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c© Birkhäuser Verlag, Basel 2000

GAFA Geometric And Functional Analysis

SALEM SETS AND RESTRICTION PROPERTIES OF
FOURIER TRANSFORMS

G. Mockenhaupt

1 Introduction

The aim of this paper is to give on the real line an analogue of restric-
tion phenomena of Fourier transforms first discovered in the late sixties
by E.M. Stein for higher dimensions. In fact, we will establish a result on
the real line which is almost as sharp as the Stein–Tomas theorem. This
says, for a function from Lp(Rn), 1 ≤ p ≤ 2(n + 1)/(n + 3), n > 1, its
Fourier transform restricted to the unit sphere Sn−1 in Rn is well defined
and square integrable against the uniform measure on Sn−1. Since the sev-
enties there were many generalizations of this result, mainly for situations
where the unit sphere is replaced by some smooth submanifold of Rn sat-
isfying suitable curvature conditions, but similar questions have also been
discussed in the case where the Fourier transform is replaced by a more
general oscillatory integral operator (see e.g. [St], [Ch], [D], [Mü], [SeS]).
More recently, J. Bourgain [B1,2] developed a method improving the Stein–
Tomas result for n ≥ 3 – the case n = 2 was settled by Stein in [F1]. The
literature on the subject might suggest that these restriction phenomena
are genuinely n-dimensional aspects of Fourier Analysis (see, e.g. [F3]).
We will see however, that a proper analogue of restriction phenomena for
Fourier transforms can be developed on the real line. In part this point of
view is motivated by a recent result of Bourgain [B3], [W], showing that
the bounds conjectured by H. Montgomery [Mo, p. 142] on finite Dirichlet
sums imply that Kakeya sets, i.e. sets containing a line segment in every
direction in Rn, have Hausdorff dimension n. This conclusion is known
to follow in a more natural way from the conjectured optimal restriction
estimates for spheres, which in dual form state that∫

Rn

|f̂dσ|pdx ≤ C‖f‖p
Lq(Sn−1,dσ) (1)
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for p > 2n/(n− 1), q =∞ and dσ being the uniform measure on Sn−1.

The question we ask here is whether we can replace the measure dσ in (1)
by a probability measure dµ supported on a fractional dimensional compact
set E on R and still obtain the estimate (1) with appropriate nontrivial
exponents p, q. This, of course, requires that the Fourier transform of a
measure dµ supported on a set E of Hausdorff dimension α ∈ (0, 1) lies in
Lp(R) for some p <∞. It is known that this implies strong conditions on
the structure of the set E and p > 2/α. Now, by answering a question of
A. Buerling, R. Salem in [S] constructed for a fixed α ∈ (0, 1) and each ε > 0
measures dµ supported on a set of Hausdorff dimension α whose Fourier
transform lies in Lp(R) for p > 2/α + ε (see [KL] for a nice historical
background).

It seems natural to conjecture for the measures constructed by Salem
that the following (Lq, Lp)-estimate holds:∫

R
|f̂dµ|pdx ≤ C‖f‖pLq(dµ) , (2)

with p > 2/α + ε and q = ∞. By multiplying the measure µ with a
nonnegative weight function a factorization argument would allow us to
lower the q-exponent. An interpolation argument with the trivial (L1, L∞)-
estimate would then give an (L2, Lp)-estimate which is essentially what we
are going to proof here for the original measure dµ.

We would like to point out that we cannot exclude the possibility that
the inequality in (2) does hold for all p > 2/α + ε and q = 2. Note that
in case of the sphere the sharpness of the Stein–Tomas result follows from
the curvature of the sphere, or, by considering the equivalent problem for
the n-torus, from the fact that Zn ∩ {R < |x| ≤ R+ 1} contains an n− 1-
dimensional arithmetic progression of size R(n−1)/2. The analogue of this
curvature condition for a 1/R neighborhood of the set E = supp(µ) would
be a suitable estimate of the size of an arithmetic progression contained
in it.

