, we have∥∥∂̄(λ2

mη)
∥∥
L2(E) = ‖2λm∂̄λm∧η‖L2(E) ≤ C

Rm
‖∇β‖L2(Bp(Rm)∩E) = o(Rm)

Rm
→ 0
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and∥∥∂̄∗(λ2
mη)

∥∥
L2(E) =

∥∥− 2λm ∗ (∂λm ∧ ∗η)
∥∥
L2(E) ≤

C
Rm
‖∇β‖L2(Bp(Rm)∩E)

= o(Rm)
Rm

→ 0 .
Thus part (a) is proved.

Assume now that E is a hyperbolic end and let β be the harmonic
measure of the ideal boundary of M with respect to E. Thus β is a C∞

function on E, β is harmonic on E, β ≡ 0 on ∂E, 0 < β < 1 on E,
and lim supx→∞ β(x) = 1. Moreover, β has finite energy and therefore, by
part (a), β is pluriharmonic on E. With the notation from the proof of
part (a), we see that each of the terms in equation (3.1) approaches 0 as
m→∞. In particular, ∫

∂E
|γ|2 · |∇ϕ|−1 · τ dσ = 0 .

Hence if τ > 0 at some point in ∂E, then |γ| = |∂̄β| = 0 on V ∩ ∂E for
some nonempty connected open subset V of M which meets ∂E. If f is a
C∞ function on V ∩E which is holomorphic on V ∩E and which vanishes
on V ∩ ∂E, then one may extend f to a continuous function h on V which
vanishes outside E. But then ∂̄h = 0 in the weak sense, so h is holomorphic.
It follows that h, and therefore f , must vanish identically. Shrinking V and
letting f be a coefficient of the holomorphic 1-form γ̄ with respect to some
local holomorphic frame, we see that γ vanishes on a nonempty open subset
of E and hence on the entire end E. Thus β is a real-valued holomorphic
function on E and must therefore be a constant function. This contradicts
the choice of β, so the claim (b) follows. 2

Remark. Part (b) also holds if M is weakly 1-complete or if M has
bounded geometry. In the former case, one replaces M by a sublevel of
the exhaustion function. In the latter case, when M is parabolic, one
produces a pluriharmonic function β as in [NaR1]. Similarly, Part (b)
holds if E b M and ∂E is not connected. For one may take β to be a
harmonic function which is equal to 1 on one boundary component and 0
on the other components.

Proof of Lemma 2.2. Let n = dimM . Assume that ∂ρ1∧∂ρ2 is not every-
where 0. To obtain a contradiction, we will construct an end with an (n−1)-
plurisubharmonic defining function and we will then apply Lemma 3.2. Let
Z = {x ∈ E | ρ1(x) = ρ2(x) = 0 } and A = {x ∈ E | (∂ρ1 ∧ ∂ρ2)x = 0 }
(A is a nowhere dense complex analytic set), and fix open sets Ω1, Ω2, and Ω3
such that

K ⊂ Ω1 b Ω2 b Ω3 bM
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and such that A∩Ω3\Ω1 is empty or has no compact irreducible components
(one can form these sets by choosing open sets Ω1 b Ω′3 b M and setting
Ω3 = Ω′3\H, where H is a finite subset of E\Ω1 which contains a point from
each irreducible component of A which meets Ω′3 \ Ω1). Let Ω0 = Ω3 \ Ω1,
let Z0 = Z ∩ Ω0, and let A0 = A ∩ Ω0. By applying Proposition 3.1
(Richberg, Greene-Wu, Ohsawa, Colţoiu, Demailly) to A0 and forming a
suitable extension of the resulting function to Ω0 (possibly after shrinking
the neighborhood of A0 on which the function is initially defined), one
obtains a positive C∞ exhaustion function α on Ω0 which is strictly (n−1)-
plurisubharmonic on a neighborhood of A0. Suppose

ψ = α+ γ · (ρ2
1 + ρ2

2) ,
where γ is a C∞ positive function on Ω0. Then ψ exhausts Ω0 because
ψ ≥ α. Moreover, at each point x0 ∈ Z0, we have

L(ψ)x0 = L(α)x0 + γ(x0) · L(ρ2
1 + ρ2

2)x0 .

