
GAFA, Geom. funct. anal.
Vol. 11 (2001) 244 – 272
1016-443X/01/020244-29 $ 1.50+0.20/0
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Abstract

The main result of this paper is the description of translation invariant
continuous valuations on convex sets. In particular, it provides an
affirmative solution of P. McMullen’s conjecture, and in a stronger
form.

1 Introduction

Let Kn denote the family of all convex compact subsets of Rn. Equipped
with the Hausdorff metric, Kn becomes a locally compact metric space.

Definition 1.1. A scalar valued function

ϕ : Kn −→ C
is called a valuation if, for all convex compact sets K1,K2 ∈ Kn such that
their union K1 ∪K2 is also convex, one has

ϕ(K1 ∪K2) = ϕ(K1) + ϕ(K2)− ϕ(K1 ∩K2) .

A valuation ϕ is called continuous if it is continuous with respect to the
Hausdorff metric on Kn.

A valuation ϕ is called translation invariant if for every convex compact
set K ∈ Kn and for every vector x ∈ Rn

ϕ(K + x) = ϕ(K) .

Let us make a few historical remarks on valuations, referring for more
details and references to the surveys [MS] and [M3]. Valuations on con-
vex bodies (polytopes) played an important initial role in Dehn’s solution
in 1900 of Hilbert’s third problem on non-equidecomposability of convex
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polytopes of equal volume in R3. A first attempt at classifying (in three-
dimensional space) the rigid-motion invariant valuations (satisfying a suit-
able additional assumption) was made by Blaschke in the 1930s (see [Bl]).
However, his result was not satisfactory since in the course of the proof he
had to introduce an additional invariance assumption. Probably the most
famous result on valuations is Hadwiger’s characterization of rigid motion
invariant valuations continuous with respect to the Hausdorff metric as
linear combinations of quermassintegrals (see [H1,2,3]). It has numerous
applications to integral geometry (see, e.g. Ch. 9 of [KR], or [H3], or [S1]).

The basic examples of valuations we would like to mention are as follows:
1. ϕ(K) = vol(K) for every K ∈ Kn (here vol(K) denotes the usual

volume of the body K).
2. ϕ(K) = 1 for every K ∈ Kn.
3. To state this example let us recall the definition of mixed volumes

(see [S1] for details). Let K1, . . . ,Kn ∈ Kn. For non-negative scalars
λ1, . . . , λn let us denote by λ1K1 + · · ·+ λnKn the Minkowski linear
combination of Ki’s, i.e. the set

{∑n
i=1 λixi

∣∣ xi ∈ Ki

}
. This is

also a convex compact set. By the Minkowski theorem the volume
vol(λ1K1 + · · · + λnKn) is a polynomial in λi ≥ 0. The coefficient
of λ1 · · · · · λn divided by n! is called the mixed volume of the sets
K1, . . . ,Kn and is denoted by V (K1, . . . ,Kn).
Let us now fix a non-negative integer number j ≤ n. Fix convex
compact sets A1, . . . , Aj . Then the mixed volume

ϕ(K) = V (K, . . . ,K︸ ︷︷ ︸
n−j times

, A1, . . . , Aj)

is a translation invariant continuous valuation (see [S1]).
Note that if in example 3 one takes j = 0 (resp. j = n), one gets example 1
(resp. 2). Clearly every finite linear combination of the mixed volumes is a
translation invariant continuous valuation.

The linear space of all continuous translation invariant valuations has
the natural topology given by a sequence of semi-norms:

‖ϕ‖N = sup
K⊂N ·B

|ϕ(K)| ,

where N ·B denotes the Euclidean ball of radius N . Note that the supre-
mum is finite since it is taken over a compact subset of Kn (by the Blaschke
selection theorem).

This sequence of semi-norms defines the Frechet space structure on the
space of translation invariant continuous valuations (in fact it is even a
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Banach space structure).
P. McMullen [M2] has conjectured that the mixed volumes span a dense

subspace in the space of translation invariant continuous valuations.
The goal of this paper is to prove Theorem 1.3 below, which implies

this conjecture in particular. This conjecture was known to be true in
Rn with n ≤ 3 (for references see the comments after Theorem 1.3 in this
section). Recently it was proved for even valuations in R4 ([A]). This paper
further develops the method of [A]. To state our main result we will need
the following theorem due to McMullen.
Theorem 1.2 ([M1]). Every continuous translation invariant valuation ϕ
on Rn can be presented uniquely as a sum

ϕ =
n∑
i=0

ϕi ,

where ϕi are homogeneous valuations of degree i, 0 ≤ i ≤ n, i.e. for every
K ∈ Kn and a scalar λ ≥ 0

ϕi(λK) = λiϕi(K) .

Furthermore, every valuation ϕ can be decomposed uniquely into even
and odd parts

ϕ = ϕeven + ϕodd ,

where ϕeven(−K) = ϕeven(K), ϕodd(−K) = −ϕodd(K), for every K ∈ Kn.
On the Frechet space of translation invariant continuous valuations we

have the natural continuous representation π of the linear group GL(n,R).
Namely, for every g ∈ GL(n,R), K ∈ Kn

(π(g)ϕ)(K) = ϕ(g−1K) .

Our main result is
Theorem 1.3. The natural representation ofGL(n,R) on the space of even
(resp. odd) translation invariant continuous valuations of a given degree of
homogeneity is irreducible.

Note that this theorem immediately implies McMullen’s conjecture. In-
deed by Theorem 1.2 it is sufficient to prove it for valuations, of a given
degree of homogeneity, which are even or odd. The linear subspace spanned
by the mixed volumes is GL(n,R)-invariant, hence by Theorem 1.3 it must
be either zero or dense everywhere. But obviously it is nonzero.

Moreover Theorem 1.3 implies in the same way that the linear combi-
nations of valuations of the form ϕ(K) = V (K, . . . ,K; E , . . . , E), where E
is an ellipsoid, are dense in the space of even valuations, and valuations of
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the form ϕ(K) = V (K, . . . ,K; ∆, . . . ,∆), where ∆ is a simplex, are dense
in the space of all translation invariant continuous valuations.

McMullen’s conjecture was known to be true for valuations, which are
homogeneous of degree 0 (the trivial case), 1 (see [GW]), n (which follows
from [H3]; see Theorem 2.1(b) of this paper), and n− 1 (see [M2]).

Remarks. 1. It follows from the proof of Theorem 1.3 that the space
of homogeneous even (resp. odd) translation invariant valuations is an ad-
missible GL(n,R)-module with rather small characteristic variety, which is
equal to the set of complex symmetric nilpotent matrices of rank at most 1.

2. There is a series of results providing some representations of transla-
tion invariant valuations on convex sets or polytopes with different assump-
tions on continuity: [GW], [H4,5], [M2,4]. For more details and references,
see §16 of the survey [MS].

We would also like to mention a recent nice result [LR] characterizing
semi-continuous valuations, which are invariant with respect to all volume
preserving affine transformations.

3. There is an interesting class of monotone valuations. Recall that
valuation ϕ is called monotone if for all convex compact sets such that
K1 ⊂ K2 one has an inequality ϕ(K1) ≤ ϕ(K2) (monotone translation
invariant valuations must be continuous, see [M1]). It is not clear whether
the methods of this paper can be applied to studying this class of valuations.

Let us add a few words about the method of the proof. In the case
of even valuations, we use two different embeddings, constructed in [A], of
the GL(n,R)-module of even translation invariant continuous valuations,
of a given degree of homogeneity, into two GL(n,R)-modules induced from
certain parabolic subgroups of GL(n,R) (i.e. these GL(n,R)-modules can
be studied from a purely representation theoretical point of view). The
next step which is solved in this paper is the proof that these two GL(n,R)-
modules can have only one common irreducibleGL(n,R)-submodule (which
implies the main Theorem 1.3 in the even case). This step is based on some
computations using D-modules (following the suggestions of J. Bernstein
and A. Braverman).