Restriction theorems for the Fourier transform are known to be an im-
portant tool to exploit cancellation properties of convolution operators (see
[F1], [St], [B1]). The restriction theorems we show here will allow us to
construct new Lp(R)-multipliers which in a sense play the same role that
the Bochner–Riesz multipliers do in Rn for n > 1.
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2 Hausdorff and Fourier dimension

We will begin with a short review of two notions of dimension. For details
we refer to Kahane’s book [K]. By a theorem of Frostman it is known
that if E ⊂ Rn is a compact set of Hausdorff dimension α, then there is a
probability measure µ supported on E satisfying µ(Br(x)) ≤ C rα, where
Br(x) denotes a ball of radius r centered at x. Therefore, the β-potential
(0 < β < n) of µ at a point x defined as

Iβ(µ)(x) =
∫

dµ(y)
|x− y|β

is a bounded function as long as β < α and this implies the finiteness of
the β-energy of µ defined as

Iβ(µ) =
∫∫

dµ(y)dµ(x)
|x− y|β

for β < α. On the other hand the theorem of Frostman shows that if
Iα(ν) <∞, for some probability measure ν supported on a compact set E,
then its Hausdorff dimension dimH E ≥ α. Since the Fourier transform of
|x|−α, 0 < α < n, is C|x|α−n, one can show (see [C]):

Iα(µ) = c

∫
Rn

|d̂µ(y)|2
|y|n−α dy .

Thus Iα(µ) < ∞ provides some information on the size of d̂µ, although
it does not even imply that d̂µ(x) → 0 as x → ∞ (consider, e.g. E =
[0, 1] ⊂ R2).

We define the Fourier dimension of a compact set E ⊂ Rn, denoted by
dimF E, as the supremum of β ≥ 0 such that for some probability measure
dµ supported on E ∣∣d̂µ(x)

∣∣ ≤ C|x|−β/2.
Since the last inequality – or even the weaker assumption that d̂µ ∈ Lp(Rn)
for p > 2n/β – implies Iα(µ) < ∞ for α < β, we always have dimF E ≤
dimH E. In case E is a compact smooth α-dimensional submanifold of Rn

and dµ is the measure induced by the Lebesgue measure on Rn, we may
expect an isotropic decay of the form |x|−α/2 only under some conditions
on the curvature and on the dimension of E. Here are some examples:

(1) The unit sphere in Rn has Fourier dimension n− 1.
(2) The boundary of the unit cube in Rn has Fourier dimension 0.
(3) The Cantor middle third set has Fourier dimension 0 and Hausdorff

dimension log 2/ log 3.
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(4) R. Kaufman [Ka] has shown that for t > 0 the set Et of those real
numbers x ∈ [0, 1] such that

||qx|| ≤ q−1−t

has solutions for arbitrarily large integers q, ||x|| denotes the distance
to the nearest integer, has Fourier dimension and Hausdorff dimension
equal to 2

2+t .

These examples show that Hausdorff dimension and Fourier dimension do
not agree in general. This is not surprising since Hausdorff dimension mea-
sures a metric property of a set, whereas the Fourier dimension measures
an arithmetic property of a set. However, the sets in examples (1) and (4)
do have the property that their Fourier dimension and Hausdorff dimension
agree. Prior to the examples of Kaufman above the existence of subsets on
the real line having this property was first shown by Salem [S] and they
are named after him. Later J.-P. Kahane [K] provided a rich class of Salem
sets by showing that images of compact sets of a given Hausdorff dimension
under Brownian motion are almost surely Salem sets.

3 Salem’s Construction

We begin with a generalization of the classical Cantor type construction
(see [Z, p. 194]). Let M > 2 be an even integer and put N = MM . Choose
ξ ∈ (0, 1/N) and let points 0 < a1 < a2 < · · · < aN < 1 be given such that
they are linearly independent over the rational numbers and such that

0 < a1 < 1/N − ξ and ξ < ak − ak−1 < 1/N , k = 2, . . . ,N . (3)

On an interval [A,B] of length L, a dissection of type (N, a1, . . . , aN , ξ) is
performed by calling the closed intervals[

A+ Lak, A+ L(ak + ξ)
]
, k = 1, . . . ,N ,

white and the complementary intervals black. Let Ξ = (ξk)k≥1 be a sequence
such that (

1− 1
2k2

)
ξ ≤ ξk ≤ ξ , k ≥ 1 .

Starting with E0 = [0, 1], we perform a dissection of type (N, a1, . . . , aN , ξ1)
and remove the black intervals, thereby obtaining a set E1 which is a union
of N intervals each of length ξ1. On each remaining interval we perform
a dissection of type (N, a1, . . . , aN , ξ2), remove the black intervals and so
obtain a set E2 of N2 intervals each of length ξ1ξ2. After n steps we obtain
a set En of Nn intervals each of length ξ1ξ2 . . . ξn. Put E =

⋂
n≥0En. Then
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E is a perfect set having measure 0 if Nnξn → 0 and Hausdorff dimension
α if we choose ξ = N−1/α.