Therefore, since α is strictly (n − 1)-plurisubharmonic on a neighborhood
of A0 and since ρ2

1 + ρ2
2 is (n − 1)-plurisubharmonic on E and strictly

(n − 1)-plurisubharmonic on E \ A, we may choose γ so that the trace of
the restriction of L(ψ) to each (n − 1)-dimensional complex subspace of
T 1,0
x0 M is positive for each point x0 ∈ Z0. The restriction of ψ to some

neighborhood V of Z0 is then strictly (n− 1)-plurisubharmonic.
Fix constants a and b with a > b > max∂Ω2 ψ. For ε > 0 sufficiently

small, the set {x ∈ Ω0 | ρ2
1 + ρ2

2 ≤ ε and ψ(x) ≤ a } is compact (and pos-
sibly empty) and is contained in V . Choosing a C∞ nondecreasing convex
function χ : R→ R which vanishes on the interval (−∞,− log (a− b)] and
which approaches +∞ at +∞, we obtain a C∞ (n − 1)-plurisubharmonic
function ϕ on the open set
N = {x ∈M \Ω2 | ρ2

1 +ρ2
2 < ε }∪{x ∈ V ∩Ω2 | ρ2

1 +ρ2
2 < ε and ψ(x) < a }

by defining

ϕ(x) =

{
ρ2

1 + ρ2
2 − log(ε− (ρ2

1 + ρ2
2)) if x ∈ N \ Ω2

ρ2
1 + ρ2

2 − log(ε− (ρ2
1 + ρ2

2)) + χ(−log(a−ψ(x))) if x ∈ N ∩ Ω2 .

Moreover, N ⊂ E, ϕ → ∞ at ∂N , ϕ ≥ − log ε on N , and, since ρ2
1 + ρ2

2
vanishes at infinity in M , M \ N is compact and ϕ → − log ε at infinity
in M . Therefore, if c is a regular value of ϕ with c > − log ε and E0 is the
(unique) connected component of the set {x ∈ N | ϕ(x) < c } with non-
compact closure in M , then E0 is a C∞ domain in M which has nonempty
compact boundary and which admits a C∞ (n−1)-plurisubharmonic defin-
ing function ϕ− c with nonvanishing differential at each boundary point.
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Now observe that ϕ is strictly (n−1)-plurisubharmonic onN\A because,
on this set, ϕ− (ρ2

1 + ρ2
2) is (n− 1)-plurisubharmonic and ρ2

1 + ρ2
2 is strictly

(n − 1)-plurisubharmonic. Moreover, (∂E0) \ A 6= ∅ because dimRA ≤
2n−2 < dimR ∂E0. Since (M,g) is hyperbolic, this contradicts Lemma 3.2,
part (b). Thus we must have ∂ρ1 ∧ ∂ρ2 ≡ 0 on M . 2

Remarks. 1. In place of Lemma 3.2, part (b), one may instead apply
part (a) to the harmonic measure and then apply Lemma 2.1.

2. By the remarks following the proof of Lemma 3.2, Lemma 2.2 also
holds if M is weakly 1-complete or M has bounded geometry.

4 Compact Kähler Manifolds and their Coverings

Theorem 0.2 and Corollary 0.3 are proved in this section.
Proof of Theorem 0.2. Suppose (M,g) is a connected compact Kähler
manifold of dimension n and π : M̃ → M is a connected infinite Galois
covering with covering group

Γ = π1(M)/π1(M̃) .
We equip M̃ with the complete Kähler metric g̃ = π∗g lifted from M .
We have e(M̃) = 1, 2, or ∞ (see Cohen [Co] or Scott and Wall [SW]).
According to a theorem of Gromov [Gro2], if e(M̃) =∞, then M̃ admits a
proper holomorphic mapping to a Riemann surface (see also [NaR1]). By
another theorem of Gromov [Gro1], if e(M̃) = 1, then either Γ has more
than quadratic growth or Γ contains Z2 as a subgroup of finite index. In
the former case, the work of Varopoulos [V1,V2] and the work of Chavel
and Feldman [CF] (see [R]) imply that (M̃, g̃) admits a positive Green’s
function which vanishes at infinity. Hence one may apply Theorem 0.1 in
this case. Thus it remains to address the latter case in which Γ contains
Z2 as a subgroup of finite index.