The idea is as follows: from the existence of one of the embeddings
mentioned it follows that our GL(n,R)-module of valuations has a very
small characteristic variety – just complex symmetric nilpotent matrices of
rank at most 1. Next it is shown that the second GL(n,R)-module can
have at most one submodule with such a property.

The plan of the proof in the odd case is similar. Here we also construct
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two different embeddings of our GL(n,R)-module of odd valuations, of a
given degree of homogeneity. (One of the constructions is taken from [A]
and is the same as in the even case.) The injectivity of the other embedding
follows from the characterization of odd simple translation invariant valua-
tions due to R. Schneider [S2]. (Note that in the even case the injectivity of
the analogous embedding followed from the corresponding characterization
of even simple translation invariant valuations due to D. Klain [K1].)

Next an analogous computation with D-modules shows that these two
GL(n,R)-modules can have only one common irreducible submodule.

The paper is organized as follows. In section 2 we recall necessary facts
about valuations and construct the embeddings we need. In section 3 we
compute the associated variety of the (g,K)-module of valuations. In sec-
tion 4 we prove the main theorem for even valuations, and in section 5 for
odd ones. Section 6 discusses applications to unitarily invariant transla-
tion invariant valuations. Thus we compute the dimension of the space of
these valuations. Section 7 contains a few comments on further possible
applications and raises some questions.

Acknowledgements. I am very grateful to Professor J. Bernstein
for extremely useful discussions and suggestions, and to Professor V.D.
Milman for constant encouragement and support. Without their help this
work could not have been done. We wish to thank Dr. A. Braverman for
very useful discussions; he suggested the idea of applying the technique of
D-modules to the problem. We would like to thank Professor R. Schneider
for important remarks.

2 Preliminaries and Construction of the Embeddings

In this section we review some basic facts about valuations and then present
constructions of embeddings of GL(n,R)-modules of translation invariant
continuous valuations into other GL(n,R)-modules.

Theorem 2.1. (a) Every translation invariant valuation ϕ, which is ho-
mogeneous of degree 0, is constant, i.e. ϕ(K) = const for every K ∈ Kn.

(b) [H3] Every translation invariant valuation on Rn, which is homoge-
neous of degree n, is a density (i.e. proportional to Lebesgue measure).

Note that part (a) is trivial. Recall that a valuation ϕ is called simple
if it vanishes on degenerate convex sets, i.e. if dimK < n then ϕ(K) = 0.

Theorem 2.2 ([K1]). Every even simple translation invariant continuous
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valuation is a density.

To state the next result let us fix some Euclidean structure on Rn.

Theorem 2.3 ([S2]). Every odd simple translation invariant continuous
valuation ϕ has the form:

ϕ(K) =
∫
Sn−1

f(ω)dSn−1(K,ω) ,

where dSn−1(K;ω) is the surface area measure of K on the unit sphere
Sn−1, f : Sn−1 → C is a continuous odd function. Moreover the function
f is defined uniquely by the valuation ϕ up to a linear functional on Sn−1.

From now on, we will denote by Valev
n,k (resp. Valodd

n,k ) the Frechet space
of even (resp. odd) translation invariant continuous valuations on Rn, which
are homogeneous of degree k. Because of Theorem 2.1 we will consider only
the case 1 ≤ k ≤ n− 1.

Let us denote by Grn,k the Grassmannian of linear k-subspaces in Rn.
Let Ln,k denote the line bundle Ln,k → Grn,k of densities over Grn,k, i.e.
the fiber of Ln,k over each E ∈ Grn,k is the (one-dimensional) space of
complex densities (= complex Lebesgue measures) on E.

Let us recall the construction of an embedding of Valev
n,k into the space

Γ(Ln,k) of global continuous sections of Ln,k.
Fix any valuation ϕ ∈ Valev

n,k. For every subspace E ∈ Grn,k consider a
restriction of ϕ on the class of convex compact subsets of E. Clearly it is
a translation invariant continuous valuation, homogeneous of degree k. By
Theorem 2.1(b) it is a density on E. Hence we get a linear map commuting
with the natural action of GL(n,R)

Valev
n,k −→ Γ(Ln,k) .

The following result was used in [K2] and independently in [A] (see
Proposition 3.1 of [A]). It is an easy consequence of the nontrivial Theo-
rem 2.2 due to D. Klain.

Theorem 2.4. The constructed map

Valev
n,k −→ Γ(Ln,k)

is injective.

Now we are going to describe an analogous embedding of odd homoge-
neous valuations. This space will be realized as a subquotient of the space
of sections of a certain line bundle over the partial flag manifold (of type
(k, k+1), where k is the degree of the homogeneity of valuations). First let
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us do it under additional assumptions that n = k + 1. In this case we ac-
tually just give a reformulation of Theorem 2.3 in invariant terms without
fixing any Euclidean structure.

Consider for Rk+1 the manifold of co-oriented hyperplanes. We have the
line bundle of densities over this manifold. By Theorem 2.3 every valuation
from Valodd

k+1,k defines an odd continuous section of this bundle (i.e. section
which changes its sign if one changes the co-orientation of the hyperplane)
modulo some (k + 1)-dimensional subspace.

Thus odd sections of the bundle of densities over the manifold of co-
oriented hyperplanes can be identified with sections of a certain line bundle
L′k+1,k over the manifold of hyperplanes Grk+1,k (without any (co-)orienta-
tion) modulo a (k + 1)-dimensional subspace. Clearly the L′k+1,k is just
a twist of the bundle of densities Lk+1,k by some flat line bundle. It is
easy to see that the group GL(k + 1,R) acts naturally on L′k+1,k, and the
corresponding representation in the space of continuous sections of L′k+1,k
is (nonunitarily) induced from the character χ of the parabolic subgroup P ,
where P consists of the matrices of the form[

A ∗
0 b

]
with A ∈ GL(k,R), b ∈ R×

and
χ

([
A ∗
0 b

])
= |detA|−1 · sgn b . (2.1)

Lemma 2.5. The constructed map from Valodd
k+1,k to the quotient space

of continuous sections of L′k+1,k by a (k + 1)-dimensional subspace is a
continuous map of linear topological spaces.

Proof. Now it is convenient to fix a Euclidean structure on Rk+1. Let
ϕ ∈ Valodd

k+1,k. In the statement of Theorem 2.3 one can assume the function
f to be orthogonal to any linear functional (with respect to the standard
Lebesgue measure on the sphere Sk). Then f is defined uniquely. Under
this normalization we have the map

Ψ : Valodd
k+1,k −→ C̃(Sk) ,

where C̃(Sk) denotes the Banach space of continuous odd functions on Sk

orthogonal to every linear functional and equipped with the usual topology
of uniform convergence on Sk. We have to prove the continuity of this
map Ψ. Note that the inverse map Ψ−1 : C̃(Sk)→ Valodd

k+1,k is defined

(Ψ−1f)(K) =
∫
Sk
f(ω)dSk(K,ω) .



Vol. 11, 2001 VALUATIONS AND MCMULLEN’S CONJECTURE 251

The map Ψ−1 is continuous:

sup
K⊂N ·B

|Ψ−1(K)| ≤ ‖f‖ · sup
K⊂N ·B

|∂K|k ≤ ‖f‖ ·Nk · |∂B|k ,

where |∂K|k is the surface area of K. Since Valodd
k+1,k is a Frechet space, by

Banach’s inverse operator theorem Ψ is continuous as well. 2

Let us now consider the general case of Valodd
n,k , 1 ≤ k ≤ n − 1. For

every ϕ ∈ Valodd
n,k we consider the restriction of ϕ on all (k+ 1)-dimensional

subspaces of Rn. Thus we get a linear map

Θ : Valodd
n,k −→ Xn,k ,

where Xn,k is the linear space of continuous sections of the (infinite di-
mensional) vector bundle over the Grassmannian Grn,k+1, whose fiber over
E ∈ Grn,k+1 is the space of odd valuations on E homogeneous of degree
k (as usual all valuations are assumed to be continuous and translation
invariant). The space Xn,k has the obvious structure of Frechet space. It
easily follows from Lemma 2.5 that the map Θ is a continuous operator.