For each n ∈ N, let Fn be a continuous nondecreasing function satisfy-
ing:

• Fn(0) = 0 for x ≤ 0 and Fn(1) = 1 for x ≥ 1.
• Fn increases linearly by 1/Nn on each white interval in En.
• Fn is constant on each black interval in En.

Let F = limn→∞ Fn. Then F is a nondecreasing continuous function and
the Fourier transform of the corresponding measure is given by

d̂F (x) = P (x)
∏
n≥1

P (xξ1 . . . ξn) .

where P (x) = 1
N

∑
1≤k≤N eiakx (see [Z]). Note that E and F do depend

on Ξ. The mentioned result of Salem [S] is the following

Proposition 3.1. Given ε > 0, there is M > 2 and a sequence Ξ as
above such that ∣∣d̂F (x)

∣∣ ≤ Cε |x|−α2 +ε .

In fact, this estimate holds for a.e. Ξ w.r.t. a suitable measure. More-
over, one can take ε a fixed multiple of 1/

√
M . Besides Salem’s result we

will need the following regularity property of the function F = FΞ which
holds for all Ξ ∈ [0, 1].

Proposition 3.2. There is C > 0, depending only on M such that for
x, y ∈ R, ∣∣F (x)− F (y)

∣∣ ≤ C |x− y|α .
To prove this let x, y ∈ [0, 1] and suppose that y > x. Since F is

constant on black intervals complementary to E, we may assume that x, y
lie in E. Let k be the smallest integer such that after k dissections at least
two black intervals lie in [x, y]. Then [x, y] contains a white interval and

y − x ≥ ξ1 . . . ξk ≥ ξk
∏

1≤m≤k

(
1− 1

2m2

)
≥ Cξk .

Now, after k − 1 dissections there is at most one black interval (a, b) con-
tained in [x, y]. Hence using N = 1/ξα we find

F (y)− F (x) = F (y)− F (b) + F (a)− F (x) ≤ 2
Nk−1 ≤ Cξkα ≤ C(y − x)α.
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4 A Restriction Theorem on the Real Line

As an application of Young’s inequality and the fact that the Fourier trans-
form of the measures constructed by Salem lie in a nontrivial Lp(R), one
can get a restriction result for Fourier transforms of functions in Lp(R) for
p close to 1 (by following E.M. Stein’s original argument [F2]). To improve
on this range we will follow the Stein–Tomas argument (see [St]).
Theorem 4.1. Let µ be a compactly supported positive measure on Rn

which satisfies the following properties.
(i) There is β > 0 such that |d̂µ(x)| ≤ C |x|−β/2.

(ii) There is α > 0 such that µ(Br(x)) ≤ C rα for every ball Br(x) of
radius r centered at x.

Then, for 1 ≤ p < 2(2n−2α+β)
4(n−α)+β , we have(∫

|f̂ |2dµ
)1/2

≤ C‖f‖Lp(Rn) . (4)

We have ‖f̂‖2L2(dµ) ≤ ‖f ∗ d̂µ‖p′‖f‖p with p′ the dual exponent of p. The

theorem follows if we can show that the convolution operator Tf = d̂µ∗f is
bounded from Lp → Lp

′
, for p′ > 2(2n−2α+β)/β. Let ϕk = ϕ( · /2k)∈C∞0 ,

0 ≤ ϕk ≤ 1, have support in the spherical annulus {2k−1 ≤ |x| ≤ 2k+1}
and define ϕ0 ∈ C∞0 (|x| ≤ 2) such that

∑
k≥0 ϕk = 1. We decompose

T according to this partition: Tf =
∑

k≥0 Tkf , where Tkf = (ϕkd̂µ) ∗ f .
Then by (i) we have

‖Tk‖L1→L∞ ≤ ‖ϕk d̂µ‖∞ ≤ C2−k
β
2 . (5)

By Plancherel’s Theorem we get for the norm of the operators Tk on L2

‖Tk‖L2→L2 ≤ C sup
x∈Rn

∣∣ϕ̂k ∗ dµ(x)
∣∣

≤ C2kn sup
x∈Rn

∫
1

(1 + 2k|x− y|)N dµ(y)

= C ′2kn sup
x∈Rn

∫ ∞
0

µ
(
Br/2k(x)

)
(1 + r)−N−1dr .