By replacing M by a finite covering, we may assume that Γ = Z2.
Choosing loops σ1 and σ2 in M mapping to (1, 0) and (0, 1), respectively,
in Z2, there exists, for j = 1, 2, a unique (real) harmonic 1-form θj on
M which integrates to δij on σi for i = 1, 2 and which integrates to 0 on
the image of π1(M̃) in π1(M). The liftings π∗θ1 and π∗θ2 integrate to
pluriharmonic functions τ1 : M̃ → R and τ2 : M̃ → R, respectively, which
satisfy

τ1((r, s) · x) = τ1(x) + r and τ2((r, s) · x) = τ2(x) + s

∀ (r, s) ∈ Γ = Z2, x ∈ M̃ .
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In particular, ϕ ≡ τ2
1 + τ2

2 is a C∞ plurisubharmonic exhaustion function
on M̃ .

Remark. The theorem now follows from [NaR2], but a direct proof is
provided below.

If H1
c (M̃,O) 6= 0, then there exists a C∞ compactly supported form α

of type (0, 1) on M̃ such that ∂̄α = 0 and such that α 6∈ ∂̄C∞c (M̃). Since
e(M̃) = 1, we may choose a connected compact set K such that α ≡ 0 on
M̃ \K and such that M̃ \K is connected. Fix a regular value a of ϕ with
a > maxK ϕ, and let Ω be the connected component of {x ∈ M̃ | ϕ(x) < a }
containing K. We may choose K and a so that Ω \ K is connected. By
a theorem of Nakano [N] (see also Demailly [D1]), Ω admits a complete
Kähler metric g′. Furthermore, since ϕ−a is a negative (pluri)subharmonic
function on Ω which approaches 0 at each point in ∂Ω, (Ω, g′) is hyperbolic
and the Green’s function vanishes at ∂Ω.

Observe that α 6∈ ∂̄C∞c (Ω) ⊂ ∂̄C∞c (M). Therefore, if ∂Ω is connected
(i.e. e(Ω) = 1), then Theorem 0.1 implies that Ω admits a proper holomor-
phic mapping with connected fibers onto a Riemann surface. If ∂Ω is not
connected, then, by Lemma 1.2, there exists a pluriharmonic function ρ on
Ω such that 0 < ρ < 1 on Ω, ρ → 1 at some boundary component C, and
ρ → 0 at (∂Ω) \ C 6= ∅. In particular, ρ has compact fibers. Moreover,
since the functions dτ1 and dτ2 are linearly independent, dρ and dτi must
be linearly independent for i = 1 or for i = 2. Therefore, Lemma 2.1 im-
plies that some open subset of Ω admits a proper holomorphic mapping
onto a Riemann surface. Hence, by Lemma 1.5, Ω again admits a proper
holomorphic mapping with connected fibers onto a Riemann surface. Ex-
hausting M̃ by such domains, we get a proper holomorphic mapping (with
connected fibers) of M̃ onto the limit Riemann surface. 2

The following observation, which is well known (at least for the case
of a Galois covering), was used in [NaR1] (along with the main result of
[NaR1]) to show that a connected compact Kähler manifold whose fun-
damental group is an amalgamated free product along Z admits a finite
covering manifold which maps holomorphically onto a Riemann surface
[NaR1, Theorem 4.1]:

Proposition 4.1. Suppose (M,g) is a connected compact Kähler man-
ifold for which some connected covering space admits a surjective proper
holomorphic mapping onto a Riemann surface. Then some finite covering
of M admits a surjective holomorphic mapping onto a (compact) Riemann
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surface.

Proof. By hypothesis, there exists a connected covering space π : M̃ →M ,
a Riemann surface X̃, and a surjective proper holomorphic mapping Φ̃ :
M̃ → X̃. Clearly, we may assume that M̃ is noncompact. By Stein fac-
torization, we may also assume that Φ̃ has connected fibers. Observe that
if ρ : M̃ ′ → M̃ is the covering space with fundamental group equal to
the image of the fundamental group of some generic fiber of Φ̃, then the
composite mapping Φ̃′ : M̃ ′ → X̃ has compact levels. For this is clear for
the nonsingular fibers, because Φ̃ is locally C∞ trivial over the complement
of the (discrete) set C of critical values in X̃. Given a level F ′0 over a
point x0 ∈ C, we may form a coordinate unit disk ∆ centered at 0 = x0
such that ∆ ∩ C = {x0}. Let F0 = ρ(F ′0) = Φ̃−1(0), let U = Φ̃−1(∆) (a
connected neighborhood of F0), and let U ′ be the connected component of
ρ−1(U) containing F ′0. Then the restriction mapping U ′ \F ′0 → ∆∗ is a C∞

fiber bundle with compact levels and hence, aftering Stein factoring, we
get U ′ \ F ′0