Proposition 2.6. The map Θ defines an injection of Valodd
n,k into Xn,k.

Proof. Assume that ϕ ∈ Ker Θ. For every (k + 2)-dimensional linear sub-
space F ⊂ Rn the restriction of ϕ on F defines a simple odd translation
invariant valuation. Hence by Theorem 2.3 it must be homogeneous of
degree k + 1. Hence it vanishes on all (k + 2)-dimensional sets. By an
induction argument ϕ vanishes identically. 2

Let us fix a (k + 1)-dimensional linear subspace E0 ⊂ Rn. Let us
denote by Ω the representation of GL(E0) in the space of odd valuations
on E0 homogeneous of degree k. Let P1 denote the (parabolic) subgroup
of GL(n,R) fixing E0. Then Proposition 2.6 can be reformulated as

Theorem 2.7. The space Valodd
n,k embeds injectively as GL(n,R)-module

into the induced representation IndGL(n,R)
P1

Ω.

Now let us fix a pair of linear subspaces E1 ⊂ E0, where dimE1 = k,
dimE0 = k + 1. Let P2 denote the (parabolic) subgroup which fixes this
flag. Clearly P2 consists of matrices of the form:

X =

 A *b
O C

 with A ∈ GL(k,R), b ∈ R×, C ∈ GL(n−k−1,R) .

Consider the character ξ of P2:

ξ(X) = |detA|−1 · sgn b .
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From Theorem 2.7 and a previous description of the embedding of Valodd
k+1,k

(see (2.1)) we obtain
Corollary 2.8. The space Valodd

n,k can be realized as a subquotient of

IndGL(n,R)
P2

ξ.

Now we will state a result proved in [A] (see Section 3 of [A]). Let Pn−1
+

denote the manifold of oriented lines in the dual space Rn∗ through the
origin (clearly Pn−1

+ is diffeomorphic to the sphere).
Theorem 2.9 ([A]). Let 1 ≤ k ≤ n− 1. The space of translation invariant
continuous even (resp. odd) valuations homogeneous of degree k can be
embedded into the space of even (resp. odd) distributions on Pn−1

+ × · · · ×
Pn−1

+ (k times) with support on the diagonal and with values in a certain
line bundle (equipped with the natural action of GL(n,R)). The order of
these distributions is uniformly bounded by a constant depending on n and
k only. The embedding commutes with the natural action of GL(n,R) on
each space.

We will not describe here the construction of this embedding. We need
only to know the existence of this embedding and the following property of
distributions mentioned in Theorem 2.9 (see [A] for details).
Proposition 2.10. The space of even (odd) distributions on Pn−1∗

+ ×
· · ·×Pn−1∗

+ (k times) of given order, which have support on the diagonal, is
infinitesimally equivalent as (g,K)-module to a representation of GL(n,R),
which is induced from a finite dimensional representation ρ of the parabolic
subgroup P ⊂ GL(n,R). The subgroup P consists of matrices of the form

T =
[
A ∗
0 b

]
, where A ∈ GL(n− 1,R) , b ∈ R× . (2.2)

Furthermore the representation ρ has the form

ρ(T ) = ρ0(T ) ·
(

sgn(detA)
)ε1 · (sgn b)ε2 , (2.3)

where ε1, ε2 are equal to 0 or 1 (the precise values are not important,
they depend on the parity of distributions), and ρ0 is a finite dimensional
algebraic representation of the Levi factor of P .

3 Computation of the Associated Variety of Valev
n,k

and Valodd
n,k

For the general theory of algebraic D-modules we refer to [BoGKHME].
First recall a few definitions (for details see [BorB1]). Let g be a complex Lie



Vol. 11, 2001 VALUATIONS AND MCMULLEN’S CONJECTURE 253

algebra. Let M be a finitely generated module over the universal enveloping
algebra U(g). Then one can choose a filtration of M by finite dimensional
subspaces M0 ⊂ M1 ⊂ M2 ⊂ · · · ⊂ M such that gMi ⊂ Mi+1 with the
equality gMi = Mi+1 for large i. Such a filtration is called good. The
associated variety (Bernstein variety) of M is the support in g∗ of the
associated graded module grM over the symmetric algebra S(g) ' grU(g).
The associated variety does not depend on a choice of a good filtration;
it will be denoted by VgM . Let us fix once and forever a positive definite
quadratic form on Rn. We will denote for brevity g = g`(n,C) and K =
O(n,R) the real orthogonal group.

Let P ⊂ GL(n,R) be the parabolic subgroup consisting of matrices of
the form (2.2). We will study the representation V = IndGL(n,R)

P ρ, where
ρ has the form (2.3). We will write ρ = ρ0 ⊗ ν, where ν is the product of
the last two terms on the right hand side of (2.3).

We are going to prove:

Theorem 3.1. The associated variety of V is equal to the variety of
complex symmetric nilpotent matrices of rank at most one.

Note that GL(n,C)/CP = CPn−1∗ =: X. LetCK = O(n,C). Let us de-
note by U ⊂ X the open subset consisting of those hyperplanes in Cn,
on which the restriction of our quadratic form is non-degenerate (this
quadratic form on Cn = Rn ⊗ C is the complexification of our fixed pos-
itive definite quadratic form on Rn). The set U is an affine variety since
U = O(n,C)/(O(n − 1,C) × O(1,C)), i.e. it is the quotient of an affine
variety O(n,C) by the reductive group O(n− 1,C)×O(1,C).

Let L denote the algebraic bundle over X corresponding to ρ0 (see
(2.3)). Let D denote the (quasicoherent) sheaf of differential operators on
X acting on sections of L.

Observe that the K-finite vectors of V correspond to regular (algebraic)
sections of a certain algebraic bundle L1 over U . Moreover, L1 = N ⊗OU
L|U , where N → U is an algebraic line bundle whose sections over U

correspond to K-finite vectors of the representation IndGL(n,R)
P ν, where, by

the definition of ν,

ν(T ) =
(

sgn(detA)
)ε1(sgn b)ε2 ,

for T =
[
A ∗
0 b

]
with A ∈ GL(n− 1,R) and b ∈ R∗. Hence we deduce

Claim 3.2. The ring D0 of (untwisted) differential operators on U acts on
Γ(U,N).
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Hence V ⊗C OU = L1 becomes a DU -module on U (here DU is the
restriction of the sheaf D on U). We have the natural morphism of rings
U(g) → Γ(X,D). The composition of it with the action of Γ(U,D) on
Γ(U,L1) = V gives the original action of U(g) on V .

Since V is finitely generated over U(g), L1 is a coherent DU -module.
Also L1 is a holonomic DU -module (since it is K-equivariant). Let i : U↪→X
be the identical embedding.

Then it is well known that F := i∗L1 is a coherent D-module. Since U
is an affine subvariety, the map i is an affine embedding. Hence Γ(X,F) =
Γ(U,L1) = V (which is a finitely generated U(g)-module). The following
proposition is essentially taken from [BorB2].

Proposition 3.3. Let M be a coherent D-module on X. Consider M =
Γ(X,M) as U(g)-module. Let π : T ∗X → g∗ be the moment map. Then
VgM ⊂ π(ChM), where VgM denotes the associated variety of M , and
ChM⊂ T ∗X denotes the singular support of M.