Using the regularity of the measure µ, i.e. µ(Br/2k(x)) ≤ Crα2−kα, we get

||Tk||L2→L2 ≤ C2k(n−α) . (6)

Interpolating the bounds (5) and (6) gives ||Tk||Lp→Lp′ ≤ C2k( 2n−2α+β
p′ −β2 ).

Hence, T =
∑
Tk is bounded from Lp to Lp

′
for p′ > 22n−2α+β

β .
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Now, let E ⊂ [0, 1] und dF be as in the previous paragraph and α =
dimH E. We get the following

Corollary 4.2. Let p0 < 2(2−α)
4−3α and choose M in Proposition 3.1

sufficiently large. Then there is a constant C depending only on M such
that ∫

E
|f̂ |2dF ≤ C‖f‖2Lp0(R) .

5 Application to Multiplier Theory

We proceed to construct Lp-multipliers on R which may serve as analogues
of the Bochner–Riesz multipliers in Rn, n > 1. Suppose that E ⊂ [0, 1] is
a compact set of Hausdorff dimension α supporting a measure µ satisfying
both |d̂µ(x)| ≤ Cβ|x|−β/2 and the regularity estimates µ(Br(x)) ≤ Crα.
Let ψ ∈ C∞0 ([−1, 1]), ψ(0) 6= 0, be an even function and define kz(x) =
ψ(x)/|x|α−z, z > 0. For z > 0, we will consider the multipliers given by
mz = kz ∗ dµ. Let Tz be the convolution operator corresponding to the
multiplier mz. Obviously, since kz and µ have compact support, the same
holds for mz. Furthermore, the regularity assumption on µ makes mz a
bounded measurable function provided z > 0. Hence, Tz is bounded on
L2(R). Since mz has compact support a necessary condition to be a p-
multiplier is m̂z ∈ Lp(R). Assuming d̂µ, k̂z ∈ Lp(R) and using k̂z(x) ≈
Cψ(0)|x|−(1+z−α) and |d̂µ(x)| ≤ C|x|−β/2 we find that∫

|d̂µ|p(1+ 2
β

(1+z−α))
dx ≤ C

∫
|d̂µ|p|k̂z|pdx <∞ .

Hence, Hölder’s inequality gives Iσ(µ) < ∞, for all σ < 2
p(1+ 2

β
(1+z−α))

.

Since α = dimH E ≥ σ we get the necessary condition p ≥ 2β
α(2+2z−2α+β)

(→ 2
2z+2−α as β → α).

Theorem 5.1. Let 1 ≤ p < 2(2−2α+β)
4−4α+β . Then Tz is a bounded operator

on Lp(R) for p > 2
2z+2−α .

We sketch the proof here (see [F2]). First we decompose Tz in dyadic
pieces as in the proof of Theorem 4.1: Tzf =

∑
k≥0 Tkf . It is enough to

get bounds for Tk on an interval Ik of length 2k+1. Applying Hölders in-
equality we bound ‖Tkf‖Lp(Ik) against the L2-norm times |Ik|1/p−1/2. Using
Plancherel’s theorem we bound the remaining L2-norm by∥∥(ϕkk̂z)∨ ∗ dµf̂

∥∥2
2 ≤

∥∥|(ϕkk̂z)∨| ∗ dµ∥∥∞∥∥|(ϕkk̂z)∨| ∗ dµ|f̂ |2‖1 .



1586 G. MOCKENHAUPT GAFA

We bound the above L1-norm by ‖(ϕkk̂z)∨‖1 supx
∫
|f̂(x−y)|2dµ(y). Using

translation invariance Theorem 4.1 implies

‖Tkf‖22 ≤ C
∥∥|(ϕkk̂z)∨| ∗ dµ∥∥∞∥∥(ϕkk̂z)∨

∥∥
1‖f‖

2
p .

We deal with the L∞-term as in the proof of Theorem 4.1 resulting in a
bound of order 2−zk. The L1-term is easily seen to be of order 2k(1+z−α).
Collecting terms gives ‖Tkf‖Lp ≤ 2k(−1−z+α/2+ 1

p
)‖f‖p.Hence, Tz is bounded

for p > 2
2z+2−α .
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