α→ Y
β→ ∆∗; where α is a proper holomorphic submersion with

connected fibers and β is a covering map. In particular, we have Y = ∆
or ∆∗, and hence the bounded holomorphic function α extends to a holo-
morphic mapping γ : U ′ → ∆ (the image must lie in the interior ∆ of ∆ by
the maximum principle). Since Φ̃′(F ′0) = {0} and the image of the covering
map ∆ → ∆∗ does not contain 0, we must have Y = ∆∗ (and γ(F ′0) = 0).
Hence the covering map Y → ∆∗ is a finite mapping and therefore the
covering map U ′ → U must have finite fibers. Thus F ′0 is compact and the
claim follows. Therefore, by replacing M̃ by the covering space M̃ ′ and Φ̃
by the Stein factorization of Φ̃′, we may assume that, for a generic fiber F ,
the mapping π1(F ) → π1(M̃) is surjective. In particular, X̃ = ∆ or C
because π1(M̃) maps surjectively onto π1(X̃) and π1(F ) maps to 0.

Now by a result of Kollár [K, Proposition 1.2.11] (one gets the propo-
sition for compact Kähler manifolds by using the Barlet space in place of
the Douady space in order to get the required family of normal cycles
in the proof), for a generic fiber F of Φ̃, the normalizer of the group
Λ = im (π1(M̃) → π1(M)) = im (π1(F ) → π1(M)) is of finite index
in π1(M). Therefore, by passing to the associated finite covering of M ,
we may assume that π : M̃ → M is a Galois covering and hence that
M = M̃/Γ, where Γ = π1(M)/Λ.

Each automorphism σ ∈ Γ maps fibers (of Φ̃) to fibers, because Φ̃ is
constant on every connected compact analytic set. Thus σ descends to an
automorphism of X̃. The image Θ of the homomorphism Γ→ Aut (X̃) acts
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properly discontinuously on X̃ and the kernel is a finite normal subgroup
of Γ. If X̃ = C, then Θ′ = Θ is torsion free and, if X̃ = ∆, then, by a well
known theorem of Selberg, there exists a torsion-free normal subgroup Θ′

of finite index in Θ. Thus we get a commutative diagram of holomorphic
mappings

M̃/Γ′ = M ′
π′

π

?

M̃���������

-Φ̃

�M -
Φ′

X ′ = X̃/Θ′

X̃

?

where Γ′ is the inverse image of Θ′, π′ : M ′ → M is a connected finite
covering space, X ′ is a Riemann surface, and Φ′ is a surjective holomorphic
map. 2

For example, the main result of [NaR1] and Proposition 4.1 together
give the following:
Corollary 4.2. Suppose (M,g) is a connected compact Kähler manifold
for which there is a connected covering space with at least three ends. Then
some finite covering of M admits a surjective holomorphic mapping onto a
Riemann surface.

Theorem 0.2 and the above together give Corollary 0.3 for the cases
(i) and (iii). Finally, we address the case of a covering with two ends (in
particular, case (ii)). By Lemma 1.2, Lemma 1.5, and Lemma 2.1, the con-
clusion of Theorem 0.1 also holds if e(M) = 2 and there exists a nowhere
locally constant holomorphic function (or two pluriharmonic functions with
locally linearly independent differentials) on the complement of a compact
set. Similarly, one gets the corresponding versions of Theorem 0.2, Corol-
lary 0.3, and Corollary 4.2. We also have the following fact which gives
Corollary 0.3 for the case (ii):
Theorem 4.3. Suppose (M,g) is a connected compact Kähler manifold for
which there exists a surjective homomorphism π1(M)→ Z whose kernel is
not finitely generated. Then M admits a surjective holomorphic mapping
onto a Riemann surface X and the homomorphism factors through π1(X).

Proof. Let π : M̃ →M be a connected Galois covering space with
π∗(π1(M̃)) = Λ = ker

(
π1(M)→ Z

)
.

Then Z = Γ = π1(M)/Λ acts (fixed-point freely and properly discontinu-
ously) by deck transformations on M̃ . The main step is, of course, to show
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that M̃ admits a proper holomorphic mapping onto a Riemann surface X̃.
One can then pass to the quotient X̃/Z.