Proof. Let Dj denote the coherent OX-module of differential operators on
X of order at most j. We can choose a coherent OX -submodule M0 ⊂M
which generates M as a D-module and which is (EndL)-stable. Set
Mj = DjM0. We obtain a filtration of M by coherent OX -submodules
M0 ⊂ M1 ⊂ · · · . This is a good filtration: DjMi = Mi+j . Consider
grM =

⊕∞
j=0Mj/Mj−1. This is a coherent sheaf on T ∗X, whose support

coincides with ChM by definition. Let us denoteMj = Γ(X,Mj). This is a
filtration of M : M0 ⊂M1 ⊂ · · · , M =

⋃∞
j=0Mj . Clearly U i(g)Mj ⊂Mi+j .

Since we have an exact sequence 0→Mj−1 →Mj →Mj/Mj−1 → 0, then
the sequence 0 → Mj−1 → Mj → Γ(Mj/Mj−1) is exact too. Hence
Mj/Mj−1 embeds into Γ(Mj/Mj−1). Note that Γ(g∗, π∗grM) =⊕∞

j=0 Γ(X,Mj/Mj−1). Since π is proper this is a coherent grU(g) = S(g)-
module (see [DG, III Théorème 3.2.1] or [Ha, III, Theorem 8.8(b)]). Hence
grM is an S(g)-submodule of the coherent S(g)-module Γ(g∗, π∗grM);
thus grM is coherent too. Hence {Mj} is a good filtration of M and
VgM = supp(grM) ⊂ supp(π∗grM) ⊂ π(supp(grM)) = π(chM) since π
is proper. 2

Let us finish the proof of Theorem 3.1. In our situation we have a
CK-equivariant D-module on CPn−1. Its singular support is contained in⋃
Y T
∗
Y CPn−1, where the union is taken over all CK-orbits Y in CPn−1,

and T ∗Y CPn−1 denotes the co-normal bundle to Y (see [BorB2]). But on
CPn−1 there are just two CK-orbits: the open orbit consisting of those
lines, on which the restriction of our quadratic form is non-zero, and the
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closed orbit consisting of lines, the restriction on which of our quadratic
form vanishes. The co-normal bundle to the open orbit is zero. The image
under the moment map of the co-normal bundle to the closed orbit consists
of symmetric nilpotent matrices of rank at most 1. This and Proposition 3.3
imply Theorem 3.1. 2

4 Proof of the Main Result in the Even Case

Let us consider the case of even valuations. It was shown (Theorem 2.4)
that for 1 ≤ k ≤ n − 1 the space Valev

n,k can be realized as the GL(n,R)-

submodule of IndGL(n,R)
P χ, where P is the parabolic subgroup consisting of

matrices of the form

T =
[
A ∗
0 B

]
, A ∈ GL(k,R) , B ∈ GL(n− k,R) ,

and χ(T ) = |detA|−1.
Let us denote by F the space of K-finite vectors of IndGL(n,R)

P χ. Let
X denote the complex Grassmannian CGrn,k = GL(n,C)/CP . Let U ⊂ X
be the open subvariety consisting of those k-dimensional subspaces, on
which the restriction of the given quadratic form is non-degenerate. Clearly
U = CK · RGrn,k. Moreover U is an affine variety since

U = O(n,C)/
(
O(k,C)×O(n− k,C)

)
.

Let Dχ denote the sheaf of twisted differential operators on X corre-
sponding to χ. The character χ satisfies the conditions of the Beilinson–
Bernstein theorem (see [Bi, Th. I.6.3]). We will not list here these con-
ditions, just explain why they are satisfied in our situation. Consider a
different GL(n,R)-module N := IndGL(n,R)

P χ1, where χ1(T ) = (det(A))−1

(here T denotes the same matrix as at the beginning of the section). Clearly
the sheaf Dχ1 of twisted differential operators on X corresponding to χ1
is equal to Dχ. So it is sufficient to check the conditions of the Beilinson–
Bernstein theorem for Dχ1 . But the module N coincides with the space
of sections of the line bundle over the real Grassmannian RGrn,k, whose
fiber over subspace E ∈ RGrn,k is equal to translation invariant k-forms
on E (i.e. to ΛkE∗ ⊗ C). But this module has a finite dimensional sub-
module which is just the image of ΛkRn ⊗ C under the natural restriction
map ΛkRn ⊗ C → ΛkE∗ ⊗ C for each E. But it is well known that the
existence of such finite dimensional submodule implies that the conditions
of the Beilinson–Bernstein theorem are satisfied.
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Recall that the Beilinson–Bernstein theorem states that the functor of
global sections is exact and faithful on the category of Dχ-modules.

Note that the space F can be considered as the space of global sections
of a certain algebraic line bundle F over U . This F is a Dχ|U -module. Let
i : U → X be the identical embedding. Consider F1 := i∗F .

Lemma 4.1. Γ(X,F1) = F , H i(X,F1) = 0 for i > 0.

Proof. This immediately follows from the fact that i : U → X is an affine
embedding. 2

Thus by the Beilinson–Bernstein theorem the CK-equivariant Dχ-sub-
modules of F1 are in bijective correspondence with the (g,K)-submodules
of F .

Using the translation functor we will replace the study of the Dχ-module
F1 by the study of another D-module on X, where D is the sheaf of un-
twisted differential operators. Consider the space H of K-finite vectors of
the representation IndGL(n,R)

P χ1, where χ1(T ) = sgn(detA), and

T =
[
A ∗
0 B

]
.

Then H is the space of global sections of a certain algebraic line bundle H
over U . Set H1 = i∗H. Then H1 is a coherent holonomic D-module, and
for the category of D-modules on X the Beilinson–Bernstein theorem is
satisfied as well. Next CK-equivariant D-submodules of H1 are in bijective
correspondence with the CK-equivariant Dχ-submodules of F1, and the
corresponding subquotients have the same singular supports on T ∗X.

Let π : T ∗X → g∗ be the moment map. Recall that we denote by
VgM the associated variety of a g-module M , and by Ch(M) the singular
support of a D-module M.

Proposition 4.2. Let M be a coherent D-module (or Dχ-module) on X.
Let M = Γ(X,M). Then Vg(M) = π(ChM).

Proof. Let us prove it for D-modules; for Dχ-modules the proof is exactly
the same. In Proposition 3.3 it was shown that Vg(M) ⊂ π(ChM). Let
us prove the converse inclusion. The argument is taken from [BorB2]. The
sheaf of differential operators on X of order ≤ j is generated by its global
sections as OX -module (see [BorB2, Section 1.7, Lemma 2]); actually it
is generated by differential operators from U j(g), where U j(g) denotes the
subspace of U(g) spanned by the expression of the form Y1 . . . Yl with Yi ∈ g

and l ≤ j . In other words, if Dj denotes the sheaf of differential operators
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of order at most j, then Dj = OX · U j(g). Since M is a finitely generated
U(g)-module we can choose a good filtration of M by M0 ⊂M1 ⊂ · · · , i.e.
U i(g)Mj = Mi+j . Set Mj = OXMj . Let us show that {Mj} is a good
filtration of M. We have

D1Mj = OXU1(g)OXMj ⊃ OXU1(g)Mj = OXMj+1 =Mj+1 .

The inclusion D1Mj ⊂ Mj+1 is obvious, hence D1Mj = Mj+1. It is
sufficient to show that if the principal symbol of the operator P ∈ U(g)
annihilates grM , then it annihilates grM. Let us assume that P has de-
gree m, and PMj ⊂ Mj+m−1 for all j. Clearly [P,OX ] ⊂ Dm−1. Thus
PMj = POXMj ⊂ Dm−1Mj+OXPMj ⊂ OXUm−1(g)Mj+OXMj+m−1 ⊂
Mj+m−1, namely, P annihilates grM. 2

Now let us return to the study of D-module H1.

Theorem 4.3. The D-module H1 has at most one CK-equivariant subquo-
tient whose associated variety is equal to the variety of symmetric nilpotent
matrices of rank at most 1.

So let X = CGrn,k. Let Z denote the (locally closed) subset of X
consisting of the subspaces, on which the restriction of our quadratic form
has rank k − 1. Z is an O(n,C)-orbit. Fix a certain subspace Ck+1 ⊂ Cn
such that the restriction of the quadratic form on Ck+1 is non-degenerate.
Set X1 = CGrk+1,k, i.e. the Grassmannian of k-subspaces in this fixed copy
of Ck+1. Easily one has the following

Claim 4.4. Z intersects X1 transversally.

Let f : X1 ↪→ X be the identical closed embedding. Let U1 = X1 ∩ U ,
where U ⊂ X is, as previously, the open affine subset consisting of the
k-subspaces of Cn, on which the restriction of our quadratic form is non-
degenerate. Let

Z1 := X1 ∩ Z ,
W := U ∪ Z ,
W1 := U1 ∪ Z1 = W ∩X1 .

Clearly W and W1 are open subsets of X and X1, respectively. Let us
denote by

g : U ↪→W ,

g1 : U1 ↪→W1 ,

h : U1 ↪→ U ,

the identical embeddings. First we will prove
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Proposition 4.5. The DW -module g∗H is simple.

Lemma 4.6. If the DW1-module g1∗h!H is simple then the DW -module g∗H
is simple.

This lemma follows from the previous claim and theO(n,C)-equivariance
of H.

Thus it suffices to show that g1∗h!H is a simple DW1-module. First
observe that h!H is a DU1-module on U1 which is equal to the space of global
sections of an algebraic line bundle over U1 coinciding with O(k+1,R)-finite
vectors of the representation of GL(k + 1,R) induced from the character ξ
of the parabolic subgroup with the Levi factor GL(k,R)×GL(1,R) and

ξ

([
A ∗
0 b

])
= sgn(detA) , A ∈ GL(k,R) , b ∈ R× .

Let us fix a (k − 1)-dimensional subspace M ⊂ Ck+1 such that the
restriction of our quadratic form on M is non-degenerate. Consider a closed
embedding

s : CP1 = P(M⊥)→ CGrk+1,k

given by ` 7→ ` ⊕M . The intersection Z1 ∩ CP1 consists of two points
{0,∞}, and Z1 intersects CP1 transversally. Next U1 ∩ CP1 = C×. Let
t : C× ↪→ CP 1. As previously we can conclude that if t∗(s!(h!H)) is a simple
DCP1-module then g1∗h!H is a simple DW1-module. Hence let us check that
the former module is simple. It is easy to see that the DC×-module s!(h!H)
is equal to {z 1

2 +Z}. By direct (and well known) computation one shows that
t∗({z

1
2 +Z}) is a simple DCP1-module. Combining this with Lemma 4.6 we

conclude that g∗H is a simple DW -module, i.e. Proposition 4.5 is proved.
Let us recall that we are studying H1 = i∗H, where i : U ↪→ Y is the

open affine embedding. Let us denote H2 := i∗!H the simple submodule of
H1, which is also obviously CK-equivariant. By Proposition 4.5, H2|W =
H1|W . Hence H1/H2 is concentrated on k-subspaces of Cn, on which the
restriction of our quadratic form has rank at most k − 2. Let us denote
by Sj (⊂ X) the (locally closed) subvariety consisting of k-subspaces of
Cn such that the restriction of our quadratic form has rank j. Then the
singular support of any subquotient of H1/H2 is a union of some of the
closures of the conormal bundles T ∗SjX with 0 ≤ j ≤ k − 2.

In order to prove Theorem 4.3 it remains to prove

Lemma 4.7. Under the moment map π the sets T ∗SjX, 0 ≤ j ≤ k − 2, are
mapped onto symmetric nilpotent matrices of rank at least two.
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Proof. Fix j, 0 ≤ j ≤ k − 2, and any E ∈ Sj . Then the conormal vectors
to Sj at E are identified (using the Killing form on g`n(C)) with the set of
linear operators A : Cn → Cn such that

(i) A is symmetric;
(ii) A(Cn) ⊂ E;
(iii) A(E) = {0}.

Let us show that if 0 ≤ j ≤ k − 2 then there exists A with properties
(i)–(iii) and rkA ≥ 2. By assumption we can choose ` = k− j ≥ 2 linearly
independent vectors e1, . . . , el ∈ E such that 〈ei, x〉 = 0 for any x ∈ E and
any i = 1, . . . , l.

Consider Ax =
∑`

i=1〈x, ei〉ei.
Clearly A satisfies (i)–(iii) and rkA = ` ≥ 2. 2

Thus Theorem 4.3 is proved. It and Theorem 3.1 imply our main result
in the case of even valuations.

5 Proof of the Main Theorem in the Odd Case

Recall some notation from section 2. We fix a (k + 1)-dimensional lin-
ear subspace E0 ⊂ Rn. We denote by Ω the representation of GL(E0) =
GL(k + 1,R) in the space of odd valuations on E0 homogeneous of de-
gree k. Let P1 denote the (parabolic) subgroup of GL(n,R) fixing E0. By
Theorem 2.7 the space Valodd

n,k embeds as a GL(n,R)-module into the rep-

resentation IndGL(n,R)
P1

Ω. Let P2 be the parabolic subgroup consisting of
matrices of the form

T =

 A *b
O C

 ,
where A ∈ GL(k,R), b ∈ R×, C ∈ GL(n−k−1,R). Consider the character
ξ of P2

ξ(T ) = |detA|−1 · sgn b .

Corollary 2.8 states that the GL(n,R)-module Valodd
n,k can be realized as a

subquotient of IndGL(n,R)
P2

ξ.
First let us construct an O(k+ 1,C)-equivariant D-module on CGrk+1,k

satisfying the assumptions of the Beilinson–Bernstein theorem such that
the (g`(k + 1,C), O(k + 1,C))-module of its global sections coincides with
the Harish-Chandra module of Ω.
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For a real subspace E1 ⊂ E0, dimE1 = k, let us denote by P ⊂
GL(E0,R) the parabolic subgroup of transformations preserving E1. It
was shown in section 2 that Ω can be realized as a subquotient of the
representation of GL(E0,R) induced from the character χ of P , where

χ

([
A ∗
0 b

])
= |detA|−1 · sgn b ,

and A ∈ GL(k,R), b ∈ R×. More precisely Ω is isomorphic to a quotient
module M1/M2, where M1 is the Harish-Chandra module of IndGL(E0,R)

P χ,
and M2 is a finite dimensional submodule of it.

Let Y denote the complex Grassmannian CGrk+1,k of k-dimensional
complex subspaces of E0⊗C. Let V ⊂ Y denote the open affine subvariety
of Y consisting of those k-dimensional subspaces, on which the restriction
of the given quadratic form is non-degenerate (again we have fixed some
positive definite quadratic form on Rn and consider its complexification on
Cn = Rn ⊗ C). Clearly V = O(k + 1,C) · RGrk,k+1 (under the natural
embedding RGrk+1,k ⊂ CGrk+1,k). Similarly to section 4 we observe that
the space of O(k + 1,C)-finite vectors of Ω can be realized as a space of
regular sections of a certain algebraic line bundle T over V , and the sheaf
of regular sections of T is a Dχ|V -module, where Dχ is the sheaf of twisted
differential operators corresponding to χ. Again χ satisfies the assumptions
of the Beilinson–Bernstein theorem ([Bi, Th. I.6.3]). The reasoning is simi-
lar to that for the even case. Namely consider a new GL(k + 1,R)-module
IndGL(E0,R)

P χ1, where

χ1

([
A ∗
0 b

])
= (detA)−1.

Clearly the sheaf of twisted differential operators Dχ1 is equal to Dχ. So
it is sufficient to check the conditions of the Beilinson–Bernstein theorem
for Dχ1 . But this module has a finite dimensional submodule (for the reason
exactly as in the even case, see the beginning of section 4). Hence Dχ
satisfies the conditions of the Beilinson–Bernstein theorem.