We first observe that standard arguments imply that M̃ admits a proper
pluriharmonic function into R. For example, given a loop σ in M which
maps to 1 ∈ Z, there is a unique real harmonic 1-form θ on M which
integrates to 1 on σ and to 0 on elements of Λ. The lifting π∗θ integrates
to a pluriharmonic function ρ : M̃ → R which is proper because ρ(m · x) =
ρ(x) +m for all x ∈ M̃ and m ∈ Z = Γ.

Fix a regular value c of ρ, a connected component N of ρ−1(c), and a
connected covering space π̂ : M̂ → M̃ with

π̂∗(π1(M̂)) = im
(
π1(N)→ π1(M̃)

)
.

Then π̂ maps a relatively compact neighborhood V1 of some connected
component N1 of π̂−1(N) biholomorphically onto a neighborhood V of N
in M̃ , and, since π1(M̃) = Λ is not finitely generated, N1 is a boundary
component of some connected component P̂ of M̂ \ π̂−1(N) which has at
least one other boundary component N2. By replacing ρ by −ρ and c by −c,
if necessary, and by shrinking V1, we may assume that, for some connected
component P of {x ∈ M̃ | ρ(x) < c }, P̂ is a connected component of
π̂−1(P ) and P̂ \ V 1 is connected. We may also assume that V1 ∩ P̂ , and
hence V ∩P , is connected. By a theorem of Nakano [N] (and Demailly [D1]),
there exists a complete Kähler metric on P and, therefore, on P̂ . Moreover,
P̂ is hyperbolic and the Green’s function vanishes at ∂P̂ , because ρ◦ π̂|

P̂
−c

is a negative subharmonic function which vanishes at the boundary. Since
the boundary component N1 is compact, we may apply Lemma 1.2 to P̂
to get a nonconstant bounded real-valued pluriharmonic function τ̂ with
finite energy on P̂ . In particular, since ρ(x) → −∞ as x → ∞ in P , the
functions 1, ρ ◦ π̂|

P̂
, and τ̂ are linearly independent. Hence τ̂ determines a

pluriharmonic function
τ = τ̂ ◦ (π̂|

V1∩P̂ )−1 : V ∩ P → R
such that 1, ρ|V ∩P , and τ are linearly independent. Since ρ|V ∩P has a
compact level, Lemma 2.1 implies that some open subset of M̃ admits a
proper holomorphic mapping onto a Riemann surface. On the other hand,
each of the sublevels Ω of the plurisubharmonic exhaustion function ρ2

on M̃ admits a complete hyperbolic Kähler metric whose Green’s function
vanishes at ∂Ω. Therefore, by Lemma 1.5, Ω admits a proper holomorphic
mapping with connected fibers to a Riemann surface. Exhausting M̃ by
such domains, we get a proper holomorphic mapping Φ̃ : M̃ → X̃ with
connected fibers of M̃ onto the limit Riemann surface X̃.
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As in the proof of Proposition 4.1, the action of Z on M̃ descends to
a properly discontinuous action of Z on X̃. This action is also fixed-point
free because Z is torsion free. Thus Φ̃ descends to a surjective holomorphic
mapping Φ : M → X of M onto the Riemann surface X = X̃/Z. 2

Remarks. 1. The above theorem generalizes part of a result of Ara-
pura [Ar].

2. The theorem can also be proved using techniques of Gromov and
Schoen [GroS].

Proof of Corollary 0.3. The conclusion for the cases (i) and (iii) follows
from Theorem 0.2, Proposition 4.1, and Corollary 4.2. For the case (ii),
suppose e(M̃) = 2 and π1(M̃) is not finitely generated. Then the covering
group Γ = π1(M)/π1(M̃) contains Z as a subgroup of finite index. The
inverse image H of Z in π1(M) is a subgroup of finite index and the image
of π1(M̃) in π1(M) is a normal subgroup of H. Thus we may form the
finite covering space M ′ with im (π1(M ′) → π1(M)) = H and the Galois
covering π′ : M̃ →M ′. We then get a surjective homomorphism π1(M ′)→
Γ′ = π1(M ′)/π1(M̃) = Z and the kernel π1(M̃) is not finitely generated.
Theorem 4.3 now gives the claim. 2
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