Let M := i∗T be the Dχ-module on Y . As in section 4 we have
Claim 5.1. The embedding i : V ↪→ Y is affine, H i(Y,M) = 0 if i > 0,
and Γ(Y,M), considered as a (U(g`k+1(C)), O(k + 1,C))-module, is the
Harish-Chandra module of Ω.

Let us denote byM1 and M2 the Dχ-submodules of M corresponding
to M1 and M2, respectively (by the Beilinson–Bernstein theorem). Since
M1 is finite dimensional,M1 is a coherent OY -module and its singular sup-
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port Ch(M1) coincides with the zero section of T ∗Y . Hence the restriction
M1|V is not zero. But M|V = T is an irreducible Dχ|V -module. Hence
M1|V =M|V . But M1 is a submodule of M2. Thus we obtain
Claim 5.2. (M2/M1)|V = 0.

On the complex Grassmannian Y = CGrk+1,k there are just two
O(k + 1,C)-orbits: V and the subvariety of subspaces of E0 ⊗C, on which
the restriction of our quadratic form has a one-dimensional kernel. In what
follows we will denote by N the Dχ-module M2/M1 on CGrk+1,k.
Lemma 5.3. N is a simple O(k + 1,C)-equivariant Dχ-module.

Proof. We will reduce the statement to the case k = 1. Assume first that
k > 1. Fix a (k − 1)-dimensional subspace L such that the restriction
of the quadratic form on L is non-degenerate. Consider the subvariety
{E ∈ CGrk+1,k|E ⊃ L}. It is isomorphic to CP 1. Denote by j the embed-
ding

j : CP 1 ↪→ CGrk+1,k .

This CP 1 is transversal to the orbit CGrk+1,k\V . Hence N is a simple
O(k + 1,C)-equivariant Dχ-module iff j!N is a simple O(2,C)-equivariant
j·Dχ-module. Hence let us assume that k = 1. In this case, the
(g`(2,C), O(2,C))-module M1 is IndGL(2,R)

Q χ, where Q consists of 2 × 2
matrices of the form

X =
[
a ∗
0 b

]
, a, b ∈ R×, χ(X) = |a|−1 · sgn b .

Using the translation functor we can change χ to χ1 defined as
χ1(X) = |a|−1|b|−1 = |detX|−1 .

Moreover we can replace IndGL(2,R)
Q χ1 by |det ·| ⊗ IndGL(2,R)

Q χ1, which is

isomorphic to IndGL(2,R)
Q 1l. It is well known that the last module has just

one proper irreducible submodule (which is finite dimensional) and the
quotient module is irreducible. In fact the last statement can be seen
immediately using D-modules. Indeed if for the moment D denotes the ring
of (untwisted) differential operators on CP 1 then IndGL(2,R)

Q 1l corresponds
to the following D-module on CP 1. Let f : C× ↪→ CP 1 be the identical
embedding (i.e. CP 1\C× = {0,∞}). Then the D-module we are looking
for is f∗(OC×). It has a simple submodule OCP 1 , and the quotient module
f∗(OC×)/OCP 1 is a simple O(2,C)-equivariant D-module. 2

By Theorem 2.7 the space Valodd
n,k embeds into IndGL(n,R)

P1
Ω, where P1

is the parabolic subgroup of GL(n,R) fixing the given (k + 1)-dimensional
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real subspace E0 ⊂ Rn. Next we are going to construct a D-module on
the complex variety of partial flags on Cn of type (k, k + 1) satisfying the
assumptions of the Beilinson–Bernstein theorem and whose space of global
sections, considered as a (U(g`(n,C), O(n,C))-module, is isomorphic to the
Harish-Chandra module of IndGL(n,R)

P1
Ω.

Note that the Levi factor of P1 is GL(k+ 1,R)×GL(n− k− 1,R). Let
us for brevity denote by H the subgroup O(k + 1,C)×O(n− k − 1,C) of
O(n,C).

Let us consider the varieties

Z = O(n,C)× CGrk+1,k,

W = O(n,C)×H CGrk+1,k = Z/H ,

where H acts on CGrk+1,k through the first factor O(k + 1,C) while the
second factor O(n − k − 1,C) acts trivially on CGrk+1,k; and H acts on
O(n,C) by right translations. We have the projections

p : Z → CGrk+1,k ,

q : Z →W .

W is the geometric factor of Z by the free action of H. We have constructed
an O(k + 1,C)-equivariant Dχ-module N on CGrk+1,k.

On Z we have naturally the ring of twisted differential operators D :=
p·Dχ (see [BB2, Section 1]). Consider N1 := p!N . N1 is a D-module, which
is naturally (O(n,C)×H)-equivariant (the H-equivariance comes from the
O(k + 1,C)-equivariance of N ).

By [BB2] the category of H-equivariant Dχ-modules on CGrk+1,k is
equivalent to the category of (O(n,C)×H)-equivariant p·Dχ-modules on Z.
Hence since N was simple, N1 is simple too as O(n,C)×H-equivariant D-
module.

Since the action of H is free on Z, again by [BB2], the category of
(O(n,C) × H)-equivariant rings of twisted differential operators on Z is
equivalent to the category ofO(n,C)-equivariant rings of twisted differential
operators on Z/H = W . Thus we have a ring D′ of O(n,C)-equivariant
twisted differential operators on W corresponding to D. Moreover the
category of (O(n,C) × H)-equivariant D-modules on Z is equivalent to
the category of O(n,C)-equivariant D′-modules on W . Thus we obtain an
O(n,C)-equivariant D′-module N2 on W corresponding to N1. Since N1 is
simple, N2 is also simple.

It is easy to see that the representation of O(n,C) in the space Γ(W,N2)
is isomorphic to the representation of it in the Harish-Chandra module of
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IndGL(n,R)
P1

Ω.
NextW can be identified with an open subvariety of the variety CFn,k+1,k

of complex partial flags of type (k, k + 1) in Cn. Namely under this iden-
tification W consists of those pairs of subspaces A ⊂ B (dimA = k,
dimB = k + 1) such that the restriction of our quadratic form on B is
non-degenerate.

On CFn,k+1,k there exists a ring of twisted differential operators D̃ such
that D̃|W = D′. Indeed such a D̃ corresponds to the character ξ of the
parabolic subgroup P2 ⊂ GL(n,R), where P2 consists of matrices of the
form

X =

 A *b
O C

 ,
where A ∈ GL(k,R), b ∈ R×, C ∈ GL(n−k−1,R), and ξ(X) = |detA|−1 ·
sgn b (see section 2). Also D̃ satisfies the assumptions of the Beilinson–
Bernstein theorem.

It follows from the construction that the support of N2 is the subvariety
of W consisting of partial flags A ⊂ B such that the restriction of our
quadratic form on B is non-degenerate and the restriction of it on A has a
one-dimensional kernel.

Let i : W ↪→ CFn,k+1,k denote the identical embedding. One can eas-
ily see that i is an affine embedding. The sheaf N3 := i∗N2 is clearly an
O(n,C)-equivariant D̃-module, and Γ(CFn,k+1,k,N3) = Γ(W,N2). It can
be readily seen that this space Γ(CFn,k+1,k,N3) considered as (U(g`(n,C)),
O(n,C))-module is isomorphic to the Harish-Chandra module of
IndGL(n,R)

P1
Ω.

Next suppN3 is the closure of suppN2 in CFn,k+1,k. By construc-
tion, suppN2 consists of flags A ⊂ B such that the restriction of the
quadratic form on B is non-degenerate, and whose restriction to A has
a one-dimensional kernel. Hence we have

Claim 5.4. suppN3 ⊂ CFn,k+1,k consists of the flags A ⊂ B such that the
restriction of the quadratic form on A has a kernel of dimension at least
one.

For any subquotient R of N3 we have (similarly to Proposition 4.2)

Vg(Γ(R)) = π(ChR) ,

where Vg(Γ(R)) is the associated variety of Γ(R), ChR is the singular
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support of R, and

π : T ∗(CFn,k+1,k)→ g`∗(n,C)

is the moment map.
Let M := i!∗N2 be the minimal extension of N2. M is a simple D̃-

submodule ofN3 (sinceN2 is simple). Clearly supp(N3/M) ⊂ CFn,k+1,k\W .
Now the proof of our main result in the odd case will follow from the

next lemma.

Lemma 5.5. LetR be a nonzeroO(n,C)-equivariant D̃-module on CFn,k+1,k
such that suppR is contained in the subvariety of CFn,k+1,k consisting of
pairs A ⊂ B such that the restriction of our quadratic form on A and on B
is degenerate. Then the image of the singular support of R under the mo-
ment map π(ChR) cannot be contained in the variety of nilpotent matrices
of rank at most one.

(This lemma indeed implies the main result by the computation in sec-
tion 3 of the associated variety of the space of valuations and its equality
to π(ChR).)

Proof of Lemma 5.5. Choose an orbit S of maximal dimension which
is contained in suppR. Then in particular S ⊂ CFn,k+1,k\W , and the
conormal bundle T ∗S(CFn,k+1,k) is contained in ChR. Fix an arbitrary point
y ∈ S. Then y is a pair A ⊂ B of subspaces with dimA = k, dimB = k+1.
The fiber of T ∗S(CFn,k+1,k) over y consists of symmetric nilpotent matrices
Λ such that

Λ(Cn) ⊂ B , Λ(B) ⊂ A , Λ(A) = 0 .

It is sufficient to show that under the assumptions of the lemma there exists
Λ with these properties and rk Λ ≥ 2.

Since suppR ⊂ CFn,k+1,k\W and taking into account Claim 5.4 we can
consider the following cases (where we denote by Q our quadratic form
on Cn):

1. rkQ|A ≤ k − 2;
2. rkQ|A = k − 1, rkQ|B ≤ k.

First consider case 1. Choose v1, v2 ∈ A, two linearly independent
vectors belonging to the kernel of Q|A. Consider the operator ϕ : Cn → Cn
defined as

ϕ(x) = Q(x, v1)v1 +Q(x, v2)v2 .

Since the form Q is non-degenerate then rkϕ = 2. Also ϕ is symmetric and
Imϕ ⊂ A, ϕ(A) = 0.
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Now consider case 2. By assumption the kernel of Q|B is nontrivial.
Assume first that KerQ|B 6⊂ A. Then we can choose v1 ∈ KerQ|B such
that v1 6∈ A. Then choose v2 ∈ KerQ|A\{0}. Consider the operator ϕ(x) =
Q(v1, x)v1 +Q(v2, x)v2. Clearly ϕ is symmetric of rank two and Imϕ ⊂ B.
For any b ∈ B, ϕ(b) = Q(v2, b)v2 ∈ A, namely ϕ(B) ⊂ A. For any a ∈ A,
ϕ(a) = 0. Hence in this situation Lemma 5.5 is proved.

Assume now that KerQ|B ⊂ A. Since by the assumption of case 2,
rkQ|A = k − 1, then KerQ|B is one-dimensional and assume that it is
spanned by v1 ∈ A. It is easy to see that the orthogonal complement L
of A in B is two-dimensional (i.e. L := {x ∈ B|Q(x, a) = 0 , ∀a ∈ A}).
Indeed the form Q is defined on the quotient space B/(KerQ|B) and is
nondegenerate on it; the orthogonal complement of A/(KerQ|B) = A/L is
one-dimensional. So let us choose v2 ∈ L to be linearly independent of v1.
Consider the operator ϕ(x) = Q(v1, x)v2 +Q(v2, x)v1. Then ϕ is symmetric
of rank two and Imϕ ⊂ B. For any b ∈ B, ϕ(b) = Q(v2, b)v1 ∈ A, namely
ϕ(B) ⊂ A. For any a ∈ A, ϕ(a) = 0. Hence Lemma 5.5 is proved. This
finishes the proof of Theorem 1.3. 2

6 Unitarily Invariant Valuations

In this section we deal with translation invariant continuous valuations on
convex compact subsets of Cn, which are invariant with respect to the uni-
tary group U(n). This space of valuations turns out to be finite dimensional,
and we compute the dimension of this space. Namely, we have
Theorem 6.1. For every k, 0 ≤ k ≤ 2n, the dimension of the space of
translation invariant U(n)-invariant continuous valuations on Cn, homoge-
neous of degree k, is equal to

1 +
[

min(k, 2n− k)
2

]
.

Remark. Recall that by McMullen’s Theorem 1.2 every translation in-
variant continuous valuation can be uniquely presented as a sum of homo-
geneous valuations. The uniqueness implies that if the valuation was in
addition unitarily invariant then all homogeneous summands must also be
unitarily invariant.

Note that the cases k = 0 and k = 2n of the above theorem follow
immediately from Theorem 2.1. The cases k = 1 and k = 2n − 1 were
proved in [A] (see Lemmas 7.4 and 7.1 respectively) using results of [GW]
and [M2]. So from now on we will assume that 2 ≤ k ≤ 2n− 2.



266 S. ALESKER GAFA

The proof of this result will use representation theoretical computa-
tions of Howe and Lee [HoL]. Now we are going to formulate the particular
case of their result we need. First let us recall that irreducible representa-
tions of the group SO(2n) are paramatrized by n-tuples of integer numbers
(µ1, . . . , µn) (called highest weights) such that

µ1 ≥ · · · ≥ µn−1 ≥ |µn|.
Let 1 ≤ m ≤ 2n − 1. Let Pm be the parabolic subgroup of GL(2n,R)
consisting of matrices of the form[

A ∗
0 B

]
, whereA ∈ GL(2n−m,R), B ∈ GL(m,R).

Let δ : Pm → C be the character

δ

([
A ∗
0 B

])
= |detB|.

For 1 ≤ l ≤ n let us denote by Λ(l) the subset of highest weights of SO(2n)
of the form

(a) if 1 ≤ l < n set

Λ(l) :=
{

(µ1, . . . , µl, 0, . . . , 0)
∣∣ µ1 ≥ · · · ≥ µl ≥ 0

}
;

(b) if l = n let Λ(l) be the set of all heighest weights of SO(2n).
The following result was proved in [HoL] (see Theorem 3.4.4 (a)(ii) in

[HoL] and the discussion on p. 288 of that paper).
Theorem 6.2. (i) Let 2 ≤ m ≤ n. Then the length of the GL(2n,R)-
module IndGL(2,R)

Pm
δ is equal to 1 + [m/2].

(ii) The representation of SO(2n) in IndGL(2,R)
Pm

δ is multiplicity free.
Moreover if we denote (as in [HoL]) by R+(1, j), j = 1, 3, 5, . . . , 1 + 2[m/2]
all the subquotients of IndGL(2,R)

Pm
δ then the representation of SO(2n) in

R+(1, j) decomposes into irreducible components which have highest
weights (µ1, µ2, . . . , µn) ∈ Λ(m) precisely of the following form:

(a) if j = 1 then µi is even ∀i, and |µ2| ≤ 2;
(b) if 2 ≤ j ≤ k − 1 then µi is even ∀i, and µj−1 ≥ 2 ≥ µj+1;
(c) if j = k, k + 1 then µi is even ∀i, and µj−1 ≥ 2.

(iii) In the GL(2n,R)-module IndGL(2n,R)
Pm

δ there is only one irreducible
submodule. This submodule is isomorphic to R+(1, 1).

We will need the following
Proposition 6.3. Under the action of SO(2n) the space Valev2n,k is mul-
tiplicity free and is a direct sum of irreducible components with highest
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weights µ = (µ1, . . . , µn) precisely of the form µ ∈ Λ(min(k, 2n − k)) and
|µ2| ≤ 2.

Proof. First recall that the space Valev2n,k naturally embeds into the space

I := IndGL(2n,R)
P2n−k

χ, where as above P2n−k consists of matrices of the form[
A ∗
0 B

]
, where A ∈ GL(k,R), B ∈ GL(2n− k,R) ,

and χ is the character χ : P2n−k → C

χ

([
A ∗
0 B

])
= |detA|−1.

We will denote by |det | the character of GL(2n,R) equal to the absolute
value of the determinant.
Lemma 6.4. Assume n ≤ k ≤ 2n−2. Then Valev2n,k⊗|det | is infinitesimally
isomorphic to R+(1, 1)

Clearly this lemma implies Proposition 6.3 in the case n ≤ k ≤ 2n− 2.
Let us prove it.

Clearly Valev2n,k⊗|det | is also an irreducible GL(2n,R)-module with the

same K-type structure as Valev2n,k. It can be embedded into IndGL(2n,k)
P χ1,

where
χ1

([
A ∗
0 B

])
= |detB|.

Hence by Theorem 6.2 (iii) the space Valev2n,k ⊗ |det | is infinitesimally iso-
morphic to R+(1, 1). So Lemma 6.4 is proved.

Now we are going to prove Proposition 6.3 in the case of Valev2n,k, 2 ≤ k
< n. It is easy to see that the representation I = IndGL(2n,R)

P2n−k
χ is unitarily

induced from the character θ : P2n−k → C, where

θ

([
A ∗
0 B

])
= χ

([
A ∗
0 B

])
·
(
|detA|2n−k · |detB|−k

)− 1
2

= |detA|−
2n−k

2 −1 · |detB|k2 .
Now consider the parabolic subgroup Pk consisting of matrices of the form[

B ∗
0 A

]
, where B ∈ GL(2n− k,R) , A ∈ GL(k,R) .

Consider another representation I ′ of GL(2n,R) which is unitarily in-
duced from the character θ′ : Pk → C defined by

θ

([
B ∗
0 A

])
= |detA|−

2n−k
2 −1 · |detB|k2 .
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It is well known that the Jordan–Holder series of I ′ coincides with the
Jordan–Holder series of I up to a permutation of elements. It is easy to
see that the dual representation (I ′)∗ is infinitesimally equivalent to the
(non-unitarily) induced representation IndGL(2n,R)

Pk
λ, where

λ

([
B ∗
0 A

])
= |detA| .

Since by assumption 2 ≤ k < n the last representation satisfies conditions
of Theorem 6.2. Thus we conclude that, for 2 ≤ k < n, Valev2n,k is infinites-
imally equivalent to the dual representations of one of the subquotients
of IndGL(2n,R)

Pk
λ, which are R+(1, j), j = 1, 3, 5, . . . , 2[k/2] + 1. Since any

irreducible representation of the special orthogonal group is isomorphic to
its dual then the K- type structure of Valev2n,k coincides with that of one of
R+(1, j).

Recall (Proposition 2.10) that Valev2n,k can be embedded into the

GL(2n,R)-module IndGL(2n,R)
P1

ρ, where P1 is the parabolic subgroup con-

sisting of matrices of the form
[
A ∗
0 b

]
, where A ∈ GL(2n−1,R), b ∈ R×,

and ρ is a finite dimensional representation of the Levi subgroup of P1.
Let us restrict this representation to SO(2n). We will obtain a repre-

sentation Φ of SO(2n) in sections of some finite dimensional vector bundle
over the unit sphere S2n−1.
Claim 6.5. There is a constant C (depending on n only) such that the high-
est weight (µ1, . . . , µn) of any irreducible component of Φ satisfies |µ2| ≤ C .

Obviously Claim 6.5 and Theorem 6.2 imply Proposition 6.3. Let us
prove Claim 6.5. Let us fix a vector x0 ∈ S2n−1. Let SO(2n − 1) denote
the stabilizer of x0 in SO(2n). Let F denote the fiber at x0 of our vector
bundle over S2n−1. Then F is SO(2n − 1)-module. For any irreducible
component φ of Φ we have the SO(2n− 1)-equivariant map

f : φ→ F

defined by f(s) = s(x0) for any s ∈ φ. This is non-zero map. Indeed any
non-trivial SO(2n)-invariant subspace of Φ has a section which does not
vanish at x0 (since SO(2n) acts transitively on the unit sphere).

Hence if we consider φ as SO(2n − 1)-module then it contains at least
one of the irreducible components of F . Let (ν1, . . . , νn−1) be the highest
weight of such a component. If we denote by (µ1, . . . , µn) the highest weight
of φ then it is well known (see [Z]) that there are inequalities

µ1 ≥ ν1 ≥ µ2 ≥ ν2 ≥ · · · ≥ νn−1 ≥ |µn| .
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Since F is finite dimensional and fixed we see that |µ2| is bounded by
some constant. So Claim 6.5 is proved. This also finishes the proof of
Proposition 6.3. 2

Let us prove Theorem 6.1. Since (SO(2n), U(n)) is a symmetric pair
then for every irreducible representation of SO(2n) the subspace of U(n)-
invariant vectors has dimension at most one (see [T] or [He]).

Next it can be shown (e.g. see [T, §8]) that irreducible representations
of SO(2n) which have U(n)-fixed non-zero vectors have highest weights
precisely of the form (µ1, . . . , µn), where

(i) if n is even, then

µ1 = µ2 ≥ µ3 = µ4 ≥ · · · ≥ µn−1 = µn ≥ 0 ;

(ii) if n is odd, then

µ1 = µ2 ≥ µ3 = µ4 ≥ · · · ≥ µn−2 = µn−1 ≥ µn = 0 .

Obviously this fact and Proposition 6.3 imply Theorem 6.1. 2

Remark. In [A] we obtained an explicit description of unitarily invariant
translation invariant continuous valuations on C2. It would be interesting
to obtain it in general on Cn.

7 Questions and Comments

It was shown in [A, Theorem 8.1] that if G is a compact subgroup of the
orthogonal group O(n) which acts transitively on the unit sphere then the
space of G-invariant translation invariant continuous valuations is finite
dimensional. However there is a classification of compact connected groups
acting transitively and effectively on the sphere due to Montgomery and
Samelson [MoS] and Borel [Bo1,2]. They have obtained the following list:

6 infinite series: SO(n), U(n), SU(n), Sp(n), Sp(n)·U(1), Sp(n)·Sp(1);
3 exceptions: G2, Spin(7), Spin(9).
The action of the group G on the corresponding sphere is defined by

some linear representation of G in a real vector space (cf. also the discussion
in [Be, Ch. 7 B]).

In each of these cases one has a finite dimensional space of G-invariant
translation invariant continuous valuations. The case of the SO(n) is com-
pletely covered by the Hadwiger theorem: every SO(n)-invariant transla-
tion invariant continuous valuation is a linear combination of the intrinsic
volumes (in particular the dimension of this space is equal to n+ 1). The
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case of the unitary group U(n) was discussed in section 6 of this paper,
where we have computed the dimension of this space. It would be inter-
esting to obtain the explicit description of these valuations (the case of C1

coincides with Hadwiger’s characterization on the plane, and the case of C2

was completely described in [A]). We believe that such a description would
have applications to integral geometry in the complex affine space Cn and
the complex projective space CPn.

We think that the next interesting case to describe is the case of the
group Sp(n)·Sp(1). Let us recall the definition of this group. Let Hn be the
space of n-tuples of quaternions considered as a right quaternionic space.
Then the group Sp(n) acts on this space from the left. The group Sp(1) of
quaternions of unit length acts on this space (considered as a real vector
space) by multiplication from the right. These actions of Sp(n) and Sp(1)
commute and generate the group denoted by Sp(n) ·Sp(1). The description
of valuations invariant with respect to this group would have applications to
integral geometry of the quaternionic affine space Hn and the quaternionic
projective space HPn. (Note that for n = 1 one has Sp(1) ·Sp(1) = SO(4),
and we are again reduced to the Hadwiger theorem.)
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